gcc/libstdc++-v3/include/ext/mt_allocator.h

713 lines
22 KiB
C
Raw Normal View History

// MT-optimized allocator -*- C++ -*-
// Copyright (C) 2003, 2004 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file ext/mt_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _MT_ALLOCATOR_H
#define _MT_ALLOCATOR_H 1
#include <new>
#include <cstdlib>
#include <bits/functexcept.h>
#include <bits/gthr.h>
#include <bits/atomicity.h>
namespace __gnu_cxx
{
/**
* This is a fixed size (power of 2) allocator which - when
* compiled with thread support - will maintain one freelist per
* size per thread plus a "global" one. Steps are taken to limit
* the per thread freelist sizes (by returning excess back to
* "global").
*
* Further details:
* http://gcc.gnu.org/onlinedocs/libstdc++/ext/mt_allocator.html
*/
template<typename _Tp>
class __mt_alloc
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1>
struct rebind
{ typedef __mt_alloc<_Tp1> other; };
__mt_alloc() throw()
{
// XXX
}
__mt_alloc(const __mt_alloc&) throw()
{
// XXX
}
template<typename _Tp1>
__mt_alloc(const __mt_alloc<_Tp1>& obj) throw()
{
// XXX
}
~__mt_alloc() throw() { }
pointer
address(reference __x) const { return &__x; }
const_pointer
address(const_reference __x) const { return &__x; }
size_type
max_size() const throw()
{ return size_t(-1) / sizeof(_Tp); }
// _GLIBCXX_RESOLVE_LIB_DEFECTS
// 402. wrong new expression in [some_] allocator::construct
void
construct(pointer __p, const _Tp& __val)
{ ::new(__p) _Tp(__val); }
void
destroy(pointer __p) { __p->~_Tp(); }
pointer
allocate(size_t __n, const void* = 0);
void
deallocate(pointer __p, size_type __n);
// Variables used to configure the behavior of the allocator,
// assigned and explained in detail below.
struct tune
{
// Allocation requests (after round-up to power of 2) below
// this value will be handled by the allocator. A raw new/
// call will be used for requests larger than this value.
size_t _M_max_bytes;
// In order to avoid fragmenting and minimize the number of
// new() calls we always request new memory using this
// value. Based on previous discussions on the libstdc++
// mailing list we have choosen the value below.
// See http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html
size_t _M_chunk_size;
// The maximum number of supported threads. Our Linux 2.4.18
// reports 4070 in /proc/sys/kernel/threads-max
size_t _M_max_threads;
// Each time a deallocation occurs in a threaded application
// we make sure that there are no more than
// _M_freelist_headroom % of used memory on the freelist. If
// the number of additional records is more than
// _M_freelist_headroom % of the freelist, we move these
// records back to the global pool.
size_t _M_freelist_headroom;
// Set to true forces all allocations to use new().
bool _M_force_new;
explicit tune()
: _M_max_bytes(128), _M_chunk_size(4096 - 4 * sizeof(void*)),
#ifdef __GTHREADS
_M_max_threads(4096),
#else
_M_max_threads(0),
#endif
_M_freelist_headroom(10),
_M_force_new(getenv("GLIBCXX_FORCE_NEW") ? true : false)
{ }
explicit tune(size_t __maxb, size_t __chunk, size_t __maxthreads,
size_t __headroom, bool __force)
: _M_max_bytes(__maxb), _M_chunk_size(__chunk),
_M_max_threads(__maxthreads), _M_freelist_headroom(__headroom),
_M_force_new(__force)
{ }
};
private:
// We need to create the initial lists and set up some variables
// before we can answer to the first request for memory.
#ifdef __GTHREADS
static __gthread_once_t _S_once;
#endif
static bool _S_init;
static void
_S_initialize();
// Configuration options.
static tune _S_options;
static const tune
_S_get_options() { return _S_options; }
static void
_S_set_options(tune __t)
{
if (!_S_init)
_S_options = __t;
}
// Using short int as type for the binmap implies we are never
// caching blocks larger than 65535 with this allocator
typedef unsigned short int binmap_type;
static binmap_type* _S_binmap;
// Each requesting thread is assigned an id ranging from 1 to
// _S_max_threads. Thread id 0 is used as a global memory pool.
