emacs/doc/lispref/minibuf.texi

2948 lines
118 KiB
Text
Raw Permalink Normal View History

2007-09-06 04:25:08 +00:00
@c -*-texinfo-*-
@c This is part of the GNU Emacs Lisp Reference Manual.
@c Copyright (C) 1990--1995, 1998--1999, 2001--2025 Free Software
2013-01-01 09:11:05 +00:00
@c Foundation, Inc.
2007-09-06 04:25:08 +00:00
@c See the file elisp.texi for copying conditions.
@node Minibuffers
2007-09-06 04:25:08 +00:00
@chapter Minibuffers
@cindex arguments, reading
@cindex complex arguments
@cindex minibuffer
A @dfn{minibuffer} is a special buffer that Emacs commands use to
read arguments more complicated than the single numeric prefix
argument. These arguments include file names, buffer names, and
command names (as in @kbd{M-x}). The minibuffer is displayed on the
bottom line of the frame, in the same place as the echo area
(@pxref{The Echo Area}), but only while it is in use for reading an
argument.
@menu
* Intro to Minibuffers:: Basic information about minibuffers.
* Text from Minibuffer:: How to read a straight text string.
* Object from Minibuffer:: How to read a Lisp object or expression.
* Minibuffer History:: Recording previous minibuffer inputs
so the user can reuse them.
2007-09-06 04:25:08 +00:00
* Initial Input:: Specifying initial contents for the minibuffer.
* Completion:: How to invoke and customize completion.
* Yes-or-No Queries:: Asking a question with a simple answer.
* Multiple Queries:: Asking complex questions.
* Reading a Password:: Reading a password from the terminal.
2007-09-06 04:25:08 +00:00
* Minibuffer Commands:: Commands used as key bindings in minibuffers.
* Minibuffer Windows:: Operating on the special minibuffer windows.
* Minibuffer Contents:: How such commands access the minibuffer text.
2007-09-06 04:25:08 +00:00
* Recursive Mini:: Whether recursive entry to minibuffer is allowed.
* Inhibiting Interaction:: Running Emacs when no interaction is possible.
2007-09-06 04:25:08 +00:00
* Minibuffer Misc:: Various customization hooks and variables.
@end menu
@node Intro to Minibuffers
@section Introduction to Minibuffers
In most ways, a minibuffer is a normal Emacs buffer. Most operations
@emph{within} a buffer, such as editing commands, work normally in a
minibuffer. However, many operations for managing buffers do not apply
to minibuffers. The name of a minibuffer always has the form @w{@samp{
*Minibuf-@var{number}*}}, and it cannot be changed. Minibuffers are
displayed only in special windows used only for minibuffers; these
windows always appear at the bottom of a frame. (Sometimes frames have
no minibuffer window, and sometimes a special kind of frame contains
nothing but a minibuffer window; see @ref{Minibuffers and Frames}.)
The text in the minibuffer always starts with the @dfn{prompt string},
the text that was specified by the program that is using the minibuffer
to tell the user what sort of input to type. This text is marked
read-only so you won't accidentally delete or change it. It is also
marked as a field (@pxref{Fields}), so that certain motion functions,
including @code{beginning-of-line}, @code{forward-word},
@code{forward-sentence}, and @code{forward-paragraph}, stop at the
boundary between the prompt and the actual text.
2007-09-06 04:25:08 +00:00
@c See https://debbugs.gnu.org/11276
2007-09-06 04:25:08 +00:00
The minibuffer's window is normally a single line; it grows
automatically if the contents require more space. Whilst the minibuffer
is active, you can explicitly resize its window temporarily with the
window sizing commands; the window reverts to its normal size when the
minibuffer is exited. When the minibuffer is not active, you can resize
its window permanently by using the window sizing commands in the
frame's other window, or dragging the mode line with the mouse. (Due to
details of the current implementation, for this to work
@code{resize-mini-windows} must be @code{nil}.) If the frame contains
just a minibuffer window, you can change its size by changing the
frame's size.
2007-09-06 04:25:08 +00:00
Use of the minibuffer reads input events, and that alters the values
of variables such as @code{this-command} and @code{last-command}
(@pxref{Command Loop Info}). Your program should bind them around the
code that uses the minibuffer, if you do not want that to change them.
Under some circumstances, a command can use a minibuffer even if
there is an active minibuffer; such a minibuffer is called a
@dfn{recursive minibuffer}. The first minibuffer is named
@w{@samp{ *Minibuf-1*}}. Recursive minibuffers are named by
incrementing the number at the end of the name. (The names begin with
a space so that they won't show up in normal buffer lists.) Of
several recursive minibuffers, the innermost (or most recently
Fix incompleteness in the implementation of minibuffer-follows-selected-frame In particular, add a new value to the variable, and fix several bugs apparent with the implementation up till now. * doc/emacs/mini.texi (Basic Minibuffer): Add a description of the new non-nil, non-t value of minibuffer-follows-selected-frame. * doc/emacs/trouble.texi (Quitting): Add a description of how C-g handles recursive minibuffers when typed in one which isn't the most nested. * doc/lispref/minibuf.texi (Intro to Minibuffers): Add an @dfn for "active minibuffer". (Minibuffer Commands): Document that exit-minibuffer throws an error when not invoked from the innermost Minibuffer. (Recursive Mini): Amend the description of the visibility of outer level minibuffers. (Minibuffer Misc): In the description of the minibuffer hooks, replace "the minibuffer" with "a minibuffer". * etc/NEWS (Entry announcing minibuffer-follows-selected-frame): Add a description of the new non-nil, non-t value. * lisp/cus-start.el (top level): make the customize entry for minibuffer-follows-selected-frame a choice between three entries. * lisp/minibuffer.el (exit-minibuffer): throw an error when we're not in the most nested minibuffer. (top level): Bind C-g to abort-minibuffers in minibuffer-local-map. * lisp/window.el (window-deletable-p): return the symbol `frame' when (amongst other things) minibuffer-follows-selected-frame is t. * src/eval.c (internal_catch): Add a mechanism to (throw 'exit t) repeatedly when the throw currently being processed doesn't terminate the current minibuffer. * src/lisp.h (this_minibuffer_depth): New extern declaration (minibuf_level): extern declaration moved here from window.h. * src/minibuf.c (minibuffer_follows_frame, minibuf_stays_put) (minibuf_moves_frame_when_opened): New and amended functions to query the value of minibuffer-follows-selected-frame. (choose_minibuf_frame): check (minibuf > 1) in place of (minibufer > 0) at a particular place. At another place, check that an alleged frame is so and is live. Before selecting a non-miniwindow on a different frame, ensure it really is a different frame. (move_minibuffer_onto_frame): Stack up all recursive minibuffers on the target frame. Check the minibuf_window isn't in the old frame before setting that frame's miniwindow to an inactive minibuffer. (Finnermost_minibuffer_p, Fabort_minibuffers): New primitives. (this_minibuffer_depth): New function. (read_minibuf): Record the calling frame in a variable, and switch back to it after the recursive edit has terminated normally, using select-frame-set-input-focus. Stack up all the recursive minibuffers on the miniwindow where a new minibuffer is being opened. After the recursive edit, switch the selected window away from the expired minibuffer's window. (nth_minibuffer): New function. (minibuffer-follows-selected-frame): Change from a DEFVAR_BOOL to a DEFVAR_LISP. * src/window.c (decode_next_window_args): Set *minibuf to w's mini-window's content when that content is a minibuffer. * src/window.h (minibuf_level) Declaration moved from here to lisp.h.
2021-01-10 20:32:40 +00:00
entered) is the @dfn{active minibuffer}--it is the one you can
terminate by typing @key{RET} (@code{exit-minibuffer}) in. We usually
call this @emph{the} minibuffer. You can permit or forbid recursive
minibuffers by setting the variable
@code{enable-recursive-minibuffers}, or by putting properties of that
name on command symbols (@xref{Recursive Mini}.)
2007-09-06 04:25:08 +00:00
Like other buffers, a minibuffer uses a local keymap
(@pxref{Keymaps}) to specify special key bindings. The function that
invokes the minibuffer also sets up its local map according to the job
to be done. @xref{Text from Minibuffer}, for the non-completion
minibuffer local maps. @xref{Completion Commands}, for the minibuffer
local maps for completion.
@cindex active minibuffer
An active minibuffer usually has major mode @code{minibuffer-mode}.
This is an Emacs internal mode without any special features. To
customize the setup of minibuffers, we suggest you use
@code{minibuffer-setup-hook} (@pxref{Minibuffer Misc}) rather than
@code{minibuffer-mode-hook}, since the former is run later, after the
minibuffer has been fully initialized.
@cindex inactive minibuffer
2012-04-18 19:44:48 -07:00
When a minibuffer is inactive, its major mode is
@code{minibuffer-inactive-mode}, with keymap
@code{minibuffer-inactive-mode-map}. This is only really useful if
the minibuffer is in a separate frame. @xref{Minibuffers and Frames}.
2007-09-06 04:25:08 +00:00
When Emacs is running in batch mode, any request to read from the
minibuffer actually reads a line from the standard input descriptor that
was supplied when Emacs was started. This supports only basic input:
2015-03-17 16:55:02 -07:00
none of the special minibuffer features (history, completion, etc.)@:
are available in batch mode.
2007-09-06 04:25:08 +00:00
@node Text from Minibuffer
@section Reading Text Strings with the Minibuffer
Improve indexing on the chapter/section/subsection levels. doc/lispref/windows.texi (Recombining Windows): Index subject of sections. doc/lispref/variables.texi (Variables with Restricted Values) (Generalized Variables): Index subject of sections. doc/lispref/text.texi (Buffer Contents, Examining Properties) (Changing Properties, Property Search, Substitution): Index subject of sections. doc/lispref/syntax.texi (Motion and Syntax, Parsing Expressions) (Motion via Parsing, Position Parse, Control Parsing): Index subject of sections. doc/lispref/strings.texi (Predicates for Strings, Creating Strings) (Modifying Strings, Text Comparison): Index subject of sections. doc/lispref/searching.texi (Syntax of Regexps, Regexp Special) (Regexp Functions, Regexp Functions): Index subject of sections. doc/lispref/processes.texi (Subprocess Creation, Process Information): Index subject of sections. doc/lispref/positions.texi (Screen Lines): Index subject of sections. doc/lispref/nonascii.texi (Scanning Charsets, Specifying Coding Systems): Index subject of sections. doc/lispref/minibuf.texi (Text from Minibuffer, Object from Minibuffer) (Multiple Queries, Minibuffer Contents): Index subject of sections. doc/lispref/markers.texi (Predicates on Markers, Creating Markers) (Information from Markers, Moving Markers): Index subject of sections. doc/lispref/macros.texi (Defining Macros, Problems with Macros): Index subject of sections. doc/lispref/loading.texi (Loading Non-ASCII, Where Defined): Index subject of sections. doc/lispref/lists.texi (List-related Predicates, List Variables, Setcar) (Setcdr, Plist Access): Index subject of sections. doc/lispref/keymaps.texi (Controlling Active Maps, Scanning Keymaps) (Modifying Menus): Index subject of sections. doc/lispref/help.texi (Accessing Documentation, Help Functions): Index subject of sections. doc/lispref/hash.texi (Hash Access): Index subject of sections. doc/lispref/functions.texi (Core Advising Primitives) (Advising Named Functions, Porting old advices): Index subject of sections. doc/lispref/frames.texi (Creating Frames, Initial Parameters) (Position Parameters, Buffer Parameters, Minibuffers and Frames) (Pop-Up Menus, Drag and Drop): Index subject of sections. doc/lispref/files.texi (Visiting Functions, Kinds of Files) (Unique File Names): Index subject of sections. doc/lispref/display.texi (Refresh Screen, Echo Area Customization) (Warning Variables, Warning Options, Delayed Warnings) (Temporary Displays, Managing Overlays, Overlay Properties) (Finding Overlays, Size of Displayed Text, Defining Faces) (Attribute Functions, Displaying Faces, Face Remapping) (Basic Faces, Font Lookup, Fontsets, Replacing Specs) (Defining Images, Showing Images): Index subject of sections. doc/lispref/debugging.texi (Debugging, Explicit Debug) (Invoking the Debugger, Excess Open, Excess Close): Index subject of sections. doc/lispref/customize.texi (Defining New Types, Applying Customizations) (Custom Themes): Index subject of sections. doc/lispref/control.texi (Sequencing, Combining Conditions) (Processing of Errors, Cleanups): Index subject of sections. doc/lispref/compile.texi (Eval During Compile): Index subject of sections. doc/lispref/commands.texi (Using Interactive, Distinguish Interactive) (Command Loop Info, Classifying Events, Event Mod) (Invoking the Input Method): Index subject of sections. doc/lispref/buffers.texi (Buffer List, Buffer Gap): Index subject of sections. doc/lispref/backups.texi (Making Backups, Numbered Backups, Backup Names) (Reverting): Index subject of sections. doc/lispref/abbrevs.texi (Abbrev Tables, Defining Abbrevs, Abbrev Files) (Abbrev Expansion, Standard Abbrev Tables, Abbrev Properties) (Abbrev Table Properties): Index subject of sections. doc/lispref/os.texi (Time of Day, Time Conversion, Time Parsing) (Time Calculations, Idle Timers): Index subject of sections.
2014-12-23 20:42:30 +02:00
@cindex minibuffer input, reading text strings
2007-09-06 04:25:08 +00:00
The most basic primitive for minibuffer input is
@code{read-from-minibuffer}, which can be used to read either a string
or a Lisp object in textual form. The function @code{read-regexp} is
used for reading regular expressions (@pxref{Regular Expressions}),
which are a special kind of string. There are also specialized
functions for reading commands, variables, file names, etc.@:
(@pxref{Completion}).
2007-09-06 04:25:08 +00:00
In most cases, you should not call minibuffer input functions in the
middle of a Lisp function. Instead, do all minibuffer input as part of
reading the arguments for a command, in the @code{interactive}
specification. @xref{Defining Commands}.
@defun read-from-minibuffer prompt &optional initial keymap read history default inherit-input-method
This function is the most general way to get input from the
2007-09-06 04:25:08 +00:00
minibuffer. By default, it accepts arbitrary text and returns it as a
string; however, if @var{read} is non-@code{nil}, then it uses
@code{read} to convert the text into a Lisp object (@pxref{Input
Functions}).
The first thing this function does is to activate a minibuffer and
display it with @var{prompt} (which must be a string) as the
prompt. Then the user can edit text in the minibuffer.
2007-09-06 04:25:08 +00:00
When the user types a command to exit the minibuffer,
@code{read-from-minibuffer} constructs the return value from the text in
the minibuffer. Normally it returns a string containing that text.
However, if @var{read} is non-@code{nil}, @code{read-from-minibuffer}
reads the text and returns the resulting Lisp object, unevaluated.
(@xref{Input Functions}, for information about reading.)
@cindex future history in minibuffer input
The argument @var{default} specifies default values to make available
through the history commands. It should be a string, a list of
strings, or @code{nil}. The string or strings become the minibuffer's
``future history'', available to the user with @kbd{M-n}. In
addition, if the call provides completion (e.g., via the @var{keymap}
argument), the completion candidates are added to the ``future
history'' when the values in @var{default} are exhausted by @kbd{M-n};
see @ref{Minibuffer History,, minibuffer-default-add-function}.
If @var{read} is non-@code{nil}, then @var{default} is also used
as the input to @code{read}, if the user enters empty input.
If @var{default} is a list of strings, the first string is used as the input.
If @var{default} is @code{nil}, empty input results in an @code{end-of-file} error.
However, in the usual case (where @var{read} is @code{nil}),
@code{read-from-minibuffer} ignores @var{default} when the user enters
empty input and returns an empty string, @code{""}. In this respect,
it differs from all the other minibuffer input functions in this chapter.
2007-09-06 04:25:08 +00:00
If @var{keymap} is non-@code{nil}, that keymap is the local keymap to
use in the minibuffer. If @var{keymap} is omitted or @code{nil}, the
value of @code{minibuffer-local-map} is used as the keymap. Specifying
a keymap is the most important way to customize the minibuffer for
various applications such as completion.
The argument @var{history} specifies a history list variable to use
2007-09-06 04:25:08 +00:00
for saving the input and for history commands used in the minibuffer.
It defaults to @code{minibuffer-history}. If @var{history} is the
symbol @code{t}, history is not recorded. You can optionally specify
a starting position in the history list as well. @xref{Minibuffer
History}.
2007-09-06 04:25:08 +00:00
If the variable @code{minibuffer-allow-text-properties} is
non-@code{nil}, either let-bound or buffer-local in the minibuffer,
then the string that is returned includes whatever text
2007-09-06 04:25:08 +00:00
properties were present in the minibuffer. Otherwise all the text
properties are stripped when the value is returned. (By default this
variable is @code{nil}.)
2007-09-06 04:25:08 +00:00
2016-05-01 18:24:05 -07:00
@vindex minibuffer-prompt-properties
The text properties in @code{minibuffer-prompt-properties} are applied
to the prompt. By default, this property list defines a face to use
for the prompt. This face, if present, is applied to the end of the
face list and merged before display.
If the user wants to completely control the look of the prompt, the
most convenient way to do that is to specify the @code{default} face
at the end of all face lists. For instance:
@lisp
(read-from-minibuffer
(concat
(propertize "Bold" 'face '(bold default))
(propertize " and normal: " 'face '(default))))
@end lisp
2007-09-06 04:25:08 +00:00
If the argument @var{inherit-input-method} is non-@code{nil}, then the
minibuffer inherits the current input method (@pxref{Input Methods}) and
the setting of @code{enable-multibyte-characters} (@pxref{Text
Representations}) from whichever buffer was current before entering the
minibuffer.
Use of @var{initial} is mostly deprecated; we recommend using
2007-09-06 04:25:08 +00:00
a non-@code{nil} value only in conjunction with specifying a cons cell
for @var{history}. @xref{Initial Input}.
2007-09-06 04:25:08 +00:00
@end defun
@defun read-string prompt &optional initial history default inherit-input-method
This function reads a string from the minibuffer and returns it. The
arguments @var{prompt}, @var{initial}, @var{history} and
@var{inherit-input-method} are used as in @code{read-from-minibuffer}.
The keymap used is @code{minibuffer-local-map}.
The optional argument @var{default} is used as in
@code{read-from-minibuffer}, except that, if non-@code{nil}, it also
specifies a default value to return if the user enters null input. As
in @code{read-from-minibuffer} it should be a string, a list of
strings, or @code{nil}, which is equivalent to an empty string. When
@var{default} is a string, that string is the default value. When it
is a list of strings, the first string is the default value. (All
Restore some of the quoting in the manuals * doc/lispref/windows.texi (Coordinates and Windows) (Coordinates and Windows): * doc/lispref/variables.texi (Lexical Binding) (File Local Variables): * doc/lispref/text.texi (Format Properties): * doc/lispref/symbols.texi (Symbol Components): * doc/lispref/strings.texi (Creating Strings): * doc/lispref/sequences.texi (Sequence Functions): * doc/lispref/searching.texi (Regexp Special, Regexp Search) (Search and Replace): * doc/lispref/processes.texi (Bindat Spec): * doc/lispref/os.texi (Idle Timers): * doc/lispref/objects.texi (Basic Char Syntax): * doc/lispref/numbers.texi (Float Basics, Random Numbers): * doc/lispref/nonascii.texi (Character Properties): * doc/lispref/modes.texi (Major Mode Conventions, Mode Hooks) (Mode Line Variables): * doc/lispref/minibuf.texi (Text from Minibuffer): * doc/lispref/loading.texi (Autoload): * doc/lispref/keymaps.texi (Controlling Active Maps): * doc/lispref/frames.texi (Frame Layout, Size and Position) (Size Parameters, Implied Frame Resizing): * doc/lispref/files.texi (Changing Files, Magic File Names): * doc/lispref/eval.texi (Self-Evaluating Forms): * doc/lispref/display.texi (Progress, Abstract Display) (Abstract Display Example, Bidirectional Display): * doc/lispref/commands.texi (Event Mod): * doc/emacs/windows.texi (Displaying Buffers): * doc/emacs/trouble.texi (Bug Criteria, Checklist): * doc/emacs/text.texi (Enriched Text): * doc/emacs/programs.texi (MixedCase Words): * doc/emacs/picture-xtra.texi (Insert in Picture) (Tabs in Picture): * doc/emacs/misc.texi (Emacs Server, Printing): * doc/emacs/mini.texi (Minibuffer History): * doc/emacs/maintaining.texi (Old Revisions, VC Change Log) (Pulling / Pushing): * doc/emacs/killing.texi (Yanking, Cut and Paste, Clipboard): * doc/emacs/help.texi (Help, Help Echo): * doc/emacs/glossary.texi (Glossary): * doc/emacs/frames.texi (Mouse Commands, Creating Frames) (Frame Commands): * doc/emacs/files.texi (Reverting, Saving, Directories): * doc/emacs/entering.texi (Exiting): * doc/emacs/emacs.texi (Top): * doc/emacs/cmdargs.texi (Window Size X, Icons X): * doc/emacs/anti.texi (Antinews): Restore quoting of text where appropriate or replace quoting with @dfn. * doc/misc/ediff.texi (Window and Frame Configuration): * doc/lispref/processes.texi (Network Feature Testing): * doc/lispref/display.texi (Display Margins): Quote the phrase after "a.k.a." where appropriate.
