/* nasmlib.h header file for nasmlib.c * * The Netwide Assembler is copyright (C) 1996 Simon Tatham and * Julian Hall. All rights reserved. The software is * redistributable under the licence given in the file "Licence" * distributed in the NASM archive. */ #ifndef NASM_NASMLIB_H #define NASM_NASMLIB_H /* * If this is defined, the wrappers around malloc et al will * transform into logging variants, which will cause NASM to create * a file called `malloc.log' when run, and spew details of all its * memory management into that. That can then be analysed to detect * memory leaks and potentially other problems too. */ /* #define LOGALLOC */ /* * Wrappers around malloc, realloc and free. nasm_malloc will * fatal-error and die rather than return NULL; nasm_realloc will * do likewise, and will also guarantee to work right on being * passed a NULL pointer; nasm_free will do nothing if it is passed * a NULL pointer. */ #ifdef NASM_NASM_H /* need efunc defined for this */ void nasm_set_malloc_error(efunc); #ifndef LOGALLOC void *nasm_malloc(size_t); void *nasm_realloc(void *, size_t); void nasm_free(void *); int8_t *nasm_strdup(const int8_t *); int8_t *nasm_strndup(int8_t *, size_t); #else void *nasm_malloc_log(int8_t *, int, size_t); void *nasm_realloc_log(int8_t *, int, void *, size_t); void nasm_free_log(int8_t *, int, void *); int8_t *nasm_strdup_log(int8_t *, int, const int8_t *); int8_t *nasm_strndup_log(int8_t *, int, int8_t *, size_t); #define nasm_malloc(x) nasm_malloc_log(__FILE__,__LINE__,x) #define nasm_realloc(x,y) nasm_realloc_log(__FILE__,__LINE__,x,y) #define nasm_free(x) nasm_free_log(__FILE__,__LINE__,x) #define nasm_strdup(x) nasm_strdup_log(__FILE__,__LINE__,x) #define nasm_strndup(x,y) nasm_strndup_log(__FILE__,__LINE__,x,y) #endif #endif /* * ANSI doesn't guarantee the presence of `stricmp' or * `strcasecmp'. */ #if defined(stricmp) || defined(strcasecmp) #if defined(stricmp) #define nasm_stricmp stricmp #else #define nasm_stricmp strcasecmp #endif #else int nasm_stricmp(const int8_t *, const int8_t *); #endif #if defined(strnicmp) || defined(strncasecmp) #if defined(strnicmp) #define nasm_strnicmp strnicmp #else #define nasm_strnicmp strncasecmp #endif #else int nasm_strnicmp(const int8_t *, const int8_t *, int); #endif /* * Convert a string into a number, using NASM number rules. Sets * `*error' to TRUE if an error occurs, and FALSE otherwise. */ int64_t readnum(int8_t *str, int *error); /* * Convert a character constant into a number. Sets * `*warn' to TRUE if an overflow occurs, and FALSE otherwise. * str points to and length covers the middle of the string, * without the quotes. */ int64_t readstrnum(int8_t *str, int length, int *warn); /* * seg_init: Initialise the segment-number allocator. * seg_alloc: allocate a hitherto unused segment number. */ void seg_init(void); int32_t seg_alloc(void); /* * many output formats will be able to make use of this: a standard * function to add an extension to the name of the input file */ #ifdef NASM_NASM_H void standard_extension(int8_t *inname, int8_t *outname, int8_t *extension, efunc error); #endif /* * some handy macros that will probably be of use in more than one * output format: convert integers into little-endian byte packed * format in memory */ #define WRITECHAR(p,v) \ do { \ *(p)++ = (v) & 0xFF; \ } while (0) #define WRITESHORT(p,v) \ do { \ WRITECHAR(p,v); \ WRITECHAR(p,(v) >> 8); \ } while (0) #define WRITELONG(p,v) \ do { \ WRITECHAR(p,v); \ WRITECHAR(p,(v) >> 8); \ WRITECHAR(p,(v) >> 16); \ WRITECHAR(p,(v) >> 24); \ } while (0) #define WRITEDLONG(p,v) \ do { \ WRITECHAR(p,v); \ WRITECHAR(p,(v) >> 8); \ WRITECHAR(p,(v) >> 16); \ WRITECHAR(p,(v) >> 24); \ WRITECHAR(p,(v) >> 32); \ WRITECHAR(p,(v) >> 40); \ WRITECHAR(p,(v) >> 48); \ WRITECHAR(p,(v) >> 56); \ } while (0) /* * and routines to do the same thing to a file */ void fwriteint16_t(int data, FILE * fp); void fwriteint32_t(int32_t data, FILE * fp); /* * Routines to manage