// In order to get constant performance on the thread assignment
// routine, we keep a list of free ids. When a thread first
// requests memory we remove the first record in this list and
// stores the address in a __gthread_key. When initializing the
// __gthread_key we specify a destructor. When this destructor
// (i.e. the thread dies) is called, we return the thread id to
// the front of this list.
#ifdef __GTHREADS
struct thread_record
{
// Points to next free thread id record. NULL if last record in list.
thread_record* volatile next;
// Thread id ranging from 1 to _S_max_threads.
size_t id;
};
static thread_record* volatile _S_thread_freelist_first;
static __gthread_mutex_t _S_thread_freelist_mutex;
static __gthread_key_t _S_thread_key;
static void
_S_destroy_thread_key(void* freelist_pos);
#endif
static size_t
_S_get_thread_id();
struct block_record
{
// Points to the next block_record for its thread_id.
block_record* volatile next;
// The thread id of the thread which has requested this block.
#ifdef __GTHREADS
size_t thread_id;
#endif
};
struct bin_record
{
// An "array" of pointers to the first free block for each
// thread id. Memory to this "array" is allocated in _S_initialize()
// for _S_max_threads + global pool 0.
block_record** volatile first;
// An "array" of counters used to keep track of the amount of
// blocks that are on the freelist/used for each thread id.
// Memory to these "arrays" is allocated in _S_initialize() for
// _S_max_threads + global pool 0.
size_t* volatile free;
size_t* volatile used;
// Each bin has its own mutex which is used to ensure data
// integrity while changing "ownership" on a block. The mutex
// is initialized in _S_initialize().
#ifdef __GTHREADS
__gthread_mutex_t* mutex;
#endif
};
// An "array" of bin_records each of which represents a specific
// power of 2 size. Memory to this "array" is allocated in
// _S_initialize().
static bin_record* volatile _S_bin;
// Actual value calculated in _S_initialize().
static size_t _S_bin_size;
};
template<typename _Tp>
typename __mt_alloc<_Tp>::pointer
__mt_alloc<_Tp>::
allocate(size_t __n, const void*)
{
// Although the test in __gthread_once() would suffice, we wrap
// test of the once condition in our own unlocked check. This
// saves one function call to pthread_once() (which itself only
// tests for the once value unlocked anyway and immediately
// returns if set)
if (!_S_init)
{
#ifdef __GTHREADS
if (__gthread_active_p())
__gthread_once(&_S_once, _S_initialize);
#endif
if (!_S_init)
_S_initialize();
}
// Requests larger than _M_max_bytes are handled by new/delete
// directly.
const size_t __bytes = __n * sizeof(_Tp);
if (__bytes > _S_options._M_max_bytes || _S_options._M_force_new)
{
void* __ret = ::operator new(__bytes);
return static_cast<_Tp*>(__ret);
}
// Round up to power of 2 and figure out which bin to use.
const size_t __which = _S_binmap[__bytes];
const size_t __thread_id = _S_get_thread_id();
// Find out if we have blocks on our freelist. If so, go ahead
// and use them directly without having to lock anything.
const bin_record& __bin = _S_bin[__which];
block_record* block = NULL;
if (__bin.first[__thread_id] == NULL)
{
// Are we using threads?
// - Yes, check if there are free blocks on the global
// list. If so, grab up to block_count blocks in one
// lock and change ownership. If the global list is
// empty, we allocate a new chunk and add those blocks
// directly to our own freelist (with us as owner).
// - No, all operations are made directly to global pool 0
// no need to lock or change ownership but check for free
// blocks on global list (and if not add new ones) and
// get the first one.