2015-09-16 12:56:45 +03:00
these strings are available to the user in the ``future minibuffer
history''.)
This function works by calling the
2007-09-06 04:25:08 +00:00
@code{read-from-minibuffer} function:
@smallexample
@group
(read-string @var{prompt} @var{initial} @var{history} @var{default} @var{inherit})
@equiv{}
(let ((value
(read-from-minibuffer @var{prompt} @var{initial} nil nil
@var{history} @var{default} @var{inherit})))
(if (and (equal value "") @var{default})
(if (consp @var{default}) (car @var{default}) @var{default})
2007-09-06 04:25:08 +00:00
value))
@end group
@end smallexample
@findex read-string-from-buffer
If you have a long string (for instance, one that is several lines
long) that you wish to edit, using @code{read-string} may not be
ideal. In that case, popping to a new, normal buffer where the user
can edit the string may be more convenient, and you can use the
@code{read-string-from-buffer} function to do that.
2007-09-06 04:25:08 +00:00
@end defun
@defun read-regexp prompt &optional defaults history
This function reads a regular expression as a string from the
minibuffer and returns it. If the minibuffer prompt string
@var{prompt} does not end in @samp{:} (followed by optional
whitespace), the function adds @samp{: } to the end, preceded by the
default return value (see below), if that is non-empty.
The optional argument @var{defaults} controls the default value to
return if the user enters null input, and should be one of: a string;
@code{nil}, which is equivalent to an empty string; a list of strings;
or a symbol.
If @var{defaults} is a symbol, @code{read-regexp} consults the value
of the variable @code{read-regexp-defaults-function} (see below), and
if that is non-@code{nil} uses it in preference to @var{defaults}.
The value in this case should be either:
@itemize @minus
@item
@code{regexp-history-last}, which means to use the first element of
the appropriate minibuffer history list (see below).
@item
A function of no arguments, whose return value (which should be
@code{nil}, a string, or a list of strings) becomes the value of
@var{defaults}.
@end itemize
@code{read-regexp} now ensures that the result of processing
@var{defaults} is a list (i.e., if the value is @code{nil} or a
string, it converts it to a list of one element). To this list,
@code{read-regexp} then appends a few potentially useful candidates for
input. These are:
@itemize @minus
@item
The word or symbol at point.
@item
The last regexp used in an incremental search.
@item
The last string used in an incremental search.
@item
The last string or pattern used in query-replace commands.
@end itemize
The function now has a list of regular expressions that it passes to
@code{read-from-minibuffer} to obtain the user's input. The first
element of the list is the default result in case of empty input. All
Restore some of the quoting in the manuals * doc/lispref/windows.texi (Coordinates and Windows) (Coordinates and Windows): * doc/lispref/variables.texi (Lexical Binding) (File Local Variables): * doc/lispref/text.texi (Format Properties): * doc/lispref/symbols.texi (Symbol Components): * doc/lispref/strings.texi (Creating Strings): * doc/lispref/sequences.texi (Sequence Functions): * doc/lispref/searching.texi (Regexp Special, Regexp Search) (Search and Replace): * doc/lispref/processes.texi (Bindat Spec): * doc/lispref/os.texi (Idle Timers): * doc/lispref/objects.texi (Basic Char Syntax): * doc/lispref/numbers.texi (Float Basics, Random Numbers): * doc/lispref/nonascii.texi (Character Properties): * doc/lispref/modes.texi (Major Mode Conventions, Mode Hooks) (Mode Line Variables): * doc/lispref/minibuf.texi (Text from Minibuffer): * doc/lispref/loading.texi (Autoload): * doc/lispref/keymaps.texi (Controlling Active Maps): * doc/lispref/frames.texi (Frame Layout, Size and Position) (Size Parameters, Implied Frame Resizing): * doc/lispref/files.texi (Changing Files, Magic File Names): * doc/lispref/eval.texi (Self-Evaluating Forms): * doc/lispref/display.texi (Progress, Abstract Display) (Abstract Display Example, Bidirectional Display): * doc/lispref/commands.texi (Event Mod): * doc/emacs/windows.texi (Displaying Buffers): * doc/emacs/trouble.texi (Bug Criteria, Checklist): * doc/emacs/text.texi (Enriched Text): * doc/emacs/programs.texi (MixedCase Words): * doc/emacs/picture-xtra.texi (Insert in Picture) (Tabs in Picture): * doc/emacs/misc.texi (Emacs Server, Printing): * doc/emacs/mini.texi (Minibuffer History): * doc/emacs/maintaining.texi (Old Revisions, VC Change Log) (Pulling / Pushing): * doc/emacs/killing.texi (Yanking, Cut and Paste, Clipboard): * doc/emacs/help.texi (Help, Help Echo): * doc/emacs/glossary.texi (Glossary): * doc/emacs/frames.texi (Mouse Commands, Creating Frames) (Frame Commands): * doc/emacs/files.texi (Reverting, Saving, Directories): * doc/emacs/entering.texi (Exiting): * doc/emacs/emacs.texi (Top): * doc/emacs/cmdargs.texi (Window Size X, Icons X): * doc/emacs/anti.texi (Antinews): Restore quoting of text where appropriate or replace quoting with @dfn. * doc/misc/ediff.texi (Window and Frame Configuration): * doc/lispref/processes.texi (Network Feature Testing): * doc/lispref/display.texi (Display Margins): Quote the phrase after "a.k.a." where appropriate.
2015-09-16 12:56:45 +03:00
elements of the list are available to the user as the ``future
minibuffer history'' list (@pxref{Minibuffer History, future list,,
emacs, The GNU Emacs Manual}).
The optional argument @var{history}, if non-@code{nil}, is a symbol
specifying a minibuffer history list to use (@pxref{Minibuffer
History}). If it is omitted or @code{nil}, the history list defaults
to @code{regexp-history}.
@cindex @code{case-fold}, text property
@findex read-regexp-case-fold-search
The user can use the @kbd{M-s c} command to indicate whether case
folding should be on or off. If the user has used this command, the
returned string will have the text property @code{case-fold} set to
either @code{fold} or @code{inhibit-fold}. It is up to the caller of
@code{read-regexp} to actually use this value, and the convenience
function @code{read-regexp-case-fold-search} is provided for that. A
typical usage pattern here might look like:
@lisp
(let* ((regexp (read-regexp "Search for: "))
(case-fold-search (read-regexp-case-fold-search regexp)))
(re-search-forward regexp))
@end lisp
@end defun
Some corrections in Elisp manual * doc/lispref/buffers.texi (Read Only Buffers): Describe optional argument POSITION. * doc/lispref/debugging.texi (Error Debugging): `debug-on-signal' is an option. * doc/lispref/display.texi (Refresh Screen): Describe optional argument FRAME of `redraw-frame'. (Attribute Functions): Describe optional argument CHARACTER of `face-font'. (Defining Images): `image-load-path' is an option. (Beeping): `ring-bell-function' is an option. * doc/lispref/frames.texi (Size and Position): The PIXELWISE argument of `set-frame-size' is optional. (Raising and Lowering): The TERMINAL argument of `tty-top-frame' is optional. * doc/lispref/keymaps.texi (Controlling Active Maps): Fix doc of `set-transient-map'. * doc/lispref/minibuf.texi (Text from Minibuffer): `read-regexp-defaults-function' is an option. (Minibuffer Contents): `delete-minibuffer-contents' is a command. * doc/lispref/modes.texi (Mode Line Variables): `mode-line-position' and `mode-line-modes' are variables, not options. * doc/lispref/strings.texi (Creating Strings): The START argument of `substring' is optional. * doc/lispref/text.texi (Buffer Contents): Describe optional argument NO-PROPERTIES of `thing-at-point'. (User-Level Deletion): Both arguments of `delete-trailing-whitespace' are optional. (Margins): Use @key{RET} instead of @kbd{RET}. * doc/lispref/windows.texi (Display Action Functions): Write non-@code{nil} instead of non-nil. (Choosing Window Options): The WINDOW arg of `split-window-sensibly' is optional. (Choosing Window Options): Write non-@code{nil} instead of non-nil. (Window Start and End): Both args of `window-group-end' are optional. * src/buffer.c (Fbarf_if_buffer_read_only): Rename argument POS to POSITION to keep consisteny with doc-string.
2016-02-01 19:01:34 +01:00
@defopt read-regexp-defaults-function
The function @code{read-regexp} may use the value of this variable to
determine its list of default regular expressions. If non-@code{nil},
the value of this variable should be either:
@itemize @minus
@item
The symbol @code{regexp-history-last}.
@item
A function of no arguments that returns either @code{nil}, a string,
or a list of strings.
@end itemize
@noindent
See @code{read-regexp} above for details of how these values are used.
Some corrections in Elisp manual * doc/lispref/buffers.texi (Read Only Buffers): Describe optional argument POSITION. * doc/lispref/debugging.texi (Error Debugging): `debug-on-signal' is an option. * doc/lispref/display.texi (Refresh Screen): Describe optional argument FRAME of `redraw-frame'. (Attribute Functions): Describe optional argument CHARACTER of `face-font'. (Defining Images): `image-load-path' is an option. (Beeping): `ring-bell-function' is an option. * doc/lispref/frames.texi (Size and Position): The PIXELWISE argument of `set-frame-size' is optional. (Raising and Lowering): The TERMINAL argument of `tty-top-frame' is optional. * doc/lispref/keymaps.texi (Controlling Active Maps): Fix doc of `set-transient-map'. * doc/lispref/minibuf.texi (Text from Minibuffer): `read-regexp-defaults-function' is an option. (Minibuffer Contents): `delete-minibuffer-contents' is a command. * doc/lispref/modes.texi (Mode Line Variables): `mode-line-position' and `mode-line-modes' are variables, not options. * doc/lispref/strings.texi (Creating Strings): The START argument of `substring' is optional. * doc/lispref/text.texi (Buffer Contents): Describe optional argument NO-PROPERTIES of `thing-at-point'. (User-Level Deletion): Both arguments of `delete-trailing-whitespace' are optional. (Margins): Use @key{RET} instead of @kbd{RET}. * doc/lispref/windows.texi (Display Action Functions): Write non-@code{nil} instead of non-nil. (Choosing Window Options): The WINDOW arg of `split-window-sensibly' is optional. (Choosing Window Options): Write non-@code{nil} instead of non-nil. (Window Start and End): Both args of `window-group-end' are optional. * src/buffer.c (Fbarf_if_buffer_read_only): Rename argument POS to POSITION to keep consisteny with doc-string.
2016-02-01 19:01:34 +01:00
@end defopt
2007-09-06 04:25:08 +00:00
@defvar minibuffer-allow-text-properties
If this variable is @code{nil}, the default, then
@code{read-from-minibuffer} and all functions that do minibuffer input
strip all text properties from the minibuffer input before returning it.
However, @code{read-minibuffer} and related functions (@pxref{Object
from Minibuffer,, Reading Lisp Objects With the Minibuffer}), remove the
text properties unconditionally, regardless of the value of this
variable.
If this variable is non-@code{nil}, either let-bound or buffer-local in
the minibuffer, then @code{read-from-minibuffer}, @code{read-string},
and all related functions preserve text properties. But functions that
do minibuffer input with completion remove the @code{face} property
while preserving other text properties.
@lisp
(minibuffer-with-setup-hook
(lambda ()
(setq-local minibuffer-allow-text-properties t))
(completing-read
"String: " (list (propertize "foobar" 'face 'baz 'data 'zot))))
=> #("foobar" 0 6 (data zot))
@end lisp
In this example, the user typed @samp{foo} and then hit the @kbd{TAB}
key, and all text properties are preserved except the @code{face}
property.
2007-09-06 04:25:08 +00:00
@end defvar
@vindex minibuffer-mode-map
2007-09-06 04:25:08 +00:00
@defvar minibuffer-local-map
This
@anchor{Definition of minibuffer-local-map}
@c avoid page break at anchor; work around Texinfo deficiency
is the default local keymap for reading from the minibuffer. By
default, it makes the following bindings:
@table @asis
@item @kbd{C-j}
@code{exit-minibuffer}
@item @key{RET}
@code{exit-minibuffer}
@item @kbd{M-<}
@code{minibuffer-beginning-of-buffer}
2007-09-06 04:25:08 +00:00
@item @kbd{C-g}
@code{abort-recursive-edit}
@item @kbd{M-n}
@itemx @key{DOWN}
@code{next-history-element}
@item @kbd{M-p}
@itemx @key{UP}
@code{previous-history-element}
@item @kbd{M-s}
@code{next-matching-history-element}
@item @kbd{M-r}
@code{previous-matching-history-element}
@ignore
@c Does not seem worth/appropriate mentioning.
@item @kbd{C-@key{TAB}}
@code{file-cache-minibuffer-complete}
@end ignore
2007-09-06 04:25:08 +00:00
@end table
@noindent
The variable @code{minibuffer-mode-map} is an alias for this variable.
2007-09-06 04:25:08 +00:00
@end defvar
@defun read-no-blanks-input prompt &optional initial inherit-input-method
This function reads a string from the minibuffer, but does not allow
whitespace characters as part of the input: instead, those characters
terminate the input. The arguments @var{prompt}, @var{initial}, and
@var{inherit-input-method} are used as in @code{read-from-minibuffer}.
This is a simplified interface to the @code{read-from-minibuffer}
function, and passes the value of the @code{minibuffer-local-ns-map}
keymap as the @var{keymap} argument for that function. Since the keymap
@code{minibuffer-local-ns-map} does not rebind @kbd{C-q}, it @emph{is}
possible to put a space into the string, by quoting it.
@end defun
@c Slightly unfortunate name, suggesting it might be related to the
@c Nextstep port...
2007-09-06 04:25:08 +00:00
@defvar minibuffer-local-ns-map
This built-in variable is the keymap used as the minibuffer local keymap
in the function @code{read-no-blanks-input}. By default, it makes the
following bindings, in addition to those of @code{minibuffer-local-map}:
@table @asis
@item @key{SPC}
@cindex @key{SPC} in minibuffer
@code{exit-minibuffer}
@item @key{TAB}
@cindex @key{TAB} in minibuffer
@code{exit-minibuffer}
@item @kbd{?}
@cindex @kbd{?} in minibuffer
@code{self-insert-and-exit}
@end table
@end defvar
@vindex minibuffer-default-prompt-format
@defun format-prompt prompt default &rest format-args
Format @var{prompt} with default value @var{default} according to the
@code{minibuffer-default-prompt-format} variable.
@code{minibuffer-default-prompt-format} is a format string (defaulting
to @samp{" (default %s)"} that says how the ``default'' bit in prompts
like @samp{"Local filename (default somefile): "} are to be formatted.
To allow the users to customize how this is displayed, code that
prompts the user for a value (and has a default) should look something
along the lines of this code snippet:
@lisp
(read-file-name
(format-prompt "Local filename" file)
nil file)
@end lisp
If @var{format-args} is @code{nil}, @var{prompt} is used as a literal
string. If @var{format-args} is non-@code{nil}, @var{prompt} is used
as a format control string, and @var{prompt} and @var{format-args} are
passed to @code{format} (@pxref{Formatting Strings}).
@code{minibuffer-default-prompt-format} can be @samp{""}, in which
case no default values are displayed.
If @var{default} is @code{nil}, there is no default value, and
therefore no ``default value'' string is included in the result value.
If @var{default} is a non-@code{nil} list, the first element of the
list is used in the prompt.
Both @var{prompt} and @code{minibuffer-default-prompt-format} are run
through @code{substitute-command-keys} (@pxref{Keys in Documentation}).
@end defun
@defvar read-minibuffer-restore-windows
If this option is non-@code{nil} (the default), getting input from the
minibuffer will restore, on exit, the window configurations of the frame
where the minibuffer was entered from and, if it is different, the frame
that owns the minibuffer window. This means that if, for example, a
user splits a window while getting input from the minibuffer on the same
frame, that split will be undone when exiting the minibuffer.
If this option is @code{nil}, no such restorations are done. Hence, the
window split mentioned above will persist after exiting the minibuffer.
@end defvar
2007-09-06 04:25:08 +00:00
@node Object from Minibuffer
@section Reading Lisp Objects with the Minibuffer
Improve indexing on the chapter/section/subsection levels. doc/lispref/windows.texi (Recombining Windows): Index subject of sections. doc/lispref/variables.texi (Variables with Restricted Values) (Generalized Variables): Index subject of sections. doc/lispref/text.texi (Buffer Contents, Examining Properties) (Changing Properties, Property Search, Substitution): Index subject of sections. doc/lispref/syntax.texi (Motion and Syntax, Parsing Expressions) (Motion via Parsing, Position Parse, Control Parsing): Index subject of sections. doc/lispref/strings.texi (Predicates for Strings, Creating Strings) (Modifying Strings, Text Comparison): Index subject of sections. doc/lispref/searching.texi (Syntax of Regexps, Regexp Special) (Regexp Functions, Regexp Functions): Index subject of sections. doc/lispref/processes.texi (Subprocess Creation, Process Information): Index subject of sections. doc/lispref/positions.texi (Screen Lines): Index subject of sections. doc/lispref/nonascii.texi (Scanning Charsets, Specifying Coding Systems): Index subject of sections. doc/lispref/minibuf.texi (Text from Minibuffer, Object from Minibuffer) (Multiple Queries, Minibuffer Contents): Index subject of sections. doc/lispref/markers.texi (Predicates on Markers, Creating Markers) (Information from Markers, Moving Markers): Index subject of sections. doc/lispref/macros.texi (Defining Macros, Problems with Macros): Index subject of sections. doc/lispref/loading.texi (Loading Non-ASCII, Where Defined): Index subject of sections. doc/lispref/lists.texi (List-related Predicates, List Variables, Setcar) (Setcdr, Plist Access): Index subject of sections. doc/lispref/keymaps.texi (Controlling Active Maps, Scanning Keymaps) (Modifying Menus): Index subject of sections. doc/lispref/help.texi (Accessing Documentation, Help Functions): Index subject of sections. doc/lispref/hash.texi (Hash Access): Index subject of sections. doc/lispref/functions.texi (Core Advising Primitives) (Advising Named Functions, Porting old advices): Index subject of sections. doc/lispref/frames.texi (Creating Frames, Initial Parameters) (Position Parameters, Buffer Parameters, Minibuffers and Frames) (Pop-Up Menus, Drag and Drop): Index subject of sections. doc/lispref/files.texi (Visiting Functions, Kinds of Files) (Unique File Names): Index subject of sections. doc/lispref/display.texi (Refresh Screen, Echo Area Customization) (Warning Variables, Warning Options, Delayed Warnings) (Temporary Displays, Managing Overlays, Overlay Properties) (Finding Overlays, Size of Displayed Text, Defining Faces) (Attribute Functions, Displaying Faces, Face Remapping) (Basic Faces, Font Lookup, Fontsets, Replacing Specs) (Defining Images, Showing Images): Index subject of sections. doc/lispref/debugging.texi (Debugging, Explicit Debug) (Invoking the Debugger, Excess Open, Excess Close): Index subject of sections. doc/lispref/customize.texi (Defining New Types, Applying Customizations) (Custom Themes): Index subject of sections. doc/lispref/control.texi (Sequencing, Combining Conditions) (Processing of Errors, Cleanups): Index subject of sections. doc/lispref/compile.texi (Eval During Compile): Index subject of sections. doc/lispref/commands.texi (Using Interactive, Distinguish Interactive) (Command Loop Info, Classifying Events, Event Mod) (Invoking the Input Method): Index subject of sections. doc/lispref/buffers.texi (Buffer List, Buffer Gap): Index subject of sections. doc/lispref/backups.texi (Making Backups, Numbered Backups, Backup Names) (Reverting): Index subject of sections. doc/lispref/abbrevs.texi (Abbrev Tables, Defining Abbrevs, Abbrev Files) (Abbrev Expansion, Standard Abbrev Tables, Abbrev Properties) (Abbrev Table Properties): Index subject of sections. doc/lispref/os.texi (Time of Day, Time Conversion, Time Parsing) (Time Calculations, Idle Timers): Index subject of sections.
2014-12-23 20:42:30 +02:00
@cindex minibuffer input, reading lisp objects
2007-09-06 04:25:08 +00:00
This section describes functions for reading Lisp objects with the
minibuffer.