a dynamic random access array of int32_ts which * may grow in size to be more than the largest single malloc'able * chunk. */ #define RAA_BLKSIZE 4096 /* this many longs allocated at once */ #define RAA_LAYERSIZE 1024 /* this many _pointers_ allocated */ typedef struct RAA RAA; typedef union RAA_UNION RAA_UNION; typedef struct RAA_LEAF RAA_LEAF; typedef struct RAA_BRANCH RAA_BRANCH; struct RAA { /* * Number of layers below this one to get to the real data. 0 * means this structure is a leaf, holding RAA_BLKSIZE real * data items; 1 and above mean it's a branch, holding * RAA_LAYERSIZE pointers to the next level branch or leaf * structures. */ int layers; /* * Number of real data items spanned by one position in the * `data' array at this level. This number is 1, trivially, for * a leaf (level 0): for a level 1 branch it should be * RAA_BLKSIZE, and for a level 2 branch it's * RAA_LAYERSIZE*RAA_BLKSIZE. */ int32_t stepsize; union RAA_UNION { struct RAA_LEAF { int32_t data[RAA_BLKSIZE]; } l; struct RAA_BRANCH { struct RAA *data[RAA_LAYERSIZE]; } b; } u; }; struct RAA *raa_init(void); void raa_free(struct RAA *); int32_t raa_read(struct RAA *, int32_t); struct RAA *raa_write(struct RAA *r, int32_t posn, int32_t value); /* * Routines to manage a dynamic sequential-access array, under the * same restriction on maximum mallocable block. This array may be * written to in two ways: a contiguous chunk can be reserved of a * given size with a pointer returned OR single-byte data may be * written. The array can also be read back in the same two ways: * as a series of big byte-data blocks or as a list of structures * of a given size. */ struct SAA { /* * members `end' and `elem_len' are only valid in first link in * list; `rptr' and `rpos' are used for reading */ struct SAA *next, *end, *rptr; int32_t elem_len, length, posn, start, rpos; int8_t *data; }; struct SAA *saa_init(int32_t elem_len); /* 1 == byte */ void saa_free(struct SAA *); void *saa_wstruct(struct SAA *); /* return a structure of elem_len */ void saa_wbytes(struct SAA *, const void *, int32_t); /* write arbitrary bytes */ void saa_rewind(struct SAA *); /* for reading from beginning */ void *saa_rstruct(struct SAA *); /* return NULL on EOA */ void *saa_rbytes(struct SAA *, int32_t *); /* return 0 on EOA */ void saa_rnbytes(struct SAA *, void *, int32_t); /* read a given no. of bytes */ void saa_fread(struct SAA *s, int32_t posn, void *p, int32_t len); /* fixup */ void saa_fwrite(struct SAA *s, int32_t posn, void *p, int32_t len); /* fixup */ void saa_fpwrite(struct SAA *, FILE *); #ifdef NASM_NASM_H /* * Standard scanner. */ extern int8_t *stdscan_bufptr; void stdscan_reset(void); int stdscan(void *private_data, struct tokenval *tv); #endif #ifdef NASM_NASM_H /* * Library routines to manipulate expression data types. */ int is_reloc(expr *); int is_simple(expr *); int is_really_simple(expr *); int is_unknown(expr *); int is_just_unknown(expr *); int64_t reloc_value(expr *); int32_t reloc_seg(expr *); int32_t reloc_wrt(expr *); #endif /* * Binary search routine. Returns index into `array' of an entry * matching `string', or <0 if no match. `array' is taken to * contain `size' elements. */ int bsi(int8_t *string, const int8_t **array, int size); int8_t *src_set_fname(int8_t *newname); int32_t src_set_linnum(int32_t newline); int32_t src_get_linnum(void); /* * src_get may be used if you simply want to know the source file and line. * It is also used if you maintain private status about the source location * It return 0 if the information was the same as the last time you * checked, -1 if the name changed and (new-old) if just the line changed. */ int src_get(int32_t *xline, int8_t **xname); void nasm_quote(int8_t **str); int8_t *nasm_strcat(int8_t *one, int8_t *two); void nasmlib_cleanup(void); void null_debug_routine(const int8_t *directive, const int8_t *params); extern struct dfmt null_debug_form; extern struct dfmt *null_debug_arr[2]; #endif