gimp/app/operations/layer-modes/gimpoperationlayermode.c
Ell 661c22c06f app: rename "Color (HSV)" mode to "Color (HSL)"
... since that's the color space it actually works in.

Keep the legacy "Color (HSV)" mode's name as is, wrong as it is,
since, well, that's what it used to be called...
2017-03-15 19:30:01 -04:00

2502 lines
71 KiB
C

/* GIMP - The GNU Image Manipulation Program
* Copyright (C) 1995 Spencer Kimball and Peter Mattis
*
* gimpoperationlayermode.c
* Copyright (C) 2008 Michael Natterer <mitch@gimp.org>
* Copyright (C) 2008 Martin Nordholts <martinn@svn.gnome.org>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
#include <gegl-plugin.h>
#include <cairo.h>
#include <gdk-pixbuf/gdk-pixbuf.h>
#include "libgimpcolor/gimpcolor.h"
#include "libgimpbase/gimpbase.h"
#include "libgimpmath/gimpmath.h"
#include "../operations-types.h"
#include "gimp-layer-modes.h"
#include "gimpoperationlayermode.h"
/* the maximum number of samples to process in one go. used to limit
* the size of the buffers we allocate on the stack.
*/
#define GIMP_COMPOSITE_BLEND_MAX_SAMPLES ((1 << 19) /* 0.5 MiB */ / \
16 /* bytes per pixel */ / \
2 /* max number of buffers */)
/* number of consecutive unblended samples (whose source or destination alpha
* is zero) above which to split the blending process, in order to avoid
* performing too many unnecessary conversions.
*/
#define GIMP_COMPOSITE_BLEND_SPLIT_THRESHOLD 32
enum
{
PROP_0,
PROP_LAYER_MODE,
PROP_OPACITY,
PROP_BLEND_SPACE,
PROP_COMPOSITE_SPACE,
PROP_COMPOSITE_MODE
};
typedef void (* CompositeFunc) (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
float opacity,
gfloat *out,
gint samples);
static void gimp_operation_layer_mode_set_property (GObject *object,
guint property_id,
const GValue *value,
GParamSpec *pspec);
static void gimp_operation_layer_mode_get_property (GObject *object,
guint property_id,
GValue *value,
GParamSpec *pspec);
static void gimp_operation_layer_mode_prepare (GeglOperation *operation);
static gboolean gimp_operation_layer_mode_process (GeglOperation *operation,
GeglOperationContext *context,
const gchar *output_prop,
const GeglRectangle *result,
gint level);
static GimpLayerModeAffectMask
gimp_operation_layer_mode_real_get_affect_mask (GimpOperationLayerMode *layer_mode);
static inline void composite_func_src_atop_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
static inline void composite_func_dst_atop_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
static inline void composite_func_src_in_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
static inline void composite_func_src_over_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
static inline void composite_func_src_atop_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
static inline void composite_func_dst_atop_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
static inline void composite_func_src_in_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
static inline void composite_func_src_over_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
#if COMPILE_SSE2_INTRINISICS
static inline void composite_func_src_atop_sse2 (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples);
#endif
G_DEFINE_TYPE (GimpOperationLayerMode, gimp_operation_layer_mode,
GEGL_TYPE_OPERATION_POINT_COMPOSER3)
#define parent_class gimp_operation_layer_mode_parent_class
static const Babl *gimp_layer_color_space_fish[3 /* from */][3 /* to */];
static CompositeFunc composite_func_src_atop = composite_func_src_atop_core;
static CompositeFunc composite_func_dst_atop = composite_func_dst_atop_core;
static CompositeFunc composite_func_src_in = composite_func_src_in_core;