@defun read-minibuffer prompt &optional initial
This function reads a Lisp object using the minibuffer, and returns it
without evaluating it. The arguments @var{prompt} and @var{initial} are
used as in @code{read-from-minibuffer}.
This is a simplified interface to the
@code{read-from-minibuffer} function:
@smallexample
@group
(read-minibuffer @var{prompt} @var{initial})
@equiv{}
(let (minibuffer-allow-text-properties)
(read-from-minibuffer @var{prompt} @var{initial} nil t))
@end group
@end smallexample
Here is an example in which we supply the string @code{"(testing)"} as
initial input:
@smallexample
@group
(read-minibuffer
"Enter an expression: " (format "%s" '(testing)))
;; @r{Here is how the minibuffer is displayed:}
@end group
@group
---------- Buffer: Minibuffer ----------
Enter an expression: (testing)@point{}
---------- Buffer: Minibuffer ----------
@end group
@end smallexample
@noindent
The user can type @key{RET} immediately to use the initial input as a
default, or can edit the input.
@end defun
@defun eval-minibuffer prompt &optional initial
This function reads a Lisp expression using the minibuffer, evaluates
it, then returns the result. The arguments @var{prompt} and
@var{initial} are used as in @code{read-from-minibuffer}.
This function simply evaluates the result of a call to
@code{read-minibuffer}:
@smallexample
@group
(eval-minibuffer @var{prompt} @var{initial})
@equiv{}
(eval (read-minibuffer @var{prompt} @var{initial}))
@end group
@end smallexample
@end defun
@defun edit-and-eval-command prompt form
This function reads a Lisp expression in the minibuffer, evaluates it,
then returns the result. The difference between this command and
2007-09-06 04:25:08 +00:00
@code{eval-minibuffer} is that here the initial @var{form} is not
optional and it is treated as a Lisp object to be converted to printed
representation rather than as a string of text. It is printed with
@code{prin1}, so if it is a string, double-quote characters (@samp{"})
appear in the initial text. @xref{Output Functions}.
In the following example, we offer the user an expression with initial
text that is already a valid form:
2007-09-06 04:25:08 +00:00
@smallexample
@group
(edit-and-eval-command "Please edit: " '(forward-word 1))
;; @r{After evaluation of the preceding expression,}
;; @r{the following appears in the minibuffer:}
@end group
@group
---------- Buffer: Minibuffer ----------
Please edit: (forward-word 1)@point{}
---------- Buffer: Minibuffer ----------
@end group
@end smallexample
@noindent
Typing @key{RET} right away would exit the minibuffer and evaluate the
expression, thus moving point forward one word.
@end defun
@node Minibuffer History
@section Minibuffer History
@cindex minibuffer history
@cindex history list
A @dfn{minibuffer history list} records previous minibuffer inputs
so the user can reuse them conveniently. It is a variable whose value
is a list of strings (previous inputs), most recent first.
There are many separate minibuffer history lists, used for different
kinds of inputs. It's the Lisp programmer's job to specify the right
history list for each use of the minibuffer.
You specify a minibuffer history list with the optional @var{history}
argument to @code{read-from-minibuffer} or @code{completing-read}.
Here are the possible values for it:
2007-09-06 04:25:08 +00:00
@table @asis
@item @var{variable}
Use @var{variable} (a symbol) as the history list.
@item (@var{variable} . @var{startpos})
Use @var{variable} (a symbol) as the history list, and assume that the
initial history position is @var{startpos} (a nonnegative integer).
Specifying 0 for @var{startpos} is equivalent to just specifying the
symbol @var{variable}. @code{previous-history-element} will display
the most recent element of the history list in the minibuffer. If you
specify a positive @var{startpos}, the minibuffer history functions
behave as if @code{(elt @var{variable} (1- @var{startpos}))} were the
2007-09-06 04:25:08 +00:00
history element currently shown in the minibuffer.
For consistency, you should also specify that element of the history
as the initial minibuffer contents, using the @var{initial} argument
to the minibuffer input function (@pxref{Initial Input}).
@end table
If you don't specify @var{history}, then the default history list
2007-09-06 04:25:08 +00:00
@code{minibuffer-history} is used. For other standard history lists,
see below. You can also create your own history list variable; just
initialize it to @code{nil} before the first use. If the variable is
buffer local, then each buffer will have its own input history list.
2007-09-06 04:25:08 +00:00
Both @code{read-from-minibuffer} and @code{completing-read} add new
elements to the history list automatically, and provide commands to
allow the user to reuse items on the list (@pxref{Minibuffer
Commands}). The only thing your program needs to do to use a history
list is to initialize it and to pass its name to the input functions
when you wish. But it is safe to modify the list by hand when the
minibuffer input functions are not using it.
@vindex minibuffer-default-add-function
By default, when @kbd{M-n} (@code{next-history-element},
@pxref{Minibuffer Commands,,next-history-element}) reaches the end of
the list of default values provided by the command which initiated
reading input from the minibuffer, @kbd{M-n} adds all of the
completion candidates, as specified by
@code{minibuffer-completion-table} (@pxref{Completion Commands}), to
the list of defaults, so that all those candidates are available as
``future history''. Your program can control that via the variable
@code{minibuffer-default-add-function}: if its value is not a
function, this automatic addition is disabled, and you can also set
this variable to your own function which adds only some candidates, or
some other values, to the ``future history''.
2007-09-06 04:25:08 +00:00
@cindex @code{history-length} (symbol property)
2007-09-06 04:25:08 +00:00
Emacs functions that add a new element to a history list can also
delete old elements if the list gets too long. The variable
@code{history-length} specifies the maximum length for most history
lists. To specify a different maximum length for a particular history
list, put the length in the @code{history-length} property of the
history list symbol. The variable @code{history-delete-duplicates}
specifies whether to delete duplicates in history.
@defun add-to-history history-var newelt &optional maxelt keep-all
This function adds a new element @var{newelt}, if it isn't the empty
string, to the history list stored in the variable @var{history-var},
and returns the updated history list. It limits the list length to
the value of @var{maxelt} (if non-@code{nil}) or @code{history-length}
(described below). The possible values of @var{maxelt} have the same
meaning as the values of @code{history-length}.
@var{history-var} cannot refer to a lexical variable.
2007-09-06 04:25:08 +00:00
Normally, @code{add-to-history} removes duplicate members from the
history list if @code{history-delete-duplicates} is non-@code{nil}.
However, if @var{keep-all} is non-@code{nil}, that says not to remove
duplicates, and to add @var{newelt} to the list even if it is empty.
@end defun
@defvar history-add-new-input
If the value of this variable is @code{nil}, standard functions that
read from the minibuffer don't add new elements to the history list.
This lets Lisp programs explicitly manage input history by using
@code{add-to-history}. The default value is @code{t}.
2007-09-06 04:25:08 +00:00
@end defvar
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@defopt history-length
2007-09-06 04:25:08 +00:00
The value of this variable specifies the maximum length for all
history lists that don't specify their own maximum lengths. If the
value is @code{t}, that means there is no maximum (don't delete old
elements). If a history list variable's symbol has a non-@code{nil}
@code{history-length} property, it overrides this variable for that
2007-09-06 04:25:08 +00:00
particular history list.
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@end defopt
2007-09-06 04:25:08 +00:00
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@defopt history-delete-duplicates
2007-09-06 04:25:08 +00:00
If the value of this variable is @code{t}, that means when adding a
new history element, all previous identical elements are deleted.
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@end defopt
2007-09-06 04:25:08 +00:00
Here are some of the standard minibuffer history list variables:
@defvar minibuffer-history
The default history list for minibuffer history input.
@end defvar
@defvar query-replace-history
A history list for arguments to @code{query-replace} (and similar
arguments to other commands).
@end defvar
@defvar file-name-history
A history list for file-name arguments.
@end defvar
@defvar buffer-name-history
A history list for buffer-name arguments.
@end defvar
@defvar regexp-history
A history list for regular expression arguments.
@end defvar
@defvar extended-command-history
A history list for arguments that are names of extended commands.
@end defvar
@defvar shell-command-history
A history list for arguments that are shell commands.
@end defvar
@defvar read-expression-history
A history list for arguments that are Lisp expressions to evaluate.
@end defvar
@defvar face-name-history
A history list for arguments that are faces.
@end defvar
@findex read-variable@r{, history list}
@defvar custom-variable-history
A history list for variable-name arguments read by
@code{read-variable}.
@end defvar
@defvar read-number-history
A history list for numbers read by @code{read-number}.
@end defvar
@defvar goto-line-history
A history list for arguments to @code{goto-line}. This variable can
be made local in every buffer by customizing the user option
@code{goto-line-history-local}.
@end defvar
@c Less common: coding-system-history, input-method-history,
@c command-history, grep-history, grep-find-history,
@c read-envvar-name-history, setenv-history, yes-or-no-p-history.
2007-09-06 04:25:08 +00:00
@node Initial Input
@section Initial Input
Several of the functions for minibuffer input have an argument called
@var{initial}. This is a mostly-deprecated
2007-09-06 04:25:08 +00:00
feature for specifying that the minibuffer should start out with
certain text, instead of empty as usual.
If @var{initial} is a string, the minibuffer starts out containing the
text of the string, with point at the end, when the user starts to
edit the text. If the user simply types @key{RET} to exit the
minibuffer, it will use the initial input string to determine the
value to return.
@strong{We discourage use of a non-@code{nil} value for
@var{initial}}, because initial input is an intrusive interface.
History lists and default values provide a much more convenient method
to offer useful default inputs to the user.
There is just one situation where you should specify a string for an
@var{initial} argument. This is when you specify a cons cell for the
@var{history} argument. @xref{Minibuffer History}.
2007-09-06 04:25:08 +00:00
@var{initial} can also be a cons cell of the form @code{(@var{string}
. @var{position})}. This means to insert @var{string} in the
minibuffer but put point at @var{position} within the string's text.
As a historical accident, @var{position} was implemented
inconsistently in different functions. In @code{completing-read},
@var{position}'s value is interpreted as origin-zero; that is, a value
of 0 means the beginning of the string, 1 means after the first
character, etc. In @code{read-minibuffer}, and the other
non-completion minibuffer input functions that support this argument,
1 means the beginning of the string, 2 means after the first character,
2007-09-06 04:25:08 +00:00
etc.
Use of a cons cell as the value for @var{initial} arguments is deprecated.
2007-09-06 04:25:08 +00:00
@node Completion
@section Completion
@cindex completion
@dfn{Completion} is a feature that fills in the rest of a name
starting from an abbreviation for it. Completion works by comparing the
user's input against a list of valid names and determining how much of
the name is determined uniquely by what the user has typed. For
example, when you type @kbd{C-x b} (@code{switch-to-buffer}) and then
@c "This is the sort of English up with which I will not put."
2007-09-06 04:25:08 +00:00
type the first few letters of the name of the buffer to which you wish
to switch, and then type @key{TAB} (@code{minibuffer-complete}), Emacs
extends the name as far as it can.
Standard Emacs commands offer completion for names of symbols, files,
buffers, and processes; with the functions in this section, you can
implement completion for other kinds of names.
The @code{try-completion} function is the basic primitive for
completion: it returns the longest determined completion of a given
initial string, with a given set of strings to match against.
The function @code{completing-read} provides a higher-level interface
for completion. A call to @code{completing-read} specifies how to
determine the list of valid names. The function then activates the
minibuffer with a local keymap that binds a few keys to commands useful
for completion. Other functions provide convenient simple interfaces
for reading certain kinds of names with completion.
@menu
* Basic Completion:: Low-level functions for completing strings.
* Minibuffer Completion:: Invoking the minibuffer with completion.
* Completion Commands:: Minibuffer commands that do completion.
* High-Level Completion:: Convenient special cases of completion
(reading buffer names, variable names, etc.).
* Reading File Names:: Using completion to read file names and
shell commands.
* Completion Variables:: Variables controlling completion behavior.
* Programmed Completion:: Writing your own completion function.
* Completion in Buffers:: Completing text in ordinary buffers.
2007-09-06 04:25:08 +00:00
@end menu
@node Basic Completion
@subsection Basic Completion Functions
The following completion functions have nothing in themselves to do
with minibuffers. We describe them here to keep them near the
higher-level completion features that do use the minibuffer.
2007-09-06 04:25:08 +00:00
@defun try-completion string collection &optional predicate
This function returns the longest common substring of all possible
completions of @var{string} in @var{collection}.
@cindex completion table
@var{collection} is called the @dfn{completion table}. Its value must
be a list of strings or cons cells, an obarray, a hash table, or a
completion function.
@code{try-completion} compares @var{string} against each of the
permissible completions specified by the completion table. If no
permissible completions match, it returns @code{nil}. If there is
just one matching completion, and the match is exact, it returns
@code{t}. Otherwise, it returns the longest initial sequence common
to all possible matching completions.
2007-09-06 04:25:08 +00:00
If @var{collection} is a list, the permissible completions are
specified by the elements of the list, each of which should be either
a string, or a cons cell whose @sc{car} is either a string or a symbol
(a symbol is converted to a string using @code{symbol-name}). If the
list contains elements of any other type, those are ignored.
2007-09-06 04:25:08 +00:00
@cindex obarray in completion
If @var{collection} is an obarray (@pxref{Creating Symbols}), the names
of all symbols in the obarray form the set of permissible completions.
2007-09-06 04:25:08 +00:00
If @var{collection} is a hash table, then the keys that are strings or
symbols are the possible completions. Other keys are ignored.
2007-09-06 04:25:08 +00:00
You can also use a function as @var{collection}. Then the function is
solely responsible for performing completion; @code{try-completion}
returns whatever this function returns. The function is called with
three arguments: @var{string}, @var{predicate} and @code{nil} (the
third argument is so that the same function can be used
in @code{all-completions} and do the appropriate thing in either
case). @xref{Programmed Completion}.
2007-09-06 04:25:08 +00:00
If the argument @var{predicate} is non-@code{nil}, then it must be a
function of one argument, unless @var{collection} is a hash table, in
which case it should be a function of two arguments. It is used to
test each possible match, and the match is accepted only if
@var{predicate} returns non-@code{nil}. The argument given to
@var{predicate} is either a string or a cons cell (the @sc{car} of
which is a string) from the alist, or a symbol (@emph{not} a symbol
name) from the obarray. If @var{collection} is a hash table,
@var{predicate} is called with two arguments, the string key and the
associated value.
In addition, to be acceptable, a completion must also match all the
regular expressions in @code{completion-regexp-list}. (Unless
@var{collection} is a function, in which case that function has to
handle @code{completion-regexp-list} itself.)
In the first of the following examples, the string @samp{foo} is
matched by three of the alist @sc{car}s. All of the matches begin with
the characters @samp{fooba}, so that is the result. In the second
example, there is only one possible match, and it is exact, so the
return value is @code{t}.
2007-09-06 04:25:08 +00:00
@smallexample
@group
(try-completion
"foo"
'(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4)))
@result{} "fooba"
@end group
@group
(try-completion "foo" '(("barfoo" 2) ("foo" 3)))
@result{} t
@end group
@end smallexample
In the following example, numerous symbols begin with the characters
@samp{forw}, and all of them begin with the word @samp{forward}. In
most of the symbols, this is followed with a @samp{-}, but not in all,
so no more than @samp{forward} can be completed.
@smallexample
@group
(try-completion "forw" obarray)
@result{} "forward"
@end group
@end smallexample
Finally, in the following example, only two of the three possible
matches pass the predicate @code{test} (the string @samp{foobaz} is
too short). Both of those begin with the string @samp{foobar}.
@smallexample
@group
(defun test (s)
(> (length (car s)) 6))
@result{} test
@end group
@group
(try-completion
"foo"
'(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
'test)
@result{} "foobar"
@end group
@end smallexample
@end defun
@defun all-completions string collection &optional predicate
2007-09-06 04:25:08 +00:00
This function returns a list of all possible completions of
@var{string}. The arguments to this function
are the same as those of @code{try-completion}, and it
uses @code{completion-regexp-list} in the same way that
@code{try-completion} does.
2007-09-06 04:25:08 +00:00
If @var{collection} is a function, it is called with three arguments:
@var{string}, @var{predicate} and @code{t}; then @code{all-completions}
returns whatever the function returns. @xref{Programmed Completion}.
Here is an example, using the function @code{test} shown in the
example for @code{try-completion}:
@smallexample
@group
(defun test (s)
(> (length (car s)) 6))
@result{} test
@end group
@group
(all-completions
"foo"
'(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
'test)
@result{} ("foobar1" "foobar2")
@end group
@end smallexample
@end defun
@defun test-completion string collection &optional predicate
@anchor{Definition of test-completion}
This function returns non-@code{nil} if @var{string} is a valid
completion alternative specified by @var{collection} and
2007-09-06 04:25:08 +00:00
@var{predicate}. The arguments are the same as in
@code{try-completion}. For instance, if @var{collection} is a list of
strings, this is true if @var{string} appears in the list and
@var{predicate} is satisfied.
This function uses @code{completion-regexp-list} in the same
way that @code{try-completion} does.
If @var{predicate} is non-@code{nil} and if @var{collection} contains
several strings that are equal to each other, as determined by
@code{compare-strings} according to @code{completion-ignore-case},
then @var{predicate} should accept either all or none of them.
Otherwise, the return value of @code{test-completion} is essentially
unpredictable.
If @var{collection} is a function, it is called with three arguments,
the values @var{string}, @var{predicate} and @code{lambda}; whatever
it returns, @code{test-completion} returns in turn.
@end defun
@defun completion-boundaries string collection predicate suffix
This function returns the boundaries of the field on which @var{collection}
will operate, assuming that @var{string} holds the text before point
and @var{suffix} holds the text after point.
Normally completion operates on the whole string, so for all normal
collections, this will always return @code{(0 . (length
@var{suffix}))}. But more complex completion, such as completion on
files, is done one field at a time. For example, completion of
@code{"/usr/sh"} will include @code{"/usr/share/"} but not
@code{"/usr/share/doc"} even if @code{"/usr/share/doc"} exists.
Also @code{all-completions} on @code{"/usr/sh"} will not include
@code{"/usr/share/"} but only @code{"share/"}. So if @var{string} is
@code{"/usr/sh"} and @var{suffix} is @code{"e/doc"},
@code{completion-boundaries} will return @w{@code{(5 . 1)}} which tells us
that the @var{collection} will only return completion information that
pertains to the area after @code{"/usr/"} and before @code{"/doc"}.
@code{try-completion} is not affected by nontrivial boundaries; e.g.,
@code{try-completion} on @code{"/usr/sh"} might still return
@code{"/usr/share/"}, not @code{"share/"}.
2007-09-06 04:25:08 +00:00
@end defun
If you store a completion alist in a variable, you should mark the
variable as risky by giving it a non-@code{nil}
@code{risky-local-variable} property. @xref{File Local Variables}.
2007-09-06 04:25:08 +00:00
@defvar completion-ignore-case
If the value of this variable is non-@code{nil}, case is not
considered significant in completion. Within @code{read-file-name},
this variable is overridden by
@code{read-file-name-completion-ignore-case} (@pxref{Reading File
Names}); within @code{read-buffer}, it is overridden by
@code{read-buffer-completion-ignore-case} (@pxref{High-Level
Completion}).
2007-09-06 04:25:08 +00:00
@end defvar
@defvar completion-regexp-list
This is a list of regular expressions. The completion functions only
consider a completion acceptable if it matches all regular expressions
in this list, with @code{case-fold-search} (@pxref{Searching and Case})
bound to the value of @code{completion-ignore-case}.
Do not set this variable to a non-@code{nil} value globally, as that
is not safe and will probably cause errors in completion commands.
This variable should be only let-bound to non-@code{nil} values around
calls to basic completion functions: @code{try-completion},
@code{test-completion}, and @code{all-completions}.
2007-09-06 04:25:08 +00:00
@end defvar
@defmac lazy-completion-table var fun
This macro provides a way to initialize the variable @var{var} as a
collection for completion in a lazy way, not computing its actual
contents until they are first needed. You use this macro to produce a
value that you store in @var{var}. The actual computation of the
proper value is done the first time you do completion using @var{var}.
It is done by calling @var{fun} with no arguments. The
value @var{fun} returns becomes the permanent value of @var{var}.
Here is an example:
2007-09-06 04:25:08 +00:00
@smallexample
(defvar foo (lazy-completion-table foo make-my-alist))
@end smallexample
@end defmac
@c FIXME? completion-table-with-context?
@findex completion-table-case-fold
@findex completion-table-in-turn
@findex completion-table-merge
@findex completion-table-subvert
@findex completion-table-with-quoting
@findex completion-table-with-predicate
@findex completion-table-with-terminator
@cindex completion table, modifying
@cindex completion tables, combining
There are several functions that take an existing completion table and
return a modified version. @code{completion-table-case-fold} returns
a case-insensitive table. @code{completion-table-in-turn} and
@code{completion-table-merge} combine multiple input tables in
different ways. @code{completion-table-subvert} alters a table to use
a different initial prefix. @code{completion-table-with-quoting}
returns a table suitable for operating on quoted text.