#ifdef __GTHREADS
if (__gthread_active_p())
{
const size_t bin_size = (1 << __which) + sizeof(block_record);
size_t block_count = _S_options._M_chunk_size / bin_size;
__gthread_mutex_lock(__bin.mutex);
if (__bin.first[0] == NULL)
{
// No need to hold the lock when we are adding a
// whole chunk to our own list.
__gthread_mutex_unlock(__bin.mutex);
void* v = ::operator new(_S_options._M_chunk_size);
__bin.first[__thread_id] = static_cast<block_record*>(v);
__bin.free[__thread_id] = block_count;
block_count--;
block = __bin.first[__thread_id];
while (block_count > 0)
{
char* c = reinterpret_cast<char*>(block) + bin_size;
block->next = reinterpret_cast<block_record*>(c);
block->thread_id = __thread_id;
block = block->next;
block_count--;
}
block->next = NULL;
block->thread_id = __thread_id;
}
else
{
size_t global_count = 0;
block_record* tmp;
while (__bin.first[0] != NULL && global_count < block_count)
{
tmp = __bin.first[0]->next;
block = __bin.first[0];
block->next = __bin.first[__thread_id];
__bin.first[__thread_id] = block;
block->thread_id = __thread_id;
__bin.free[__thread_id]++;
__bin.first[0] = tmp;
global_count++;
}
__gthread_mutex_unlock(__bin.mutex);
}
// Return the first newly added block in our list and
// update the counters
block = __bin.first[__thread_id];
__bin.first[__thread_id] = __bin.first[__thread_id]->next;
__bin.free[__thread_id]--;
__bin.used[__thread_id]++;
}
else
#endif
{
void* __v = ::operator new(_S_options._M_chunk_size);
__bin.first[0] = static_cast<block_record*>(__v);
const size_t bin_size = (1 << __which) + sizeof(block_record);
size_t block_count = _S_options._M_chunk_size / bin_size;
block_count--;
block = __bin.first[0];
while (block_count > 0)
{
char* __c = reinterpret_cast<char*>(block) + bin_size;
block->next = reinterpret_cast<block_record*>(__c);
block = block->next;
block_count--;
}
block->next = NULL;
// Remove from list.
block = __bin.first[0];
__bin.first[0] = __bin.first[0]->next;
}
}
else
{
// "Default" operation - we have blocks on our own freelist
// grab the first record and update the counters.
block = __bin.first[__thread_id];
__bin.first[__thread_id] = __bin.first[__thread_id]->next;
#ifdef __GTHREADS
if (__gthread_active_p())
{
__bin.free[__thread_id]--;
__bin.used[__thread_id]++;
}
#endif
}
char* __c = reinterpret_cast<char*>(block) + sizeof(block_record);
return static_cast<_Tp*>(static_cast<void*>(__c));
}
template<typename _Tp>
void
__mt_alloc<_Tp>::
deallocate(pointer __p, size_type __n)
{
// Requests larger than _M_max_bytes are handled by operators
// new/delete directly.
const size_t __bytes = __n * sizeof(_Tp);
if (__bytes > _S_options._M_max_bytes || _S_options._M_force_new)
{
::operator delete(__p);
return;
}
// Round up to power of 2 and figure out which bin to use.
const size_t __which = _S_binmap[__bytes];
const size_t thread_id = _S_get_thread_id();
const bin_record& __bin = _S_bin[__which];
char* __c = reinterpret_cast<char*>(__p) - sizeof(block_record);
block_record* block = reinterpret_cast<block_record*>(__c);
#ifdef __GTHREADS
if (__gthread_active_p())
{
// Calculate the number of records to remove from our freelist.
int remove = __bin.free[thread_id] -
(__bin.used[thread_id] / _S_options._M_freelist_headroom);
// The calculation above will almost always tell us to
// remove one or two records at a time, but this creates too
// much contention when locking and therefore we wait until
// the number of records is "high enough".
