nasm/nasm.h
H. Peter Anvin ea6e34db64 NASM 0.91
2002-04-30 20:51:32 +00:00

443 lines
17 KiB
C

/* nasm.h main header file for the Netwide Assembler: inter-module interface
*
* The Netwide Assembler is copyright (C) 1996 Simon Tatham and
* Julian Hall. All rights reserved. The software is
* redistributable under the licence given in the file "Licence"
* distributed in the NASM archive.
*
* initial version: 27/iii/95 by Simon Tatham
*/
#ifndef NASM_H
#define NASM_H
#define NASM_MAJOR_VER 0
#define NASM_MINOR_VER 91
#define NASM_VER "0.91"
#ifndef NULL
#define NULL 0
#endif
#ifndef FALSE
#define FALSE 0 /* comes in handy */
#endif
#ifndef TRUE
#define TRUE 1
#endif
#define NO_SEG -1L /* null segment value */
#define SEG_ABS 0x40000000L /* mask for far-absolute segments */
#ifndef FILENAME_MAX
#define FILENAME_MAX 256
#endif
/*
* We must declare the existence of this structure type up here,
* since we have to reference it before we define it...
*/
struct ofmt;
/*
* -------------------------
* Error reporting functions
* -------------------------
*/
/*
* An error reporting function should look like this.
*/
typedef void (*efunc) (int severity, char *fmt, ...);
/*
* These are the error severity codes which get passed as the first
* argument to an efunc.
*/
#define ERR_WARNING 0 /* warn only: no further action */
#define ERR_NONFATAL 1 /* terminate assembly after phase */
#define ERR_FATAL 2 /* instantly fatal: exit with error */
#define ERR_PANIC 3 /* internal error: panic instantly
* and dump core for reference */
#define ERR_MASK 0x0F /* mask off the above codes */
#define ERR_NOFILE 0x10 /* don't give source file name/line */
#define ERR_USAGE 0x20 /* print a usage message */
/*
* -----------------------
* Other function typedefs
* -----------------------
*/
/*
* A label-lookup function should look like this.
*/
typedef int (*lfunc) (char *label, long *segment, long *offset);
/*
* And a label-definition function like this.
*/
typedef void (*ldfunc) (char *label, long segment, long offset,
struct ofmt *ofmt, efunc error);
/*
* -----------------------------------------------------------
* Format of the `insn' structure returned from `parser.c' and
* passed into `assemble.c'
* -----------------------------------------------------------
*/
/*
* Here we define the operand types. These are implemented as bit
* masks, since some are subsets of others; e.g. AX in a MOV
* instruction is a special operand type, whereas AX in other
* contexts is just another 16-bit register. (Also, consider CL in
* shift instructions, DX in OUT, etc.)
*/
/* size, and other attributes, of the operand */
#define BITS8 0x00000001L
#define BITS16 0x00000002L
#define BITS32 0x00000004L
#define BITS64 0x00000008L /* FPU only */
#define BITS80 0x00000010L /* FPU only */
#define FAR 0x00000020L /* grotty: this means 16:16 or */