static CompositeFunc composite_func_src_over = composite_func_src_over_core;
static CompositeFunc composite_func_src_atop_sub = composite_func_src_atop_sub_core;
static CompositeFunc composite_func_dst_atop_sub = composite_func_dst_atop_sub_core;
static CompositeFunc composite_func_src_in_sub = composite_func_src_in_sub_core;
static CompositeFunc composite_func_src_over_sub = composite_func_src_over_sub_core;
static void
gimp_operation_layer_mode_class_init (GimpOperationLayerModeClass *klass)
{
GObjectClass *object_class;
GeglOperationClass *operation_class;
GeglOperationPointComposer3Class *point_composer3_class;
object_class = G_OBJECT_CLASS (klass);
operation_class = GEGL_OPERATION_CLASS (klass);
point_composer3_class = GEGL_OPERATION_POINT_COMPOSER3_CLASS (klass);
gegl_operation_class_set_keys (operation_class,
"name", "gimp:layer-mode", NULL);
object_class->set_property = gimp_operation_layer_mode_set_property;
object_class->get_property = gimp_operation_layer_mode_get_property;
operation_class->prepare = gimp_operation_layer_mode_prepare;
operation_class->process = gimp_operation_layer_mode_process;
point_composer3_class->process = gimp_operation_layer_mode_process_pixels;
klass->get_affect_mask = gimp_operation_layer_mode_real_get_affect_mask;
g_object_class_install_property (object_class, PROP_LAYER_MODE,
g_param_spec_enum ("layer-mode",
NULL, NULL,
GIMP_TYPE_LAYER_MODE,
GIMP_LAYER_MODE_NORMAL_LEGACY,
GIMP_PARAM_READWRITE |
G_PARAM_CONSTRUCT));
g_object_class_install_property (object_class, PROP_OPACITY,
g_param_spec_double ("opacity",
NULL, NULL,
0.0, 1.0, 1.0,
GIMP_PARAM_READWRITE |
G_PARAM_CONSTRUCT));
g_object_class_install_property (object_class, PROP_BLEND_SPACE,
g_param_spec_enum ("blend-space",
NULL, NULL,
GIMP_TYPE_LAYER_COLOR_SPACE,
GIMP_LAYER_COLOR_SPACE_RGB_LINEAR,
GIMP_PARAM_READWRITE |
G_PARAM_CONSTRUCT));
g_object_class_install_property (object_class, PROP_COMPOSITE_SPACE,
g_param_spec_enum ("composite-space",
NULL, NULL,
GIMP_TYPE_LAYER_COLOR_SPACE,
GIMP_LAYER_COLOR_SPACE_RGB_LINEAR,
GIMP_PARAM_READWRITE |
G_PARAM_CONSTRUCT));
g_object_class_install_property (object_class, PROP_COMPOSITE_MODE,
g_param_spec_enum ("composite-mode",
NULL, NULL,
GIMP_TYPE_LAYER_COMPOSITE_MODE,
GIMP_LAYER_COMPOSITE_SRC_OVER,
GIMP_PARAM_READWRITE |
G_PARAM_CONSTRUCT));
gimp_layer_color_space_fish
/* from */ [GIMP_LAYER_COLOR_SPACE_RGB_LINEAR - 1]
/* to */ [GIMP_LAYER_COLOR_SPACE_RGB_PERCEPTUAL - 1] =
babl_fish ("RGBA float", "R'G'B'A float");
gimp_layer_color_space_fish
/* from */ [GIMP_LAYER_COLOR_SPACE_RGB_LINEAR - 1]
/* to */ [GIMP_LAYER_COLOR_SPACE_LAB - 1] =
babl_fish ("RGBA float", "CIE Lab alpha float");
gimp_layer_color_space_fish
/* from */ [GIMP_LAYER_COLOR_SPACE_RGB_PERCEPTUAL - 1]
/* to */ [GIMP_LAYER_COLOR_SPACE_RGB_LINEAR - 1] =
babl_fish ("R'G'B'A float", "RGBA float");
gimp_layer_color_space_fish
/* from */ [GIMP_LAYER_COLOR_SPACE_RGB_PERCEPTUAL - 1]
/* to */ [GIMP_LAYER_COLOR_SPACE_LAB - 1] =
babl_fish ("R'G'B'A float", "CIE Lab alpha float");
gimp_layer_color_space_fish
/* from */ [GIMP_LAYER_COLOR_SPACE_LAB - 1]
/* to */ [GIMP_LAYER_COLOR_SPACE_RGB_LINEAR - 1] =
babl_fish ("CIE Lab alpha float", "RGBA float");
gimp_layer_color_space_fish
/* from */ [GIMP_LAYER_COLOR_SPACE_LAB - 1]
/* to */ [GIMP_LAYER_COLOR_SPACE_RGB_PERCEPTUAL - 1] =
babl_fish ("CIE Lab alpha float", "R'G'B'A float");
#if COMPILE_SSE2_INTRINISICS
if (gimp_cpu_accel_get_support () & GIMP_CPU_ACCEL_X86_SSE2)
composite_func_src_atop = composite_func_src_atop_sse2;
#endif
}
static void
gimp_operation_layer_mode_init (GimpOperationLayerMode *self)
{
}
static void
gimp_operation_layer_mode_set_property (GObject *object,
