[multiple changes]

2003-06-11  Benjamin Kosnik  <bkoz@redhat.com>

	* include/bits/stl_alloc.h (__debug_alloc): Move out.
	(__malloc_alloc): Same.
	(__pool_alloc): Same.
	(__new_alloc): Same.
	Rename to..
	* include/bits/allocator.h: ...this.
	* include/bits/stl_deque.h: Modify comment.
	* include/bits/stl_tree.h: Modify include.
	* include/std/std_memory.h: Same.
	* include/ext/rope: Same.
	* include/ext/slist: Same.
	* include/std/std_vector.h: Same.
	* include/std/std_stack.h: Same.
	* include/std/std_queue.h: Same.
	* include/std/std_list.h: Same.
	* include/std/std_deque.h: Same.
	* include/backward/alloc.h: Same.
	* include/ext/debug_allocator.h: New.
	* include/ext/malloc_allocator.h: New.
	* include/ext/pool_allocator.h: New.
	* include/ext/new_allocator.h: New.
	* include/bits/pthread_allocimpl.h: Remove.
	* include/bits/stl_pthread_alloc.h: Remove.
	* include/Makefile.am (ext_headers): Add.
	* include/Makefile.in: Regenerate.
	* src/stl-inst.cc: Use __gnu_cxx namespace.
	* src/stl-inst.cc: Move to...
	* src/allocator-inst.cc: Here.
	* src/Makefile.am (sources): Update.
	* src/Makefile.in: Regenerate.
	* config/linker-map.gnu: Remove __pool_alloc bits.
	* testsuite/ext/headers.cc: Add.
	* testsuite/ext/allocators.cc: Fixup.

2003-06-11  Stefan Olsson  <stefan@snon.net>
            Ola R�nnerup  <fnolis@home.se>

	* include/Makefile.am (ext_headers): Add.
	* include/Makefile.in: Regenerate.
	* include/ext/mt_allocator.h: New file.

From-SVN: r67777
This commit is contained in:
Benjamin Kosnik 2003-06-11 15:52:11 +00:00
parent 1d5d594da5
commit 1ff9402d8f
30 changed files with 2186 additions and 1528 deletions

View file

@ -1,3 +1,46 @@
2003-06-11 Benjamin Kosnik <bkoz@redhat.com>
* include/bits/stl_alloc.h (__debug_alloc): Move out.
(__malloc_alloc): Same.
(__pool_alloc): Same.
(__new_alloc): Same.
Rename to..
* include/bits/allocator.h: ...this.
* include/bits/stl_deque.h: Modify comment.
* include/bits/stl_tree.h: Modify include.
* include/std/std_memory.h: Same.
* include/ext/rope: Same.
* include/ext/slist: Same.
* include/std/std_vector.h: Same.
* include/std/std_stack.h: Same.
* include/std/std_queue.h: Same.
* include/std/std_list.h: Same.
* include/std/std_deque.h: Same.
* include/backward/alloc.h: Same.
* include/ext/debug_allocator.h: New.
* include/ext/malloc_allocator.h: New.
* include/ext/pool_allocator.h: New.
* include/ext/new_allocator.h: New.
* include/bits/pthread_allocimpl.h: Remove.
* include/bits/stl_pthread_alloc.h: Remove.
* include/Makefile.am (ext_headers): Add.
* include/Makefile.in: Regenerate.
* src/stl-inst.cc: Use __gnu_cxx namespace.
* src/stl-inst.cc: Move to...
* src/allocator-inst.cc: Here.
* src/Makefile.am (sources): Update.
* src/Makefile.in: Regenerate.
* config/linker-map.gnu: Remove __pool_alloc bits.
* testsuite/ext/headers.cc: Add.
* testsuite/ext/allocators.cc: Fixup.
2003-06-11 Stefan Olsson <stefan@snon.net>
Ola Rönnerup <fnolis@home.se>
* include/Makefile.am (ext_headers): Add.
* include/Makefile.in: Regenerate.
* include/ext/mt_allocator.h: New file.
2003-06-10 Paolo Carlini <pcarlini@unitus.it>
* include/bits/fstream.tcc (close): Clean up a bit.

View file

@ -78,15 +78,6 @@ GLIBCPP_3.4 {
# bool has_facet
_ZSt9has_facet*;
# std::__pool_alloc
_ZNSt12__pool_allocILb1ELi0EE10deallocateEPv[jm]*;
_ZNSt12__pool_allocILb1ELi0EE8allocateE[jm]*;
_ZNSt12__pool_allocILb1ELi0EE5_Lock*;
_ZNSt12__pool_allocILb1ELi0EE12_S_force_newE;
_ZNSt12__pool_allocILb1ELi0EE12_S_free_listE;
_ZNSt12__pool_allocILb1ELi0EE7_S_lockE;
_ZNSt12__pool_allocILb1ELi0EE9_S_refillE[jm];
# operator new(size_t)
_Znw[jm];
# operator new(size_t, std::nothrow_t const&)

View file

@ -103,6 +103,8 @@ std_headers_rename = \
bits_srcdir = ${glibcpp_srcdir}/include/bits
bits_builddir = ./bits
bits_headers = \
${bits_srcdir}/allocator.h \
${bits_srcdir}/allocator_traits.h \
${bits_srcdir}/basic_ios.h \
${bits_srcdir}/basic_ios.tcc \
${bits_srcdir}/basic_string.h \
@ -129,14 +131,12 @@ bits_headers = \
${bits_srcdir}/localefwd.h \
${bits_srcdir}/mask_array.h \
${bits_srcdir}/ostream.tcc \
${bits_srcdir}/pthread_allocimpl.h \
${bits_srcdir}/stream_iterator.h \
${bits_srcdir}/streambuf_iterator.h \
${bits_srcdir}/slice_array.h \
${bits_srcdir}/sstream.tcc \
${bits_srcdir}/stl_algo.h \
${bits_srcdir}/stl_algobase.h \
${bits_srcdir}/stl_alloc.h \
${bits_srcdir}/stl_bvector.h \
${bits_srcdir}/stl_construct.h \
${bits_srcdir}/stl_deque.h \
@ -151,7 +151,6 @@ bits_headers = \
${bits_srcdir}/stl_multiset.h \
${bits_srcdir}/stl_numeric.h \
${bits_srcdir}/stl_pair.h \
${bits_srcdir}/stl_pthread_alloc.h \
${bits_srcdir}/stl_queue.h \
${bits_srcdir}/stl_raw_storage_iter.h \
${bits_srcdir}/stl_relops.h \
@ -215,6 +214,7 @@ ext_srcdir = ${glibcpp_srcdir}/include/ext
ext_builddir = ./ext
ext_headers = \
${ext_srcdir}/algorithm \
${ext_srcdir}/debug_allocator.h \
${ext_srcdir}/enc_filebuf.h \
${ext_srcdir}/stdio_filebuf.h \
${ext_srcdir}/stdio_sync_filebuf.h \
@ -222,8 +222,12 @@ ext_headers = \
${ext_srcdir}/hash_map \
${ext_srcdir}/hash_set \
${ext_srcdir}/iterator \
${ext_srcdir}/malloc_allocator.h \
${ext_srcdir}/memory \
${ext_srcdir}/mt_allocator.h \
${ext_srcdir}/new_allocator.h \
${ext_srcdir}/numeric \
${ext_srcdir}/pool_allocator.h \
${ext_srcdir}/rb_tree \
${ext_srcdir}/rope \
${ext_srcdir}/ropeimpl.h \

View file

@ -222,6 +222,8 @@ std_headers_rename = \
bits_srcdir = ${glibcpp_srcdir}/include/bits
bits_builddir = ./bits
bits_headers = \
${bits_srcdir}/allocator.h \
${bits_srcdir}/allocator_traits.h \
${bits_srcdir}/basic_ios.h \
${bits_srcdir}/basic_ios.tcc \
${bits_srcdir}/basic_string.h \
@ -248,14 +250,12 @@ bits_headers = \
${bits_srcdir}/localefwd.h \
${bits_srcdir}/mask_array.h \
${bits_srcdir}/ostream.tcc \
${bits_srcdir}/pthread_allocimpl.h \
${bits_srcdir}/stream_iterator.h \
${bits_srcdir}/streambuf_iterator.h \
${bits_srcdir}/slice_array.h \
${bits_srcdir}/sstream.tcc \
${bits_srcdir}/stl_algo.h \
${bits_srcdir}/stl_algobase.h \
${bits_srcdir}/stl_alloc.h \
${bits_srcdir}/stl_bvector.h \
${bits_srcdir}/stl_construct.h \
${bits_srcdir}/stl_deque.h \
@ -270,7 +270,6 @@ bits_headers = \
${bits_srcdir}/stl_multiset.h \
${bits_srcdir}/stl_numeric.h \
${bits_srcdir}/stl_pair.h \
${bits_srcdir}/stl_pthread_alloc.h \
${bits_srcdir}/stl_queue.h \
${bits_srcdir}/stl_raw_storage_iter.h \
${bits_srcdir}/stl_relops.h \
@ -336,6 +335,7 @@ ext_srcdir = ${glibcpp_srcdir}/include/ext
ext_builddir = ./ext
ext_headers = \
${ext_srcdir}/algorithm \
${ext_srcdir}/debug_allocator.h \
${ext_srcdir}/enc_filebuf.h \
${ext_srcdir}/stdio_filebuf.h \
${ext_srcdir}/stdio_sync_filebuf.h \
@ -343,8 +343,12 @@ ext_headers = \
${ext_srcdir}/hash_map \
${ext_srcdir}/hash_set \
${ext_srcdir}/iterator \
${ext_srcdir}/malloc_allocator.h \
${ext_srcdir}/memory \
${ext_srcdir}/mt_allocator.h \
${ext_srcdir}/new_allocator.h \
${ext_srcdir}/numeric \
${ext_srcdir}/pool_allocator.h \
${ext_srcdir}/rb_tree \
${ext_srcdir}/rope \
${ext_srcdir}/ropeimpl.h \

View file

@ -45,15 +45,15 @@
#include "backward_warning.h"
#include <bits/c++config.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <ext/debug_allocator.h>
#include <ext/malloc_allocator.h>
using std::__malloc_alloc;
using std::__simple_alloc;
using std::__debug_alloc;
using __gnu_cxx::__malloc_alloc;
using __gnu_cxx::__debug_alloc;
using __gnu_cxx::__pool_alloc;
using std::__alloc;
using std::__single_client_alloc;
using std::__pool_alloc;
using std::__simple_alloc;
using std::allocator;
#endif

View file

@ -0,0 +1,215 @@
// Allocators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file allocator.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
/**
* @defgroup Allocators Memory Allocators
* @if maint
* allocator.h implements some node allocators. These are NOT the same as
* allocators in the C++ standard, nor in the original H-P STL. They do not
* encapsulate different pointer types; we assume that there is only one
* pointer type. The C++ standard allocators are intended to allocate
* individual objects, not pools or arenas.
*
* In this file allocators are of two different styles: "standard" and
* "SGI" (quotes included). "Standard" allocators conform to 20.4. "SGI"
* allocators differ in AT LEAST the following ways (add to this list as you
* discover them):
*
* - "Standard" allocate() takes two parameters (n_count,hint=0) but "SGI"
* allocate() takes one paramter (n_size).
* - Likewise, "standard" deallocate()'s argument is a count, but in "SGI"
* is a byte size.
* - max_size(), construct(), and destroy() are missing in "SGI" allocators.
* - reallocate(p,oldsz,newsz) is added in "SGI", and behaves as
* if p=realloc(p,newsz).
*
* "SGI" allocators may be wrapped in __allocator to convert the interface
* into a "standard" one.
* @endif
*
* The canonical description of these classes is in docs/html/ext/howto.html
* or online at http://gcc.gnu.org/onlinedocs/libstdc++/ext/howto.html#3
*/
#ifndef _ALLOCATOR_H
#define _ALLOCATOR_H 1
#include <bits/functexcept.h> // For __throw_bad_alloc
#include <bits/allocator_traits.h>
// Pick a default underlying allocator.
#include <ext/pool_allocator.h>
namespace std
{
typedef __gnu_cxx::__pool_alloc<true, 0> __alloc;
/// The version for the default allocator.
template<typename _Tp, typename _Tp1>
struct _Alloc_traits<_Tp, allocator<_Tp1> >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __alloc> _Alloc_type;
typedef allocator<_Tp> allocator_type;
};
//@}
}
namespace std
{
/**
* @brief The "standard" allocator, as per [20.4].
*
* The private _Alloc is "SGI" style. (See comments at the top
* of allocator.h.)
*
* The underlying allocator behaves as follows.
* - __pool_alloc is used via two typedefs
* - "__alloc" typedef is threadsafe via the locks
* - __new_alloc is used for memory requests
*
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Tp>
class allocator
{
// The underlying allocator.
typedef __alloc _Alloc;
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1>
struct rebind
{ typedef allocator<_Tp1> other; };
allocator() throw() { }
allocator(const allocator&) throw() { }
template<typename _Tp1>
allocator(const allocator<_Tp1>&) throw() { }
~allocator() throw() { }
pointer
address(reference __x) const { return &__x; }
const_pointer
address(const_reference __x) const { return &__x; }
// NB: __n is permitted to be 0. The C++ standard says nothing
// about what the return value is when __n == 0.
_Tp*
allocate(size_type __n, const void* = 0)
{
_Tp* __ret = 0;
if (__n)
{
if (__n <= this->max_size())
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
else
__throw_bad_alloc();
}
return __ret;
}
// __p is not permitted to be a null pointer.
void
deallocate(pointer __p, size_type __n)
{ _Alloc::deallocate(__p, __n * sizeof(_Tp)); }
size_type
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void destroy(pointer __p) { __p->~_Tp(); }
};
template<>
class allocator<void>
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template<typename _Tp1>
struct rebind
{ typedef allocator<_Tp1> other; };
};
template<typename _T1, typename _T2>
inline bool
operator==(const allocator<_T1>&, const allocator<_T2>&)
{ return true; }
template<typename _T1, typename _T2>
inline bool
operator!=(const allocator<_T1>&, const allocator<_T2>&)
{ return false; }
// Inhibit implicit instantiations for required instantiations,
// which are defined via explicit instantiations elsewhere.
// NB: This syntax is a GNU extension.
#if _GLIBCPP_EXTERN_TEMPLATE
extern template class allocator<char>;
extern template class allocator<wchar_t>;
#endif
} // namespace std
#endif