@code{completion-table-with-predicate} filters a table with a
predicate function. @code{completion-table-with-terminator} adds a
terminating string.
2007-09-06 04:25:08 +00:00
@node Minibuffer Completion
@subsection Completion and the Minibuffer
@cindex minibuffer completion
@cindex reading from minibuffer with completion
This section describes the basic interface for reading from the
minibuffer with completion.
@defun completing-read prompt collection &optional predicate require-match initial history default inherit-input-method
2007-09-06 04:25:08 +00:00
This function reads a string in the minibuffer, assisting the user by
providing completion. It activates the minibuffer with prompt
@var{prompt}, which must be a string.
The actual completion is done by passing the completion table
@var{collection} and the completion predicate @var{predicate} to the
function @code{try-completion} (@pxref{Basic Completion}). This
happens in certain commands bound in the local keymaps used for
completion. Some of these commands also call @code{test-completion}.
Thus, if @var{predicate} is non-@code{nil}, it should be compatible
with @var{collection} and @code{completion-ignore-case}.
@xref{Definition of test-completion}.
2007-09-06 04:25:08 +00:00
@xref{Programmed Completion}, for detailed requirements when
@var{collection} is a function.
The value of the optional argument @var{require-match} determines how
the user may exit the minibuffer:
@itemize @bullet
@item
If @code{nil}, the usual minibuffer exit commands work regardless of
the input in the minibuffer.
@item
If @code{t}, the usual minibuffer exit commands won't exit unless the
input completes to an element of @var{collection}.
@item
If @code{confirm}, the user can exit with any input, but is asked for
confirmation if the input is not an element of @var{collection}.
@item
If @code{confirm-after-completion}, the user can exit with any input,
but is asked for confirmation if the preceding command was a
completion command (i.e., one of the commands in
@code{minibuffer-confirm-exit-commands}) and the resulting input is
not an element of @var{collection}. @xref{Completion Commands}.
@item
If a function, it is called with the input as the only argument. The
function should return a non-@code{nil} value if the input is
acceptable.
@item
Any other value of @var{require-match} behaves like @code{t}, except
that the exit commands won't exit if it performs completion.
@end itemize
2007-09-06 04:25:08 +00:00
However, empty input is always permitted, regardless of the value of
@var{require-match}; in that case, @code{completing-read} returns the
first element of @var{default}, if it is a list; @code{""}, if
2007-10-28 14:47:58 +00:00
@var{default} is @code{nil}; or @var{default}. The string or strings
in @var{default} are also available to the user through the history
commands (@pxref{Minibuffer Commands}). In addition, the completion
candidates are added to the ``future history'' when the values in
@var{default} are exhausted by @kbd{M-n}; see @ref{Minibuffer
History,, minibuffer-default-add-function}.
2007-09-06 04:25:08 +00:00
The function @code{completing-read} uses
@code{minibuffer-local-completion-map} as the keymap if
@var{require-match} is @code{nil}, and uses
@code{minibuffer-local-must-match-map} if @var{require-match} is
non-@code{nil}. @xref{Completion Commands}.
The argument @var{history} specifies which history list variable to
use for saving the input and for minibuffer history commands. It
defaults to @code{minibuffer-history}. If @var{history} is the symbol
@code{t}, history is not recorded. @xref{Minibuffer History}.
2007-09-06 04:25:08 +00:00
The argument @var{initial} is mostly deprecated; we recommend using a
non-@code{nil} value only in conjunction with specifying a cons cell
for @var{history}. @xref{Initial Input}. For default input, use
2007-09-06 04:25:08 +00:00
@var{default} instead.
If the argument @var{inherit-input-method} is non-@code{nil}, then the
minibuffer inherits the current input method (@pxref{Input
Methods}) and the setting of @code{enable-multibyte-characters}
(@pxref{Text Representations}) from whichever buffer was current before
entering the minibuffer.
If the variable @code{completion-ignore-case} is
2007-09-06 04:25:08 +00:00
non-@code{nil}, completion ignores case when comparing the input
against the possible matches. @xref{Basic Completion}. In this mode
of operation, @var{predicate} must also ignore case, or you will get
surprising results.
Here's an example of using @code{completing-read}:
@smallexample
@group
(completing-read
"Complete a foo: "
'(("foobar1" 1) ("barfoo" 2) ("foobaz" 3) ("foobar2" 4))
nil t "fo")
@end group
@group
;; @r{After evaluation of the preceding expression,}
;; @r{the following appears in the minibuffer:}
---------- Buffer: Minibuffer ----------
Complete a foo: fo@point{}
---------- Buffer: Minibuffer ----------
@end group
@end smallexample
@noindent
If the user then types @kbd{@key{DEL} @key{DEL} b @key{RET}},
@code{completing-read} returns @code{barfoo}.
The @code{completing-read} function binds variables to pass
information to the commands that actually do completion.
They are described in the following section.
@end defun
@defvar completing-read-function
The value of this variable must be a function, which is called by
@code{completing-read} to actually do its work. It should accept the
same arguments as @code{completing-read}. This can be bound to a
different function to completely override the normal behavior of
@code{completing-read}.
@end defvar
@findex completing-read-multiple
@vindex crm-separator
If you need to prompt the user for several strings, like several
elements of a list or several parameters (e.g., user, host, and port) of
a connection, you can use @code{completing-read-multiple}. It allows
typing several strings separated by a separator string (by default, tabs
and commas; customize @code{crm-separator} to change that), and provides
completion for each individual string the user types. It returns the
strings that were read, as a list.
2007-09-06 04:25:08 +00:00
@node Completion Commands
@subsection Minibuffer Commands that Do Completion
This section describes the keymaps, commands and user options used
in the minibuffer to do completion.
2007-09-06 04:25:08 +00:00
@defvar minibuffer-completion-table
The value of this variable is the completion table (@pxref{Basic
Completion}) used for completion in the minibuffer. This is the
buffer-local variable that contains what @code{completing-read} passes to
@code{try-completion}. It is used by minibuffer completion commands
such as @code{minibuffer-complete}.
2007-09-06 04:25:08 +00:00
@end defvar
@defvar minibuffer-completion-predicate
This variable's value is the predicate that @code{completing-read}
passes to @code{try-completion}. The variable is also used by the other
minibuffer completion functions.
@end defvar
@defvar minibuffer-completion-confirm
This variable determines whether Emacs asks for confirmation before
exiting the minibuffer; @code{completing-read} sets this variable,
and the function @code{minibuffer-complete-and-exit} checks the value
before exiting. If the value is @code{nil}, confirmation is not
required. If the value is @code{confirm}, the user may exit with an
input that is not a valid completion alternative, but Emacs asks for
confirmation. If the value is @code{confirm-after-completion}, the
user may exit with an input that is not a valid completion
alternative, but Emacs asks for confirmation if the user submitted the
input right after any of the completion commands in
@code{minibuffer-confirm-exit-commands}.
@end defvar
@defvar minibuffer-confirm-exit-commands
This variable holds a list of commands that cause Emacs to ask for
confirmation before exiting the minibuffer, if the @var{require-match}
argument to @code{completing-read} is @code{confirm-after-completion}.
The confirmation is requested if the user attempts to exit the
minibuffer immediately after calling any command in this list.
2007-09-06 04:25:08 +00:00
@end defvar
@deffn Command minibuffer-complete-word
This function completes the minibuffer contents by at most a single
word. Even if the minibuffer contents have only one completion,
@code{minibuffer-complete-word} does not add any characters beyond the
first character that is not a word constituent. @xref{Syntax Tables}.
@end deffn
@deffn Command minibuffer-complete
This function completes the minibuffer contents as far as possible.
@end deffn
@deffn Command minibuffer-complete-and-exit
This function completes the minibuffer contents, and exits if
confirmation is not required, i.e., if
@code{minibuffer-completion-confirm} is @code{nil}. If confirmation
@emph{is} required, it is given by repeating this command
immediately---the command is programmed to work without confirmation
when run twice in succession.
@end deffn
@deffn Command minibuffer-completion-help
This function creates a list of the possible completions of the
current minibuffer contents. It works by calling @code{all-completions}
using the value of the variable @code{minibuffer-completion-table} as
the @var{collection} argument, and the value of
@code{minibuffer-completion-predicate} as the @var{predicate} argument.
The list of completions is displayed as text in a buffer named
@file{*Completions*}.
2007-09-06 04:25:08 +00:00
@end deffn
@defun display-completion-list completions
2007-09-06 04:25:08 +00:00
This function displays @var{completions} to the stream in
@code{standard-output}, usually a buffer. (@xref{Read and Print}, for more
information about streams.) The argument @var{completions} is normally
a list of completions just returned by @code{all-completions}, but it
does not have to be. Each element may be a symbol or a string, either
of which is simply printed. It can also be a list of two strings,
which is printed as if the strings were concatenated. The first of
the two strings is the actual completion, the second string serves as
annotation.
This function is called by @code{minibuffer-completion-help}. A
common way to use it is together with
2007-09-06 04:25:08 +00:00
@code{with-output-to-temp-buffer}, like this:
@example
(with-output-to-temp-buffer "*Completions*"
(display-completion-list
(all-completions (buffer-string) my-alist)))
2007-09-06 04:25:08 +00:00
@end example
@end defun
@defopt completion-auto-help
If this variable is non-@code{nil}, the completion commands
automatically display a list of possible completions whenever nothing
can be completed because the next character is not uniquely determined.
@end defopt
@defvar minibuffer-local-completion-map
@code{completing-read} uses this value as the local keymap when an
exact match of one of the completions is not required. By default, this
keymap makes the following bindings:
@table @asis
@item @kbd{?}
@code{minibuffer-completion-help}
@item @key{SPC}
@code{minibuffer-complete-word}
@item @key{TAB}
@code{minibuffer-complete}
@end table
@noindent
and uses @code{minibuffer-local-map} as its parent keymap
2007-09-06 04:25:08 +00:00
(@pxref{Definition of minibuffer-local-map}).
@end defvar
@defvar minibuffer-local-must-match-map
@code{completing-read} uses this value as the local keymap when an
exact match of one of the completions is required. Therefore, no keys
are bound to @code{exit-minibuffer}, the command that exits the
minibuffer unconditionally. By default, this keymap makes the following
bindings:
@table @asis
@item @kbd{C-j}
@code{minibuffer-complete-and-exit}
@item @key{RET}
@code{minibuffer-complete-and-exit}
@end table
@noindent
and uses @code{minibuffer-local-completion-map} as its parent keymap.
2007-09-06 04:25:08 +00:00
@end defvar
@defvar minibuffer-local-filename-completion-map
This is a sparse keymap that simply unbinds @key{SPC}; because
filenames can contain spaces. The function @code{read-file-name}
combines this keymap with either @code{minibuffer-local-completion-map}
or @code{minibuffer-local-must-match-map}.
2007-09-06 04:25:08 +00:00
@end defvar
@defvar minibuffer-beginning-of-buffer-movement
If non-@code{nil}, the @kbd{M-<} command will move to the end of the
prompt if point is after the end of the prompt. If point is at or
before the end of the prompt, move to the start of the buffer. If
this variable is @code{nil}, the command behaves like
@code{beginning-of-buffer}.
@end defvar
2007-09-06 04:25:08 +00:00
@node High-Level Completion
@subsection High-Level Completion Functions
2007-09-06 04:25:08 +00:00
This section describes the higher-level convenience functions for
2007-09-06 04:25:08 +00:00
reading certain sorts of names with completion.
In most cases, you should not call these functions in the middle of a
Lisp function. When possible, do all minibuffer input as part of
reading the arguments for a command, in the @code{interactive}
specification. @xref{Defining Commands}.
@defun read-buffer prompt &optional default require-match predicate
2007-09-06 04:25:08 +00:00
This function reads the name of a buffer and returns it as a string.
It prompts with @var{prompt}. The argument @var{default} is the
default name to use, the value to return if the user exits with an
empty minibuffer. If non-@code{nil}, it should be a string, a list of
strings, or a buffer. If it is a list, the default value is the first
element of this list. It is mentioned in the prompt, but is not
inserted in the minibuffer as initial input.
2007-09-06 04:25:08 +00:00
The argument @var{prompt} should be a string ending with a colon and a
space. If @var{default} is non-@code{nil}, the function inserts it in
@var{prompt} before the colon to follow the convention for reading from
the minibuffer with a default value (@pxref{Programming Tips}).
The optional argument @var{require-match} has the same meaning as in
@code{completing-read}. @xref{Minibuffer Completion}.
2007-09-06 04:25:08 +00:00
The optional argument @var{predicate}, if non-@code{nil}, specifies a
function to filter the buffers that should be considered: the function
will be called with every potential candidate as its argument, and
should return @code{nil} to reject the candidate, non-@code{nil} to
accept it.
2007-09-06 04:25:08 +00:00
In the following example, the user enters @samp{minibuffer.t}, and
then types @key{RET}. The argument @var{require-match} is @code{t},
and the only buffer name starting with the given input is
2007-09-06 04:25:08 +00:00
@samp{minibuffer.texi}, so that name is the value.
@example
(read-buffer "Buffer name: " "foo" t)
@group
;; @r{After evaluation of the preceding expression,}
;; @r{the following prompt appears,}
;; @r{with an empty minibuffer:}
@end group
@group
---------- Buffer: Minibuffer ----------
Buffer name (default foo): @point{}
---------- Buffer: Minibuffer ----------
@end group
@group
;; @r{The user types @kbd{minibuffer.t @key{RET}}.}
@result{} "minibuffer.texi"
@end group
@end example
@end defun
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@defopt read-buffer-function
More Emacs 24.3 documentation updates. * doc/emacs/building.texi (Compilation): Document compilation-always-kill. * doc/emacs/files.texi (Misc File Ops): Symbolic links on Windows only work on Vista and later. * doc/emacs/frames.texi (Mouse Avoidance): Mention new variable mouse-avoidance-banish-position. * doc/emacs/mule.texi (Recognize Coding): Remove an unreferenced vindex. * doc/emacs/package.texi (Package Menu): Document the "new" status. * doc/emacs/programs.texi (Which Function): Which Function mode now works in all major modes by default. * doc/emacs/search.texi (Symbol Search): New node. * doc/emacs/windows.texi (Window Choice): Don't refer to the obsolete special-display feature. * commands.texi (Event Input Misc): Remove last-input-char. (Command Loop Info): Remove last-command-char. * display.texi (Fringe Bitmaps): Add exclamation-mark bitmap. * frames.texi (Initial Parameters): Don't mention the obsolete special-display feature. * hooks.texi (Standard Hooks): Remove obsolete hooks. * markers.texi (Information from Markers): Remove obsolete function buffer-has-markers-at. * minibuf.texi (High-Level Completion): Don't mention removed function iswitchb-read-buffer. * text.texi (Yanking): Document yank-handled-properties. * windows.texi (Choosing Window): Don't mention the obsolete special display feature. (Choosing Window Options): Remove obsolete special-display variables, and the functions special-display-p and special-display-popup-frame. * subr.el (insert-buffer-substring-as-yank): Doc fix.
2012-10-27 13:03:52 +08:00
This variable, if non-@code{nil}, specifies a function for reading
buffer names. @code{read-buffer} calls this function instead of doing
its usual work, with the same arguments passed to @code{read-buffer}.
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@end defopt
2007-09-06 04:25:08 +00:00
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@defopt read-buffer-completion-ignore-case
If this variable is non-@code{nil}, @code{read-buffer} ignores case
when performing completion while reading the buffer name.
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@end defopt
2007-09-06 04:25:08 +00:00
@defun read-command prompt &optional default
This function reads the name of a command and returns it as a Lisp
symbol. The argument @var{prompt} is used as in
@code{read-from-minibuffer}. Recall that a command is anything for
which @code{commandp} returns @code{t}, and a command name is a symbol
for which @code{commandp} returns @code{t}. @xref{Interactive Call}.
The argument @var{default} specifies what to return if the user enters
null input. It can be a symbol, a string or a list of strings. If it
is a string, @code{read-command} interns it before returning it.
If it is a list, @code{read-command} interns the first element of this list.
If @var{default} is @code{nil}, that means no default has been
specified; then if the user enters null input, the return value is
@code{(intern "")}, that is, a symbol whose name is an empty string,
and whose printed representation is @code{##} (@pxref{Symbol Type}).
2007-09-06 04:25:08 +00:00
@example
(read-command "Command name? ")
@group
;; @r{After evaluation of the preceding expression,}
;; @r{the following prompt appears with an empty minibuffer:}
@end group
@group
---------- Buffer: Minibuffer ----------
Command name?
---------- Buffer: Minibuffer ----------
@end group
@end example
@noindent
If the user types @kbd{forward-c @key{RET}}, then this function returns
@code{forward-char}.
The @code{read-command} function is a simplified interface to
@code{completing-read}. It uses the variable @code{obarray} so as to
complete in the set of extant Lisp symbols, and it uses the
@code{commandp} predicate so as to accept only command names:
@cindex @code{commandp} example
@example
@group
(read-command @var{prompt})
@equiv{}
(intern (completing-read @var{prompt} obarray
'commandp t nil))
@end group
@end example
@end defun
@defun read-variable prompt &optional default
@anchor{Definition of read-variable}
2012-04-20 16:48:50 +08:00
This function reads the name of a customizable variable and returns it
as a symbol. Its arguments have the same form as those of
@code{read-command}. It behaves just like @code{read-command}, except
that it uses the predicate @code{custom-variable-p} instead of
@code{commandp}.
2007-09-06 04:25:08 +00:00
@end defun
@deffn Command read-color &optional prompt convert allow-empty @
display foreground face
This function reads a string that is a color specification, either the
color's name or an RGB hex value such as @code{#RRRGGGBBB}. It
prompts with @var{prompt} (default: @code{"Color (name or #RGB triplet):"})
and provides completion for color names, but not for hex RGB values.
In addition to names of standard colors, completion candidates include
the foreground and background colors at point.
Valid RGB values are described in @ref{Color Names}.
The function's return value is the string typed by the user in the
minibuffer. However, when called interactively or if the optional
argument @var{convert} is non-@code{nil}, it converts any input color
name into the corresponding RGB value string and instead returns that.
This function requires a valid color specification to be input.
Empty color names are allowed when @var{allow-empty} is
non-@code{nil} and the user enters null input.
Interactively, or when @var{display} is non-@code{nil}, the return
value is also displayed in the echo area.
The optional arguments @var{foreground} and @var{face} control the
2023-12-10 13:22:04 +01:00
appearance of the completion candidates in the @file{*Completions*}
buffer. The candidates are displayed in the specified @var{face} but
with different colors: if @var{foreground} is non-@code{nil}, the
foreground color is changed to be the color of the candidate,
otherwise the background is changed to the candidate's color.
@end deffn
2007-09-06 04:25:08 +00:00
See also the functions @code{read-coding-system} and
@code{read-non-nil-coding-system}, in @ref{User-Chosen Coding Systems},
and @code{read-input-method-name}, in @ref{Input Methods}.
@node Reading File Names
@subsection Reading File Names
@cindex read file names
@cindex prompt for file name
The high-level completion functions @code{read-file-name},
@code{read-directory-name}, and @code{read-shell-command} are designed
to read file names, directory names, and shell commands, respectively.
They provide special features, including automatic insertion of the
default directory.
2007-09-06 04:25:08 +00:00
@defun read-file-name prompt &optional directory default require-match initial predicate
This function reads a file name, prompting with @var{prompt} and
providing completion.
As an exception, this function reads a file name using a graphical
file dialog instead of the minibuffer, if all of the following are
true:
@enumerate
@item
It is invoked via a mouse command.
@item
The selected frame is on a graphical display supporting such dialogs.
@item
The variable @code{use-dialog-box} is non-@code{nil}.
@xref{Dialog Boxes,, Dialog Boxes, emacs, The GNU Emacs Manual}.
@item
The @var{directory} argument, described below, does not specify a
remote file. @xref{Remote Files,, Remote Files, emacs, The GNU Emacs Manual}.
@end enumerate
@noindent
The exact behavior when using a graphical file dialog is
platform-dependent. Here, we simply document the behavior when using
the minibuffer.
2007-09-06 04:25:08 +00:00
@code{read-file-name} does not automatically expand the returned file
name. You can call @code{expand-file-name} yourself if an absolute
file name is required.
2007-09-06 04:25:08 +00:00
The optional argument @var{require-match} has the same meaning as in
@code{completing-read}. @xref{Minibuffer Completion}.
2007-09-06 04:25:08 +00:00
The argument @var{directory} specifies the directory to use for
completing relative file names. It should be an absolute directory
name. If the variable @code{insert-default-directory} is non-@code{nil},
2007-09-06 04:25:08 +00:00
@var{directory} is also inserted in the minibuffer as initial input.