/* 16:32, like in CALL/JMP */
#define NEAR 0x00000040L
#define SHORT 0x00000080L /* and this means what it says :) */
#define SIZE_MASK 0x000000FFL /* all the size attributes */
#define NON_SIZE (~SIZE_MASK)
#define TO 0x00000100L /* reverse effect in FADD, FSUB &c */
#define COLON 0x00000200L /* operand is followed by a colon */
/* type of operand: memory reference, register, etc. */
#define MEMORY 0x00204000L
#define REGISTER 0x00001000L /* register number in 'basereg' */
#define IMMEDIATE 0x00002000L
#define REGMEM 0x00200000L /* for r/m, ie EA, operands */
#define REGNORM 0x00201000L /* 'normal' reg, qualifies as EA */
#define REG8 0x00201001L
#define REG16 0x00201002L
#define REG32 0x00201004L
#define FPUREG 0x01000000L /* floating point stack registers */
#define FPU0 0x01000800L /* FPU stack register zero */
#define MMXREG 0x00001008L /* MMX registers */
/* special register operands: these may be treated differently */
#define REG_SMASK 0x00070000L /* a mask for the following */
#define REG_ACCUM 0x00211000L /* accumulator: AL, AX or EAX */
#define REG_AL 0x00211001L /* REG_ACCUM | BITSxx */
#define REG_AX 0x00211002L /* ditto */
#define REG_EAX 0x00211004L /* and again */
#define REG_COUNT 0x00221000L /* counter: CL, CX or ECX */
#define REG_CL 0x00221001L /* REG_COUNT | BITSxx */
#define REG_CX 0x00221002L /* ditto */
#define REG_ECX 0x00221004L /* another one */
#define REG_DX 0x00241002L
#define REG_SREG 0x00081002L /* any segment register */
#define REG_CS 0x01081002L /* CS */
#define REG_DESS 0x02081002L /* DS, ES, SS (non-CS 86 registers) */
#define REG_FSGS 0x04081002L /* FS, GS (386 extended registers) */
#define REG_CDT 0x00101004L /* CRn, DRn and TRn */
#define REG_CREG 0x08101004L /* CRn */
#define REG_CR4 0x08101404L /* CR4 (Pentium only) */
#define REG_DREG 0x10101004L /* DRn */
#define REG_TREG 0x20101004L /* TRn */
/* special type of EA */
#define MEM_OFFS 0x00604000L /* simple [address] offset */
/* special type of immediate operand */
#define UNITY 0x00802000L /* for shift/rotate instructions */
/*
* Next, the codes returned from the parser, for registers and
* instructions.
*/
enum { /* register names */
R_AH = 1, R_AL, R_AX, R_BH, R_BL, R_BP, R_BX, R_CH, R_CL, R_CR0,
R_CR2, R_CR3, R_CR4, R_CS, R_CX, R_DH, R_DI, R_DL, R_DR0, R_DR1,
R_DR2, R_DR3, R_DR6, R_DR7, R_DS, R_DX, R_EAX, R_EBP, R_EBX,
R_ECX, R_EDI, R_EDX, R_ES, R_ESI, R_ESP, R_FS, R_GS, R_MM0,
R_MM1, R_MM2, R_MM3, R_MM4, R_MM5, R_MM6, R_MM7, R_SI, R_SP,
R_SS, R_ST0, R_ST1, R_ST2, R_ST3, R_ST4, R_ST5, R_ST6, R_ST7,
R_TR3, R_TR4, R_TR5, R_TR6, R_TR7, REG_ENUM_LIMIT
};
enum { /* instruction names */
I_AAA, I_AAD, I_AAM, I_AAS, I_ADC, I_ADD, I_AND, I_ARPL,
I_BOUND, I_BSF, I_BSR, I_BSWAP, I_BT, I_BTC, I_BTR, I_BTS,
I_CALL, I_CBW, I_CDQ, I_CLC, I_CLD, I_CLI, I_CLTS, I_CMC, I_CMP,