int __cond1 = static_cast<int>(100 * (_S_bin_size - __which));
int __cond2 = static_cast<int>(__bin.free[thread_id] / _S_options._M_freelist_headroom);
if (remove > __cond1 && remove > __cond2)
{
__gthread_mutex_lock(__bin.mutex);
block_record* tmp;
while (remove > 0)
{
tmp = __bin.first[thread_id]->next;
__bin.first[thread_id]->next = __bin.first[0];
__bin.first[0] = __bin.first[thread_id];
__bin.first[thread_id] = tmp;
__bin.free[thread_id]--;
remove--;
}
__gthread_mutex_unlock(__bin.mutex);
}
// Return this block to our list and update counters and
// owner id as needed.
block->next = __bin.first[thread_id];
__bin.first[thread_id] = block;
__bin.free[thread_id]++;
__bin.used[block->thread_id]--;
block->thread_id = thread_id;
}
else
#endif
{
// Single threaded application - return to global pool.
block->next = __bin.first[0];
__bin.first[0] = block;
}
}
template<typename _Tp>
void
__mt_alloc<_Tp>::
_S_initialize()
{
if (_S_options._M_force_new)
return;
// Calculate the number of bins required based on _M_max_bytes.
// _S_bin_size is statically-initialized to one.
size_t __bin_size = 1;
while (_S_options._M_max_bytes > __bin_size)
{
__bin_size = __bin_size << 1;
_S_bin_size++;
}
// Setup the bin map for quick lookup of the relevant bin.
const size_t __j = (_S_options._M_max_bytes + 1) * sizeof(binmap_type);
_S_binmap = static_cast<binmap_type*>(::operator new(__j));
binmap_type* __bp = _S_binmap;
binmap_type __bin_max = 1;
binmap_type __bint = 0;
for (binmap_type __ct = 0; __ct <= _S_options._M_max_bytes; __ct++)
{
if (__ct > __bin_max)
{
__bin_max <<= 1;
__bint++;
}
*__bp++ = __bint;
}
// If __gthread_active_p() create and initialize the list of
// free thread ids. Single threaded applications use thread id 0
// directly and have no need for this.
void* __v;
#ifdef __GTHREADS
if (__gthread_active_p())
{
const size_t __k = sizeof(thread_record) * _S_options._M_max_threads;
__v = ::operator new(__k);
_S_thread_freelist_first = static_cast<thread_record*>(__v);
// NOTE! The first assignable thread id is 1 since the
// global pool uses id 0
size_t __i;
for (__i = 1; __i < _S_options._M_max_threads; __i++)
{
thread_record& __tr = _S_thread_freelist_first[__i - 1];
__tr.next = &_S_thread_freelist_first[__i];
__tr.id = __i;
}
// Set last record.
_S_thread_freelist_first[__i - 1].next = NULL;
_S_thread_freelist_first[__i - 1].id = __i;
// Make sure this is initialized.
#ifndef __GTHREAD_MUTEX_INIT
__GTHREAD_MUTEX_INIT_FUNCTION(&_S_thread_freelist_mutex);
#endif
// Initialize per thread key to hold pointer to
// _S_thread_freelist.
__gthread_key_create(&_S_thread_key, _S_destroy_thread_key);
}
#endif
// Initialize _S_bin and its members.
__v = ::operator new(sizeof(bin_record) * _S_bin_size);
_S_bin = static_cast<bin_record*>(__v);
// Maximum number of threads.
size_t __max_threads = 1;
#ifdef __GTHREADS
if (__gthread_active_p())
__max_threads = _S_options._M_max_threads + 1;
#endif
for (size_t __n = 0; __n < _S_bin_size; __n++)
{
bin_record& __bin = _S_bin[__n];
__v = ::operator new(sizeof(block_record*) * __max_threads);
__bin.first = static_cast<block_record**>(__v);
#ifdef __GTHREADS
if (__gthread_active_p())
{
__v = ::operator new(sizeof(size_t) * __max_threads);
__bin.free = static_cast<size_t*>(__v);
__v = ::operator new(sizeof(size_t) * __max_threads);
__bin.used = static_cast<size_t*>(__v);
__v = ::operator new(sizeof(__gthread_mutex_t));
__bin.mutex = static_cast<__gthread_mutex_t*>(__v);
#ifdef __GTHREAD_MUTEX_INIT
{
// Do not copy a POSIX/gthr mutex once in use.