View file

@ -0,0 +1,236 @@
// Allocators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
#ifndef _ALLOCATOR_TRAITS_H
#define _ALLOCATOR_TRAITS_H 1
#include <cstddef>
namespace std
{
/**
* @if maint
* This is used primarily (only?) in _Alloc_traits and other places to
* help provide the _Alloc_type typedef. All it does is forward the
* requests after some minimal checking.
*
* This is neither "standard"-conforming nor "SGI". The _Alloc parameter
* must be "SGI" style.
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Tp, typename _Alloc>
class __simple_alloc
{
public:
static _Tp*
allocate(size_t __n)
{
_Tp* __ret = 0;
if (__n)
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
return __ret;
}
static _Tp*
allocate()
{ return (_Tp*) _Alloc::allocate(sizeof (_Tp)); }
static void
deallocate(_Tp* __p, size_t __n)
{ if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); }
static void
deallocate(_Tp* __p)
{ _Alloc::deallocate(__p, sizeof (_Tp)); }
};
/**
* @if maint
* Allocator adaptor to turn an "SGI" style allocator (e.g.,
* __alloc, __malloc_alloc) into a "standard" conforming
* allocator. Note that this adaptor does *not* assume that all
* objects of the underlying alloc class are identical, nor does it
* assume that all of the underlying alloc's member functions are
* static member functions. Note, also, that __allocator<_Tp,
* __alloc> is essentially the same thing as allocator<_Tp>.
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Tp, typename _Alloc>
struct __allocator
{
_Alloc __underlying_alloc;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1>
struct rebind
{ typedef __allocator<_Tp1, _Alloc> other; };
__allocator() throw() { }
__allocator(const __allocator& __a) throw()
: __underlying_alloc(__a.__underlying_alloc) { }
template<typename _Tp1>
__allocator(const __allocator<_Tp1, _Alloc>& __a) throw()
: __underlying_alloc(__a.__underlying_alloc) { }
~__allocator() throw() { }
pointer
address(reference __x) const { return &__x; }
const_pointer
address(const_reference __x) const { return &__x; }
// NB: __n is permitted to be 0. The C++ standard says nothing
// about what the return value is when __n == 0.
_Tp*
allocate(size_type __n, const void* = 0)
{
_Tp* __ret = 0;
if (__n)
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
return __ret;
}
// __p is not permitted to be a null pointer.
void
deallocate(pointer __p, size_type __n)
{ __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
size_type
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
void
construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void
destroy(pointer __p) { __p->~_Tp(); }
};
template<typename _Alloc>
struct __allocator<void, _Alloc>
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template<typename _Tp1>
struct rebind
{ typedef __allocator<_Tp1, _Alloc> other; };
};
template<typename _Tp, typename _Alloc>
inline bool
operator==(const __allocator<_Tp,_Alloc>& __a1,
const __allocator<_Tp,_Alloc>& __a2)
{ return __a1.__underlying_alloc == __a2.__underlying_alloc; }
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const __allocator<_Tp, _Alloc>& __a1,
const __allocator<_Tp, _Alloc>& __a2)
{ return __a1.__underlying_alloc != __a2.__underlying_alloc; }
/**
* @if maint
* Another allocator adaptor: _Alloc_traits. This serves two purposes.
* First, make it possible to write containers that can use either "SGI"
* style allocators or "standard" allocators. Second, provide a mechanism
* so that containers can query whether or not the allocator has distinct
* instances. If not, the container can avoid wasting a word of memory to
* store an empty object. For examples of use, see stl_vector.h, etc, or
* any of the other classes derived from this one.
*
* This adaptor uses partial specialization. The general case of
* _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a
* standard-conforming allocator, possibly with non-equal instances and
* non-static members. (It still behaves correctly even if _Alloc has
* static member and if all instances are equal. Refinements affect
* performance, not correctness.)
*
* There are always two members: allocator_type, which is a standard-
* conforming allocator type for allocating objects of type _Tp, and
* _S_instanceless, a static const member of type bool. If
* _S_instanceless is true, this means that there is no difference
* between any two instances of type allocator_type. Furthermore, if
* _S_instanceless is true, then _Alloc_traits has one additional
* member: _Alloc_type. This type encapsulates allocation and
* deallocation of objects of type _Tp through a static interface; it
* has two member functions, whose signatures are
*
* - static _Tp* allocate(size_t)
* - static void deallocate(_Tp*, size_t)
*
* The size_t parameters are "standard" style (see top of
* allocator.h) in that they take counts, not sizes.
*
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
//@{
// The fully general version.
template<typename _Tp, typename _Allocator>
struct _Alloc_traits
{
static const bool _S_instanceless = false;
typedef typename _Allocator::template rebind<_Tp>::other allocator_type;
};
template<typename _Tp, typename _Allocator>
const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;
} // namespace std
#endif