I_CMPSB, I_CMPSD, I_CMPSW, I_CMPXCHG, I_CMPXCHG8B, I_CPUID,
I_CWD, I_CWDE, I_DAA, I_DAS, I_DB, I_DD, I_DEC, I_DIV, I_DQ,
I_DT, I_DW, I_EMMS, I_ENTER, I_EQU, I_F2XM1, I_FABS, I_FADD,
I_FADDP, I_FBLD, I_FBSTP, I_FCHS, I_FCLEX, I_FCMOVB, I_FCMOVBE,
I_FCMOVE, I_FCMOVNB, I_FCMOVNBE, I_FCMOVNE, I_FCMOVNU, I_FCMOVU,
I_FCOM, I_FCOMI, I_FCOMIP, I_FCOMP, I_FCOMPP, I_FCOS, I_FDECSTP,
I_FDISI, I_FDIV, I_FDIVP, I_FDIVR, I_FDIVRP, I_FENI, I_FFREE,
I_FIADD, I_FICOM, I_FICOMP, I_FIDIV, I_FIDIVR, I_FILD, I_FIMUL,
I_FINCSTP, I_FINIT, I_FIST, I_FISTP, I_FISUB, I_FISUBR, I_FLD,
I_FLD1, I_FLDCW, I_FLDENV, I_FLDL2E, I_FLDL2T, I_FLDLG2,
I_FLDLN2, I_FLDPI, I_FLDZ, I_FMUL, I_FMULP, I_FNOP, I_FPATAN,
I_FPREM, I_FPREM1, I_FPTAN, I_FRNDINT, I_FRSTOR, I_FSAVE,
I_FSCALE, I_FSETPM, I_FSIN, I_FSINCOS, I_FSQRT, I_FST, I_FSTCW,
I_FSTENV, I_FSTP, I_FSTSW, I_FSUB, I_FSUBP, I_FSUBR, I_FSUBRP,
I_FTST, I_FUCOM, I_FUCOMI, I_FUCOMIP, I_FUCOMP, I_FUCOMPP,
I_FXAM, I_FXCH, I_FXTRACT, I_FYL2X, I_FYL2XP1, I_HLT, I_ICEBP,
I_IDIV, I_IMUL, I_IN, I_INC, I_INSB, I_INSD, I_INSW, I_INT,
I_INT1, I_INT01, I_INT3, I_INTO, I_INVD, I_INVLPG, I_IRET,
I_IRETD, I_IRETW, I_JCXZ, I_JECXZ, I_JMP, I_LAHF, I_LAR, I_LDS,
I_LEA, I_LEAVE, I_LES, I_LFS, I_LGDT, I_LGS, I_LIDT, I_LLDT,
I_LMSW, I_LOADALL, I_LODSB, I_LODSD, I_LODSW, I_LOOP, I_LOOPE,
I_LOOPNE, I_LOOPNZ, I_LOOPZ, I_LSL, I_LSS, I_LTR, I_MOV, I_MOVD,
I_MOVQ, I_MOVSB, I_MOVSD, I_MOVSW, I_MOVSX, I_MOVZX, I_MUL,
I_NEG, I_NOP, I_NOT, I_OR, I_OUT, I_OUTSB, I_OUTSD, I_OUTSW,
I_PACKSSDW, I_PACKSSWB, I_PACKUSWB, I_PADDB, I_PADDD, I_PADDSB,
I_PADDSW, I_PADDUSB, I_PADDUSW, I_PADDW, I_PAND, I_PANDN,
I_PCMPEQB, I_PCMPEQD, I_PCMPEQW, I_PCMPGTB, I_PCMPGTD,
I_PCMPGTW, I_PMADDWD, I_PMULHW, I_PMULLW, I_POP, I_POPA,
I_POPAD, I_POPAW, I_POPF, I_POPFD, I_POPFW, I_POR, I_PSLLD,
I_PSLLQ, I_PSLLW, I_PSRAD, I_PSRAW, I_PSRLD, I_PSRLQ, I_PSRLW,
I_PSUBB, I_PSUBD, I_PSUBSB, I_PSUBSW, I_PSUBUSB, I_PSUBUSW,
I_PSUBW, I_PUNPCKHBW, I_PUNPCKHDQ, I_PUNPCKHWD, I_PUNPCKLBW,
I_PUNPCKLDQ, I_PUNPCKLWD, I_PUSH, I_PUSHA, I_PUSHAD, I_PUSHAW,
I_PUSHF, I_PUSHFD, I_PUSHFW, I_PXOR, I_RCL, I_RCR, I_RDMSR,
I_RDPMC, I_RDTSC, I_RESB, I_RESD, I_RESQ, I_REST, I_RESW, I_RET,
I_RETF, I_RETN, I_ROL, I_ROR, I_RSM, I_SAHF, I_SAL, I_SALC,
I_SAR, I_SBB, I_SCASB, I_SCASD, I_SCASW, I_SGDT, I_SHL, I_SHLD,
I_SHR, I_SHRD, I_SIDT, I_SLDT, I_SMSW, I_STC, I_STD, I_STI,
I_STOSB, I_STOSD, I_STOSW, I_STR, I_SUB, I_TEST, I_UMOV, I_VERR,
I_VERW, I_WAIT, I_WBINVD, I_WRMSR, I_XADD, I_XCHG, I_XLATB,
I_XOR, I_CMOVcc, I_Jcc, I_SETcc
};
enum { /* condition code names */
C_A, C_AE, C_B, C_BE, C_C, C_E, C_G, C_GE, C_L, C_LE, C_NA, C_NAE,
C_NB, C_NBE, C_NC, C_NE, C_NG, C_NGE, C_NL, C_NLE, C_NO, C_NP,
C_NS, C_NZ, C_O, C_P, C_PE, C_PO, C_S, C_Z
};
/*
* Note that because segment registers may be used as instruction
* prefixes, we must ensure the enumerations for prefixes and
* register names do not overlap.