It defaults to the current buffer's value of @code{default-directory}.
If you specify @var{initial}, that is an initial file name to insert
in the buffer (after @var{directory}, if that is inserted). In this
case, point goes at the beginning of @var{initial}. The default for
@var{initial} is @code{nil}---don't insert any file name. To see what
@var{initial} does, try the command @kbd{C-x C-v} in a buffer visiting
a file. @strong{Please note:} we recommend using @var{default} rather
than @var{initial} in most cases.
2007-09-06 04:25:08 +00:00
If @var{default} is non-@code{nil}, then the function returns
@var{default} if the user exits the minibuffer with the same non-empty
contents that @code{read-file-name} inserted initially. The initial
minibuffer contents are always non-empty if
@code{insert-default-directory} is non-@code{nil}, as it is by
default. @var{default} is not checked for validity, regardless of the
value of @var{require-match}. However, if @var{require-match} is
2007-09-06 04:25:08 +00:00
non-@code{nil}, the initial minibuffer contents should be a valid file
(or directory) name. Otherwise @code{read-file-name} attempts
completion if the user exits without any editing, and does not return
@var{default}. @var{default} is also available through the history
commands.
If @var{default} is @code{nil}, @code{read-file-name} tries to find a
substitute default to use in its place, which it treats in exactly the
same way as if it had been specified explicitly. If @var{default} is
@code{nil}, but @var{initial} is non-@code{nil}, then the default is
the absolute file name obtained from @var{directory} and
@var{initial}. If both @var{default} and @var{initial} are @code{nil}
and the buffer is visiting a file, @code{read-file-name} uses the
absolute file name of that file as default. If the buffer is not
visiting a file, then there is no default. In that case, if the user
types @key{RET} without any editing, @code{read-file-name} simply
returns the pre-inserted contents of the minibuffer.
If the user types @key{RET} in an empty minibuffer, this function
returns an empty string, regardless of the value of
@var{require-match}. This is, for instance, how the user can make the
Some minor fixes of Elisp manual. * commands.texi (Recursive Editing): recursive-edit is a command. * compile.texi (Docs and Compilation): byte-compile-dynamic-docstrings is an option. * debugging.texi (Invoking the Debugger): debug is a command. * display.texi (Progress): progress-reporter-update and progress-reporter-force-update have VALUE argument optional. (Animated Images): Use non-@code{nil} instead of non-nil. * files.texi (Format Conversion Round-Trip): Use non-@code{nil} instead of non-nil. * frames.texi (Creating Frames): make-frame is a command. (Input Focus): select-frame is a command. (Pointer Shape): void-text-area-pointer is an option. * help.texi (Describing Characters): read-kbd-macro is a command. (Help Functions): describe-prefix-bindings is a command. * markers.texi (Creating Markers): Both arguments of copy-marker are optional. * minibuf.texi (Reading File Names): Use @kbd instead of @code. * modes.texi (Mode Line Variables): mode-line-remote and mode-line-client are not options. (Imenu): imenu-add-to-menubar is a command. (SMIE Indentation Helpers): Use non-@code{nil} instead of non-nil. * os.texi (Sound Output): play-sound-file is a command. * package.texi (Package Archives): Use @key{RET} instead of @kbd{RET}. * processes.texi (Signals to Processes): Use @key{RET} instead of @code{RET}. (Signals to Processes): signal-process is a command. * text.texi (Clickable Text): Use @key{RET} instead of @kbd{RET}. (Base 64): base64-encode-string is not a command while base64-decode-region is. * windows.texi (Switching Buffers): pop-to-buffer is a command.
2012-05-15 11:38:50 +02:00
current buffer visit no file using @kbd{M-x set-visited-file-name}.
2007-09-06 04:25:08 +00:00
If @var{predicate} is non-@code{nil}, it specifies a function of one
argument that decides which file names are acceptable completion
alternatives. A file name is an acceptable value if @var{predicate}
2007-09-06 04:25:08 +00:00
returns non-@code{nil} for it.
Here is an example of using @code{read-file-name}:
2007-09-06 04:25:08 +00:00
@example
@group
(read-file-name "The file is ")
;; @r{After evaluation of the preceding expression,}
;; @r{the following appears in the minibuffer:}
@end group
@group
---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/@point{}
---------- Buffer: Minibuffer ----------
@end group
@end example
@noindent
Typing @kbd{manual @key{TAB}} results in the following:
@example
@group
---------- Buffer: Minibuffer ----------
The file is /gp/gnu/elisp/manual.texi@point{}
---------- Buffer: Minibuffer ----------
@end group
@end example
@c Wordy to avoid overfull hbox in smallbook mode.
@noindent
If the user types @key{RET}, @code{read-file-name} returns the file name
as the string @code{"/gp/gnu/elisp/manual.texi"}.
@end defun
@defvar read-file-name-function
If non-@code{nil}, this should be a function that accepts the same
arguments as @code{read-file-name}. When @code{read-file-name} is
called, it calls this function with the supplied arguments instead of
doing its usual work.
@end defvar
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@defopt read-file-name-completion-ignore-case
2007-09-06 04:25:08 +00:00
If this variable is non-@code{nil}, @code{read-file-name} ignores case
when performing completion.
* abbrevs.texi (Abbrev Mode): abbrev-mode is an option. * backups.texi (Making Backups): backup-directory-alist and make-backup-file-name-function are options. (Auto-Saving): auto-save-list-file-prefix is an option. * buffers.texi (Killing Buffers): buffer-offer-save is an option. * display.texi (Refresh Screen): no-redraw-on-reenter is an option. (Echo Area Customization): echo-keystrokes is an option. (Selective Display): selective-display-ellipses is an option. (Temporary Displays): temp-buffer-show-function is an option. (Face Attributes): underline-minimum-offset and x-bitmap-file-path are options. (Font Selection): face-font-family-alternatives, face-font-selection-order, face-font-registry-alternatives, and scalable-fonts-allowed are options. (Fringe Indicators): indicate-buffer-boundaries is an option. (Fringe Cursors): overflow-newline-into-fringe is an option. (Scroll Bars): scroll-bar-mode is an option. * eval.texi (Eval): max-lisp-eval-depth is an option. * files.texi (Visiting Functions): find-file-hook is an option. (Directory Names): directory-abbrev-alist is an option. (Unique File Names): temporary-file-directory and small-temporary-file-directory are options. * frames.texi (Initial Parameters): initial-frame-alist, minibuffer-frame-alist and default-frame-alist are options. (Cursor Parameters): blink-cursor-alist and cursor-in-non-selected-windows ar options. (Window System Selections): selection-coding-system is an option. (Display Feature Testing): display-mm-dimensions-alist is an option. * help.texi (Help Functions): help-char and help-event-list are options. * keymaps.texi (Functions for Key Lookup): meta-prefix-char is an option. * minibuf.texi (Minibuffer History): history-length and history-delete-duplicates are options. (High-Level Completion): read-buffer-function and read-buffer-completion-ignore-case are options. (Reading File Names): read-file-name-completion-ignore-case is an option. * modes.texi (Mode Line Top): mode-line-format is an option. (Mode Line Variables): mode-line-position and mode-line-modes are options. * nonascii.texi (Text Representations): enable-multibyte-characters is an option. (Default Coding Systems): auto-coding-regexp-alist, file-coding-system-alist, auto-coding-alist and auto-coding-functions are options. (Specifying Coding Systems): inhibit-eol-conversion is an option. * os.texi (Init File): site-run-file is an option. (System Environment): mail-host-address is an option. (User Identification): user-mail-address is an option. (Terminal Output): baud-rate is an option. * positions.texi (Word Motion): words-include-escapes is an option. * searching.texi (Standard Regexps): page-delimiter, paragraph-separate, paragraph-separate and sentence-end are options. * text.texi (Margins): left-margin and fill-nobreak-predicate are options. * variables.texi (Local Variables): max-specpdl-size is an option. * windows.texi (Choosing Window): split-window-preferred-function, special-display-function and display-buffer-function are options.
2009-05-21 15:31:31 +00:00
@end defopt
2007-09-06 04:25:08 +00:00
@defun read-directory-name prompt &optional directory default require-match initial predicate
2007-09-06 04:25:08 +00:00
This function is like @code{read-file-name} but allows only directory
names as completion alternatives.
2007-09-06 04:25:08 +00:00
If @var{default} is @code{nil} and @var{initial} is non-@code{nil},
@code{read-directory-name} constructs a substitute default by
combining @var{directory} (or the current buffer's default directory
if @var{directory} is @code{nil}) and @var{initial}. If both
@var{default} and @var{initial} are @code{nil}, this function uses
@var{directory} as substitute default, or the current buffer's default
directory if @var{directory} is @code{nil}.
@end defun
@defopt insert-default-directory
This variable is used by @code{read-file-name}, and thus, indirectly,
by most commands reading file names. (This includes all commands that
use the code letters @samp{f} or @samp{F} in their interactive form.
@xref{Interactive Codes,, Code Characters for interactive}.) Its
value controls whether @code{read-file-name} starts by placing the
name of the default directory in the minibuffer, plus the initial file
name, if any. If the value of this variable is @code{nil}, then
2007-09-06 04:25:08 +00:00
@code{read-file-name} does not place any initial input in the
minibuffer (unless you specify initial input with the @var{initial}
argument). In that case, the default directory is still used for
completion of relative file names, but is not displayed.
If this variable is @code{nil} and the initial minibuffer contents are
empty, the user may have to explicitly fetch the next history element
to access a default value. If the variable is non-@code{nil}, the
initial minibuffer contents are always non-empty and the user can
always request a default value by immediately typing @key{RET} in an
unedited minibuffer. (See above.)
For example:
@example
@group
;; @r{Here the minibuffer starts out with the default directory.}
(let ((insert-default-directory t))
(read-file-name "The file is "))
@end group
@group
---------- Buffer: Minibuffer ----------
The file is ~lewis/manual/@point{}
---------- Buffer: Minibuffer ----------
@end group
@group
;; @r{Here the minibuffer is empty and only the prompt}
;; @r{appears on its line.}
(let ((insert-default-directory nil))
(read-file-name "The file is "))
@end group
@group
---------- Buffer: Minibuffer ----------
The file is @point{}
---------- Buffer: Minibuffer ----------
@end group
@end example
@end defopt
@defun read-shell-command prompt &optional initial history &rest args
This function reads a shell command from the minibuffer, prompting
with @var{prompt} and providing intelligent completion. It completes
the first word of the command using candidates that are appropriate
for command names, and the rest of the command words as file names.
This function uses @code{minibuffer-local-shell-command-map} as the
keymap for minibuffer input. The @var{history} argument specifies the
history list to use; if is omitted or @code{nil}, it defaults to
@code{shell-command-history} (@pxref{Minibuffer History,
shell-command-history}). The optional argument @var{initial}
specifies the initial content of the minibuffer (@pxref{Initial
Input}). The rest of @var{args}, if present, are used as the
@var{default} and @var{inherit-input-method} arguments in
@code{read-from-minibuffer} (@pxref{Text from Minibuffer}).
@end defun
@defvar minibuffer-local-shell-command-map
This keymap is used by @code{read-shell-command} for completing
command and file names that are part of a shell command. It uses
@code{minibuffer-local-map} as its parent keymap, and binds @key{TAB}
to @code{completion-at-point}.
@end defvar
@node Completion Variables
@subsection Completion Variables
2009-03-18 04:01:05 +00:00
Here are some variables that can be used to alter the default
completion behavior.
2009-03-18 04:01:05 +00:00
@cindex completion styles
2009-03-18 04:01:05 +00:00
@defopt completion-styles
The value of this variable is a list of completion style (symbols) to
use for performing completion. A @dfn{completion style} is a set of
rules for generating completions. Each symbol occurring this list
must have a corresponding entry in @code{completion-styles-alist}.
2009-03-18 04:01:05 +00:00
@end defopt
@defvar completion-styles-alist
This variable stores a list of available completion styles. Each
element in the list has the form
@example
(@var{style} @var{try-completion} @var{all-completions} @var{doc})
@end example
@noindent
Here, @var{style} is the name of the completion style (a symbol),
which may be used in the @code{completion-styles} variable to refer to
this style; @var{try-completion} is the function that does the
completion; @var{all-completions} is the function that lists the
completions; and @var{doc} is a string describing the completion
style.
The @var{try-completion} and @var{all-completions} functions should
each accept four arguments: @var{string}, @var{collection},
@var{predicate}, and @var{point}. The @var{string}, @var{collection},
and @var{predicate} arguments have the same meanings as in
@code{try-completion} (@pxref{Basic Completion}), and the @var{point}
argument is the position of point within @var{string}. Each function
should return a non-@code{nil} value if it performed its job, and
@code{nil} if it did not (e.g., if there is no way to complete
@var{string} according to the completion style).
When the user calls a completion command like
2009-03-18 04:01:05 +00:00
@code{minibuffer-complete} (@pxref{Completion Commands}), Emacs looks
for the first style listed in @code{completion-styles} and calls its
@var{try-completion} function. If this function returns @code{nil},
Emacs moves to the next listed completion style and calls its
@var{try-completion} function, and so on until one of the
@var{try-completion} functions successfully performs completion and
returns a non-@code{nil} value. A similar procedure is used for
listing completions, via the @var{all-completions} functions.
@xref{Completion Styles,,, emacs, The GNU Emacs Manual}, for a
description of the available completion styles.
2009-03-18 04:01:05 +00:00
@end defvar
@defopt completion-category-overrides
This variable specifies special completion styles and other completion
behaviors to use when completing certain types of text. Its value
should be an alist with elements of the form @code{(@var{category}
. @var{alist})}. @var{category} is a symbol describing what is being
completed; currently, the @code{buffer}, @code{file}, and
@code{unicode-name} categories are defined, but others can be defined
via specialized completion functions (@pxref{Programmed Completion}).
@var{alist} is an association list describing how completion should
behave for the corresponding category. The following alist keys are
supported:
@table @code
@item styles
The value should be a list of completion styles (symbols).
@item cycle
The value should be a value for @code{completion-cycle-threshold}
(@pxref{Completion Options,,, emacs, The GNU Emacs Manual}) for this
category.
@item cycle-sort-function
The function to sort entries when cycling.
@item display-sort-function
The function to sort entries in the @file{*Completions*} buffer.
The possible values are: @code{nil}, which means to use either the
sorting function from metadata or if that is @code{nil}, fall back to
@code{completions-sort}; @code{identity}, which means not to sort at
all, leaving the original order; or any other value out of those used
in @code{completions-sort} (@pxref{Completion Options,,, emacs, The
GNU Emacs Manual}).
@item group-function
The function to group completions.
@item annotation-function
The function to add annotations to completions.
@item affixation-function
The function to add prefixes and suffixes to completions.
@end table
@noindent
@xref{Programmed Completion}, for a complete list of metadata entries.
@end defopt
@defvar completion-extra-properties
This variable is used to specify extra properties of the current
completion command. It is intended to be let-bound by specialized
completion commands. Its value should be a list of property and value
pairs. The following properties are supported:
@table @code
@item :category
The value should be a symbol describing what kind of text the
completion function is trying to complete. If the symbol matches one
of the keys in @code{completion-category-overrides} described above,
the usual completion behavior is overridden.
@item :annotation-function
The value should be a function to add annotations in the completions
buffer. This function must accept one argument, a completion, and
should either return @code{nil} or a string to be displayed next to
the completion. Unless this function puts own face on the annotation
suffix string, the @code{completions-annotations} face is added by
default to that string.
@item :affixation-function
The value should be a function to add prefixes and suffixes to
completions. This function must accept one argument, a list of
completions, and should return a list of annotated completions. Each
element of the returned list must be a three-element list, the
completion, a prefix string, and a suffix string. This function takes
priority over @code{:annotation-function}.
@item :group-function
The function to group completions.
@item :display-sort-function
The function to sort entries in the @file{*Completions*} buffer.
@item :cycle-sort-function
The function to sort entries when cycling.
@item :exit-function
The value should be a function to run after performing completion.
The function should accept two arguments, @var{string} and
@var{status}, where @var{string} is the text to which the field was
completed, and @var{status} indicates what kind of operation happened:
@code{finished} if text is now complete, @code{sole} if the text
cannot be further completed but completion is not finished, or
@code{exact} if the text is a valid completion but may be further
completed.
@end table
@end defvar
2009-03-18 04:01:05 +00:00
2007-09-06 04:25:08 +00:00
@node Programmed Completion
@subsection Programmed Completion
@cindex programmed completion
Sometimes it is not possible or convenient to create an alist or
an obarray containing all the intended possible completions ahead
of time. In such a case, you can supply your own function to compute
the completion of a given string. This is called @dfn{programmed
completion}. Emacs uses programmed completion when completing file
names (@pxref{File Name Completion}), among many other cases.
2007-09-06 04:25:08 +00:00
To use this feature, pass a function as the @var{collection}
argument to @code{completing-read}. The function
2007-09-06 04:25:08 +00:00
@code{completing-read} arranges to pass your completion function along
to @code{try-completion}, @code{all-completions}, and other basic
completion functions, which will then let your function do all
the work.
2007-09-06 04:25:08 +00:00
The completion function should accept three arguments:
@itemize @bullet
@item
The string to be completed.
@item
A predicate function with which to filter possible matches, or
@code{nil} if none. The function should call the predicate for each
possible match, and ignore the match if the predicate returns
@code{nil}.
2007-09-06 04:25:08 +00:00
@item
A flag specifying the type of completion operation to perform; see
@ref{Basic Completion}, for the details of those operations. This
2014-04-08 03:33:48 -07:00
flag may be one of the following values.
2007-09-06 04:25:08 +00:00
@table @code
@item nil
This specifies a @code{try-completion} operation. The function should
return @code{nil} if there are no matches; it should return @code{t}
if the specified string is a unique and exact match; and it should
return the longest common prefix substring of all matches otherwise.
@item t
This specifies an @code{all-completions} operation. The function
2007-09-06 04:25:08 +00:00
should return a list of all possible completions of the specified
string.
@item lambda
This specifies a @code{test-completion} operation. The function
should return @code{t} if the specified string is an exact match for
some completion alternative; @code{nil} otherwise.
@item (boundaries . @var{suffix})
This specifies a @code{completion-boundaries} operation. The function
should return @code{(boundaries @var{start} . @var{end})}, where
@var{start} is the position of the beginning boundary in the specified
string, and @var{end} is the position of the end boundary in
@var{suffix}.
If a Lisp program returns nontrivial boundaries, it should make sure that the
@code{all-completions} operation is consistent with them. The
completions returned by @code{all-completions} should only pertain to
the piece of the prefix and suffix covered by the completion
boundaries. @xref{Basic Completion}, for the precise expected semantics
of completion boundaries.
@cindex completion metadata
@item metadata
This specifies a request for information about the state of the
current completion. The return value should have the form
@code{(metadata . @var{alist})}, where @var{alist} is an alist whose
elements are described below.
@end table
@noindent
If the flag has any other value, the completion function should return
@code{nil}.
2007-09-06 04:25:08 +00:00
@end itemize
The following is a list of metadata entries that a completion function
may return in response to a @code{metadata} flag argument:
@table @code
@cindex @code{category}, in completion
@cindex completion category
@item category
The value should be a symbol describing what kind of text the
completion function is trying to complete. If the symbol matches one
of the keys in @code{completion-category-overrides}, the usual
completion behavior is overridden. @xref{Completion Variables}.
@cindex @code{annotation-function}, in completion
@item annotation-function
The value should be a function for @dfn{annotating} completions. The
function should take one argument, @var{string}, which is a possible
completion. It should return a string, which is displayed after the
completion @var{string} in the @file{*Completions*} buffer.
Unless this function puts own face on the annotation suffix string,
the @code{completions-annotations} face is added by default to
that string.
@cindex @code{affixation-function}, in completion
@item affixation-function
The value should be a function for adding prefixes and suffixes to
completions. The function should take one argument,
@var{completions}, which is a list of possible completions. It should
return such a list of @var{completions} where each element contains a list
of three elements: a completion, a prefix which is displayed before
the completion string in the @file{*Completions*} buffer, and
a suffix displayed after the completion string. This function
takes priority over @code{annotation-function}.