View file

@ -1,525 +0,0 @@
// POSIX thread-related memory allocation -*- C++ -*-
// Copyright (C) 2001 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file pthread_allocimpl.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef _CPP_BITS_PTHREAD_ALLOCIMPL_H
#define _CPP_BITS_PTHREAD_ALLOCIMPL_H 1
// Pthread-specific node allocator.
// This is similar to the default allocator, except that free-list
// information is kept separately for each thread, avoiding locking.
// This should be reasonably fast even in the presence of threads.
// The down side is that storage may not be well-utilized.
// It is not an error to allocate memory in thread A and deallocate
// it in thread B. But this effectively transfers ownership of the memory,
// so that it can only be reallocated by thread B. Thus this can effectively
// result in a storage leak if it's done on a regular basis.
// It can also result in frequent sharing of
// cache lines among processors, with potentially serious performance
// consequences.
#include <bits/c++config.h>
#include <cerrno>
#include <bits/stl_alloc.h>
#ifndef __RESTRICT
# define __RESTRICT
#endif
#include <new>
namespace std
{
#define __STL_DATA_ALIGNMENT 8
union _Pthread_alloc_obj {
union _Pthread_alloc_obj * __free_list_link;
char __client_data[__STL_DATA_ALIGNMENT]; /* The client sees this. */
};
// Pthread allocators don't appear to the client to have meaningful
// instances. We do in fact need to associate some state with each
// thread. That state is represented by
// _Pthread_alloc_per_thread_state<_Max_size>.
template<size_t _Max_size>
struct _Pthread_alloc_per_thread_state {
typedef _Pthread_alloc_obj __obj;
enum { _S_NFREELISTS = _Max_size/__STL_DATA_ALIGNMENT };
_Pthread_alloc_obj* volatile __free_list[_S_NFREELISTS];
_Pthread_alloc_per_thread_state<_Max_size> * __next;
// Free list link for list of available per thread structures.
// When one of these becomes available for reuse due to thread
// termination, any objects in its free list remain associated
// with it. The whole structure may then be used by a newly
// created thread.
_Pthread_alloc_per_thread_state() : __next(0)
{
memset((void *)__free_list, 0, (size_t) _S_NFREELISTS * sizeof(__obj *));
}
// Returns an object of size __n, and possibly adds to size n free list.
void *_M_refill(size_t __n);
};
// Pthread-specific allocator.
// The argument specifies the largest object size allocated from per-thread
// free lists. Larger objects are allocated using malloc_alloc.
// Max_size must be a power of 2.
template <size_t _Max_size = 128>
class _Pthread_alloc_template {
public: // but only for internal use:
typedef _Pthread_alloc_obj __obj;
// Allocates a chunk for nobjs of size size. nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char *_S_chunk_alloc(size_t __size, int &__nobjs);
enum {_S_ALIGN = __STL_DATA_ALIGNMENT};
static size_t _S_round_up(size_t __bytes) {
return (((__bytes) + (int) _S_ALIGN-1) & ~((int) _S_ALIGN - 1));
}
static size_t _S_freelist_index(size_t __bytes) {
return (((__bytes) + (int) _S_ALIGN-1)/(int)_S_ALIGN - 1);
}
private:
// Chunk allocation state. And other shared state.
// Protected by _S_chunk_allocator_lock.
static pthread_mutex_t _S_chunk_allocator_lock;
static char *_S_start_free;
static char *_S_end_free;
static size_t _S_heap_size;
static _Pthread_alloc_per_thread_state<_Max_size>* _S_free_per_thread_states;
static pthread_key_t _S_key;
static bool _S_key_initialized;
// Pthread key under which per thread state is stored.
// Allocator instances that are currently unclaimed by any thread.
static void _S_destructor(void *instance);
// Function to be called on thread exit to reclaim per thread
// state.
static _Pthread_alloc_per_thread_state<_Max_size> *_S_new_per_thread_state();
// Return a recycled or new per thread state.
static _Pthread_alloc_per_thread_state<_Max_size> *_S_get_per_thread_state();
// ensure that the current thread has an associated
// per thread state.
class _M_lock;
friend class _M_lock;
class _M_lock {
public:
_M_lock () { pthread_mutex_lock(&_S_chunk_allocator_lock); }
~_M_lock () { pthread_mutex_unlock(&_S_chunk_allocator_lock); }
};
public:
/* n must be > 0 */
static void * allocate(size_t __n)
{
__obj * volatile * __my_free_list;
__obj * __RESTRICT __result;
_Pthread_alloc_per_thread_state<_Max_size>* __a;
if (__n > _Max_size) {
return(malloc_alloc::allocate(__n));
}
if (!_S_key_initialized ||
!(__a = (_Pthread_alloc_per_thread_state<_Max_size>*)
pthread_getspecific(_S_key))) {
__a = _S_get_per_thread_state();
}
__my_free_list = __a -> __free_list + _S_freelist_index(__n);
__result = *__my_free_list;
if (__result == 0) {
void *__r = __a -> _M_refill(_S_round_up(__n));
return __r;
}
*__my_free_list = __result -> __free_list_link;
return (__result);
};
/* p may not be 0 */
static void deallocate(void *__p, size_t __n)
{
__obj *__q = (__obj *)__p;
__obj * volatile * __my_free_list;
_Pthread_alloc_per_thread_state<_Max_size>* __a;
if (__n > _Max_size) {
malloc_alloc::deallocate(__p, __n);
return;
}
if (!_S_key_initialized ||
!(__a = (_Pthread_alloc_per_thread_state<_Max_size> *)
pthread_getspecific(_S_key))) {
__a = _S_get_per_thread_state();
}
__my_free_list = __a->__free_list + _S_freelist_index(__n);
__q -> __free_list_link = *__my_free_list;
*__my_free_list = __q;
}
static void * reallocate(void *__p, size_t __old_sz, size_t __new_sz);
} ;
typedef _Pthread_alloc_template<> pthread_alloc;
template <size_t _Max_size>
void _Pthread_alloc_template<_Max_size>::_S_destructor(void * __instance)
{
_M_lock __lock_instance; // Need to acquire lock here.
_Pthread_alloc_per_thread_state<_Max_size>* __s =
(_Pthread_alloc_per_thread_state<_Max_size> *)__instance;
__s -> __next = _S_free_per_thread_states;
_S_free_per_thread_states = __s;
}
template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_new_per_thread_state()
{
/* lock already held here. */
if (0 != _S_free_per_thread_states) {
_Pthread_alloc_per_thread_state<_Max_size> *__result =
_S_free_per_thread_states;
_S_free_per_thread_states = _S_free_per_thread_states -> __next;
return __result;
} else {
return new _Pthread_alloc_per_thread_state<_Max_size>;
}
}
template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_get_per_thread_state()
{
/*REFERENCED*/
_M_lock __lock_instance; // Need to acquire lock here.
int __ret_code;
_Pthread_alloc_per_thread_state<_Max_size> * __result;
if (!_S_key_initialized) {
if (pthread_key_create(&_S_key, _S_destructor)) {
std::__throw_bad_alloc(); // defined in funcexcept.h
}
_S_key_initialized = true;
}
__result = _S_new_per_thread_state();
__ret_code = pthread_setspecific(_S_key, __result);
if (__ret_code) {
if (__ret_code == ENOMEM) {
std::__throw_bad_alloc();
} else {
// EINVAL
abort();
}
}
return __result;
}
/* We allocate memory in large chunks in order to avoid fragmenting */
/* the malloc heap too much. */
/* We assume that size is properly aligned. */
template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_chunk_alloc(size_t __size, int &__nobjs)
{
{
char * __result;
size_t __total_bytes;
size_t __bytes_left;
/*REFERENCED*/
_M_lock __lock_instance; // Acquire lock for this routine
__total_bytes = __size * __nobjs;
__bytes_left = _S_end_free - _S_start_free;
if (__bytes_left >= __total_bytes) {
__result = _S_start_free;
_S_start_free += __total_bytes;
return(__result);
} else if (__bytes_left >= __size) {
__nobjs = __bytes_left/__size;
__total_bytes = __size * __nobjs;
__result = _S_start_free;
_S_start_free += __total_bytes;
return(__result);
} else {
size_t __bytes_to_get =
2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
// Try to make use of the left-over piece.
if (__bytes_left > 0) {
_Pthread_alloc_per_thread_state<_Max_size>* __a =
(_Pthread_alloc_per_thread_state<_Max_size>*)
pthread_getspecific(_S_key);
__obj * volatile * __my_free_list =
__a->__free_list + _S_freelist_index(__bytes_left);
((__obj *)_S_start_free) -> __free_list_link = *__my_free_list;
*__my_free_list = (__obj *)_S_start_free;
}
# ifdef _SGI_SOURCE
// Try to get memory that's aligned on something like a
// cache line boundary, so as to avoid parceling out
// parts of the same line to different threads and thus
// possibly different processors.
{
const int __cache_line_size = 128; // probable upper bound
__bytes_to_get &= ~(__cache_line_size-1);
_S_start_free = (char *)memalign(__cache_line_size, __bytes_to_get);
if (0 == _S_start_free) {
_S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
}
}
# else /* !SGI_SOURCE */
_S_start_free = (char *)malloc_alloc::allocate(__bytes_to_get);
# endif
_S_heap_size += __bytes_to_get;
_S_end_free = _S_start_free + __bytes_to_get;
}
}
// lock is released here
return(_S_chunk_alloc(__size, __nobjs));
}
/* Returns an object of size n, and optionally adds to size n free list.*/
/* We assume that n is properly aligned. */
/* We hold the allocation lock. */
template <size_t _Max_size>
void *_Pthread_alloc_per_thread_state<_Max_size>
::_M_refill(size_t __n)
{
int __nobjs = 128;
char * __chunk =
_Pthread_alloc_template<_Max_size>::_S_chunk_alloc(__n, __nobjs);
__obj * volatile * __my_free_list;
__obj * __result;
__obj * __current_obj, * __next_obj;
int __i;
if (1 == __nobjs) {
return(__chunk);
}
__my_free_list = __free_list
+ _Pthread_alloc_template<_Max_size>::_S_freelist_index(__n);
/* Build free list in chunk */
__result = (__obj *)__chunk;
*__my_free_list = __next_obj = (__obj *)(__chunk + __n);
for (__i = 1; ; __i++) {
__current_obj = __next_obj;
__next_obj = (__obj *)((char *)__next_obj + __n);
if (__nobjs - 1 == __i) {
__current_obj -> __free_list_link = 0;
break;
} else {
__current_obj -> __free_list_link = __next_obj;
}
}
return(__result);
}
template <size_t _Max_size>
void *_Pthread_alloc_template<_Max_size>
::reallocate(void *__p, size_t __old_sz, size_t __new_sz)
{
void * __result;
size_t __copy_sz;
if (__old_sz > _Max_size
&& __new_sz > _Max_size) {
return(realloc(__p, __new_sz));
}
if (_S_round_up(__old_sz) == _S_round_up(__new_sz)) return(__p);
__result = allocate(__new_sz);
__copy_sz = __new_sz > __old_sz? __old_sz : __new_sz;
memcpy(__result, __p, __copy_sz);
deallocate(__p, __old_sz);
return(__result);
}
template <size_t _Max_size>
_Pthread_alloc_per_thread_state<_Max_size> *
_Pthread_alloc_template<_Max_size>::_S_free_per_thread_states = 0;
template <size_t _Max_size>
pthread_key_t _Pthread_alloc_template<_Max_size>::_S_key;
template <size_t _Max_size>
bool _Pthread_alloc_template<_Max_size>::_S_key_initialized = false;
template <size_t _Max_size>
pthread_mutex_t _Pthread_alloc_template<_Max_size>::_S_chunk_allocator_lock
= PTHREAD_MUTEX_INITIALIZER;
template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_start_free = 0;
template <size_t _Max_size>
char *_Pthread_alloc_template<_Max_size>
::_S_end_free = 0;
template <size_t _Max_size>
size_t _Pthread_alloc_template<_Max_size>
::_S_heap_size = 0;
template <class _Tp>
class pthread_allocator {
typedef pthread_alloc _S_Alloc; // The underlying allocator.
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template <class _NewType> struct rebind {
typedef pthread_allocator<_NewType> other;
};
pthread_allocator() throw() {}
pthread_allocator(const pthread_allocator& a) throw() {}
template <class _OtherType>
pthread_allocator(const pthread_allocator<_OtherType>&)
throw() {}
~pthread_allocator() throw() {}
pointer address(reference __x) const { return &__x; }
const_pointer address(const_reference __x) const { return &__x; }
// __n is permitted to be 0. The C++ standard says nothing about what
// the return value is when __n == 0.
_Tp* allocate(size_type __n, const void* = 0) {
return __n != 0 ? static_cast<_Tp*>(_S_Alloc::allocate(__n * sizeof(_Tp)))
: 0;
}
// p is not permitted to be a null pointer.
void deallocate(pointer __p, size_type __n)
{ _S_Alloc::deallocate(__p, __n * sizeof(_Tp)); }
size_type max_size() const throw()
{ return size_t(-1) / sizeof(_Tp); }
void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void destroy(pointer _p) { _p->~_Tp(); }
};
template<>
class pthread_allocator<void> {
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template <class _NewType> struct rebind {
typedef pthread_allocator<_NewType> other;
};
};
template <size_t _Max_size>
inline bool operator==(const _Pthread_alloc_template<_Max_size>&,
const _Pthread_alloc_template<_Max_size>&)
{
return true;
}
template <class _T1, class _T2>
inline bool operator==(const pthread_allocator<_T1>&,
const pthread_allocator<_T2>& a2)
{
return true;
}
template <class _T1, class _T2>
inline bool operator!=(const pthread_allocator<_T1>&,
const pthread_allocator<_T2>&)
{
return false;
}
template <class _Tp, size_t _Max_size>
struct _Alloc_traits<_Tp, _Pthread_alloc_template<_Max_size> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max_size> > _Alloc_type;
typedef __allocator<_Tp, _Pthread_alloc_template<_Max_size> >
allocator_type;
};
template <class _Tp, class _Atype, size_t _Max>
struct _Alloc_traits<_Tp, __allocator<_Atype, _Pthread_alloc_template<_Max> > >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, _Pthread_alloc_template<_Max> > _Alloc_type;
typedef __allocator<_Tp, _Pthread_alloc_template<_Max> > allocator_type;
};
template <class _Tp, class _Atype>
struct _Alloc_traits<_Tp, pthread_allocator<_Atype> >
{
static const bool _S_instanceless = true;
typedef simple_alloc<_Tp, _Pthread_alloc_template<> > _Alloc_type;
typedef pthread_allocator<_Tp> allocator_type;
};
} // namespace std
#endif /* _CPP_BITS_PTHREAD_ALLOCIMPL_H */
// Local Variables:
// mode:C++
// End:

View file

@ -1,900 +0,0 @@
// Allocators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file stl_alloc.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#ifndef __GLIBCPP_INTERNAL_ALLOC_H
#define __GLIBCPP_INTERNAL_ALLOC_H
/**
* @defgroup Allocators Memory Allocators
* @if maint
* stl_alloc.h implements some node allocators. These are NOT the same as
* allocators in the C++ standard, nor in the original H-P STL. They do not
* encapsulate different pointer types; we assume that there is only one
* pointer type. The C++ standard allocators are intended to allocate
* individual objects, not pools or arenas.
*
* In this file allocators are of two different styles: "standard" and
* "SGI" (quotes included). "Standard" allocators conform to 20.4. "SGI"
* allocators differ in AT LEAST the following ways (add to this list as you
* discover them):
*
* - "Standard" allocate() takes two parameters (n_count,hint=0) but "SGI"
* allocate() takes one paramter (n_size).
* - Likewise, "standard" deallocate()'s argument is a count, but in "SGI"
* is a byte size.
* - max_size(), construct(), and destroy() are missing in "SGI" allocators.
* - reallocate(p,oldsz,newsz) is added in "SGI", and behaves as
* if p=realloc(p,newsz).
*
* "SGI" allocators may be wrapped in __allocator to convert the interface
* into a "standard" one.
* @endif
*
* The canonical description of these classes is in docs/html/ext/howto.html
* or online at http://gcc.gnu.org/onlinedocs/libstdc++/ext/howto.html#3
*/
#include <cstddef>
#include <cstdlib>
#include <cstring>
#include <bits/functexcept.h> // For __throw_bad_alloc
#include <bits/stl_threads.h>
#include <bits/atomicity.h>
namespace std
{
/**
* @if maint
* A new-based allocator, as required by the standard. Allocation and
* deallocation forward to global new and delete. "SGI" style, minus
* reallocate().
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
class __new_alloc
{
public:
static void*
allocate(size_t __n)
{ return ::operator new(__n); }
static void
deallocate(void* __p, size_t)
{ ::operator delete(__p); }
};
/**
* @if maint
* A malloc-based allocator. Typically slower than the
* __pool_alloc (below). Typically thread-safe and more
* storage efficient. The template argument is unused and is only present
* to permit multiple instantiations (but see __pool_alloc
* for caveats). "SGI" style, plus __set_malloc_handler for OOM conditions.
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<int __inst>
class __malloc_alloc
{
private:
static void* _S_oom_malloc(size_t);
static void (* __malloc_alloc_oom_handler)();
public:
static void*
allocate(size_t __n)
{
void* __result = malloc(__n);
if (__builtin_expect(__result == 0, 0))
__result = _S_oom_malloc(__n);
return __result;
}
static void
deallocate(void* __p, size_t /* __n */)
{ free(__p); }
static void (* __set_malloc_handler(void (*__f)()))()
{
void (* __old)() = __malloc_alloc_oom_handler;
__malloc_alloc_oom_handler = __f;
return __old;
}
};
// malloc_alloc out-of-memory handling
template<int __inst>
void (* __malloc_alloc<__inst>::__malloc_alloc_oom_handler)() = 0;
template<int __inst>
void*
__malloc_alloc<__inst>::
_S_oom_malloc(size_t __n)
{
void (* __my_malloc_handler)();
void* __result;
for (;;)
{
__my_malloc_handler = __malloc_alloc_oom_handler;
if (__builtin_expect(__my_malloc_handler == 0, 0))
__throw_bad_alloc();
(*__my_malloc_handler)();
__result = malloc(__n);
if (__result)
return __result;
}
}
/**
* @if maint
* This is used primarily (only?) in _Alloc_traits and other places to
* help provide the _Alloc_type typedef. All it does is forward the
* requests after some minimal checking.
*
* This is neither "standard"-conforming nor "SGI". The _Alloc parameter
* must be "SGI" style.
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Tp, typename _Alloc>
class __simple_alloc
{
public:
static _Tp*
allocate(size_t __n)
{
_Tp* __ret = 0;
if (__n)
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
return __ret;
}
static _Tp*
allocate()
{ return (_Tp*) _Alloc::allocate(sizeof (_Tp)); }
static void
deallocate(_Tp* __p, size_t __n)
{ if (0 != __n) _Alloc::deallocate(__p, __n * sizeof (_Tp)); }
static void
deallocate(_Tp* __p)
{ _Alloc::deallocate(__p, sizeof (_Tp)); }
};
/**
* @if maint
* An adaptor for an underlying allocator (_Alloc) to check the size
* arguments for debugging.
*
* "There is some evidence that this can confuse Purify." - SGI comment
*
* This adaptor is "SGI" style. The _Alloc parameter must also be "SGI".
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Alloc>
class __debug_alloc
{
private:
// Size of space used to store size. Note that this must be
// large enough to preserve alignment.
enum {_S_extra = 8};
public:
static void*
allocate(size_t __n)
{
char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra);
*(size_t*)__result = __n;
return __result + (int) _S_extra;
}
static void
deallocate(void* __p, size_t __n)
{
char* __real_p = (char*)__p - (int) _S_extra;
if (*(size_t*)__real_p != __n)
abort();
_Alloc::deallocate(__real_p, __n + (int) _S_extra);
}
};
/**
* @if maint
* Default node allocator. "SGI" style. Uses various allocators to
* fulfill underlying requests (and makes as few requests as possible
* when in default high-speed pool mode).
*
* Important implementation properties:
* 0. If globally mandated, then allocate objects from __new_alloc
* 1. If the clients request an object of size > _S_max_bytes, the resulting
* object will be obtained directly from __new_alloc
* 2. In all other cases, we allocate an object of size exactly
* _S_round_up(requested_size). Thus the client has enough size
* information that we can return the object to the proper free list
* without permanently losing part of the object.
*
* The first template parameter specifies whether more than one thread may
* use this allocator. It is safe to allocate an object from one instance
* of a default_alloc and deallocate it with another one. This effectively
* transfers its ownership to the second one. This may have undesirable
* effects on reference locality.
*
* The second parameter is unused and serves only to allow the creation of
* multiple default_alloc instances. Note that containers built on different
* allocator instances have different types, limiting the utility of this
* approach. If you do not wish to share the free lists with the main
* default_alloc instance, instantiate this with a non-zero __inst.
*
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<bool __threads, int __inst>
class __pool_alloc
{
private:
enum {_S_align = 8};
enum {_S_max_bytes = 128};
enum {_S_freelists = _S_max_bytes / _S_align};
union _Obj
{
union _Obj* _M_free_list_link;
char _M_client_data[1]; // The client sees this.
};
static _Obj* volatile _S_free_list[_S_freelists];
// Chunk allocation state.
static char* _S_start_free;
static char* _S_end_free;
static size_t _S_heap_size;
static _STL_mutex_lock _S_lock;
static _Atomic_word _S_force_new;
static size_t
_S_round_up(size_t __bytes)
{ return (((__bytes) + (size_t) _S_align-1) & ~((size_t) _S_align - 1)); }
static size_t
_S_freelist_index(size_t __bytes)
{ return (((__bytes) + (size_t)_S_align - 1)/(size_t)_S_align - 1); }
// Returns an object of size __n, and optionally adds to size __n
// free list.
static void*
_S_refill(size_t __n);
// Allocates a chunk for nobjs of size size. nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char*
_S_chunk_alloc(size_t __size, int& __nobjs);
// It would be nice to use _STL_auto_lock here. But we need a
// test whether threads are in use.
struct _Lock
{
_Lock() { if (__threads) _S_lock._M_acquire_lock(); }
~_Lock() { if (__threads) _S_lock._M_release_lock(); }
} __attribute__ ((__unused__));
friend struct _Lock;
public:
// __n must be > 0
static void*
allocate(size_t __n)
{
void* __ret = 0;
// If there is a race through here, assume answer from getenv
// will resolve in same direction. Inspired by techniques
// to efficiently support threading found in basic_string.h.
if (_S_force_new == 0)
{
if (getenv("GLIBCPP_FORCE_NEW"))
__atomic_add(&_S_force_new, 1);
else
__atomic_add(&_S_force_new, -1);
}
if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0))
__ret = __new_alloc::allocate(__n);
else
{
_Obj* volatile* __my_free_list = _S_free_list
+ _S_freelist_index(__n);
// Acquire the lock here with a constructor call. This
// ensures that it is released in exit or during stack
// unwinding.
_Lock __lock_instance;
_Obj* __restrict__ __result = *__my_free_list;
if (__builtin_expect(__result == 0, 0))
__ret = _S_refill(_S_round_up(__n));
else
{
*__my_free_list = __result -> _M_free_list_link;
__ret = __result;
}
if (__builtin_expect(__ret == 0, 0))
__throw_bad_alloc();
}
return __ret;
}
// __p may not be 0
static void
deallocate(void* __p, size_t __n)
{
if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0))
__new_alloc::deallocate(__p, __n);
else
{
_Obj* volatile* __my_free_list = _S_free_list
+ _S_freelist_index(__n);
_Obj* __q = (_Obj*)__p;
// Acquire the lock here with a constructor call. This
// ensures that it is released in exit or during stack
// unwinding.
_Lock __lock_instance;
__q -> _M_free_list_link = *__my_free_list;
*__my_free_list = __q;
}
}
};
template<bool __threads, int __inst> _Atomic_word
__pool_alloc<__threads, __inst>::_S_force_new = 0;
template<bool __threads, int __inst>
inline bool
operator==(const __pool_alloc<__threads,__inst>&,
const __pool_alloc<__threads,__inst>&)
{ return true; }
template<bool __threads, int __inst>
inline bool
operator!=(const __pool_alloc<__threads,__inst>&,
const __pool_alloc<__threads,__inst>&)
{ return false; }
// We allocate memory in large chunks in order to avoid fragmenting the
// heap too much. We assume that __size is properly aligned. We hold
// the allocation lock.
template<bool __threads, int __inst>
char*
__pool_alloc<__threads, __inst>::
_S_chunk_alloc(size_t __size, int& __nobjs)
{
char* __result;
size_t __total_bytes = __size * __nobjs;
size_t __bytes_left = _S_end_free - _S_start_free;
if (__bytes_left >= __total_bytes)
{
__result = _S_start_free;
_S_start_free += __total_bytes;
return __result ;
}
else if (__bytes_left >= __size)
{
__nobjs = (int)(__bytes_left/__size);
__total_bytes = __size * __nobjs;
__result = _S_start_free;
_S_start_free += __total_bytes;
return __result;
}
else
{
size_t __bytes_to_get =
2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
// Try to make use of the left-over piece.
if (__bytes_left > 0)
{
_Obj* volatile* __my_free_list =
_S_free_list + _S_freelist_index(__bytes_left);
((_Obj*)(void*)_S_start_free) -> _M_free_list_link = *__my_free_list;
*__my_free_list = (_Obj*)(void*)_S_start_free;
}
_S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
if (_S_start_free == 0)
{
size_t __i;
_Obj* volatile* __my_free_list;
_Obj* __p;
// Try to make do with what we have. That can't hurt. We
// do not try smaller requests, since that tends to result
// in disaster on multi-process machines.
__i = __size;
for (; __i <= (size_t) _S_max_bytes; __i += (size_t) _S_align)
{
__my_free_list = _S_free_list + _S_freelist_index(__i);
__p = *__my_free_list;
if (__p != 0)
{
*__my_free_list = __p -> _M_free_list_link;
_S_start_free = (char*)__p;
_S_end_free = _S_start_free + __i;
return _S_chunk_alloc(__size, __nobjs);
// Any leftover piece will eventually make it to the
// right free list.
}
}
_S_end_free = 0; // In case of exception.
_S_start_free = (char*)__new_alloc::allocate(__bytes_to_get);
// This should either throw an exception or remedy the situation.
// Thus we assume it succeeded.
}
_S_heap_size += __bytes_to_get;
_S_end_free = _S_start_free + __bytes_to_get;
return _S_chunk_alloc(__size, __nobjs);
}
}
// Returns an object of size __n, and optionally adds to "size
// __n"'s free list. We assume that __n is properly aligned. We
// hold the allocation lock.
template<bool __threads, int __inst>
void*
__pool_alloc<__threads, __inst>::_S_refill(size_t __n)
{
int __nobjs = 20;
char* __chunk = _S_chunk_alloc(__n, __nobjs);
_Obj* volatile* __my_free_list;
_Obj* __result;
_Obj* __current_obj;
_Obj* __next_obj;
int __i;
if (1 == __nobjs)
return __chunk;
__my_free_list = _S_free_list + _S_freelist_index(__n);
// Build free list in chunk.
__result = (_Obj*)(void*)__chunk;
*__my_free_list = __next_obj = (_Obj*)(void*)(__chunk + __n);
for (__i = 1; ; __i++)
{
__current_obj = __next_obj;
__next_obj = (_Obj*)(void*)((char*)__next_obj + __n);
if (__nobjs - 1 == __i)
{
__current_obj -> _M_free_list_link = 0;
break;
}
else
__current_obj -> _M_free_list_link = __next_obj;
}
return __result;
}
template<bool __threads, int __inst>
_STL_mutex_lock
__pool_alloc<__threads,__inst>::_S_lock __STL_MUTEX_INITIALIZER;
template<bool __threads, int __inst>
char* __pool_alloc<__threads,__inst>::_S_start_free = 0;
template<bool __threads, int __inst>
char* __pool_alloc<__threads,__inst>::_S_end_free = 0;
template<bool __threads, int __inst>
size_t __pool_alloc<__threads,__inst>::_S_heap_size = 0;
template<bool __threads, int __inst>
typename __pool_alloc<__threads,__inst>::_Obj* volatile
__pool_alloc<__threads,__inst>::_S_free_list[_S_freelists];
typedef __pool_alloc<true,0> __alloc;
typedef __pool_alloc<false,0> __single_client_alloc;
/**
* @brief The "standard" allocator, as per [20.4].
*
* The private _Alloc is "SGI" style. (See comments at the top
* of stl_alloc.h.)
*
* The underlying allocator behaves as follows.
* - __pool_alloc is used via two typedefs
* - "__single_client_alloc" typedef does no locking for threads
* - "__alloc" typedef is threadsafe via the locks
* - __new_alloc is used for memory requests
*
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Tp>
class allocator
{
typedef __alloc _Alloc; // The underlying allocator.
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1>
struct rebind
{ typedef allocator<_Tp1> other; };
allocator() throw() {}
allocator(const allocator&) throw() {}
template<typename _Tp1>
allocator(const allocator<_Tp1>&) throw() {}
~allocator() throw() {}
pointer
address(reference __x) const { return &__x; }
const_pointer
address(const_reference __x) const { return &__x; }
// NB: __n is permitted to be 0. The C++ standard says nothing
// about what the return value is when __n == 0.
_Tp*
allocate(size_type __n, const void* = 0)
{
_Tp* __ret = 0;
if (__n)
{
if (__n <= this->max_size())
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
else
__throw_bad_alloc();
}
return __ret;
}
// __p is not permitted to be a null pointer.
void
deallocate(pointer __p, size_type __n)
{ _Alloc::deallocate(__p, __n * sizeof(_Tp)); }
size_type
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
void construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void destroy(pointer __p) { __p->~_Tp(); }
};
template<>
class allocator<void>
{
public:
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template<typename _Tp1>
struct rebind
{ typedef allocator<_Tp1> other; };
};
template<typename _T1, typename _T2>
inline bool
operator==(const allocator<_T1>&, const allocator<_T2>&)
{ return true; }
template<typename _T1, typename _T2>
inline bool
operator!=(const allocator<_T1>&, const allocator<_T2>&)
{ return false; }
/**
* @if maint
* Allocator adaptor to turn an "SGI" style allocator (e.g.,
* __alloc, __malloc_alloc) into a "standard" conforming
* allocator. Note that this adaptor does *not* assume that all
* objects of the underlying alloc class are identical, nor does it
* assume that all of the underlying alloc's member functions are
* static member functions. Note, also, that __allocator<_Tp,
* __alloc> is essentially the same thing as allocator<_Tp>.
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Tp, typename _Alloc>
struct __allocator
{
_Alloc __underlying_alloc;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef _Tp* pointer;
typedef const _Tp* const_pointer;
typedef _Tp& reference;
typedef const _Tp& const_reference;
typedef _Tp value_type;
template<typename _Tp1>
struct rebind
{ typedef __allocator<_Tp1, _Alloc> other; };
__allocator() throw() {}
__allocator(const __allocator& __a) throw()
: __underlying_alloc(__a.__underlying_alloc) {}
template<typename _Tp1>
__allocator(const __allocator<_Tp1, _Alloc>& __a) throw()
: __underlying_alloc(__a.__underlying_alloc) {}
~__allocator() throw() {}
pointer
address(reference __x) const { return &__x; }
const_pointer
address(const_reference __x) const { return &__x; }
// NB: __n is permitted to be 0. The C++ standard says nothing
// about what the return value is when __n == 0.
_Tp*
allocate(size_type __n, const void* = 0)
{
_Tp* __ret = 0;
if (__n)
__ret = static_cast<_Tp*>(_Alloc::allocate(__n * sizeof(_Tp)));
return __ret;
}
// __p is not permitted to be a null pointer.
void
deallocate(pointer __p, size_type __n)
{ __underlying_alloc.deallocate(__p, __n * sizeof(_Tp)); }
size_type
max_size() const throw() { return size_t(-1) / sizeof(_Tp); }
void
construct(pointer __p, const _Tp& __val) { new(__p) _Tp(__val); }
void
destroy(pointer __p) { __p->~_Tp(); }
};
template<typename _Alloc>
struct __allocator<void, _Alloc>
{
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef void* pointer;
typedef const void* const_pointer;
typedef void value_type;
template<typename _Tp1>
struct rebind
{ typedef __allocator<_Tp1, _Alloc> other; };
};
template<typename _Tp, typename _Alloc>
inline bool
operator==(const __allocator<_Tp,_Alloc>& __a1,
const __allocator<_Tp,_Alloc>& __a2)
{ return __a1.__underlying_alloc == __a2.__underlying_alloc; }
template<typename _Tp, typename _Alloc>
inline bool
operator!=(const __allocator<_Tp, _Alloc>& __a1,
const __allocator<_Tp, _Alloc>& __a2)
{ return __a1.__underlying_alloc != __a2.__underlying_alloc; }
//@{
/** Comparison operators for all of the predifined SGI-style allocators.
* This ensures that __allocator<malloc_alloc> (for example) will work
* correctly. As required, all allocators compare equal.
*/
template<int inst>
inline bool
operator==(const __malloc_alloc<inst>&,
const __malloc_alloc<inst>&)
{ return true; }
template<int __inst>
inline bool
operator!=(const __malloc_alloc<__inst>&,
const __malloc_alloc<__inst>&)
{ return false; }
template<typename _Alloc>
inline bool
operator==(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
{ return true; }
template<typename _Alloc>
inline bool
operator!=(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
{ return false; }
//@}
/**
* @if maint
* Another allocator adaptor: _Alloc_traits. This serves two purposes.
* First, make it possible to write containers that can use either "SGI"
* style allocators or "standard" allocators. Second, provide a mechanism
* so that containers can query whether or not the allocator has distinct
* instances. If not, the container can avoid wasting a word of memory to
* store an empty object. For examples of use, see stl_vector.h, etc, or
* any of the other classes derived from this one.
*
* This adaptor uses partial specialization. The general case of
* _Alloc_traits<_Tp, _Alloc> assumes that _Alloc is a
* standard-conforming allocator, possibly with non-equal instances and
* non-static members. (It still behaves correctly even if _Alloc has
* static member and if all instances are equal. Refinements affect
* performance, not correctness.)
*
* There are always two members: allocator_type, which is a standard-
* conforming allocator type for allocating objects of type _Tp, and
* _S_instanceless, a static const member of type bool. If
* _S_instanceless is true, this means that there is no difference
* between any two instances of type allocator_type. Furthermore, if
* _S_instanceless is true, then _Alloc_traits has one additional
* member: _Alloc_type. This type encapsulates allocation and
* deallocation of objects of type _Tp through a static interface; it
* has two member functions, whose signatures are
*
* - static _Tp* allocate(size_t)
* - static void deallocate(_Tp*, size_t)
*
* The size_t parameters are "standard" style (see top of stl_alloc.h) in
* that they take counts, not sizes.
*
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
//@{
// The fully general version.
template<typename _Tp, typename _Allocator>
struct _Alloc_traits
{
static const bool _S_instanceless = false;
typedef typename _Allocator::template rebind<_Tp>::other allocator_type;
};
template<typename _Tp, typename _Allocator>
const bool _Alloc_traits<_Tp, _Allocator>::_S_instanceless;
/// The version for the default allocator.
template<typename _Tp, typename _Tp1>
struct _Alloc_traits<_Tp, allocator<_Tp1> >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __alloc> _Alloc_type;
typedef allocator<_Tp> allocator_type;
};
//@}
//@{
/// Versions for the predefined "SGI" style allocators.
template<typename _Tp, int __inst>
struct _Alloc_traits<_Tp, __malloc_alloc<__inst> >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __malloc_alloc<__inst> > _Alloc_type;
typedef __allocator<_Tp, __malloc_alloc<__inst> > allocator_type;
};
template<typename _Tp, bool __threads, int __inst>
struct _Alloc_traits<_Tp, __pool_alloc<__threads, __inst> >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __pool_alloc<__threads, __inst> >
_Alloc_type;
typedef __allocator<_Tp, __pool_alloc<__threads, __inst> >
allocator_type;
};
template<typename _Tp, typename _Alloc>
struct _Alloc_traits<_Tp, __debug_alloc<_Alloc> >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
};
//@}
//@{
/// Versions for the __allocator adaptor used with the predefined
/// "SGI" style allocators.
template<typename _Tp, typename _Tp1, int __inst>
struct _Alloc_traits<_Tp,
__allocator<_Tp1, __malloc_alloc<__inst> > >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __malloc_alloc<__inst> > _Alloc_type;
typedef __allocator<_Tp, __malloc_alloc<__inst> > allocator_type;
};
template<typename _Tp, typename _Tp1, bool __thr, int __inst>
struct _Alloc_traits<_Tp, __allocator<_Tp1, __pool_alloc<__thr, __inst> > >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __pool_alloc<__thr,__inst> >
_Alloc_type;
typedef __allocator<_Tp, __pool_alloc<__thr,__inst> >
allocator_type;
};
template<typename _Tp, typename _Tp1, typename _Alloc>
struct _Alloc_traits<_Tp, __allocator<_Tp1, __debug_alloc<_Alloc> > >
{
static const bool _S_instanceless = true;
typedef __simple_alloc<_Tp, __debug_alloc<_Alloc> > _Alloc_type;
typedef __allocator<_Tp, __debug_alloc<_Alloc> > allocator_type;
};
//@}
// Inhibit implicit instantiations for required instantiations,
// which are defined via explicit instantiations elsewhere.
// NB: This syntax is a GNU extension.
#if _GLIBCPP_EXTERN_TEMPLATE
extern template class allocator<char>;
extern template class allocator<wchar_t>;
extern template class __pool_alloc<true,0>;
#endif
} // namespace std
#endif

