/* float.c floating-point constant support for the Netwide Assembler * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. * * initial version 13/ix/96 by Simon Tatham */ #include #include #include #include #include #include "nasm.h" #define TRUE 1 #define FALSE 0 #define MANT_WORDS 10 /* 112 bits + 48 for accuracy == 160 */ #define MANT_DIGITS 49 /* 50 digits don't fit in 160 bits */ /* * guaranteed top bit of from is set * => we only have to worry about _one_ bit shift to the left */ static int ieee_multiply(uint16_t *to, uint16_t *from) { uint32_t temp[MANT_WORDS * 2]; int i, j; for (i = 0; i < MANT_WORDS * 2; i++) temp[i] = 0; for (i = 0; i < MANT_WORDS; i++) for (j = 0; j < MANT_WORDS; j++) { uint32_t n; n = (uint32_t)to[i] * (uint32_t)from[j]; temp[i + j] += n >> 16; temp[i + j + 1] += n & 0xFFFF; } for (i = MANT_WORDS * 2; --i;) { temp[i - 1] += temp[i] >> 16; temp[i] &= 0xFFFF; } if (temp[0] & 0x8000) { memcpy(to, temp, 2*MANT_WORDS); return 0; } else { for (i = 0; i < MANT_WORDS; i++) to[i] = (temp[i] << 1) + !!(temp[i + 1] & 0x8000); return -1; } } static int hexval(char c) { if (c >= '0' && c <= '9') return c-'0'; else if (c >= 'a' && c <= 'f') return c-'a'+10; else return c-'A'+10; } static void ieee_flconvert_hex(char *string, uint16_t *mant, int32_t *exponent, efunc error) { static const int log2tbl[16] = { -1, 0, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3 }; uint16_t mult[MANT_WORDS+1], *mp; int ms; int32_t twopwr; int seendot, seendigit; unsigned char c; twopwr = 0; seendot = seendigit = 0; memset(mult, 0, sizeof mult); while ((c = *string++) != '\0') { if (c == '.') { if (!seendot) seendot = TRUE; else { error(ERR_NONFATAL, "too many periods in floating-point constant"); return; } } else if (isxdigit(c)) { int v = hexval(c); if (!seendigit && v) { int l = log2tbl[v]; seendigit = 1; mp = mult; ms = 15-l; twopwr = seendot ? twopwr-4+l : l-3; } if (seendigit) { if (ms <= 0) { *mp |= v >> -ms; mp++; if (mp > &mult[MANT_WORDS]) mp = &mult[MANT_WORDS]; /* Guard slot */ ms += 16; } *mp |= v << ms; ms -= 4; if (!seendot) twopwr += 4; } else { if (seendot) twopwr -= 4; } } else if (c == 'p' || c == 'P') { twopwr += atoi(string); break; } else { error(ERR_NONFATAL, "floating-point constant: `%c' is invalid character", *string); return; } } if (!seendigit) { memset(mant, 0, 2*MANT_WORDS); /* Zero */ *exponent = 0; } else { memcpy(mant, mult, 2*MANT_WORDS); *exponent = twopwr; } } static void ieee_flconvert(char *string, uint16_t *mant, int32_t *exponent, efunc error) { char digits[MANT_DIGITS]; char *p, *q, *r; uint16_t mult[MANT_WORDS], bit; uint16_t *m; int32_t tenpwr, twopwr; int extratwos, started, seendot; if (string[0] == '0' && (string[1] == 'x' || string[1] == 'X')) { ieee_flconvert_hex(string+2, mant, exponent, error); return; } p = digits; tenpwr = 0; started = seendot = FALSE; while (*string && *string != 'E' && *string != 'e') { if (*string == '.') { if (!seendot) seendot = TRUE; else { error(ERR_NONFATAL, "too many periods in floating-point constant"); return; } } else if (*string >= '0' && *string <= '9') { if (*string == '0' && !started) { if (seendot) tenpwr--; } else { started = TRUE; if (p < digits + sizeof(digits)) *p++ = *string - '0'; if (!seendot) tenpwr++; } } else { error(ERR_NONFATAL, "floating-point constant: `%c' is invalid character", *string); return; } string++; } if (*string) { string++; /* eat the E */ tenpwr += atoi(string); } /* * At this point, the memory interval [digits,p) contains a * series of decimal digits zzzzzzz such that our number X * satisfies * * X = 0.zzzzzzz * 10^tenpwr */ bit = 0x8000; for (m = mant; m < mant + MANT_WORDS; m++) *m = 0; m = mant; q = digits; started = FALSE; twopwr = 0; while (m < mant + MANT_WORDS) { uint16_t carry = 0; while (p > q && !p[-1]) p--; if (p <= q) break; for (r = p; r-- > q;) { int i; i = 2 * *r + carry; if (i >= 10) carry = 1, i -= 10; else carry = 0; *r = i; } if (carry) *m |= bit, started = TRUE; if (started) { if (bit == 1) bit = 0x8000, m++; else bit >>= 1; } else twopwr--; } twopwr += tenpwr; /* * At this point the `mant' array contains the first six * fractional places of a base-2^16 real number, which when * multiplied by 2^twopwr and 5^tenpwr gives X. So now we * really do multiply by 5^tenpwr. */ if (tenpwr < 0) { for (m = mult; m < mult + MANT_WORDS; m++) *m = 0xCCCC; extratwos = -2; tenpwr = -tenpwr; } else if (tenpwr > 0) { mult[0] = 0xA000; for (m = mult + 1; m < mult + MANT_WORDS; m++) *m = 0; extratwos = 3; } else extratwos = 0; while (tenpwr) { if (tenpwr & 1) twopwr += extratwos + ieee_multiply(mant, mult); extratwos = extratwos * 2 + ieee_multiply(mult, mult); tenpwr >>= 1; } /* * Conversion is done. The elements of `mant' contain the first * fractional places of a base-2^16 real number in [0.5,1) * which we can multiply by 2^twopwr to get X. Or, of course, * it contains zero. */ *exponent = twopwr; } /* * Shift a mantissa to the right by i (i < 16) bits. */ static void ieee_shr(uint16_t *mant, int i) { uint16_t n = 0, m; int j; for (j = 0; j < MANT_WORDS; j++) { m = (mant[j] << (16 - i)) & 0xFFFF; mant[j] = (mant[j] >> i) | n; n = m; } } /* * Round a mantissa off after i words. */ static int ieee_round(uint16_t *mant, int i) { if (mant[i] & 0x8000) { do { ++mant[--i]; mant[i] &= 0xFFFF; } while (i > 0 && !mant[i]); return !i && !mant[i]; } return 0; } #define put(a,b) ( (*(a)=(b)), ((a)[1]=(b)>>8) ) /* Produce standard IEEE formats, with implicit "1" bit; this makes the following assumptions: - the sign bit is the MSB, followed by the exponent. - the sign bit plus exponent fit in 16 bits. - the exponent bias is 2^(n-1)-1 for an n-bit exponent */ struct ieee_format { int words; int mantissa; /* Bits in the mantissa */ int exponent; /* Bits in the exponent */ }; static const struct ieee_format ieee_16 = { 1, 10, 5 }; static const struct ieee_format ieee_32 = { 2, 23, 8 }; static const struct ieee_format ieee_64 = { 4, 52, 11 }; static const struct ieee_format ieee_128 = { 8, 112, 15 }; /* Produce all the standard IEEE formats: 16, 32, 64, and 128 bits */ static int to_float(char *str, int32_t sign, uint8_t *result, const struct ieee_format *fmt, efunc error) { uint16_t mant[MANT_WORDS], *mp; int32_t exponent; int32_t expmax = 1 << (fmt->exponent-1); uint16_t implicit_one = 0x8000 >> fmt->exponent; int i; sign = (sign < 0 ? 