@cindex @code{group-function}, in completion
(completing-read): Add `group-function` to the completion metadata A completion table can specify a `group-function` in its metadata. The group function takes two arguments, a completion candidate and a transform argument. The group function is used to group the candidates after sorting and to enhance the completion UI with group titles. If the transform argument is nil, the function must return the title of the group to which the completion candidate belongs. The function may also return nil if the candidate does not belong to a group. If the transform argument is non-nil, the function must return the transformed candidate. For example, the transformation allows to remove a redundant part of the candidate, which is then displayed in the title. The grouping functionality is guarded by the customizable variable `completions-group` and turned off by default for the *Completions* buffer. The specific form of the `group-function` has been chosen in order to allow allocation-free grouping. This is important for completion UIs, which continously update the displayed set of candidates (Icomplete, Vertico, Ivy, etc.). Only when the transform argument is non-nil the candidate transformation is performed, which may involve a string allocation as done in the function `xref--completing-read-group`. The function `xref-show-definitions-completing-read` makes use of the `group-function`, by moving the file name prefix to the title. If grouping is enabled, the *Completions* are displayed as "linenum:summary" instead of "file:linenum:summary". This way the *Completions* buffer resembles the *Occur* buffer. * doc/lispref/minibuf.texi: Add documentation. * lisp/minibuffer.el (completion-metadata): Describe the `group-function` in the docstring. (completions-group): Add guard variable, off by default. (completions-group-format): Add variable defining the format string for the group titles. (completions-group-title): Add face used by `completions-group-format` for the group titles. (completions-group-separator): Add face used by `completions-group-format` for the group separator lines. (minibuffer--group-by): New grouping function. (minibuffer-completion-help): Use it. (display-completion-list): Add optional GROUP-FUN argument. (completion--insert-strings): Add optional GROUP-FUN argument. Insert group titles if `completions-format` is `one-column`. Transform each candidate with the GROUP-FUN. Attach the untransformed candidate to the property `completion--string`. * lisp/simple.el (choose-completion): Retrieve the untransformed completion candidate from the property `completion--string`. * lisp/progmodes/xref.el: (xref--completing-read-group): New grouping function. (xref-show-definitions-completing-read): Use it.
2021-04-25 13:07:29 +02:00
@item group-function
The value should be a function for grouping the completion candidates.
The function must take two arguments, @var{completion}, which is a
completion candidate and @var{transform}, which is a boolean flag. If
@var{transform} is @code{nil}, the function must return the group
title of the group to which the candidate belongs. The returned title
can also be @code{nil}. Otherwise the function must return the
transformed candidate. The transformation can for example remove a
redundant prefix, which is displayed in the group title.
@cindex @code{display-sort-function}, in completion
@item display-sort-function
The value should be a function for sorting completions. The function
should take one argument, a list of completion strings, and return a
sorted list of completion strings. It is allowed to alter the input
list destructively.
@cindex @code{cycle-sort-function}, in completion
@item cycle-sort-function
The value should be a function for sorting completions, when
@code{completion-cycle-threshold} is non-@code{nil} and the user is
cycling through completion alternatives. @xref{Completion Options,,,
emacs, The GNU Emacs Manual}. Its argument list and return value are
the same as for @code{display-sort-function}.
@end table
@defun completion-table-dynamic function &optional switch-buffer
This function is a convenient way to write a function that can act as
a programmed completion function. The argument @var{function} should
be a function that takes one argument, a string, and returns a
completion table (@pxref{Basic Completion}) containing all the
possible completions. The table returned by @var{function} can also
include elements that don't match the string argument; they are
automatically filtered out by @code{completion-table-dynamic}. In
particular, @var{function} can ignore its argument and return a full
list of all possible completions. You can think of
@code{completion-table-dynamic} as a transducer between @var{function}
2007-09-06 04:25:08 +00:00
and the interface for programmed completion functions.
If the optional argument @var{switch-buffer} is non-@code{nil}, and
completion is performed in the minibuffer, @var{function} will be
called with current buffer set to the buffer from which the minibuffer
was entered.
The return value of @code{completion-table-dynamic} is a function that
can be used as the 2nd argument to @code{try-completion} and
@code{all-completions}. Note that this function will always return
empty metadata and trivial boundaries.
@end defun
2007-09-06 04:25:08 +00:00
@defun completion-table-with-cache function &optional ignore-case
This is a wrapper for @code{completion-table-dynamic} that saves the
last argument-result pair. This means that multiple lookups with the
same argument only need to call @var{function} once. This can be useful
when a slow operation is involved, such as calling an external process.
@end defun
@node Completion in Buffers
@subsection Completion in Ordinary Buffers
@cindex inline completion
@findex completion-at-point
Although completion is usually done in the minibuffer, the
completion facility can also be used on the text in ordinary Emacs
buffers. In many major modes, in-buffer completion is performed by
the @kbd{C-M-i} or @kbd{M-@key{TAB}} command, bound to
@code{completion-at-point}. @xref{Symbol Completion,,, emacs, The GNU
Emacs Manual}. This command uses the abnormal hook variable
@code{completion-at-point-functions}:
@defvar completion-at-point-functions
The value of this abnormal hook should be a list of functions, which
are used to compute a completion table (@pxref{Basic Completion}) for
completing the text at point. It can be used by major modes to
provide mode-specific completion tables (@pxref{Major Mode
Conventions}).
When the command @code{completion-at-point} runs, it calls the
functions in the list one by one, without any argument. Each function
should return @code{nil} unless it can and wants to take
responsibility for the completion data for the text at point.
Otherwise it should return a list of the following form:
@example
(@var{start} @var{end} @var{collection} . @var{props})
@end example
@noindent
@var{start} and @var{end} delimit the text to complete (which should
enclose point). @var{collection} is a completion table for completing
that text, in a form suitable for passing as the second argument to
@code{try-completion} (@pxref{Basic Completion}); completion
alternatives will be generated from this completion table in the usual
way, via the completion styles defined in @code{completion-styles}
(@pxref{Completion Variables}). @var{props} is a property list for
additional information; any of the properties in
@code{completion-extra-properties} are recognized (@pxref{Completion
Variables}), as well as the following additional ones:
@table @code
@item :predicate
The value should be a predicate that completion candidates need to
satisfy.
@item :exclusive
If the value is @code{no}, then if the completion table fails to match
the text at point, @code{completion-at-point} moves on to the
next function in @code{completion-at-point-functions} instead of
reporting a completion failure.
@end table
The functions on this hook should generally return quickly, since they
may be called very often (e.g., from @code{post-command-hook}).
Supplying a function for @var{collection} is strongly recommended if
generating the list of completions is an expensive operation. Emacs
may internally call functions in @code{completion-at-point-functions}
many times, but care about the value of @var{collection} for only some
of these calls. By supplying a function for @var{collection}, Emacs
can defer generating completions until necessary. You can use
@code{completion-table-dynamic} to create a wrapper function:
@smallexample
;; Avoid this pattern.
(let ((beg ...) (end ...) (my-completions (my-make-completions)))
(list beg end my-completions))
;; Use this instead.
(let ((beg ...) (end ...))
(list beg
end
(completion-table-dynamic
(lambda (_)
(my-make-completions)))))
@end smallexample
Additionally, the @var{collection} should generally not be
pre-filtered based on the current text between @var{start} and
@var{end}, because that is the responsibility of the caller of
@code{completion-at-point-functions} to do that according to the
completion styles it decides to use.
A function in @code{completion-at-point-functions} may also return a
function instead of a list as described above. In that case, that
returned function is called, with no argument, and it is entirely
responsible for performing the completion. We discourage this usage;
it is only intended to help convert old code to using
@code{completion-at-point}.
The first function in @code{completion-at-point-functions} to return a
non-@code{nil} value is used by @code{completion-at-point}. The
remaining functions are not called. The exception to this is when
there is an @code{:exclusive} specification, as described above.
@end defvar
The following function provides a convenient way to perform
completion on an arbitrary stretch of text in an Emacs buffer:
@defun completion-in-region start end collection &optional predicate
This function completes the text in the current buffer between the
positions @var{start} and @var{end}, using @var{collection}. The
argument @var{collection} has the same meaning as in
@code{try-completion} (@pxref{Basic Completion}).
This function inserts the completion text directly into the current
buffer. Unlike @code{completing-read} (@pxref{Minibuffer
Completion}), it does not activate the minibuffer.
For this function to work, point must be somewhere between @var{start}
and @var{end}.
@end defun
2007-09-06 04:25:08 +00:00
@node Yes-or-No Queries
@section Yes-or-No Queries
@cindex asking the user questions
@cindex querying the user
@cindex yes-or-no questions
This section describes functions used to ask the user a yes-or-no
question. The function @code{y-or-n-p} can be answered with a single
character; it is useful for questions where an inadvertent wrong answer
will not have serious consequences. @code{yes-or-no-p} is suitable for
more momentous questions, since it requires three or four characters to
answer.
If either of these functions is called in a command that was
invoked using the mouse or some other window-system gesture, or in a
command invoked via a menu, then they use a dialog box or pop-up menu
to ask the question if dialog boxes are supported. Otherwise, they
use keyboard input. You can force use either of the mouse or of
keyboard input by binding @code{last-nonmenu-event} to a suitable
value around the call---bind it to @code{t} to force keyboard
interaction, and to a list to force dialog boxes.
2007-09-06 04:25:08 +00:00
Both @code{yes-or-no-p} and @code{y-or-n-p} use the minibuffer.
2007-09-06 04:25:08 +00:00
@defun y-or-n-p prompt
This function asks the user a question, expecting input in the minibuffer.
It returns @code{t} if the user types @kbd{y}, @code{nil} if the user
types @kbd{n}. This function also accepts @key{SPC} to mean yes and
@key{DEL} to mean no. It accepts @kbd{C-]} and @kbd{C-g} to quit,
because the question uses the minibuffer and for that reason the user
might try to use @kbd{C-]} to get out. The answer is a single
character, with no @key{RET} needed to terminate it. Upper and lower
case are equivalent.
``Asking the question'' means printing @var{prompt} in the minibuffer,
2007-09-06 04:25:08 +00:00
followed by the string @w{@samp{(y or n) }}. If the input is not one of
the expected answers (@kbd{y}, @kbd{n}, @kbd{@key{SPC}},
@kbd{@key{DEL}}, or something that quits), the function responds
@samp{Please answer y or n.}, and repeats the request.
If @var{prompt} is a non-empty string, and it ends with a non-space
character, a @samp{SPC} character will be appended to it.
This function actually uses the minibuffer, but does not allow editing
of the answer. The cursor moves to the minibuffer while the question
is being asked.
2007-09-06 04:25:08 +00:00
The answers and their meanings, even @samp{y} and @samp{n}, are not
hardwired, and are specified by the keymap @code{query-replace-map}
(@pxref{Search and Replace}). In particular, if the user enters the
special responses @code{recenter}, @code{scroll-up},
@code{scroll-down}, @code{scroll-other-window}, or
@code{scroll-other-window-down} (respectively bound to @kbd{C-l},
@kbd{C-v}, @kbd{M-v}, @kbd{C-M-v} and @kbd{C-M-S-v} in
@code{query-replace-map}), this function performs the specified window
recentering or scrolling operation, and poses the question again.
If you bind @code{help-form} (@pxref{Help Functions}) to
a non-@code{nil} value while calling @code{y-or-n-p}, then pressing
@code{help-char} causes it to evaluate @code{help-form} and display
the result. @code{help-char} is automatically added to @var{prompt}.
2007-09-06 04:25:08 +00:00
@end defun
@defun y-or-n-p-with-timeout prompt seconds default
2007-09-06 04:25:08 +00:00
Like @code{y-or-n-p}, except that if the user fails to answer within
@var{seconds} seconds, this function stops waiting and returns
@var{default}. It works by setting up a timer; see @ref{Timers}.
The argument @var{seconds} should be a number.
2007-09-06 04:25:08 +00:00
@end defun
@defun yes-or-no-p prompt
This function asks the user a question, expecting input in the
minibuffer. It returns @code{t} if the user enters @samp{yes},
@code{nil} if the user types @samp{no}. The user must type @key{RET} to
finalize the response. Upper and lower case are equivalent.
@vindex yes-or-no-prompt
@code{yes-or-no-p} starts by displaying @var{prompt} in the
minibuffer, followed by the value of @code{yes-or-no-prompt} @w{(default
@samp{(yes or no) })}. The user must type one of the expected
responses; otherwise, the function responds @w{@samp{Please answer yes or
no.}}, waits about two seconds and repeats the request.
2007-09-06 04:25:08 +00:00
If @var{prompt} is a non-empty string, and it ends with a non-space
character, a @samp{SPC} character will be appended to it.
2007-09-06 04:25:08 +00:00
@code{yes-or-no-p} requires more work from the user than
@code{y-or-n-p} and is appropriate for more crucial decisions.
Here is an example:
@smallexample
@group
(yes-or-no-p "Do you really want to remove everything? ")
2007-09-06 04:25:08 +00:00
;; @r{After evaluation of the preceding expression,}
;; @r{the following prompt appears,}
;; @r{with an empty minibuffer:}
@end group
@group
---------- Buffer: minibuffer ----------
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------
@end group
@end smallexample
@noindent
If the user first types @kbd{y @key{RET}}, which is invalid because this
function demands the entire word @samp{yes}, it responds by displaying
these prompts, with a brief pause between them:
@smallexample
@group
---------- Buffer: minibuffer ----------
Please answer yes or no.
Do you really want to remove everything? (yes or no)
---------- Buffer: minibuffer ----------
@end group
@end smallexample
@end defun
@node Multiple Queries
@section Asking Multiple-Choice Questions
This section describes facilities for asking the user more complex
questions or several similar questions.
2007-09-06 04:25:08 +00:00
@cindex multiple yes-or-no questions
2007-09-06 04:25:08 +00:00
When you have a series of similar questions to ask, such as ``Do you
want to save this buffer?'' for each buffer in turn, you should use
2007-09-06 04:25:08 +00:00
@code{map-y-or-n-p} to ask the collection of questions, rather than
asking each question individually. This gives the user certain
convenient facilities such as the ability to answer the whole series at
once.
@defun map-y-or-n-p prompter actor list &optional help action-alist no-cursor-in-echo-area
This function asks the user a series of questions, reading a
single-character answer in the echo area for each one.
The value of @var{list} specifies the objects to ask questions about.
It should be either a list of objects or a generator function. If it
is a function, it will be called with no arguments, and should return
either the next object to ask about, or @code{nil}, meaning to stop
asking questions.
2007-09-06 04:25:08 +00:00
The argument @var{prompter} specifies how to ask each question. If
@var{prompter} is a string, the question text is computed like this:
@example
(format @var{prompter} @var{object})
@end example
@noindent
where @var{object} is the next object to ask about (as obtained from
@var{list}). @xref{Formatting Strings}, for more information about
@code{format}.
2007-09-06 04:25:08 +00:00
If @var{prompter} is not a string, it should be a function of one
argument (the object to ask about) and should return the question text
for that object. If the value @var{prompter} returns is a string,
that is the question to ask the user. The function can also return
@code{t}, meaning to act on this object without asking the user, or
@code{nil}, which means to silently ignore this object.
2007-09-06 04:25:08 +00:00
The argument @var{actor} says how to act on the objects for which the
user answers yes. It should be a function of one argument, and will
be called with each object from @var{list} for which the user answers
yes.
2007-09-06 04:25:08 +00:00
If the argument @var{help} is given, it should be a list of this form:
@example
(@var{singular} @var{plural} @var{action})
@end example
@noindent
where @var{singular} is a string containing a singular noun that
describes a single object to be acted on, @var{plural} is the
2007-09-06 04:25:08 +00:00
corresponding plural noun, and @var{action} is a transitive verb
describing what @var{actor} does with the objects.
2007-09-06 04:25:08 +00:00
If you don't specify @var{help}, it defaults to the list
@w{@code{("object" "objects" "act on")}}.
2007-09-06 04:25:08 +00:00
Each time a question is asked, the user can answer as follows:
@table @asis
@item @kbd{y}, @kbd{Y}, or @kbd{@key{SPC}}
act on the object
@item @kbd{n}, @kbd{N}, or @kbd{@key{DEL}}
skip the object
@item @kbd{!}
act on all the following objects
@item @kbd{@key{ESC}} or @kbd{q}
exit (skip all following objects)
@item @kbd{.} (period)
act on the object and then exit
@item @kbd{C-h}
get help
@end table
@noindent
These are the same answers that @code{query-replace} accepts. The
keymap @code{query-replace-map} defines their meaning for
@code{map-y-or-n-p} as well as for @code{query-replace}; see
@ref{Search and Replace}.
2007-09-06 04:25:08 +00:00
You can use @var{action-alist} to specify additional possible answers
and what they mean. If provided, @var{action-alist} should be an
alist whose elements are of the form @w{@code{(@var{char}
@var{function} @var{help})}}. Each of the alist elements defines one
additional answer. In each element, @var{char} is a character (the
2007-09-06 04:25:08 +00:00
answer); @var{function} is a function of one argument (an object from
@var{list}); and @var{help} is a string. When the user responds with
@var{char}, @code{map-y-or-n-p} calls @var{function}. If it returns
non-@code{nil}, the object is considered to have been acted upon, and
@code{map-y-or-n-p} advances to the next object in @var{list}. If it
returns @code{nil}, the prompt is repeated for the same object. If
the user requests help, the text in @var{help} is used to describe
these additional answers.
2007-09-06 04:25:08 +00:00
Normally, @code{map-y-or-n-p} binds @code{cursor-in-echo-area} while
prompting. But if @var{no-cursor-in-echo-area} is non-@code{nil}, it
does not do that.
If @code{map-y-or-n-p} is called in a command that was invoked using
the mouse or some other window-system gesture, or a command invoked
via a menu, then it uses a dialog box or pop-up menu to ask the
question if dialog boxes are supported. In this case, it does not use
keyboard input or the echo area. You can force use either of the
mouse or of keyboard input by binding @code{last-nonmenu-event} to a
suitable value around the call---bind it to @code{t} to force keyboard
interaction, and to a list to force dialog boxes.
2007-09-06 04:25:08 +00:00
The return value of @code{map-y-or-n-p} is the number of objects acted on.
@end defun
@c FIXME An example of this would be more useful than all the
@c preceding examples of simple things.
2007-09-06 04:25:08 +00:00
If you need to ask the user a question that might have more than just
2 answers, use @code{read-answer}.
@defun read-answer question answers
@vindex read-answer-short
This function prompts the user with text in @var{question}, which
should end in the @samp{SPC} character. The function includes in the
prompt the possible responses in @var{answers} by appending them to
the end of @var{question}. The possible responses are provided in
@var{answers} as an alist whose elements are of the following form:
@lisp
(@var{long-answer} @var{short-answer} @var{help-message})
@end lisp
@noindent
where @var{long-answer} is the complete text of the user response, a
string; @var{short-answer} is a short form of the same response, a
single character or a function key; and @var{help-message} is the text
that describes the meaning of the answer. If the variable
@code{read-answer-short} is non-@code{nil}, the prompt will show the
short variants of the possible answers and the user is expected to
type the single characters/keys shown in the prompt; otherwise the
prompt will show the long variants of the answers, and the user is
expected to type the full text of one of the answers and end by
pressing @key{RET}. If @code{use-dialog-box} is non-@code{nil}, and
this function was invoked by mouse events, the question and the
answers will be displayed in a GUI dialog box.
The function returns the text of the @var{long-answer} selected by the
user, regardless of whether long or short answers were shown in the
prompt and typed by the user.
Here is an example of using this function:
@lisp
(let ((read-answer-short t))
(read-answer "Foo "
'(("yes" ?y "perform the action")
("no" ?n "skip to the next")
("all" ?! "perform for the rest without more questions")
("help" ?h "show help")
("quit" ?q "exit"))))
@end lisp
@end defun
@defun read-char-from-minibuffer prompt &optional chars history
This function uses the minibuffer to read and return a single
character. Optionally, it ignores any input that is not a member of
@var{chars}, a list of accepted characters. The @var{history}
argument specifies the history list symbol to use; if it is omitted or
@code{nil}, this function doesn't use the history.
If you bind @code{help-form} (@pxref{Help Functions}) to
a non-@code{nil} value while calling @code{read-char-from-minibuffer},
then pressing @code{help-char} causes it to evaluate @code{help-form}
and display the result.
@end defun
2007-09-06 04:25:08 +00:00
@node Reading a Password
@section Reading a Password
@cindex passwords, reading
To read a password to pass to another program, you can use the
function @code{read-passwd}.
@vindex read-hide-char
2007-09-06 04:25:08 +00:00
@defun read-passwd prompt &optional confirm default
This function reads a password, prompting with @var{prompt}. It does
not echo the password as the user types it; instead, it echoes
@samp{*} for each character in the password. If you want to apply
another character to hide the password, let-bind the variable
@code{read-hide-char} with that character.
2007-09-06 04:25:08 +00:00
The optional argument @var{confirm}, if non-@code{nil}, says to read the
password twice and insist it must be the same both times. If it isn't
the same, the user has to type it over and over until the last two
times match.
The optional argument @var{default} specifies the default password to
return if the user enters empty input. If @var{default} is @code{nil},
then @code{read-passwd} returns the null string in that case.