*/
enum { /* instruction prefixes */
PREFIX_ENUM_START = REG_ENUM_LIMIT,
P_A16 = PREFIX_ENUM_START, P_A32, P_LOCK, P_O16, P_O32, P_REP, P_REPE,
P_REPNE, P_REPNZ, P_REPZ, P_TIMES
};
enum { /* extended operand types */
EOT_NOTHING, EOT_DB_STRING, EOT_DB_NUMBER
};
typedef struct { /* operand to an instruction */
long type; /* type of operand */
int addr_size; /* 0 means default; 16; 32 */
int basereg, indexreg, scale; /* registers and scale involved */
long segment; /* immediate segment, if needed */
long offset; /* any immediate number */
long wrt; /* segment base it's relative to */
} operand;
typedef struct extop { /* extended operand */
struct extop *next; /* linked list */
long type; /* defined above */
char *stringval; /* if it's a string, then here it is */
int stringlen; /* ... and here's how long it is */
long segment; /* if it's a number/address, then... */
long offset; /* ... it's given here ... */
long wrt; /* ... and here */
} extop;
#define MAXPREFIX 4
typedef struct { /* an instruction itself */
char *label; /* the label defined, or NULL */
int prefixes[MAXPREFIX]; /* instruction prefixes, if any */
int nprefix; /* number of entries in above */
int opcode; /* the opcode - not just the string */
int condition; /* the condition code, if Jcc/SETcc */
int operands; /* how many operands? 0-3 */
operand oprs[3]; /* the operands, defined as above */
extop *eops; /* extended operands */
int times; /* repeat count (TIMES prefix) */
} insn;
/*
* ------------------------------------------------------------
* The data structure defining an output format driver, and the
* interfaces to the functions therein.
* ------------------------------------------------------------
*/
struct ofmt {
/*
* This is a short (one-liner) description of the type of
* output generated by the driver.
*/
char *fullname;
/*
* This is a single keyword used to select the driver.
*/
char *shortname;
/*
* This procedure is called at the start of an output session.
* It tells the output format what file it will be writing to,
* what routine to report errors through, and how to interface
* to the label manager if necessary. It also gives it a chance
* to do other initialisation.
*/
void (*init) (FILE *fp, efunc error, ldfunc ldef);
/*
* This procedure is called by assemble() to write actual
* generated code or data to the object file. Typically it
* doesn't have to actually _write_ it, just store it for
* later.
*
* The `type' argument specifies the type of output data, and
* usually the size as well: its contents are described below.
*/
void (*output) (long segto, void *data, unsigned long type,
long segment, long wrt);
/*
* This procedure is called once for every symbol defined in
* the module being assembled. It gives the name and value of
* the symbol, in NASM's terms, and indicates whether it has
* been declared to be global. Note that the parameter "name",
* when passed, will point to a piece of static storage
* allocated inside the label manager - it's safe to keep using
* that pointer, because the label manager doesn't clean up
* until after the output driver has.
