rs6000: Generate an lxvp instead of two adjacent lxv instructions

The MMA build built-ins currently use individual lxv instructions to
load up the registers of a __vector_pair or __vector_quad.  If the
memory addresses of the built-in operands are to adjacent locations,
then we can use an lxvp in some cases to load up two registers at once.
The patch below adds support for checking whether memory addresses are
adjacent and emitting an lxvp instead of two lxv instructions.

2021-07-14  Peter Bergner  <bergner@linux.ibm.com>

gcc/
	* config/rs6000/rs6000.c (adjacent_mem_locations): Return the lower
	addressed memory rtx, if any.
	(rs6000_split_multireg_move): Fix code formatting.
	Handle MMA build built-ins with operands in adjacent memory locations.

gcc/testsuite/
	* gcc.target/powerpc/mma-builtin-9.c: New test.
This commit is contained in:
Peter Bergner 2021-07-14 18:27:02 -05:00
parent 7d914777fc
commit 69feb7601e
2 changed files with 92 additions and 18 deletions

View file

@ -18051,23 +18051,29 @@ get_memref_parts (rtx mem, rtx *base, HOST_WIDE_INT *offset,
return true;
}
/* The function returns true if the target storage location of
mem1 is adjacent to the target storage location of mem2 */
/* Return 1 if memory locations are adjacent. */
/* If the target storage locations of arguments MEM1 and MEM2 are
adjacent, then return the argument that has the lower address.
Otherwise, return NULL_RTX. */
static bool
static rtx
adjacent_mem_locations (rtx mem1, rtx mem2)
{
rtx reg1, reg2;
HOST_WIDE_INT off1, size1, off2, size2;
if (get_memref_parts (mem1, &reg1, &off1, &size1)
&& get_memref_parts (mem2, &reg2, &off2, &size2))
return ((REGNO (reg1) == REGNO (reg2))
&& ((off1 + size1 == off2)
|| (off2 + size2 == off1)));
if (MEM_P (mem1)
&& MEM_P (mem2)
&& get_memref_parts (mem1, &reg1, &off1, &size1)
&& get_memref_parts (mem2, &reg2, &off2, &size2)
&& REGNO (reg1) == REGNO (reg2))
{
if (off1 + size1 == off2)
return mem1;
else if (off2 + size2 == off1)
return mem2;
}
return false;
return NULL_RTX;
}
/* This function returns true if it can be determined that the two MEM
@ -26708,8 +26714,8 @@ rs6000_split_multireg_move (rtx dst, rtx src)
for (int i = 0; i < nregs; i += reg_mode_nregs)
{
unsigned subreg =
(WORDS_BIG_ENDIAN) ? i : (nregs - reg_mode_nregs - i);
unsigned subreg
= WORDS_BIG_ENDIAN ? i : (nregs - reg_mode_nregs - i);
rtx dst2 = adjust_address (dst, reg_mode, offset);
rtx src2 = gen_rtx_REG (reg_mode, reg + subreg);
offset += size;
@ -26726,8 +26732,8 @@ rs6000_split_multireg_move (rtx dst, rtx src)
for (int i = 0; i < nregs; i += reg_mode_nregs)
{
unsigned subreg =
(WORDS_BIG_ENDIAN) ? i : (nregs - reg_mode_nregs - i);
unsigned subreg
= WORDS_BIG_ENDIAN ? i : (nregs - reg_mode_nregs - i);
rtx dst2 = gen_rtx_REG (reg_mode, reg + subreg);
rtx src2 = adjust_address (src, reg_mode, offset);
offset += size;
@ -26752,13 +26758,53 @@ rs6000_split_multireg_move (rtx dst, rtx src)
if (GET_MODE (src) == OOmode)
gcc_assert (VSX_REGNO_P (REGNO (dst)));
reg_mode = GET_MODE (XVECEXP (src, 0, 0));
int nvecs = XVECLEN (src, 0);
for (int i = 0; i < nvecs; i++)
{
int index = WORDS_BIG_ENDIAN ? i : nvecs - 1 - i;
rtx dst_i = gen_rtx_REG (reg_mode, reg + index);
emit_insn (gen_rtx_SET (dst_i, XVECEXP (src, 0, i)));
rtx op;
int regno = reg + i;
if (WORDS_BIG_ENDIAN)
{
op = XVECEXP (src, 0, i);
/* If we are loading an even VSX register and the memory location
is adjacent to the next register's memory location (if any),
then we can load them both with one LXVP instruction. */
if ((regno & 1) == 0)
{
rtx op2 = XVECEXP (src, 0, i + 1);
if (adjacent_mem_locations (op, op2) == op)
{
op = adjust_address (op, OOmode, 0);
/* Skip the next register, since we're going to
load it together with this register. */
i++;
}
}
}
else
{
op = XVECEXP (src, 0, nvecs - i - 1);
/* If we are loading an even VSX register and the memory location
is adjacent to the next register's memory location (if any),
then we can load them both with one LXVP instruction. */
if ((regno & 1) == 0)
{
rtx op2 = XVECEXP (src, 0, nvecs - i - 2);
if (adjacent_mem_locations (op2, op) == op2)
{
op = adjust_address (op2, OOmode, 0);
/* Skip the next register, since we're going to
load it together with this register. */
i++;
}
}
}
rtx dst_i = gen_rtx_REG (GET_MODE (op), regno);
emit_insn (gen_rtx_SET (dst_i, op));
}
/* We are writing an accumulator register, so we have to

View file

@ -0,0 +1,28 @@
/* { dg-do compile } */
/* { dg-require-effective-target power10_ok } */
/* { dg-options "-mdejagnu-cpu=power10 -O2" } */
typedef unsigned char vec_t __attribute__((vector_size(16)));
void
foo (__vector_pair *dst, vec_t *src)
{
__vector_pair pair;
/* Adjacent loads should be combined into one lxvp instruction. */
__builtin_vsx_build_pair (&pair, src[0], src[1]);
*dst = pair;
}
void
bar (__vector_quad *dst, vec_t *src)
{
__vector_quad quad;
/* Adjacent loads should be combined into two lxvp instructions. */
__builtin_mma_build_acc (&quad, src[0], src[1], src[2], src[3]);
*dst = quad;
}
/* { dg-final { scan-assembler-not {\mlxv\M} } } */
/* { dg-final { scan-assembler-not {\mstxv\M} } } */
/* { dg-final { scan-assembler-times {\mlxvp\M} 3 } } */
/* { dg-final { scan-assembler-times {\mstxvp\M} 3 } } */