__gthread_mutex_t __tmp = __GTHREAD_MUTEX_INIT;
*__bin.mutex = __tmp;
}
#else
{ __GTHREAD_MUTEX_INIT_FUNCTION(__bin.mutex); }
#endif
}
#endif
for (size_t __threadn = 0; __threadn < __max_threads; __threadn++)
{
__bin.first[__threadn] = NULL;
#ifdef __GTHREADS
if (__gthread_active_p())
{
__bin.free[__threadn] = 0;
__bin.used[__threadn] = 0;
}
#endif
}
}
_S_init = true;
}
template<typename _Tp>
size_t
__mt_alloc<_Tp>::
_S_get_thread_id()
{
#ifdef __GTHREADS
// If we have thread support and it's active we check the thread
// key value and return it's id or if it's not set we take the
// first record from _S_thread_freelist and sets the key and
// returns it's id.
if (__gthread_active_p())
{
thread_record* __freelist_pos = static_cast<thread_record*>(__gthread_getspecific(_S_thread_key));
if (__freelist_pos == NULL)
{
// Since _S_options._M_max_threads must be larger than
// the theoretical max number of threads of the OS the
// list can never be empty.
__gthread_mutex_lock(&_S_thread_freelist_mutex);
__freelist_pos = _S_thread_freelist_first;
_S_thread_freelist_first = _S_thread_freelist_first->next;
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
__gthread_setspecific(_S_thread_key,
static_cast<void*>(__freelist_pos));
}
return __freelist_pos->id;
}
#endif
// Otherwise (no thread support or inactive) all requests are
// served from the global pool 0.
return 0;
}
#ifdef __GTHREADS
template<typename _Tp>
void
__mt_alloc<_Tp>::
_S_destroy_thread_key(void* __freelist_pos)
{
// Return this thread id record to front of thread_freelist.
__gthread_mutex_lock(&_S_thread_freelist_mutex);
thread_record* __tr = static_cast<thread_record*>(__freelist_pos);
__tr->next = _S_thread_freelist_first;
_S_thread_freelist_first = __tr;
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
}
#endif
template<typename _Tp>
inline bool
operator==(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&)
{ return true; }
template<typename _Tp>
inline bool
operator!=(const __mt_alloc<_Tp>&, const __mt_alloc<_Tp>&)
{ return false; }
template<typename _Tp>
bool __mt_alloc<_Tp>::_S_init = false;
template<typename _Tp>
typename __mt_alloc<_Tp>::tune __mt_alloc<_Tp>::_S_options;
template<typename _Tp>
typename __mt_alloc<_Tp>::binmap_type* __mt_alloc<_Tp>::_S_binmap;
template<typename _Tp>
typename __mt_alloc<_Tp>::bin_record* volatile __mt_alloc<_Tp>::_S_bin;
template<typename _Tp>
size_t __mt_alloc<_Tp>::_S_bin_size = 1;
// Actual initialization in _S_initialize().
#ifdef __GTHREADS
template<typename _Tp>
__gthread_once_t __mt_alloc<_Tp>::_S_once = __GTHREAD_ONCE_INIT;
template<typename _Tp>
typename __mt_alloc<_Tp>::thread_record*
volatile __mt_alloc<_Tp>::_S_thread_freelist_first = NULL;
template<typename _Tp>
__gthread_key_t __mt_alloc<_Tp>::_S_thread_key;
template<typename _Tp>
__gthread_mutex_t
#ifdef __GTHREAD_MUTEX_INIT
__mt_alloc<_Tp>::_S_thread_freelist_mutex = __GTHREAD_MUTEX_INIT;
#else
__mt_alloc<_Tp>::_S_thread_freelist_mutex;
#endif
#endif
} // namespace __gnu_cxx
#endif