View file

@ -340,7 +340,7 @@ namespace std
* and destructor allocate (but don't initialize) storage. This makes
* %exception safety easier. Second, the base class encapsulates all of
* the differences between SGI-style allocators and standard-conforming
* allocators. (See stl_alloc.h for more on this topic.) There are two
* allocators. (See allocator.h for more on this topic.) There are two
* versions: this ordinary one, and the space-saving specialization for
* instanceless allocators.
* @endif

View file

@ -48,6 +48,8 @@
#ifndef __SGI_STL_INTERNAL_THREADS_H
#define __SGI_STL_INTERNAL_THREADS_H
#include <cstddef>
// The only supported threading model is GCC's own gthr.h abstraction layer.
#include "bits/gthr.h"
@ -209,7 +211,6 @@ namespace std
void operator=(const _STL_auto_lock&);
_STL_auto_lock(const _STL_auto_lock&);
} __attribute__ ((__unused__));
} // namespace std
#endif

View file

@ -84,7 +84,7 @@ iterators invalidated are those referring to the deleted node.
*/
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_function.h>

View file

@ -0,0 +1,139 @@
// Allocators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file ext/debug_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _DEBUG_ALLOCATOR_H
#define _DEBUG_ALLOCATOR_H 1
#include <bits/allocator_traits.h>
namespace __gnu_cxx
{
/**
* @if maint
* An adaptor for an underlying allocator (_Alloc) to check the size
* arguments for debugging.
*
* "There is some evidence that this can confuse Purify." - SGI comment
*
* This adaptor is "SGI" style. The _Alloc parameter must also be "SGI".
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<typename _Alloc>
class __debug_alloc
{
private:
// Size of space used to store size. Note that this must be
// large enough to preserve alignment.
enum {_S_extra = 8};
public:
static void*
allocate(size_t __n)
{
char* __result = (char*)_Alloc::allocate(__n + (int) _S_extra);
*(size_t*)__result = __n;
return __result + (int) _S_extra;
}
static void
deallocate(void* __p, size_t __n)
{
char* __real_p = (char*)__p - (int) _S_extra;
if (*(size_t*)__real_p != __n)
abort();
_Alloc::deallocate(__real_p, __n + (int) _S_extra);
}
};
//@{
/** Comparison operators for all of the predifined SGI-style allocators.
* This ensures that __allocator<malloc_alloc> (for example) will work
* correctly. As required, all allocators compare equal.
*/
template<typename _Alloc>
inline bool
operator==(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
{ return true; }
template<typename _Alloc>
inline bool
operator!=(const __debug_alloc<_Alloc>&, const __debug_alloc<_Alloc>&)
{ return false; }
//@}
} // namespace __gnu_cxx
namespace std
{
//@{
/// Versions for the predefined "SGI" style allocators.
template<typename _Tp, typename _Alloc>
struct _Alloc_traits<_Tp, __gnu_cxx::__debug_alloc<_Alloc> >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx::__debug_alloc<_Alloc> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
//@{
/// Versions for the __allocator adaptor used with the predefined
/// "SGI" style allocators.
template<typename _Tp, typename _Tp1, typename _Alloc>
struct _Alloc_traits<_Tp, __allocator<_Tp1,
__gnu_cxx::__debug_alloc<_Alloc> > >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx::__debug_alloc<_Alloc> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
} // namespace std
#endif

View file

@ -0,0 +1,163 @@
// Allocators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file ext/debug_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _MALLOC_ALLOCATOR_H
#define _MALLOC_ALLOCATOR_H 1
#include <bits/allocator_traits.h>
namespace __gnu_cxx
{
/**
* @if maint
* A malloc-based allocator. Typically slower than the
* __pool_alloc (below). Typically thread-safe and more
* storage efficient. The template argument is unused and is only present
* to permit multiple instantiations (but see __pool_alloc
* for caveats). "SGI" style, plus __set_malloc_handler for OOM conditions.
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<int __inst>
class __malloc_alloc
{
private:
static void* _S_oom_malloc(size_t);
static void (* __malloc_alloc_oom_handler)();
public:
static void*
allocate(size_t __n)
{
void* __result = malloc(__n);
if (__builtin_expect(__result == 0, 0))
__result = _S_oom_malloc(__n);
return __result;
}
static void
deallocate(void* __p, size_t /* __n */)
{ free(__p); }
static void (* __set_malloc_handler(void (*__f)()))()
{
void (* __old)() = __malloc_alloc_oom_handler;
__malloc_alloc_oom_handler = __f;
return __old;
}
};
// malloc_alloc out-of-memory handling
template<int __inst>
void (* __malloc_alloc<__inst>::__malloc_alloc_oom_handler)() = 0;
template<int __inst>
void*
__malloc_alloc<__inst>::
_S_oom_malloc(size_t __n)
{
void (* __my_malloc_handler)();
void* __result;
for (;;)
{
__my_malloc_handler = __malloc_alloc_oom_handler;
if (__builtin_expect(__my_malloc_handler == 0, 0))
__throw_bad_alloc();
(*__my_malloc_handler)();
__result = malloc(__n);
if (__result)
return __result;
}
}
//@{
/** Comparison operators for all of the predifined SGI-style allocators.
* This ensures that __allocator<malloc_alloc> (for example) will work
* correctly. As required, all allocators compare equal.
*/
template<int inst>
inline bool
operator==(const __malloc_alloc<inst>&, const __malloc_alloc<inst>&)
{ return true; }
template<int __inst>
inline bool
operator!=(const __malloc_alloc<__inst>&, const __malloc_alloc<__inst>&)
{ return false; }
//@}
} // namespace __gnu_cxx
namespace std
{
//@{
/// Versions for the predefined "SGI" style allocators.
template<typename _Tp, int __inst>
struct _Alloc_traits<_Tp, __gnu_cxx::__malloc_alloc<__inst> >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx:: __malloc_alloc<__inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
//@{
/// Versions for the __allocator adaptor used with the predefined
/// "SGI" style allocators.
template<typename _Tp, typename _Tp1, int __inst>
struct _Alloc_traits<_Tp, __allocator<_Tp1,
__gnu_cxx::__malloc_alloc<__inst> > >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx:: __malloc_alloc<__inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
} // namespace std
#endif