*
* Values of `is_global' are: 0 means the symbol is local; 1
* means the symbol is global; 2 means the symbol is common (in
* which case `offset' holds the _size_ of the variable).
* Anything else is available for the output driver to use
* internally.
*/
void (*symdef) (char *name, long segment, long offset, int is_global);
/*
* This procedure is called when the source code requests a
* segment change. It should return the corresponding segment
* _number_ for the name, or NO_SEG if the name is not a valid
* segment name.
*
* It may also be called with NULL, in which case it is to
* return the _default_ section number for starting assembly in.
*
* It is allowed to modify the string it is given a pointer to.
*
* It is also allowed to specify a default instruction size for
* the segment, by setting `*bits' to 16 or 32. Or, if it
* doesn't wish to define a default, it can leave `bits' alone.
*/
long (*section) (char *name, int pass, int *bits);
/*
* This procedure is called to modify the segment base values
* returned from the SEG operator. It is given a segment base
* value (i.e. a segment value with the low bit set), and is
* required to produce in return a segment value which may be
* different. It can map segment bases to absolute numbers by
* means of returning SEG_ABS types.
*/
long (*segbase) (long segment);
/*
* This procedure is called to allow the output driver to
* process its own specific directives. When called, it has the
* directive word in `directive' and the parameter string in
* `value'. It is called in both assembly passes, and `pass'
* will be either 1 or 2.
*
* This procedure should return zero if it does not _recognise_
* the directive, so that the main program can report an error.
* If it recognises the directive but then has its own errors,
* it should report them itself and then return non-zero. It
* should also return non-zero if it correctly processes the
* directive.
*/
int (*directive) (char *directive, char *value, int pass);
/*
* This procedure is called before anything else - even before
* the "init" routine - and is passed the name of the input
* file from which this output file is being generated. It
* should return its preferred name for the output file in
* `outfunc'. Since it is called before the driver is properly
* initialised, it has to be passed its error handler
* separately.
*
* This procedure may also take its own copy of the input file
* name for use in writing the output file: it is _guaranteed_
* that it will be called before the "init" routine.
*
* The parameter `outname' points to an area of storage
* guaranteed to be at least FILENAME_MAX in size.
*/
void (*filename) (char *inname, char *outname, efunc error);
/*
* This procedure is called after assembly finishes, to allow
* the output driver to clean itself up and free its memory.
* Typically, it will also be the point at which the object
* file actually gets _written_.
*
* One thing the cleanup routine should always do is to close
* the output file pointer.
*/
void (*cleanup) (void);
};
/*
* values for the `type' parameter to an output function. Each one
* must have the actual number of _bytes_ added to it.
*
* Exceptions are OUT_RELxADR, which denote an x-byte relocation
* which will be a relative jump. For this we need to know the
* distance in bytes from the start of the relocated record until
* the end of the containing instruction. _This_ is what is stored
* in the size part of the parameter, in this case.
*
* Also OUT_RESERVE denotes reservation of N bytes of BSS space,
* and the contents of the "data" parameter is irrelevant.
*
* The "data" parameter for the output function points to a "long",
* containing the address in question, unless the type is
* OUT_RAWDATA, in which case it points to an "unsigned char"
* array.
*/
#define OUT_RAWDATA 0x00000000UL
#define OUT_ADDRESS 0x10000000UL
#define OUT_REL2ADR 0x20000000UL
#define OUT_REL4ADR 0x30000000UL
#define OUT_RESERVE 0x40000000UL
#define OUT_TYPMASK 0xF0000000UL
#define OUT_SIZMASK 0x0FFFFFFFUL
/*
* -----
* Other
* -----
*/
/*
* This is a useful #define which I keep meaning to use more often:
* the number of elements of a statically defined array.
*/
#define elements(x) ( sizeof(x) / sizeof(*(x)) )
#endif