This function uses @code{read-passwd-mode}, a minor mode. It binds two
keys in the minbuffer: @kbd{C-u} (@code{delete-minibuffer-contents})
deletes the password, and @kbd{TAB}
(@code{read-passwd--toggle-visibility}) toggles the visibility of the
password. There is also an additional icon in the mode-line's
@code{global-mode-string}. Clicking on this icon with @key{mouse-1}
toggles the visibility of the password as well.
2007-09-06 04:25:08 +00:00
@end defun
@node Minibuffer Commands
@section Minibuffer Commands
This section describes some commands meant for use in the
minibuffer.
@deffn Command exit-minibuffer
This command exits the active minibuffer. It is normally bound to
Fix incompleteness in the implementation of minibuffer-follows-selected-frame In particular, add a new value to the variable, and fix several bugs apparent with the implementation up till now. * doc/emacs/mini.texi (Basic Minibuffer): Add a description of the new non-nil, non-t value of minibuffer-follows-selected-frame. * doc/emacs/trouble.texi (Quitting): Add a description of how C-g handles recursive minibuffers when typed in one which isn't the most nested. * doc/lispref/minibuf.texi (Intro to Minibuffers): Add an @dfn for "active minibuffer". (Minibuffer Commands): Document that exit-minibuffer throws an error when not invoked from the innermost Minibuffer. (Recursive Mini): Amend the description of the visibility of outer level minibuffers. (Minibuffer Misc): In the description of the minibuffer hooks, replace "the minibuffer" with "a minibuffer". * etc/NEWS (Entry announcing minibuffer-follows-selected-frame): Add a description of the new non-nil, non-t value. * lisp/cus-start.el (top level): make the customize entry for minibuffer-follows-selected-frame a choice between three entries. * lisp/minibuffer.el (exit-minibuffer): throw an error when we're not in the most nested minibuffer. (top level): Bind C-g to abort-minibuffers in minibuffer-local-map. * lisp/window.el (window-deletable-p): return the symbol `frame' when (amongst other things) minibuffer-follows-selected-frame is t. * src/eval.c (internal_catch): Add a mechanism to (throw 'exit t) repeatedly when the throw currently being processed doesn't terminate the current minibuffer. * src/lisp.h (this_minibuffer_depth): New extern declaration (minibuf_level): extern declaration moved here from window.h. * src/minibuf.c (minibuffer_follows_frame, minibuf_stays_put) (minibuf_moves_frame_when_opened): New and amended functions to query the value of minibuffer-follows-selected-frame. (choose_minibuf_frame): check (minibuf > 1) in place of (minibufer > 0) at a particular place. At another place, check that an alleged frame is so and is live. Before selecting a non-miniwindow on a different frame, ensure it really is a different frame. (move_minibuffer_onto_frame): Stack up all recursive minibuffers on the target frame. Check the minibuf_window isn't in the old frame before setting that frame's miniwindow to an inactive minibuffer. (Finnermost_minibuffer_p, Fabort_minibuffers): New primitives. (this_minibuffer_depth): New function. (read_minibuf): Record the calling frame in a variable, and switch back to it after the recursive edit has terminated normally, using select-frame-set-input-focus. Stack up all the recursive minibuffers on the miniwindow where a new minibuffer is being opened. After the recursive edit, switch the selected window away from the expired minibuffer's window. (nth_minibuffer): New function. (minibuffer-follows-selected-frame): Change from a DEFVAR_BOOL to a DEFVAR_LISP. * src/window.c (decode_next_window_args): Set *minibuf to w's mini-window's content when that content is a minibuffer. * src/window.h (minibuf_level) Declaration moved from here to lisp.h.
2021-01-10 20:32:40 +00:00
keys in minibuffer local keymaps. The command throws an error if the
current buffer is a minibuffer, but not the active minibuffer.
2007-09-06 04:25:08 +00:00
@end deffn
@deffn Command self-insert-and-exit
This command exits the active minibuffer after inserting the last
character typed on the keyboard (found in @code{last-command-event};
2007-09-06 04:25:08 +00:00
@pxref{Command Loop Info}).
@end deffn
@deffn Command previous-history-element n
This command replaces the minibuffer contents with the value of the
@var{n}th previous (older) history element.
@end deffn
@deffn Command next-history-element n
This command replaces the minibuffer contents with the value of the
@var{n}th more recent history element. The position in the history
can go beyond the current position and invoke ``future history''
(@pxref{Text from Minibuffer}).
2007-09-06 04:25:08 +00:00
@end deffn
@deffn Command previous-matching-history-element pattern n
This command replaces the minibuffer contents with the value of the
@var{n}th previous (older) history element that matches @var{pattern} (a
regular expression).
@end deffn
@deffn Command next-matching-history-element pattern n
This command replaces the minibuffer contents with the value of the
@var{n}th next (newer) history element that matches @var{pattern} (a
regular expression).
@end deffn
@deffn Command previous-complete-history-element n
This command replaces the minibuffer contents with the value of the
@var{n}th previous (older) history element that completes the current
contents of the minibuffer before the point.
@end deffn
@deffn Command next-complete-history-element n
This command replaces the minibuffer contents with the value of the
@var{n}th next (newer) history element that completes the current
contents of the minibuffer before the point.
@end deffn
@deffn Command goto-history-element nabs
This function puts element of the minibuffer history in the
minibuffer. The argument @var{nabs} specifies the absolute history
position in descending order, where 0 means the current element and a
positive number @var{n} means the @var{n}th previous element. NABS
being a negative number -@var{n} means the @var{n}th entry of ``future
history''. When this function reaches the end of the default values
provided by @code{read-from-minibuffer} (@pxref{Text from Minibuffer})
and @code{completing-read} (@pxref{Minibuffer Completion}), it adds
the completion candidates to ``future history'', see @ref{Minibuffer
History,, minibuffer-default-add-function}.
@end deffn
2007-09-06 04:25:08 +00:00
@node Minibuffer Windows
@section Minibuffer Windows
@cindex minibuffer windows
These functions access and select minibuffer windows, test whether they
are active and control how they get resized.
2007-09-06 04:25:08 +00:00
@defun minibuffer-window &optional frame
@anchor{Definition of minibuffer-window}
This function returns the minibuffer window used for frame @var{frame}.
If @var{frame} is @code{nil}, that stands for the selected frame.
Note that the minibuffer window used by a frame need not be part of that
2007-09-06 04:25:08 +00:00
frame---a frame that has no minibuffer of its own necessarily uses some
other frame's minibuffer window. The minibuffer window of a
minibuffer-less frame can be changed by setting that frame's
@code{minibuffer} frame parameter (@pxref{Buffer Parameters}).
2007-09-06 04:25:08 +00:00
@end defun
@defun set-minibuffer-window window
This function specifies @var{window} as the minibuffer window to use.
This affects where the minibuffer is displayed if you put text in it
without invoking the usual minibuffer commands. It has no effect on the
usual minibuffer input functions because they all start by choosing the
minibuffer window according to the selected frame.
2007-09-06 04:25:08 +00:00
@end defun
@defun window-minibuffer-p &optional window
This function returns @code{t} if @var{window} is a minibuffer window.
@var{window} defaults to the selected window.
@end defun
The following function returns the window showing the currently active
minibuffer.
@defun active-minibuffer-window
This function returns the window of the currently active minibuffer, or
@code{nil} if there is no active minibuffer.
2007-09-06 04:25:08 +00:00
@end defun
It is not sufficient to determine whether a given window shows the
currently active minibuffer by comparing it with the result of
@code{(minibuffer-window)}, because there can be more than one
minibuffer window if there is more than one frame.
2007-09-06 04:25:08 +00:00
@defun minibuffer-window-active-p window
This function returns non-@code{nil} if @var{window} shows the currently
active minibuffer.
2007-09-06 04:25:08 +00:00
@end defun
The following two options control whether minibuffer windows are resized
automatically and how large they can get in the process.
@defopt resize-mini-windows
This option specifies whether minibuffer windows are resized
automatically. The default value is @code{grow-only}, which means that
a minibuffer window by default expands automatically to accommodate the
text it displays and shrinks back to one line as soon as the minibuffer
gets empty. If the value is @code{t}, Emacs will always try to fit the
height of a minibuffer window to the text it displays (with a minimum of
one line). If the value is @code{nil}, a minibuffer window never
changes size automatically. In that case the window resizing commands
(@pxref{Resizing Windows}) can be used to adjust its height.
@end defopt
@defopt max-mini-window-height
This option provides a maximum height for resizing minibuffer windows
automatically. A floating-point number specifies the maximum height
as a fraction of the frame's height; an integer specifies the maximum
height in units of the frame's canonical character height
(@pxref{Frame Font}). The default value is 0.25.
@end defopt
Note that the values of the above two variables take effect at display
time, so let-binding them around code which produces echo-area messages
will not work. If you want to prevent resizing of minibuffer windows
when displaying long messages, bind the @code{message-truncate-lines}
variable instead (@pxref{Echo Area Customization}).
The option @code{resize-mini-windows} does not affect the behavior of
minibuffer-only frames (@pxref{Frame Layout}). The following option
Correct many instances of ``allows to'' Refer to: lists.gnu.org/archive/html/emacs-devel/2016-01/msg01598.html * doc/emacs/frames.texi (Tab Bars): * doc/emacs/maintaining.texi (Tag Syntax): * doc/lispref/compile.texi (Native Compilation): * doc/lispref/control.texi (Destructuring with pcase Patterns): * doc/lispref/display.texi (Overlay Properties, Glyphless Chars): * doc/lispref/frames.texi (Size Parameters, Layout Parameters) (Child Frames): * doc/lispref/minibuf.texi (Minibuffer Windows): * doc/lispref/processes.texi (Asynchronous Processes): * doc/lispref/windows.texi (Precedence of Action Functions) (Mouse Window Auto-selection): * doc/misc/autotype.texi (Autoinserting): * doc/misc/efaq.texi (New in Emacs 28): * doc/misc/idlwave.texi (Examining Variables): * doc/misc/ses.texi (Quick Tutorial, Standard formula functions): * doc/misc/tramp.texi (External methods, FUSE-based methods): * lisp/comint.el (comint-insert-previous-argument-from-end): * lisp/emacs-lisp/rmc.el (read-multiple-choice): * lisp/gnus/gnus-util.el: * lisp/mail/rmailsum.el (rmail-summary-progressively-narrow): * lisp/mouse.el (mouse-drag-track): * lisp/net/tramp-sudoedit.el: * lisp/obsolete/landmark.el: * lisp/org/org.el (org-startup-truncated, org-file-apps): * lisp/pixel-scroll.el (pixel-scroll-precision-mode): * lisp/progmodes/cperl-mode.el (cperl-praise): * lisp/simple.el (yank-from-kill-ring, kill-visual-line): * lisp/window.el (delete-window-choose-selected): * src/ChangeLog.11: * src/xdisp.c (syms_of_xdisp): * src/xterm.c (handle_one_xevent): The construct ``allows to <infinitive>'' is not English inasmuch as no direct object to ``allows'' is provided. Correct and rephrase each instance of such a construct within our documentation and commentary.
2023-09-10 09:33:50 +08:00
enables automatically resizing such frames as well.
@defopt resize-mini-frames
If this is @code{nil}, minibuffer-only frames are never resized
automatically.
If this is a function, that function is called with the
minibuffer-only frame to be resized as sole argument. At the time
this function is called, the buffer of the minibuffer window of that
frame is the buffer whose contents will be shown the next time that
window is redisplayed. The function is expected to fit the frame to
the buffer in some appropriate way.
Any other non-@code{nil} value means to resize minibuffer-only frames by
calling @code{fit-mini-frame-to-buffer}, a function that behaves like
@code{fit-frame-to-buffer} (@pxref{Resizing Windows}) but does not strip
leading or trailing empty lines from the buffer text.
@end defopt
2007-09-06 04:25:08 +00:00
@node Minibuffer Contents
@section Minibuffer Contents
Improve indexing on the chapter/section/subsection levels. doc/lispref/windows.texi (Recombining Windows): Index subject of sections. doc/lispref/variables.texi (Variables with Restricted Values) (Generalized Variables): Index subject of sections. doc/lispref/text.texi (Buffer Contents, Examining Properties) (Changing Properties, Property Search, Substitution): Index subject of sections. doc/lispref/syntax.texi (Motion and Syntax, Parsing Expressions) (Motion via Parsing, Position Parse, Control Parsing): Index subject of sections. doc/lispref/strings.texi (Predicates for Strings, Creating Strings) (Modifying Strings, Text Comparison): Index subject of sections. doc/lispref/searching.texi (Syntax of Regexps, Regexp Special) (Regexp Functions, Regexp Functions): Index subject of sections. doc/lispref/processes.texi (Subprocess Creation, Process Information): Index subject of sections. doc/lispref/positions.texi (Screen Lines): Index subject of sections. doc/lispref/nonascii.texi (Scanning Charsets, Specifying Coding Systems): Index subject of sections. doc/lispref/minibuf.texi (Text from Minibuffer, Object from Minibuffer) (Multiple Queries, Minibuffer Contents): Index subject of sections. doc/lispref/markers.texi (Predicates on Markers, Creating Markers) (Information from Markers, Moving Markers): Index subject of sections. doc/lispref/macros.texi (Defining Macros, Problems with Macros): Index subject of sections. doc/lispref/loading.texi (Loading Non-ASCII, Where Defined): Index subject of sections. doc/lispref/lists.texi (List-related Predicates, List Variables, Setcar) (Setcdr, Plist Access): Index subject of sections. doc/lispref/keymaps.texi (Controlling Active Maps, Scanning Keymaps) (Modifying Menus): Index subject of sections. doc/lispref/help.texi (Accessing Documentation, Help Functions): Index subject of sections. doc/lispref/hash.texi (Hash Access): Index subject of sections. doc/lispref/functions.texi (Core Advising Primitives) (Advising Named Functions, Porting old advices): Index subject of sections. doc/lispref/frames.texi (Creating Frames, Initial Parameters) (Position Parameters, Buffer Parameters, Minibuffers and Frames) (Pop-Up Menus, Drag and Drop): Index subject of sections. doc/lispref/files.texi (Visiting Functions, Kinds of Files) (Unique File Names): Index subject of sections. doc/lispref/display.texi (Refresh Screen, Echo Area Customization) (Warning Variables, Warning Options, Delayed Warnings) (Temporary Displays, Managing Overlays, Overlay Properties) (Finding Overlays, Size of Displayed Text, Defining Faces) (Attribute Functions, Displaying Faces, Face Remapping) (Basic Faces, Font Lookup, Fontsets, Replacing Specs) (Defining Images, Showing Images): Index subject of sections. doc/lispref/debugging.texi (Debugging, Explicit Debug) (Invoking the Debugger, Excess Open, Excess Close): Index subject of sections. doc/lispref/customize.texi (Defining New Types, Applying Customizations) (Custom Themes): Index subject of sections. doc/lispref/control.texi (Sequencing, Combining Conditions) (Processing of Errors, Cleanups): Index subject of sections. doc/lispref/compile.texi (Eval During Compile): Index subject of sections. doc/lispref/commands.texi (Using Interactive, Distinguish Interactive) (Command Loop Info, Classifying Events, Event Mod) (Invoking the Input Method): Index subject of sections. doc/lispref/buffers.texi (Buffer List, Buffer Gap): Index subject of sections. doc/lispref/backups.texi (Making Backups, Numbered Backups, Backup Names) (Reverting): Index subject of sections. doc/lispref/abbrevs.texi (Abbrev Tables, Defining Abbrevs, Abbrev Files) (Abbrev Expansion, Standard Abbrev Tables, Abbrev Properties) (Abbrev Table Properties): Index subject of sections. doc/lispref/os.texi (Time of Day, Time Conversion, Time Parsing) (Time Calculations, Idle Timers): Index subject of sections.
2014-12-23 20:42:30 +02:00
@cindex access minibuffer contents
@cindex minibuffer contents, accessing
2007-09-06 04:25:08 +00:00
These functions access the minibuffer prompt and contents.
@defun minibuffer-prompt
This function returns the prompt string of the currently active
minibuffer. If no minibuffer is active, it returns @code{nil}.
@end defun
@defun minibuffer-prompt-end
This function returns the current
position of the end of the minibuffer prompt, if a minibuffer is
current. Otherwise, it returns the minimum valid buffer position.
@end defun
@defun minibuffer-prompt-width
This function returns the current display-width of the minibuffer
prompt, if a minibuffer is current. Otherwise, it returns zero.
@end defun
@defun minibuffer-contents
This function returns the editable
contents of the minibuffer (that is, everything except the prompt) as
a string, if a minibuffer is current. Otherwise, it returns the
entire contents of the current buffer.
@end defun
@defun minibuffer-contents-no-properties
This is like @code{minibuffer-contents}, except that it does not copy text
properties, just the characters themselves. @xref{Text Properties}.
@end defun
Some corrections in Elisp manual * doc/lispref/buffers.texi (Read Only Buffers): Describe optional argument POSITION. * doc/lispref/debugging.texi (Error Debugging): `debug-on-signal' is an option. * doc/lispref/display.texi (Refresh Screen): Describe optional argument FRAME of `redraw-frame'. (Attribute Functions): Describe optional argument CHARACTER of `face-font'. (Defining Images): `image-load-path' is an option. (Beeping): `ring-bell-function' is an option. * doc/lispref/frames.texi (Size and Position): The PIXELWISE argument of `set-frame-size' is optional. (Raising and Lowering): The TERMINAL argument of `tty-top-frame' is optional. * doc/lispref/keymaps.texi (Controlling Active Maps): Fix doc of `set-transient-map'. * doc/lispref/minibuf.texi (Text from Minibuffer): `read-regexp-defaults-function' is an option. (Minibuffer Contents): `delete-minibuffer-contents' is a command. * doc/lispref/modes.texi (Mode Line Variables): `mode-line-position' and `mode-line-modes' are variables, not options. * doc/lispref/strings.texi (Creating Strings): The START argument of `substring' is optional. * doc/lispref/text.texi (Buffer Contents): Describe optional argument NO-PROPERTIES of `thing-at-point'. (User-Level Deletion): Both arguments of `delete-trailing-whitespace' are optional. (Margins): Use @key{RET} instead of @kbd{RET}. * doc/lispref/windows.texi (Display Action Functions): Write non-@code{nil} instead of non-nil. (Choosing Window Options): The WINDOW arg of `split-window-sensibly' is optional. (Choosing Window Options): Write non-@code{nil} instead of non-nil. (Window Start and End): Both args of `window-group-end' are optional. * src/buffer.c (Fbarf_if_buffer_read_only): Rename argument POS to POSITION to keep consisteny with doc-string.
2016-02-01 19:01:34 +01:00
@deffn Command delete-minibuffer-contents
This command erases the editable contents of the minibuffer (that is,
2007-09-06 04:25:08 +00:00
everything except the prompt), if a minibuffer is current. Otherwise,
it erases the entire current buffer.
Some corrections in Elisp manual * doc/lispref/buffers.texi (Read Only Buffers): Describe optional argument POSITION. * doc/lispref/debugging.texi (Error Debugging): `debug-on-signal' is an option. * doc/lispref/display.texi (Refresh Screen): Describe optional argument FRAME of `redraw-frame'. (Attribute Functions): Describe optional argument CHARACTER of `face-font'. (Defining Images): `image-load-path' is an option. (Beeping): `ring-bell-function' is an option. * doc/lispref/frames.texi (Size and Position): The PIXELWISE argument of `set-frame-size' is optional. (Raising and Lowering): The TERMINAL argument of `tty-top-frame' is optional. * doc/lispref/keymaps.texi (Controlling Active Maps): Fix doc of `set-transient-map'. * doc/lispref/minibuf.texi (Text from Minibuffer): `read-regexp-defaults-function' is an option. (Minibuffer Contents): `delete-minibuffer-contents' is a command. * doc/lispref/modes.texi (Mode Line Variables): `mode-line-position' and `mode-line-modes' are variables, not options. * doc/lispref/strings.texi (Creating Strings): The START argument of `substring' is optional. * doc/lispref/text.texi (Buffer Contents): Describe optional argument NO-PROPERTIES of `thing-at-point'. (User-Level Deletion): Both arguments of `delete-trailing-whitespace' are optional. (Margins): Use @key{RET} instead of @kbd{RET}. * doc/lispref/windows.texi (Display Action Functions): Write non-@code{nil} instead of non-nil. (Choosing Window Options): The WINDOW arg of `split-window-sensibly' is optional. (Choosing Window Options): Write non-@code{nil} instead of non-nil. (Window Start and End): Both args of `window-group-end' are optional. * src/buffer.c (Fbarf_if_buffer_read_only): Rename argument POS to POSITION to keep consisteny with doc-string.
2016-02-01 19:01:34 +01:00
@end deffn
2007-09-06 04:25:08 +00:00
@node Recursive Mini
@section Recursive Minibuffers
@cindex recursive minibuffers
These functions and variables deal with recursive minibuffers
(@pxref{Recursive Editing}):
@defun minibuffer-depth
This function returns the current depth of activations of the
minibuffer, a nonnegative integer. If no minibuffers are active, it
returns zero.