View file

@ -0,0 +1,861 @@
// MT-optimized allocator -*- C++ -*-
// Copyright (C) 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/** @file ext/mt_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _MT_ALLOCATOR_H
#define _MT_ALLOCATOR_H 1
#include <cstdlib>
#include <bits/functexcept.h>
#include <bits/stl_threads.h>
#include <bits/atomicity.h>
#include <bits/allocator_traits.h>
/**
* This is a fixed size (power of 2) allocator which - when compiled
* with thread support - will maintain one freelist per size per thread
* plus a "global" one. Steps are taken to limit the per thread freelist
* sizes (by returning excess back to "global").
*
* Usage examples:
* vector<int, __gnu_cxx::__mt_alloc<0> > v1;
*
* typedef std::__allocator<char, __gnu_cxx::__mt_alloc<0> > string_alloc;
* std::basic_string<char, std::char_traits<char>, string_alloc> s1;
*/
namespace __gnu_cxx
{
template<int __inst>
class __mt_alloc
{
private:
/*
* We need to create the initial lists and set up some variables
* before we can answer to the first request for memory.
* The initialization of these variables is done at file scope
* below class declaration.
*/
#ifdef __GTHREADS
static __gthread_once_t _S_once_mt;
#endif
static bool _S_initialized;
/*
* Using short int as type for the binmap implies we are never caching
* blocks larger than 65535 with this allocator
*/
typedef unsigned short int binmap_type;
static binmap_type* _S_binmap;
static void _S_init();
/*
* Variables used to "tune" the behavior of the allocator, assigned
* and explained in detail below.
*/
static size_t _S_max_bytes;
static size_t _S_chunk_size;
static size_t _S_max_threads;
static size_t _S_no_of_bins;
static size_t _S_freelist_headroom;
/*
* Each requesting thread is assigned an id ranging from 1 to
* _S_max_threads. Thread id 0 is used as a global memory pool.
* In order to get constant performance on the thread assignment
* routine, we keep a list of free ids. When a thread first requests
* memory we remove the first record in this list and stores the address
* in a __gthread_key. When initializing the __gthread_key
* we specify a destructor. When this destructor (i.e. the thread dies)
* is called, we return the thread id to the back of this list.
*/
#ifdef __GTHREADS
struct thread_record
{
/*
* Points to next free thread id record. NULL if last record in list.
*/
thread_record* next;
/*
* Thread id ranging from 1 to _S_max_threads.
*/
size_t id;
};
static thread_record* _S_thread_freelist_first;
static thread_record* _S_thread_freelist_last;
static __gthread_mutex_t _S_thread_freelist_mutex;
static void _S_thread_key_destr(void* freelist_pos);
static __gthread_key_t _S_thread_key;
static size_t _S_get_thread_id();
#endif
struct block_record
{
/*
* Points to the next block_record for its thread_id.
*/
block_record* next;
/*
* The thread id of the thread which has requested this block.
* All blocks are initially "owned" by global pool thread id 0.
*/
size_t thread_id;
};
struct bin_record
{
/*
* An "array" of pointers to the first/last free block for each
* thread id. Memory to these "arrays" is allocated in _S_init()
* for _S_max_threads + global pool 0.
*/
block_record** first;
block_record** last;
/*
* An "array" of counters used to keep track of the amount of blocks
* that are on the freelist/used for each thread id.
* Memory to these "arrays" is allocated in _S_init()
* for _S_max_threads + global pool 0.
*/
size_t* free;
size_t* used;
/*
* Each bin has its own mutex which is used to ensure data integrity
* while changing "ownership" on a block.
* The mutex is initialized in _S_init().
*/
#ifdef __GTHREADS
__gthread_mutex_t* mutex;
#endif
};
/*
* An "array" of bin_records each of which represents a specific
* power of 2 size. Memory to this "array" is allocated in _S_init().
*/
static bin_record* _S_bin;
public:
static void*
allocate(size_t __n)
{
/*
* Requests larger than _S_max_bytes are handled by
* malloc/free directly
*/
if (__n > _S_max_bytes)
{
void* __ret = malloc(__n);
if (!__ret)
__throw_bad_alloc();
return __ret;
}
/*
* Although the test in __gthread_once() would suffice, we
* wrap test of the once condition in our own unlocked
* check. This saves one function call to pthread_once()
* (which itself only tests for the once value unlocked anyway
* and immediately returns if set)
*/
if (!_S_initialized)
{
#ifdef __GTHREADS
if (__gthread_active_p())
__gthread_once(&_S_once_mt, _S_init);
else
#endif
{
_S_max_threads = 0;
_S_init();
}
}
/*
* Round up to power of 2 and figure out which bin to use
*/
size_t bin = _S_binmap[__n];
#ifdef __GTHREADS
size_t thread_id = _S_get_thread_id();
#else
size_t thread_id = 0;
#endif
block_record* block;
/*
* Find out if we have blocks on our freelist.
* If so, go ahead and use them directly without
* having to lock anything.
*/
if (_S_bin[bin].first[thread_id] == NULL)
{
/*
* Are we using threads?
* - Yes, lock and check if there are free blocks on the global
* list (and if not add new ones), get the first one
* and change owner.
* - No, all operations are made directly to global pool 0
* no need to lock or change ownership but check for free
* blocks on global list (and if not add new ones) and
* get the first one.
*/
#ifdef __GTHREADS
if (__gthread_active_p())
{
__gthread_mutex_lock(_S_bin[bin].mutex);
if (_S_bin[bin].first[0] == NULL)
{
_S_bin[bin].first[0] =
(block_record*)malloc(_S_chunk_size);
if (!_S_bin[bin].first[0])
{
__gthread_mutex_unlock(_S_bin[bin].mutex);
__throw_bad_alloc();
}
size_t bin_t = 1 << bin;
size_t block_count =
_S_chunk_size /(bin_t + sizeof(block_record));
_S_bin[bin].free[0] = block_count;
block_count--;
block = _S_bin[bin].first[0];
while (block_count > 0)
{
block->next = (block_record*)((char*)block +
(bin_t + sizeof(block_record)));
block = block->next;
block_count--;
}
block->next = NULL;
_S_bin[bin].last[0] = block;
}
block = _S_bin[bin].first[0];
/*
* Remove from list and count down the available counter on
* global pool 0.
*/
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
_S_bin[bin].free[0]--;
__gthread_mutex_unlock(_S_bin[bin].mutex);
/*
* Now that we have removed the block from the global
* freelist we can change owner and update the used
* counter for this thread without locking.
*/
block->thread_id = thread_id;
_S_bin[bin].used[thread_id]++;
}
else
#endif
{
_S_bin[bin].first[0] = (block_record*)malloc(_S_chunk_size);
if (!_S_bin[bin].first[0])
__throw_bad_alloc();
size_t bin_t = 1 << bin;
size_t block_count =
_S_chunk_size / (bin_t + sizeof(block_record));
_S_bin[bin].free[0] = block_count;
block_count--;
block = _S_bin[bin].first[0];
while (block_count > 0)
{
block->next = (block_record*)((char*)block +
(bin_t + sizeof(block_record)));
block = block->next;
block_count--;
}
block->next = NULL;
_S_bin[bin].last[0] = block;
block = _S_bin[bin].first[0];
/*
* Remove from list and count down the available counter on
* global pool 0 and increase it's used counter.
*/
_S_bin[bin].first[0] = _S_bin[bin].first[0]->next;
_S_bin[bin].free[0]--;
_S_bin[bin].used[0]++;
}
}
else
{
/*
* "Default" operation - we have blocks on our own freelist
* grab the first record and update the counters.
*/
block = _S_bin[bin].first[thread_id];
_S_bin[bin].first[thread_id] = _S_bin[bin].first[thread_id]->next;
_S_bin[bin].free[thread_id]--;
_S_bin[bin].used[thread_id]++;
}
return (void*)((char*)block + sizeof(block_record));
}
static void
deallocate(void* __p, size_t __n)
{
/*
* Requests larger than _S_max_bytes are handled by
* malloc/free directly
*/
if (__n > _S_max_bytes)
{
free(__p);
return;
}
/*
* Round up to power of 2 and figure out which bin to use
*/
size_t bin = _S_binmap[__n];
#ifdef __GTHREADS
size_t thread_id = _S_get_thread_id();
#else
size_t thread_id = 0;
#endif
block_record* block = (block_record*)((char*)__p
- sizeof(block_record));
/*
* This block will always be at the back of a list and thus
* we set its next pointer to NULL.
*/
block->next = NULL;
#ifdef __GTHREADS
if (__gthread_active_p())
{
/*
* Calculate the number of records to remove from our freelist
*/
int remove = _S_bin[bin].free[thread_id] -
(_S_bin[bin].used[thread_id] / _S_freelist_headroom);
/*
* The calculation above will almost always tell us to
* remove one or two records at a time, but this creates
* too much contention when locking and therefore we
* wait until the number of records is "high enough".
*/
if (remove > (int)(100 * (_S_no_of_bins - bin)) &&
remove > (int)(_S_bin[bin].free[thread_id] /
_S_freelist_headroom))
{
__gthread_mutex_lock(_S_bin[bin].mutex);
while (remove > 0)
{
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = _S_bin[bin].first[thread_id];
else
_S_bin[bin].last[0]->next = _S_bin[bin].first[thread_id];
_S_bin[bin].last[0] = _S_bin[bin].first[thread_id];
_S_bin[bin].first[thread_id] =
_S_bin[bin].first[thread_id]->next;
_S_bin[bin].free[0]++;
_S_bin[bin].free[thread_id]--;
remove--;
}
_S_bin[bin].last[0]->next = NULL;
__gthread_mutex_unlock(_S_bin[bin].mutex);
}
/*
* Did we allocate this block?
* - Yes, return it to our freelist
* - No, return it to global pool
*/
if (thread_id == block->thread_id)
{
if (_S_bin[bin].first[thread_id] == NULL)
_S_bin[bin].first[thread_id] = block;
else
_S_bin[bin].last[thread_id]->next = block;
_S_bin[bin].last[thread_id] = block;
_S_bin[bin].free[thread_id]++;
_S_bin[bin].used[thread_id]--;
}
else
{
__gthread_mutex_lock(_S_bin[bin].mutex);
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = block;
else
_S_bin[bin].last[0]->next = block;
_S_bin[bin].last[0] = block;
_S_bin[bin].free[0]++;
_S_bin[bin].used[block->thread_id]--;
__gthread_mutex_unlock(_S_bin[bin].mutex);
}
}
else
#endif
{
/*
* Single threaded application - return to global pool
*/
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = block;
else
_S_bin[bin].last[0]->next = block;
_S_bin[bin].last[0] = block;
_S_bin[bin].free[0]++;
_S_bin[bin].used[0]--;
}
}
};
template<int __inst>
void
__mt_alloc<__inst>::
_S_init()
{
/*
* Calculate the number of bins required based on _S_max_bytes,
* _S_no_of_bins is initialized to 1 below.
*/
{
size_t bin_t = 1;
while (_S_max_bytes > bin_t)
{
bin_t = bin_t << 1;
_S_no_of_bins++;
}
}
/*
* Setup the bin map for quick lookup of the relevant bin
*/
_S_binmap = (binmap_type*)
malloc ((_S_max_bytes + 1) * sizeof(binmap_type));
if (!_S_binmap)
__throw_bad_alloc();
binmap_type* bp_t = _S_binmap;
binmap_type bin_max_t = 1;
binmap_type bin_t = 0;
for (binmap_type ct = 0; ct <= _S_max_bytes; ct++)
{
if (ct > bin_max_t)
{
bin_max_t <<= 1;
bin_t++;
}
*bp_t++ = bin_t;
}
/*
* If __gthread_active_p() create and initialize the list of
* free thread ids. Single threaded applications use thread id 0
* directly and have no need for this.
*/
#ifdef __GTHREADS
if (__gthread_active_p())
{
_S_thread_freelist_first =
(thread_record*)malloc(sizeof(thread_record) * _S_max_threads);
if (!_S_thread_freelist_first)
__throw_bad_alloc();
/*
* NOTE! The first assignable thread id is 1 since the global
* pool uses id 0
*/
size_t i;
for (i = 1; i < _S_max_threads; i++)
{
_S_thread_freelist_first[i - 1].next =
&_S_thread_freelist_first[i];
_S_thread_freelist_first[i - 1].id = i;
}
/*
* Set last record and pointer to this
*/
_S_thread_freelist_first[i - 1].next = NULL;
_S_thread_freelist_first[i - 1].id = i;
_S_thread_freelist_last = &_S_thread_freelist_first[i - 1];
/*
* Initialize per thread key to hold pointer to
* _S_thread_freelist NOTE! Here's an ugly workaround - if
* _S_thread_key_destr is not explicitly called at least
* once it won't be linked into the application. This is the
* behavior of template methods and __gthread_key_create()
* takes only a pointer to the function and does not cause
* the compiler to create an instance.
*/
_S_thread_key_destr(NULL);
__gthread_key_create(&_S_thread_key, _S_thread_key_destr);
}
#endif
/*
* Initialize _S_bin and its members
*/
_S_bin = (bin_record*)malloc(sizeof(bin_record) * _S_no_of_bins);
if (!_S_bin)
__throw_bad_alloc();
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
{
_S_bin[bin].first = (block_record**)
malloc(sizeof(block_record*) * (_S_max_threads + 1));
if (!_S_bin[bin].first)
__throw_bad_alloc();
_S_bin[bin].last = (block_record**)
malloc(sizeof(block_record*) * (_S_max_threads + 1));
if (!_S_bin[bin].last)
__throw_bad_alloc();
_S_bin[bin].free = (size_t*)
malloc(sizeof(size_t) * (_S_max_threads + 1));
if (!_S_bin[bin].free)
__throw_bad_alloc();
_S_bin[bin].used = (size_t*)
malloc(sizeof(size_t) * (_S_max_threads + 1));
if (!_S_bin[bin].used)
__throw_bad_alloc();
/*
* Ugly workaround of what at the time of writing seems to be
* a parser problem - see PR c++/9779 for more info.
*/
#ifdef __GTHREADS
size_t s = sizeof(__gthread_mutex_t);
_S_bin[bin].mutex = (__gthread_mutex_t*)malloc(s);
if (!_S_bin[bin].mutex)
__throw_bad_alloc();
/*
* This is not only ugly - it's extremly non-portable!
* However gthr.h does not currently provide a
* __gthread_mutex_init() call. The correct solution to
* this problem needs to be discussed.
*/
pthread_mutex_init(_S_bin[bin].mutex, NULL);
#endif
for (size_t thread = 0; thread <= _S_max_threads; thread++)
{
_S_bin[bin].first[thread] = NULL;
_S_bin[bin].last[thread] = NULL;
_S_bin[bin].free[thread] = 0;
_S_bin[bin].used[thread] = 0;
}
}
_S_initialized = true;
}
#ifdef __GTHREADS
template<int __inst>
void
__mt_alloc<__inst>::
_S_thread_key_destr(void* freelist_pos)
{
/*
* This is due to the ugly workaround mentioned in _S_init()
*/
if (freelist_pos == NULL)
return;
/*
* If the thread - when it dies - still have records on its
* freelist we return them to the global pool here.
*/
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
{
block_record* block =
_S_bin[bin].first[((thread_record*)freelist_pos)->id];
if (block != NULL)
{
__gthread_mutex_lock(_S_bin[bin].mutex);
while (block != NULL)
{
if (_S_bin[bin].first[0] == NULL)
_S_bin[bin].first[0] = block;
else
_S_bin[bin].last[0]->next = block;
_S_bin[bin].last[0] = block;
block = block->next;
_S_bin[bin].free[0]++;
}
_S_bin[bin].last[0]->next = NULL;
__gthread_mutex_unlock(_S_bin[bin].mutex);
}
}
/*
* Return this thread id record to thread_freelist
*/
__gthread_mutex_lock(&_S_thread_freelist_mutex);
_S_thread_freelist_last->next = (thread_record*)freelist_pos;
_S_thread_freelist_last = (thread_record*)freelist_pos;
_S_thread_freelist_last->next = NULL;
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
}
template<int __inst>
size_t
__mt_alloc<__inst>::
_S_get_thread_id()
{
/*
* If we have thread support and it's active we check the thread
* key value and return it's id or if it's not set we take the
* first record from _S_thread_freelist and sets the key and
* returns it's id.
*/
if (__gthread_active_p())
{
thread_record* freelist_pos;
if ((freelist_pos =
(thread_record*)__gthread_getspecific(_S_thread_key)) == NULL)
{
__gthread_mutex_lock(&_S_thread_freelist_mutex);
/*
* Since _S_max_threads must be larger than the
* theoretical max number of threads of the OS the list
* can never be empty.
*/
freelist_pos = _S_thread_freelist_first;
_S_thread_freelist_first = _S_thread_freelist_first->next;
__gthread_mutex_unlock(&_S_thread_freelist_mutex);
__gthread_setspecific(_S_thread_key, (void*)freelist_pos);
/*
* Since thread_ids may/will be reused (espcially in
* producer/consumer applications) we make sure that the
* list pointers and free counter is reset BUT as the
* "old" thread may still be owner of some memory (which
* is referred to by other threads and thus not freed)
* we don't reset the used counter.
*/
for (size_t bin = 0; bin < _S_no_of_bins; bin++)
{
_S_bin[bin].first[freelist_pos->id] = NULL;
_S_bin[bin].last[freelist_pos->id] = NULL;
_S_bin[bin].free[freelist_pos->id] = 0;
}
}
return freelist_pos->id;
}
/*
* Otherwise (no thread support or inactive) all requests are
* served from the global pool 0.
*/
return 0;
}
template<int __inst> __gthread_once_t
__mt_alloc<__inst>::_S_once_mt = __GTHREAD_ONCE_INIT;
#endif
template<int __inst> bool
__mt_alloc<__inst>::_S_initialized = false;
template<int __inst> typename __mt_alloc<__inst>::binmap_type*
__mt_alloc<__inst>::_S_binmap = NULL;
/*
* Allocation requests (after round-up to power of 2) below this
* value will be handled by the allocator. A raw malloc/free() call
* will be used for requests larger than this value.
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_max_bytes = 128;
/*
* In order to avoid fragmenting and minimize the number of malloc()
* calls we always request new memory using this value. Based on
* previous discussions on the libstdc++ mailing list we have
* choosen the value below. See
* http://gcc.gnu.org/ml/libstdc++/2001-07/msg00077.html
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_chunk_size = 4096 - 4 * sizeof(void*);
/*
* The maximum number of supported threads. Our Linux 2.4.18 reports
* 4070 in /proc/sys/kernel/threads-max
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_max_threads = 4096;
/*
* Actual value calculated in _S_init()
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_no_of_bins = 1;
/*
* Each time a deallocation occurs in a threaded application we make
* sure that there are no more than _S_freelist_headroom % of used
* memory on the freelist. If the number of additional records is
* more than _S_freelist_headroom % of the freelist, we move these
* records back to the global pool.
*/
template<int __inst> size_t
__mt_alloc<__inst>::_S_freelist_headroom = 10;
/*
* Actual initialization in _S_init()
*/
#ifdef __GTHREADS
template<int __inst> typename __mt_alloc<__inst>::thread_record*
__mt_alloc<__inst>::_S_thread_freelist_first = NULL;
template<int __inst> typename __mt_alloc<__inst>::thread_record*
__mt_alloc<__inst>::_S_thread_freelist_last = NULL;
template<int __inst> __gthread_mutex_t
__mt_alloc<__inst>::_S_thread_freelist_mutex = __GTHREAD_MUTEX_INIT;
/*
* Actual initialization in _S_init()
*/
template<int __inst> __gthread_key_t
__mt_alloc<__inst>::_S_thread_key;
#endif
template<int __inst> typename __mt_alloc<__inst>::bin_record*
__mt_alloc<__inst>::_S_bin = NULL;
template<int __inst>
inline bool
operator==(const __mt_alloc<__inst>&, const __mt_alloc<__inst>&)
{ return true; }
template<int __inst>
inline bool
operator!=(const __mt_alloc<__inst>&, const __mt_alloc<__inst>&)
{ return false; }
} // namespace __gnu_cxx
namespace std
{
template<typename _Tp, int __inst>
struct _Alloc_traits<_Tp, __gnu_cxx::__mt_alloc<__inst> >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx:: __mt_alloc<__inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
template<typename _Tp, typename _Tp1, int __inst>
struct _Alloc_traits<_Tp,
__allocator<_Tp1, __gnu_cxx::__mt_alloc<__inst> > >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx:: __mt_alloc<__inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
} // namespace std
#endif