guint property_id,
const GValue *value,
GParamSpec *pspec)
{
GimpOperationLayerMode *self = GIMP_OPERATION_LAYER_MODE (object);
switch (property_id)
{
case PROP_LAYER_MODE:
self->layer_mode = g_value_get_enum (value);
break;
case PROP_OPACITY:
self->opacity = g_value_get_double (value);
break;
case PROP_BLEND_SPACE:
self->blend_space = g_value_get_enum (value);
break;
case PROP_COMPOSITE_SPACE:
self->composite_space = g_value_get_enum (value);
break;
case PROP_COMPOSITE_MODE:
self->composite_mode = g_value_get_enum (value);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
break;
}
}
static void
gimp_operation_layer_mode_get_property (GObject *object,
guint property_id,
GValue *value,
GParamSpec *pspec)
{
GimpOperationLayerMode *self = GIMP_OPERATION_LAYER_MODE (object);
switch (property_id)
{
case PROP_LAYER_MODE:
g_value_set_enum (value, self->layer_mode);
break;
case PROP_OPACITY:
g_value_set_double (value, self->opacity);
break;
case PROP_BLEND_SPACE:
g_value_set_enum (value, self->blend_space);
break;
case PROP_COMPOSITE_SPACE:
g_value_set_enum (value, self->composite_space);
break;
case PROP_COMPOSITE_MODE:
g_value_set_enum (value, self->composite_mode);
break;
default:
G_OBJECT_WARN_INVALID_PROPERTY_ID (object, property_id, pspec);
break;
}
}
static void
gimp_operation_layer_mode_prepare (GeglOperation *operation)
{
GimpOperationLayerMode *self = GIMP_OPERATION_LAYER_MODE (operation);
const Babl *in_format;
const Babl *format;
in_format = gegl_operation_get_source_format (operation, "input");
format = gimp_layer_mode_get_format (self->layer_mode,
self->composite_space,
self->blend_space,
in_format);
gegl_operation_set_format (operation, "input", format);
gegl_operation_set_format (operation, "output", format);
gegl_operation_set_format (operation, "aux", format);
gegl_operation_set_format (operation, "aux2", babl_format ("Y float"));
}
static gboolean
gimp_operation_layer_mode_process (GeglOperation *operation,
GeglOperationContext *context,
const gchar *output_prop,
const GeglRectangle *result,
gint level)
{
GimpOperationLayerMode *point = GIMP_OPERATION_LAYER_MODE (operation);
GObject *input;
GObject *aux;
gboolean has_input;
gboolean has_aux;
/* get the raw values. this does not increase the reference count. */
input = gegl_operation_context_get_object (context, "input");
aux = gegl_operation_context_get_object (context, "aux");
/* disregard 'input' if it's not included in the roi. */
has_input =
input &&
gegl_rectangle_intersect (NULL,
gegl_buffer_get_extent (GEGL_BUFFER (input)),
result);
/* disregard 'aux' if it's not included in the roi, or if it's fully
* transparent.
*/
has_aux =
aux &&
point->opacity != 0.0 &&
gegl_rectangle_intersect (NULL,
gegl_buffer_get_extent (GEGL_BUFFER (aux)),
result);
/* if there's no 'input' ... */
if (! has_input)
{
/* ... and there's 'aux', and the composite mode includes it ... */
if (has_aux &&
(point->composite_mode == GIMP_LAYER_COMPOSITE_SRC_OVER ||
point->composite_mode == GIMP_LAYER_COMPOSITE_DST_ATOP))
{
GimpLayerModeAffectMask affect_mask;
affect_mask = gimp_operation_layer_mode_get_affect_mask (point);
/* ... and the op doesn't otherwise affect 'aux', or changes its
* alpha ...
*/
if (! (affect_mask & GIMP_LAYER_MODE_AFFECT_SRC) &&
point->opacity == 1.0 &&
! gegl_operation_context_get_object (context, "aux2"))
{
/* pass 'aux' directly as output; */
gegl_operation_context_set_object (context, "output", aux);
return TRUE;
}
/* otherwise, if the op affects 'aux', or changes its alpha, process
* it even though there's no 'input';
*/
}
/* otherwise, there's no 'aux', or the composite mode doesn't include it,
* and so ...