0x8000L : 0L); ieee_flconvert(str, mant, &exponent, error); if (mant[0] & 0x8000) { /* * Non-zero. */ exponent--; if (exponent >= 2-expmax && exponent <= expmax) { /* * Normalised. */ exponent += expmax; ieee_shr(mant, fmt->exponent); ieee_round(mant, fmt->words); /* did we scale up by one? */ if (mant[0] & (implicit_one << 1)) { ieee_shr(mant, 1); exponent++; } mant[0] &= (implicit_one-1); /* remove leading one */ mant[0] |= exponent << (15 - fmt->exponent); } else if (exponent < 2-expmax && exponent >= 2-expmax-fmt->mantissa) { /* * Denormal. */ int shift = -(exponent + expmax-2-fmt->exponent); int sh = shift % 16, wds = shift / 16; ieee_shr(mant, sh); if (ieee_round(mant, fmt->words - wds) || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) { ieee_shr(mant, 1); if (sh == 0) mant[0] |= 0x8000; exponent++; } if (wds) { for (i = fmt->words-1; i >= wds; i--) mant[i] = mant[i-wds]; for (; i >= 0; i--) mant[i] = 0; } } else { if (exponent > 0) { error(ERR_NONFATAL, "overflow in floating-point constant"); return 0; } else { memset(mant, 0, 2*fmt->words); } } } else { /* Zero */ memset(mant, 0, 2*fmt->words); } mant[0] |= sign; for (mp = &mant[fmt->words], i = 0; i < fmt->words; i++) { uint16_t m = *--mp; put(result, m); result += 2; } return 1; /* success */ } /* 80-bit format with 64-bit mantissa *including an explicit integer 1* and 15-bit exponent. */ static int to_ldoub(char *str, int32_t sign, uint8_t *result, efunc error) { uint16_t mant[MANT_WORDS]; int32_t exponent; sign = (sign < 0 ? 0x8000L : 0L); ieee_flconvert(str, mant, &exponent, error); if (mant[0] & 0x8000) { /* * Non-zero. */ exponent--; if (exponent >= -16383 && exponent <= 16384) { /* * Normalised. */ exponent += 16383; if (ieee_round(mant, 4)) /* did we scale up by one? */ ieee_shr(mant, 1), mant[0] |= 0x8000, exponent++; put(result + 8, exponent | sign); put(result + 6, mant[0]); put(result + 4, mant[1]); put(result + 2, mant[2]); put(result + 0, mant[3]); } else if (exponent < -16383 && exponent >= -16446) { /* * Denormal. */ int shift = -(exponent + 16383); int sh = shift % 16, wds = shift / 16; ieee_shr(mant, sh); if (ieee_round(mant, 4 - wds) || (sh > 0 && (mant[0] & (0x8000 >> (sh - 1))))) { ieee_shr(mant, 1); if (sh == 0) mant[0] |= 0x8000; exponent++; } put(result + 8, sign); put(result + 6, (wds == 0 ? mant[0] : 0)); put(result + 4, (wds <= 1 ? mant[1 - wds] : 0)); put(result + 2, (wds <= 2 ? mant[2 - wds] : 0)); put(result + 0, (wds <= 3 ? mant[3 - wds] : 0)); } else { if (exponent > 0) { error(ERR_NONFATAL, "overflow in floating-point constant"); return 0; } else memset(result, 0, 10); } } else { /* * Zero. */ memset(result, 0, 10); } return 1; } int float_const(char *number, int32_t sign, uint8_t *result, int bytes, efunc error) { switch (bytes) { case 2: return to_float(number, sign, result, &ieee_16, error); case 4: return to_float(number, sign, result, &ieee_32, error); case 8: return to_float(number, sign, result, &ieee_64, error); case 10: return to_ldoub(number, sign, result, error); case 16: return to_float(number, sign, result, &ieee_128, error); default: error(ERR_PANIC, "strange value %d passed to float_const", bytes); return 0; } }