View file

@ -1,6 +1,6 @@
// Wrapper of pthread allocation header -*- C++ -*-
// Allocators -*- C++ -*-
// Copyright (C) 2001 Free Software Foundation, Inc.
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -27,34 +27,32 @@
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
#ifndef _NEW_ALLOCATOR_H
#define _NEW_ALLOCATOR_H 1
/** @file stl_pthread_alloc.h
* This is an internal header file, included by other library headers.
* You should not attempt to use it directly.
*/
#include <new>
#ifndef _CPP_BITS_STL_PTHREAD_ALLOC_H
#define _CPP_BITS_STL_PTHREAD_ALLOC_H 1
namespace __gnu_cxx
{
/**
* @if maint
* A new-based allocator, as required by the standard. Allocation and
* deallocation forward to global new and delete. "SGI" style, minus
* reallocate().
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
class __new_alloc
{
public:
static void*
allocate(size_t __n)
{ return ::operator new(__n); }
#include <bits/pthread_allocimpl.h>
static void
deallocate(void* __p, size_t)
{ ::operator delete(__p); }
};
} // namespace __gnu_cxx
using std::_Pthread_alloc_template;
using std::pthread_alloc;
#endif /* _CPP_BITS_STL_PTHREAD_ALLOC_H */
// Local Variables:
// mode:C++
// End:
#endif

View file

@ -0,0 +1,383 @@
// Allocators -*- C++ -*-
// Copyright (C) 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
/*
* Copyright (c) 1996-1997
* Silicon Graphics Computer Systems, Inc.
*
* Permission to use, copy, modify, distribute and sell this software
* and its documentation for any purpose is hereby granted without fee,
* provided that the above copyright notice appear in all copies and
* that both that copyright notice and this permission notice appear
* in supporting documentation. Silicon Graphics makes no
* representations about the suitability of this software for any
* purpose. It is provided "as is" without express or implied warranty.
*/
/** @file ext/debug_allocator.h
* This file is a GNU extension to the Standard C++ Library.
* You should only include this header if you are using GCC 3 or later.
*/
#ifndef _POOL_ALLOCATOR_H
#define _POOL_ALLOCATOR_H 1
#include <bits/functexcept.h>
#include <bits/stl_threads.h>
#include <bits/atomicity.h>
#include <bits/allocator_traits.h>
#include <ext/new_allocator.h>
namespace __gnu_cxx
{
using std::_STL_mutex_lock;
using std::__throw_bad_alloc;
/**
* @if maint
* Default node allocator. "SGI" style. Uses various allocators to
* fulfill underlying requests (and makes as few requests as possible
* when in default high-speed pool mode).
*
* Important implementation properties:
* 0. If globally mandated, then allocate objects from __new_alloc
* 1. If the clients request an object of size > _S_max_bytes, the resulting
* object will be obtained directly from __new_alloc
* 2. In all other cases, we allocate an object of size exactly
* _S_round_up(requested_size). Thus the client has enough size
* information that we can return the object to the proper free list
* without permanently losing part of the object.
*
* The first template parameter specifies whether more than one thread may
* use this allocator. It is safe to allocate an object from one instance
* of a default_alloc and deallocate it with another one. This effectively
* transfers its ownership to the second one. This may have undesirable
* effects on reference locality.
*
* The second parameter is unused and serves only to allow the creation of
* multiple default_alloc instances. Note that containers built on different
* allocator instances have different types, limiting the utility of this
* approach. If you do not wish to share the free lists with the main
* default_alloc instance, instantiate this with a non-zero __inst.
*
* @endif
* (See @link Allocators allocators info @endlink for more.)
*/
template<bool __threads, int __inst>
class __pool_alloc
{
private:
enum {_S_align = 8};
enum {_S_max_bytes = 128};
enum {_S_freelists = _S_max_bytes / _S_align};
union _Obj
{
union _Obj* _M_free_list_link;
char _M_client_data[1]; // The client sees this.
};
static _Obj* volatile _S_free_list[_S_freelists];
// Chunk allocation state.
static char* _S_start_free;
static char* _S_end_free;
static size_t _S_heap_size;
static _STL_mutex_lock _S_lock;
static _Atomic_word _S_force_new;
static size_t
_S_round_up(size_t __bytes)
{ return ((__bytes + (size_t)_S_align - 1) & ~((size_t)_S_align - 1)); }
static size_t
_S_freelist_index(size_t __bytes)
{ return ((__bytes + (size_t)_S_align - 1)/(size_t)_S_align - 1); }
// Returns an object of size __n, and optionally adds to size __n
// free list.
static void*
_S_refill(size_t __n);
// Allocates a chunk for nobjs of size size. nobjs may be reduced
// if it is inconvenient to allocate the requested number.
static char*
_S_chunk_alloc(size_t __size, int& __nobjs);
// It would be nice to use _STL_auto_lock here. But we need a
// test whether threads are in use.
struct _Lock
{
_Lock() { if (__threads) _S_lock._M_acquire_lock(); }
~_Lock() { if (__threads) _S_lock._M_release_lock(); }
} __attribute__ ((__unused__));
friend struct _Lock;
public:
// __n must be > 0
static void*
allocate(size_t __n)
{
void* __ret = 0;
// If there is a race through here, assume answer from getenv
// will resolve in same direction. Inspired by techniques
// to efficiently support threading found in basic_string.h.
if (_S_force_new == 0)
{
if (getenv("GLIBCPP_FORCE_NEW"))
__atomic_add(&_S_force_new, 1);
else
__atomic_add(&_S_force_new, -1);
}
if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0))
__ret = __new_alloc::allocate(__n);
else
{
_Obj* volatile* __my_free_list = _S_free_list
+ _S_freelist_index(__n);
// Acquire the lock here with a constructor call. This
// ensures that it is released in exit or during stack
// unwinding.
_Lock __lock_instance;
_Obj* __restrict__ __result = *__my_free_list;
if (__builtin_expect(__result == 0, 0))
__ret = _S_refill(_S_round_up(__n));
else
{
*__my_free_list = __result -> _M_free_list_link;
__ret = __result;
}
if (__builtin_expect(__ret == 0, 0))
__throw_bad_alloc();
}
return __ret;
}
// __p may not be 0
static void
deallocate(void* __p, size_t __n)
{
if ((__n > (size_t) _S_max_bytes) || (_S_force_new > 0))
__new_alloc::deallocate(__p, __n);
else
{
_Obj* volatile* __my_free_list = _S_free_list
+ _S_freelist_index(__n);
_Obj* __q = (_Obj*)__p;
// Acquire the lock here with a constructor call. This
// ensures that it is released in exit or during stack
// unwinding.
_Lock __lock_instance;
__q -> _M_free_list_link = *__my_free_list;
*__my_free_list = __q;
}
}
};
template<bool __threads, int __inst> _Atomic_word
__pool_alloc<__threads, __inst>::_S_force_new = 0;
template<bool __threads, int __inst>
inline bool
operator==(const __pool_alloc<__threads,__inst>&,
const __pool_alloc<__threads,__inst>&)
{ return true; }
template<bool __threads, int __inst>
inline bool
operator!=(const __pool_alloc<__threads,__inst>&,
const __pool_alloc<__threads,__inst>&)
{ return false; }
// We allocate memory in large chunks in order to avoid fragmenting the
// heap too much. We assume that __size is properly aligned. We hold
// the allocation lock.
template<bool __threads, int __inst>
char*
__pool_alloc<__threads, __inst>::
_S_chunk_alloc(size_t __size, int& __nobjs)
{
char* __result;
size_t __total_bytes = __size * __nobjs;
size_t __bytes_left = _S_end_free - _S_start_free;
if (__bytes_left >= __total_bytes)
{
__result = _S_start_free;
_S_start_free += __total_bytes;
return __result ;
}
else if (__bytes_left >= __size)
{
__nobjs = (int)(__bytes_left/__size);
__total_bytes = __size * __nobjs;
__result = _S_start_free;
_S_start_free += __total_bytes;
return __result;
}
else
{
size_t __bytes_to_get =
2 * __total_bytes + _S_round_up(_S_heap_size >> 4);
// Try to make use of the left-over piece.
if (__bytes_left > 0)
{
_Obj* volatile* __my_free_list =
_S_free_list + _S_freelist_index(__bytes_left);
((_Obj*)(void*)_S_start_free) -> _M_free_list_link = *__my_free_list;
*__my_free_list = (_Obj*)(void*)_S_start_free;
}
_S_start_free = (char*) __new_alloc::allocate(__bytes_to_get);
if (_S_start_free == 0)
{
size_t __i;
_Obj* volatile* __my_free_list;
_Obj* __p;
// Try to make do with what we have. That can't hurt. We
// do not try smaller requests, since that tends to result
// in disaster on multi-process machines.
__i = __size;
for (; __i <= (size_t) _S_max_bytes; __i += (size_t) _S_align)
{
__my_free_list = _S_free_list + _S_freelist_index(__i);
__p = *__my_free_list;
if (__p != 0)
{
*__my_free_list = __p -> _M_free_list_link;
_S_start_free = (char*)__p;
_S_end_free = _S_start_free + __i;
return _S_chunk_alloc(__size, __nobjs);
// Any leftover piece will eventually make it to the
// right free list.
}
}
_S_end_free = 0; // In case of exception.
_S_start_free = (char*)__new_alloc::allocate(__bytes_to_get);
// This should either throw an exception or remedy the situation.
// Thus we assume it succeeded.
}
_S_heap_size += __bytes_to_get;
_S_end_free = _S_start_free + __bytes_to_get;
return _S_chunk_alloc(__size, __nobjs);
}
}
// Returns an object of size __n, and optionally adds to "size
// __n"'s free list. We assume that __n is properly aligned. We
// hold the allocation lock.
template<bool __threads, int __inst>
void*
__pool_alloc<__threads, __inst>::_S_refill(size_t __n)
{
int __nobjs = 20;
char* __chunk = _S_chunk_alloc(__n, __nobjs);
_Obj* volatile* __my_free_list;
_Obj* __result;
_Obj* __current_obj;
_Obj* __next_obj;
int __i;
if (1 == __nobjs)
return __chunk;
__my_free_list = _S_free_list + _S_freelist_index(__n);
// Build free list in chunk.
__result = (_Obj*)(void*)__chunk;
*__my_free_list = __next_obj = (_Obj*)(void*)(__chunk + __n);
for (__i = 1; ; __i++)
{
__current_obj = __next_obj;
__next_obj = (_Obj*)(void*)((char*)__next_obj + __n);
if (__nobjs - 1 == __i)
{
__current_obj -> _M_free_list_link = 0;
break;
}
else
__current_obj -> _M_free_list_link = __next_obj;
}
return __result;
}
template<bool __threads, int __inst>
_STL_mutex_lock
__pool_alloc<__threads, __inst>::_S_lock __STL_MUTEX_INITIALIZER;
template<bool __threads, int __inst>
char* __pool_alloc<__threads, __inst>::_S_start_free = 0;
template<bool __threads, int __inst>
char* __pool_alloc<__threads, __inst>::_S_end_free = 0;
template<bool __threads, int __inst>
size_t __pool_alloc<__threads, __inst>::_S_heap_size = 0;
template<bool __threads, int __inst>
typename __pool_alloc<__threads, __inst>::_Obj* volatile
__pool_alloc<__threads, __inst>::_S_free_list[_S_freelists];
} // namespace __gnu_cxx
namespace std
{
//@{
/// Versions for the predefined "SGI" style allocators.
template<typename _Tp, bool __thr, int __inst>
struct _Alloc_traits<_Tp, __gnu_cxx::__pool_alloc<__thr, __inst> >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx::__pool_alloc<__thr, __inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
//@{
/// Versions for the __allocator adaptor used with the predefined
/// "SGI" style allocators.
template<typename _Tp, typename _Tp1, bool __thr, int __inst>
struct _Alloc_traits<_Tp, __allocator<_Tp1,
__gnu_cxx::__pool_alloc<__thr, __inst> > >
{
static const bool _S_instanceless = true;
typedef __gnu_cxx::__pool_alloc<__thr, __inst> base_alloc_type;
typedef __simple_alloc<_Tp, base_alloc_type> _Alloc_type;
typedef __allocator<_Tp, base_alloc_type> allocator_type;
};
//@}
} // namespace std
#endif