*/
else
{
/* ... the output is empty. */
gegl_operation_context_set_object (context, "output", NULL);
return TRUE;
}
}
/* otherwise, if there's 'input' but no 'aux' ... */
else if (! has_aux)
{
/* ... and the composite mode includes 'input' ... */
if (point->composite_mode == GIMP_LAYER_COMPOSITE_SRC_OVER ||
point->composite_mode == GIMP_LAYER_COMPOSITE_SRC_ATOP)
{
GimpLayerModeAffectMask affect_mask;
affect_mask = gimp_operation_layer_mode_get_affect_mask (point);
/* ... and the op doesn't otherwise affect 'input' ... */
if (! (affect_mask & GIMP_LAYER_MODE_AFFECT_DST))
{
/* pass 'input' directly as output; */
gegl_operation_context_set_object (context, "output", input);
return TRUE;
}
/* otherwise, if the op affects 'input', process it even though
* there's no 'aux';
*/
}
/* otherwise, the output is fully transparent, but we process it anyway
* to maintain the 'input' color values.
*/
}
/* FIXME: we don't actually handle the case where one of the inputs
* is NULL -- it'll just segfault. 'input' is not expected to be NULL,
* but 'aux' might be, currently.
*/
if (! input || ! aux)
{
GObject *empty = G_OBJECT (gegl_buffer_new (NULL, NULL));
if (! input) gegl_operation_context_set_object (context, "input", empty);
if (! aux) gegl_operation_context_set_object (context, "aux", empty);
if (! input && ! aux)
gegl_object_set_has_forked (G_OBJECT (empty));
g_object_unref (empty);
}
/* chain up, which will create the needed buffers for our actual
* process function
*/
return GEGL_OPERATION_CLASS (parent_class)->process (operation, context,
output_prop, result,
level);
}
static GimpLayerModeAffectMask
gimp_operation_layer_mode_real_get_affect_mask (GimpOperationLayerMode *layer_mode)
{
/* most modes only affect the overlapping regions. */
return GIMP_LAYER_MODE_AFFECT_NONE;
}
/* public functions */
GimpLayerModeAffectMask
gimp_operation_layer_mode_get_affect_mask (GimpOperationLayerMode *layer_mode)
{
g_return_val_if_fail (GIMP_IS_OPERATION_LAYER_MODE (layer_mode),
GIMP_LAYER_MODE_AFFECT_NONE);
return GIMP_OPERATION_LAYER_MODE_GET_CLASS (layer_mode)->get_affect_mask (layer_mode);
}
/* compositing and blending functions */
static inline GimpBlendFunc gimp_layer_mode_get_blend_fun (GimpLayerMode mode);
static inline void gimp_composite_blend (GimpOperationLayerMode *layer_mode,
gfloat *in,
gfloat *layer,
gfloat *mask,
gfloat *out,
glong samples,
GimpBlendFunc blend_func);
gboolean
gimp_operation_layer_mode_process_pixels (GeglOperation *operation,
void *in,
void *layer,
void *mask,
void *out,
glong samples,
const GeglRectangle *roi,
gint level)
{
GimpOperationLayerMode *layer_mode = (gpointer) operation;
gimp_composite_blend (layer_mode, in, layer, mask, out, samples,
gimp_layer_mode_get_blend_fun (layer_mode->layer_mode));
return TRUE;
}
/* non-subtractive compositing functions. these functions expect comp[ALPHA]
* to be the same as layer[ALPHA]. when in[ALPHA] or layer[ALPHA] are zero,
* the value of comp[RED..BLUE] is unconstrained (in particular, it may be
* NaN).