@end defun
@defopt enable-recursive-minibuffers
If this variable is non-@code{nil}, you can invoke commands (such as
@code{find-file}) that use minibuffers even while the minibuffer is
active. Such invocation produces a recursive editing level for a new
Fix incompleteness in the implementation of minibuffer-follows-selected-frame In particular, add a new value to the variable, and fix several bugs apparent with the implementation up till now. * doc/emacs/mini.texi (Basic Minibuffer): Add a description of the new non-nil, non-t value of minibuffer-follows-selected-frame. * doc/emacs/trouble.texi (Quitting): Add a description of how C-g handles recursive minibuffers when typed in one which isn't the most nested. * doc/lispref/minibuf.texi (Intro to Minibuffers): Add an @dfn for "active minibuffer". (Minibuffer Commands): Document that exit-minibuffer throws an error when not invoked from the innermost Minibuffer. (Recursive Mini): Amend the description of the visibility of outer level minibuffers. (Minibuffer Misc): In the description of the minibuffer hooks, replace "the minibuffer" with "a minibuffer". * etc/NEWS (Entry announcing minibuffer-follows-selected-frame): Add a description of the new non-nil, non-t value. * lisp/cus-start.el (top level): make the customize entry for minibuffer-follows-selected-frame a choice between three entries. * lisp/minibuffer.el (exit-minibuffer): throw an error when we're not in the most nested minibuffer. (top level): Bind C-g to abort-minibuffers in minibuffer-local-map. * lisp/window.el (window-deletable-p): return the symbol `frame' when (amongst other things) minibuffer-follows-selected-frame is t. * src/eval.c (internal_catch): Add a mechanism to (throw 'exit t) repeatedly when the throw currently being processed doesn't terminate the current minibuffer. * src/lisp.h (this_minibuffer_depth): New extern declaration (minibuf_level): extern declaration moved here from window.h. * src/minibuf.c (minibuffer_follows_frame, minibuf_stays_put) (minibuf_moves_frame_when_opened): New and amended functions to query the value of minibuffer-follows-selected-frame. (choose_minibuf_frame): check (minibuf > 1) in place of (minibufer > 0) at a particular place. At another place, check that an alleged frame is so and is live. Before selecting a non-miniwindow on a different frame, ensure it really is a different frame. (move_minibuffer_onto_frame): Stack up all recursive minibuffers on the target frame. Check the minibuf_window isn't in the old frame before setting that frame's miniwindow to an inactive minibuffer. (Finnermost_minibuffer_p, Fabort_minibuffers): New primitives. (this_minibuffer_depth): New function. (read_minibuf): Record the calling frame in a variable, and switch back to it after the recursive edit has terminated normally, using select-frame-set-input-focus. Stack up all the recursive minibuffers on the miniwindow where a new minibuffer is being opened. After the recursive edit, switch the selected window away from the expired minibuffer's window. (nth_minibuffer): New function. (minibuffer-follows-selected-frame): Change from a DEFVAR_BOOL to a DEFVAR_LISP. * src/window.c (decode_next_window_args): Set *minibuf to w's mini-window's content when that content is a minibuffer. * src/window.h (minibuf_level) Declaration moved from here to lisp.h.
2021-01-10 20:32:40 +00:00
minibuffer. By default, the outer-level minibuffer is invisible while
you are editing the inner one. If you have
@code{minibuffer-follows-selected-frame} set to @code{nil}, you can
have minibuffers visible on several frames at the same time.
@xref{Basic Minibuffer,,, emacs}.
2007-09-06 04:25:08 +00:00
If this variable is @code{nil}, you cannot invoke minibuffer commands
when the minibuffer is active, not even if you switch to another window
to do it.
2007-09-06 04:25:08 +00:00
@end defopt
If a command name has a property @code{enable-recursive-minibuffers}
that is non-@code{nil}, then the command can use the minibuffer to read
arguments even if it is invoked from the minibuffer. A command can
also achieve this by binding @code{enable-recursive-minibuffers}
to @code{t} in the interactive declaration (@pxref{Using Interactive}).
The minibuffer command @code{next-matching-history-element} (normally
@kbd{M-s} in the minibuffer) does the latter.
@node Inhibiting Interaction
@section Inhibiting Interaction
It's sometimes useful to be able to run Emacs as a headless server
process that responds to commands given over a network connection.
However, Emacs is primarily a platform for interactive usage, so many
commands prompt the user for feedback in certain anomalous situations.
This makes this use case more difficult, since the server process will
just hang waiting for user input.
@vindex inhibit-interaction
Binding the @code{inhibit-interaction} variable to something
non-@code{nil} makes Emacs signal a @code{inhibited-interaction} error
instead of prompting, which can then be used by the server process to
handle these situations.
Here's a typical use case:
@lisp
(let ((inhibit-interaction t))
(respond-to-client
(condition-case err
(my-client-handling-function)
(inhibited-interaction err))))
@end lisp
If @code{my-client-handling-function} ends up calling something that
asks the user for something (via @code{y-or-n-p} or
@code{read-from-minibuffer} or the like), an
2022-11-18 13:06:55 +01:00
@code{inhibited-interaction} error is signaled instead. The server
code then catches that error and reports it to the client.
2007-09-06 04:25:08 +00:00
@node Minibuffer Misc
@section Minibuffer Miscellany
Allow minibuffer to stay in its original frame. Tidy up this area. * doc/emacs/mini.texi (Basic Minibuffer): Add an entry for minibuffer-follows-selected-frame. * doc/lispref/minibuf.texi (Minibuffer Misc): Describe the new parameter to minibufferp, LIVE. * etc/NEWS: Add an entry describing the new minibuffer strategy. * lisp/cus-start.el (minibuffer-prompt-properties--setter): Add an entry for minibuffer-follows-selected-frame. * lisp/minibuffer.el (minibuffer-message): Check for the current buffer being an _active_ minibuffer rather than merely a minibuffer. * src/frame.c (do_switch_frame): Call move_minibuffer_onto_frame. * src/lisp.h (Top level): Add prototypes for move_minibuffer_onto_frame and is_minibuffer. * src/minibuf.c (minibuf_follows_frame): New function which ignores local and let-bound values of minibuffer-follows-selected-frame. (choose_minibuf_frame): Reformulate this function to reuse a minibuffer window where possible, and to ensure no other frame has its minibuffer current, but only when `minibuffer-follows-selected-frame'. (move_minibuffer_onto_frame): New function. (live_minibuffer_p): New function. (Fminibufferp): Add a new &optional parameter LIVE. Reformulate, possibly calling live_minibuffer_p. (read_minibuf): move the incrementation of minibuf_level to before the call of choose_minibuf_frame. Empty the miniwindows of frames without an active minibuffer, rather than of all but the current frame. (is_minibuffer): New function. (read_minibuf_unwind): Note the miniwindow being restored and resize all other miniwindows to zero size. (minibuffer-follows-selected-frame): New configuration variable. * src/window.c (candidate_window_p): In some scenarios, check the miniwindow holds an active minibuffer. * src/xdisp.c (get_window_cursor_type): Suppress the cursor for non-active miniwindows, regardless of minibuf_level.
2020-11-05 19:27:43 +00:00
@defun minibufferp &optional buffer-or-name live
2007-09-06 04:25:08 +00:00
This function returns non-@code{nil} if @var{buffer-or-name} is a
Allow minibuffer to stay in its original frame. Tidy up this area. * doc/emacs/mini.texi (Basic Minibuffer): Add an entry for minibuffer-follows-selected-frame. * doc/lispref/minibuf.texi (Minibuffer Misc): Describe the new parameter to minibufferp, LIVE. * etc/NEWS: Add an entry describing the new minibuffer strategy. * lisp/cus-start.el (minibuffer-prompt-properties--setter): Add an entry for minibuffer-follows-selected-frame. * lisp/minibuffer.el (minibuffer-message): Check for the current buffer being an _active_ minibuffer rather than merely a minibuffer. * src/frame.c (do_switch_frame): Call move_minibuffer_onto_frame. * src/lisp.h (Top level): Add prototypes for move_minibuffer_onto_frame and is_minibuffer. * src/minibuf.c (minibuf_follows_frame): New function which ignores local and let-bound values of minibuffer-follows-selected-frame. (choose_minibuf_frame): Reformulate this function to reuse a minibuffer window where possible, and to ensure no other frame has its minibuffer current, but only when `minibuffer-follows-selected-frame'. (move_minibuffer_onto_frame): New function. (live_minibuffer_p): New function. (Fminibufferp): Add a new &optional parameter LIVE. Reformulate, possibly calling live_minibuffer_p. (read_minibuf): move the incrementation of minibuf_level to before the call of choose_minibuf_frame. Empty the miniwindows of frames without an active minibuffer, rather than of all but the current frame. (is_minibuffer): New function. (read_minibuf_unwind): Note the miniwindow being restored and resize all other miniwindows to zero size. (minibuffer-follows-selected-frame): New configuration variable. * src/window.c (candidate_window_p): In some scenarios, check the miniwindow holds an active minibuffer. * src/xdisp.c (get_window_cursor_type): Suppress the cursor for non-active miniwindows, regardless of minibuf_level.
2020-11-05 19:27:43 +00:00
minibuffer. If @var{buffer-or-name} is omitted or @code{nil}, it
tests the current buffer. When @var{live} is non-@code{nil}, the
function returns non-@code{nil} only when @var{buffer-or-name} is an
active minibuffer.
2007-09-06 04:25:08 +00:00
@end defun
@defvar minibuffer-setup-hook
Fix incompleteness in the implementation of minibuffer-follows-selected-frame In particular, add a new value to the variable, and fix several bugs apparent with the implementation up till now. * doc/emacs/mini.texi (Basic Minibuffer): Add a description of the new non-nil, non-t value of minibuffer-follows-selected-frame. * doc/emacs/trouble.texi (Quitting): Add a description of how C-g handles recursive minibuffers when typed in one which isn't the most nested. * doc/lispref/minibuf.texi (Intro to Minibuffers): Add an @dfn for "active minibuffer". (Minibuffer Commands): Document that exit-minibuffer throws an error when not invoked from the innermost Minibuffer. (Recursive Mini): Amend the description of the visibility of outer level minibuffers. (Minibuffer Misc): In the description of the minibuffer hooks, replace "the minibuffer" with "a minibuffer". * etc/NEWS (Entry announcing minibuffer-follows-selected-frame): Add a description of the new non-nil, non-t value. * lisp/cus-start.el (top level): make the customize entry for minibuffer-follows-selected-frame a choice between three entries. * lisp/minibuffer.el (exit-minibuffer): throw an error when we're not in the most nested minibuffer. (top level): Bind C-g to abort-minibuffers in minibuffer-local-map. * lisp/window.el (window-deletable-p): return the symbol `frame' when (amongst other things) minibuffer-follows-selected-frame is t. * src/eval.c (internal_catch): Add a mechanism to (throw 'exit t) repeatedly when the throw currently being processed doesn't terminate the current minibuffer. * src/lisp.h (this_minibuffer_depth): New extern declaration (minibuf_level): extern declaration moved here from window.h. * src/minibuf.c (minibuffer_follows_frame, minibuf_stays_put) (minibuf_moves_frame_when_opened): New and amended functions to query the value of minibuffer-follows-selected-frame. (choose_minibuf_frame): check (minibuf > 1) in place of (minibufer > 0) at a particular place. At another place, check that an alleged frame is so and is live. Before selecting a non-miniwindow on a different frame, ensure it really is a different frame. (move_minibuffer_onto_frame): Stack up all recursive minibuffers on the target frame. Check the minibuf_window isn't in the old frame before setting that frame's miniwindow to an inactive minibuffer. (Finnermost_minibuffer_p, Fabort_minibuffers): New primitives. (this_minibuffer_depth): New function. (read_minibuf): Record the calling frame in a variable, and switch back to it after the recursive edit has terminated normally, using select-frame-set-input-focus. Stack up all the recursive minibuffers on the miniwindow where a new minibuffer is being opened. After the recursive edit, switch the selected window away from the expired minibuffer's window. (nth_minibuffer): New function. (minibuffer-follows-selected-frame): Change from a DEFVAR_BOOL to a DEFVAR_LISP. * src/window.c (decode_next_window_args): Set *minibuf to w's mini-window's content when that content is a minibuffer. * src/window.h (minibuf_level) Declaration moved from here to lisp.h.
2021-01-10 20:32:40 +00:00
This is a normal hook that is run whenever a minibuffer is entered.
2007-09-06 04:25:08 +00:00
@xref{Hooks}.
@end defvar
@defmac minibuffer-with-setup-hook function &rest body
This macro executes @var{body} after arranging for the specified
@var{function} to be called via @code{minibuffer-setup-hook}. By
default, @var{function} is called before the other functions in the
@code{minibuffer-setup-hook} list, but if @var{function} is of the
form @w{@code{(:append @var{func})}}, @var{func} will be called
@emph{after} the other hook functions.
The @var{body} forms should not use the minibuffer more than once. If
the minibuffer is re-entered recursively, @var{function} will only be
called once, for the outermost use of the minibuffer.
@end defmac
2007-09-06 04:25:08 +00:00
@defvar minibuffer-exit-hook
Fix incompleteness in the implementation of minibuffer-follows-selected-frame In particular, add a new value to the variable, and fix several bugs apparent with the implementation up till now. * doc/emacs/mini.texi (Basic Minibuffer): Add a description of the new non-nil, non-t value of minibuffer-follows-selected-frame. * doc/emacs/trouble.texi (Quitting): Add a description of how C-g handles recursive minibuffers when typed in one which isn't the most nested. * doc/lispref/minibuf.texi (Intro to Minibuffers): Add an @dfn for "active minibuffer". (Minibuffer Commands): Document that exit-minibuffer throws an error when not invoked from the innermost Minibuffer. (Recursive Mini): Amend the description of the visibility of outer level minibuffers. (Minibuffer Misc): In the description of the minibuffer hooks, replace "the minibuffer" with "a minibuffer". * etc/NEWS (Entry announcing minibuffer-follows-selected-frame): Add a description of the new non-nil, non-t value. * lisp/cus-start.el (top level): make the customize entry for minibuffer-follows-selected-frame a choice between three entries. * lisp/minibuffer.el (exit-minibuffer): throw an error when we're not in the most nested minibuffer. (top level): Bind C-g to abort-minibuffers in minibuffer-local-map. * lisp/window.el (window-deletable-p): return the symbol `frame' when (amongst other things) minibuffer-follows-selected-frame is t. * src/eval.c (internal_catch): Add a mechanism to (throw 'exit t) repeatedly when the throw currently being processed doesn't terminate the current minibuffer. * src/lisp.h (this_minibuffer_depth): New extern declaration (minibuf_level): extern declaration moved here from window.h. * src/minibuf.c (minibuffer_follows_frame, minibuf_stays_put) (minibuf_moves_frame_when_opened): New and amended functions to query the value of minibuffer-follows-selected-frame. (choose_minibuf_frame): check (minibuf > 1) in place of (minibufer > 0) at a particular place. At another place, check that an alleged frame is so and is live. Before selecting a non-miniwindow on a different frame, ensure it really is a different frame. (move_minibuffer_onto_frame): Stack up all recursive minibuffers on the target frame. Check the minibuf_window isn't in the old frame before setting that frame's miniwindow to an inactive minibuffer. (Finnermost_minibuffer_p, Fabort_minibuffers): New primitives. (this_minibuffer_depth): New function. (read_minibuf): Record the calling frame in a variable, and switch back to it after the recursive edit has terminated normally, using select-frame-set-input-focus. Stack up all the recursive minibuffers on the miniwindow where a new minibuffer is being opened. After the recursive edit, switch the selected window away from the expired minibuffer's window. (nth_minibuffer): New function. (minibuffer-follows-selected-frame): Change from a DEFVAR_BOOL to a DEFVAR_LISP. * src/window.c (decode_next_window_args): Set *minibuf to w's mini-window's content when that content is a minibuffer. * src/window.h (minibuf_level) Declaration moved from here to lisp.h.
2021-01-10 20:32:40 +00:00
This is a normal hook that is run whenever a minibuffer is exited.
2007-09-06 04:25:08 +00:00
@xref{Hooks}.
@end defvar
@defvar minibuffer-help-form
@anchor{Definition of minibuffer-help-form}
The current value of this variable is used to rebind @code{help-form}
locally inside the minibuffer (@pxref{Help Functions}).
@end defvar
@defvar minibuffer-scroll-window
@anchor{Definition of minibuffer-scroll-window}
If the value of this variable is non-@code{nil}, it should be a window
object. When the function @code{scroll-other-window} is called in the
minibuffer, it scrolls this window (@pxref{Textual Scrolling}).
2007-09-06 04:25:08 +00:00
@end defvar
@defun minibuffer-selected-window
This function returns the window that was selected just before the
minibuffer window was selected. If the selected window is not a
minibuffer window, it returns @code{nil}.
2007-09-06 04:25:08 +00:00
@end defun
@vindex minibuffer-message-timeout
* syntax.texi (Position Parse): Document rationale for ignored arguments to syntax-ppss-flush-cache. * processes.texi (Input to Processes): Mark PROCESS arg to process-running-child-p as optional. (Network Options): Document NO-ERROR arg to set-network-process-option. * buffers.texi (Indirect Buffers): Mark clone-indirect-buffer as a command. * searching.texi (POSIX Regexps): Mark posix-search-forward and posix-search-backward as commands. * os.texi (Killing Emacs): Mark kill-emacs as a command. (Suspending Emacs): Mark suspend-emacs as a command. (Processor Run Time): Mark emacs-uptime and emacs-init-time as commands. (Terminal Output): Remove obsolete function baud-rate. Document TERMINAL arg for send-string-to-terminal. * nonascii.texi (Terminal I/O Encoding): Document TERMINAL arg for terminal-coding-system and set-terminal-coding-system. (Explicit Encoding): Mark DESTINATION arg of decode-coding-region as optional. (Character Sets): Document RESTRICTION arg of char-charset. (Character Codes): Mark POS argument to get-byte as optional. * minibuf.texi (Minibuffer Misc): Document ARGS arg for minibuffer-message. * files.texi (Create/Delete Dirs): Mark make-directory and delete-directory as commands. * abbrevs.texi (Abbrev Tables): Fix arglist for make-abbrev-table. * text.texi (Base 64): Mark base64-decode-string and base64-encode-string as commands. (Columns): Mark move-to-column as a command. (Mode-Specific Indent): Document RIGID arg to indent-for-tab-command. (Region Indent): Mark TO-COLUMN arg to indent-region as optional. Mark indent-code-rigidly as a command. (Substitution): Mark translate-region as a command. * frames.texi (Size and Position): Remove obsolete functions screen-height and screen-width.
2009-05-20 02:56:33 +00:00
@defun minibuffer-message string &rest args
This function is like @code{message} (@pxref{Displaying Messages}),
but it displays the messages specially when the user types in the
minibuffer, typically because Emacs prompted the user for some input.
When the minibuffer is the current buffer, this function displays the
message specified by @var{string} temporarily at the end of the
minibuffer text, and thus avoids hiding the minibuffer text by the
echo-area display of the message. It leaves the message on display
for a few seconds, or until the next input event arrives, whichever
comes first. The variable @code{minibuffer-message-timeout} specifies
the number of seconds to wait in the absence of input. It defaults to
2. If @var{args} is non-@code{nil}, the actual message is obtained by
passing @var{string} and @var{args} through @code{format-message}.
@xref{Formatting Strings}.
If called when the minibuffer is not the current buffer, this function
just calls @code{message}, and thus @var{string} will be shown in the
echo-area.
2007-09-06 04:25:08 +00:00
@end defun
@deffn Command minibuffer-inactive-mode
This is the major mode used in inactive minibuffers. It uses
keymap @code{minibuffer-inactive-mode-map}. This can be useful
if the minibuffer is in a separate frame. @xref{Minibuffers and Frames}.
@end deffn
@deffn Command minibuffer-regexp-mode
This minor mode makes editing regular expressions in the minibuffer
more convenient. It highlight parens via @code{show-paren-mode} and
@code{blink-matching-paren} in a user-friendly way, avoids reporting
false paren mismatches, and makes sexp navigation more intuitive.
@end deffn
By default, only certain minibuffer prompts automatically activate the
convenience features of @code{minibuffer-regexp-mode} when the
minibuffer becomes active. This list of prompts can be customized via
@code{minibuffer-regexp-prompts}.
@defopt minibuffer-regexp-prompts
This variable holds the list of regular expressions for activating the
features of @code{minibuffer-regexp-mode} in the minibuffer. The
mode's features will be activated only if the minibuffer prompt
matches one of the regular expressions in the list.
@end defopt