View file

@ -53,7 +53,7 @@
#include <bits/stl_algo.h>
#include <bits/stl_function.h>
#include <bits/stl_numeric.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <ext/hash_fun.h>

View file

@ -51,7 +51,7 @@
#define _SLIST 1
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/concept_check.h>

View file

@ -65,7 +65,7 @@
#include <bits/functexcept.h>
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_deque.h>

View file

@ -65,7 +65,7 @@
#include <bits/functexcept.h>
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_list.h>

View file

@ -52,7 +52,7 @@
#pragma GCC system_header
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_iterator_base_types.h> //for iterator_traits
#include <bits/stl_uninitialized.h>

View file

@ -65,7 +65,7 @@
#include <bits/c++config.h>
#include <bits/functexcept.h>
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_vector.h>

View file

@ -64,7 +64,7 @@
#pragma GCC system_header
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_deque.h>

View file

@ -65,7 +65,7 @@
#include <bits/functexcept.h>
#include <bits/stl_algobase.h>
#include <bits/stl_alloc.h>
#include <bits/allocator.h>
#include <bits/stl_construct.h>
#include <bits/stl_uninitialized.h>
#include <bits/stl_vector.h>

View file

@ -117,6 +117,7 @@ basic_file.cc: ${glibcpp_srcdir}/@BASIC_FILE_CC@
# Sources present in the src directory.
sources = \
allocator-inst.cc \
codecvt.cc \
complex_io.cc \
concept-inst.cc \
@ -137,7 +138,6 @@ sources = \
ostream-inst.cc \
sstream-inst.cc \
stdexcept.cc \
stl-inst.cc \
streambuf-inst.cc \
string-inst.cc \
strstream.cc \

View file

@ -121,6 +121,7 @@ enable_shared = @enable_shared@
enable_static = @enable_static@
glibcpp_CXX = @glibcpp_CXX@
glibcpp_MOFILES = @glibcpp_MOFILES@
glibcpp_PCHFLAGS = @glibcpp_PCHFLAGS@
glibcpp_POFILES = @glibcpp_POFILES@
glibcpp_basedir = @glibcpp_basedir@
glibcpp_localedir = @glibcpp_localedir@
@ -199,6 +200,7 @@ target_sources_extra = \
# Sources present in the src directory.
sources = \
allocator-inst.cc \
codecvt.cc \
complex_io.cc \
concept-inst.cc \
@ -219,7 +221,6 @@ sources = \
ostream-inst.cc \
sstream-inst.cc \
stdexcept.cc \
stl-inst.cc \
streambuf-inst.cc \
string-inst.cc \
strstream.cc \
@ -304,15 +305,15 @@ DEFS = @DEFS@ -I. -I$(srcdir) -I..
CPPFLAGS = @CPPFLAGS@
LDFLAGS = @LDFLAGS@
LIBS = @LIBS@
libstdc___la_OBJECTS = codecvt.lo complex_io.lo concept-inst.lo \
ctype.lo demangle.lo ext-inst.lo fstream-inst.lo functexcept.lo \
globals.lo io-inst.lo ios.lo istream-inst.lo limits.lo locale.lo \
locale-inst.lo localename.lo misc-inst.lo ostream-inst.lo \
sstream-inst.lo stdexcept.lo stl-inst.lo streambuf-inst.lo \
string-inst.lo strstream.lo valarray-inst.lo wstring-inst.lo \
codecvt_members.lo collate_members.lo ctype_members.lo \
messages_members.lo monetary_members.lo numeric_members.lo \
time_members.lo basic_file.lo c++locale.lo
libstdc___la_OBJECTS = allocator-inst.lo codecvt.lo complex_io.lo \
concept-inst.lo ctype.lo demangle.lo ext-inst.lo fstream-inst.lo \
functexcept.lo globals.lo io-inst.lo ios.lo istream-inst.lo limits.lo \
locale.lo locale-inst.lo localename.lo misc-inst.lo ostream-inst.lo \
sstream-inst.lo stdexcept.lo streambuf-inst.lo string-inst.lo \
strstream.lo valarray-inst.lo wstring-inst.lo codecvt_members.lo \
collate_members.lo ctype_members.lo messages_members.lo \
monetary_members.lo numeric_members.lo time_members.lo basic_file.lo \
c++locale.lo
CXXFLAGS = @CXXFLAGS@
CXXCOMPILE = $(CXX) $(DEFS) $(INCLUDES) $(AM_CPPFLAGS) $(CPPFLAGS) $(AM_CXXFLAGS) $(CXXFLAGS)
CXXLD = $(CXX)

View file

@ -0,0 +1,41 @@
// Explicit instantiation file.
// Copyright (C) 1999, 2001, 2002, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 2, or (at your option)
// any later version.
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License along
// with this library; see the file COPYING. If not, write to the Free
// Software Foundation, 59 Temple Place - Suite 330, Boston, MA 02111-1307,
// USA.
// As a special exception, you may use this file as part of a free software
// library without restriction. Specifically, if other files instantiate
// templates or use macros or inline functions from this file, or you compile
// this file and link it with other files to produce an executable, this
// file does not by itself cause the resulting executable to be covered by
// the GNU General Public License. This exception does not however
// invalidate any other reasons why the executable file might be covered by
// the GNU General Public License.
//
// ISO C++ 14882:
//
#include <bits/c++config.h>
#include <memory>
namespace std
{
template class allocator<char>;
template class allocator<wchar_t>;
} // namespace std

View file

@ -1,6 +1,6 @@
// 2001-11-25 Phil Edwards <pme@gcc.gnu.org>
//
// Copyright (C) 2001 Free Software Foundation, Inc.
// Copyright (C) 2001, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -20,27 +20,25 @@
// 20.4.1.1 allocator members
#include <memory>
#include <cstdlib>
#include <memory>
#include <ext/pool_allocator.h>
#include <ext/debug_allocator.h>
#include <ext/malloc_allocator.h>
#include <testsuite_hooks.h>
typedef std::__malloc_alloc<3> weird_alloc;
template class std::__malloc_alloc<3>;
using __gnu_cxx::__malloc_alloc;
using __gnu_cxx::__debug_alloc;
using __gnu_cxx::__pool_alloc;
typedef std::__debug_alloc<weird_alloc> debug_weird_alloc;
template class std::__debug_alloc<weird_alloc>;
typedef std::__pool_alloc<true, 3> unshared_normal_alloc;
template class std::__pool_alloc<true, 3>;
typedef std::__pool_alloc<false, 3> unshared_singlethreaded;
template class std::__pool_alloc<false, 3>;
//std::malloc_alloc test_malloc_alloc;
template class __malloc_alloc<3>;
template class __debug_alloc<__malloc_alloc<3> >;
template class __pool_alloc<true, 3>;
template class __pool_alloc<false, 3>;
struct big
{
long f[15];
long f[15];
};
@ -63,32 +61,32 @@ operator delete(void *v) throw()
return std::free(v);
}
template <typename arbitrary_SGIstyle_allocator,
bool uses_global_new_and_delete>
void test()
template<typename Alloc, bool uses_global_new_and_delete>
void check_allocator()
{
bool test = true;
new_called = false;
delete_called = false;
requested = 0;
std::__allocator<big, arbitrary_SGIstyle_allocator> a;
std::__allocator<big, Alloc> a;
big *p = a.allocate(10);
if (uses_global_new_and_delete) VERIFY (requested >= (10*15*sizeof(long)));
if (uses_global_new_and_delete)
VERIFY( requested >= (10 * 15 * sizeof(long)) );
// Touch the far end of supposedly-allocated memory to check that we got
// all of it. Why "3"? Because it's my favorite integer between e and pi.
p[9].f[14] = 3;
VERIFY (new_called == uses_global_new_and_delete );
VERIFY( new_called == uses_global_new_and_delete );
a.deallocate(p,10);
VERIFY (delete_called == uses_global_new_and_delete );
VERIFY( delete_called == uses_global_new_and_delete );
}
// These just help tracking down error messages.
void test01() { test<weird_alloc,false>(); }
void test02() { test<debug_weird_alloc,false>(); }
void test03() { test<unshared_normal_alloc,true>(); }
void test04() { test<unshared_singlethreaded,true>(); }
void test01() { check_allocator<__malloc_alloc<3>, false>(); }
void test02() { check_allocator<__debug_alloc<__malloc_alloc<3> >, false>(); }
void test03() { check_allocator<__pool_alloc<true, 3>, true>(); }
void test04() { check_allocator<__pool_alloc<false, 3>, true>(); }
int main()
{
@ -96,7 +94,6 @@ int main()
test02();
test03();
test04();
return 0;
}

View file

@ -1,6 +1,6 @@
// 1999-06-23 bkoz
// Copyright (C) 1999, 2001 Free Software Foundation, Inc.
// Copyright (C) 1999, 2001, 2003 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library. This library is free
// software; you can redistribute it and/or modify it under the
@ -33,5 +33,11 @@
#include <ext/rb_tree>
#include <ext/rope>
#include <ext/slist>
#include <ext/debug_allocator.h>
#include <ext/malloc_allocator.h>
#include <ext/mt_allocator.h>
#include <ext/pool_allocator.h>
#include <ext/stdio_filebuf.h>
#include <ext/stdio_sync_filebuf.h>
int main() { }