*/
static inline void
composite_func_src_atop_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat layer_alpha = comp[ALPHA] * opacity;
if (mask)
layer_alpha *= *mask;
if (in[ALPHA] == 0.0f || layer_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else
{
gint b;
for (b = RED; b < ALPHA; b++)
out[b] = comp[b] * layer_alpha + in[b] * (1.0f - layer_alpha);
}
out[ALPHA] = in[ALPHA];
in += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
static inline void
composite_func_src_over_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat new_alpha;
gfloat in_alpha = in[ALPHA];
gfloat layer_alpha = layer[ALPHA] * opacity;
if (mask)
layer_alpha *= *mask;
new_alpha = layer_alpha + (1.0f - layer_alpha) * in_alpha;
if (layer_alpha == 0.0f || new_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else if (in_alpha == 0.0f)
{
out[RED] = layer[RED];
out[GREEN] = layer[GREEN];
out[BLUE] = layer[BLUE];
}
else
{
gfloat ratio = layer_alpha / new_alpha;
gint b;
for (b = RED; b < ALPHA; b++)
out[b] = ratio * (in_alpha * (comp[b] - layer[b]) + layer[b] - in[b]) + in[b];
}
out[ALPHA] = new_alpha;
in += 4;
layer += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
static inline void
composite_func_dst_atop_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat layer_alpha = layer[ALPHA] * opacity;
if (mask)
layer_alpha *= *mask;
if (layer_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else if (in[ALPHA] == 0.0f)
{
out[RED] = layer[RED];
out[GREEN] = layer[GREEN];
out[BLUE] = layer[BLUE];
}
else
{
gint b;
for (b = RED; b < ALPHA; b++)
out[b] = comp[b] * in[ALPHA] + layer[b] * (1.0f - in[ALPHA]);
}
out[ALPHA] = layer_alpha;
in += 4;
layer += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
static inline void
composite_func_src_in_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat new_alpha = in[ALPHA] * comp[ALPHA] * opacity;
if (mask)
new_alpha *= *mask;
if (new_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else
{
out[RED] = comp[RED];
out[GREEN] = comp[GREEN];
out[BLUE] = comp[BLUE];
}
out[ALPHA] = new_alpha;
in += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
/* subtractive compositing functions. these functions expect comp[ALPHA] to
* specify the modified alpha of the overlapping content, as a fraction of the
* original overlapping content (i.e., an alpha of 1.0 specifies that no
* content is subtracted.) when in[ALPHA] or layer[ALPHA] are zero, the value
* of comp[RED..BLUE] is unconstrained (in particular, it may be NaN).
*/
static inline void
composite_func_src_atop_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat layer_alpha = layer[ALPHA] * opacity;
gfloat comp_alpha = comp[ALPHA];
gfloat new_alpha;
if (mask)
layer_alpha *= *mask;
comp_alpha *= layer_alpha;
new_alpha = 1.0f - layer_alpha + comp_alpha;
if (in[ALPHA] == 0.0f || comp_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else
{
gfloat ratio = comp_alpha / new_alpha;
gint b;
for (b = RED; b < ALPHA; b++)
out[b] = comp[b] * ratio + in[b] * (1.0f - ratio);
}
new_alpha *= in[ALPHA];
out[ALPHA] = new_alpha;
in += 4;
layer += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
static inline void
composite_func_src_over_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat in_alpha = in[ALPHA];
gfloat layer_alpha = layer[ALPHA] * opacity;
gfloat comp_alpha = comp[ALPHA];
gfloat new_alpha;
if (mask)
layer_alpha *= *mask;
new_alpha = in_alpha + layer_alpha -
(2.0f - comp_alpha) * in_alpha * layer_alpha;
if (layer_alpha == 0.0f || new_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else if (in_alpha == 0.0f)
{
out[RED] = layer[RED];
out[GREEN] = layer[GREEN];
out[BLUE] = layer[BLUE];
}
else
{
gfloat ratio = in_alpha / new_alpha;
gfloat layer_coeff = 1.0f / in_alpha - 1.0f;
gint b;
for (b = RED; b < ALPHA; b++)
out[b] = ratio * (layer_alpha * (comp_alpha * comp[b] + layer_coeff * layer[b] - in[b]) + in[b]);
}
out[ALPHA] = new_alpha;
in += 4;
layer += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
static inline void
composite_func_dst_atop_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat in_alpha = in[ALPHA];
gfloat layer_alpha = layer[ALPHA] * opacity;
gfloat comp_alpha = comp[ALPHA];
gfloat new_alpha;
if (mask)
layer_alpha *= *mask;
comp_alpha *= in_alpha;
new_alpha = 1.0f - in_alpha + comp_alpha;
if (layer_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else if (in_alpha == 0.0f)
{
out[RED] = layer[RED];
out[GREEN] = layer[GREEN];
out[BLUE] = layer[BLUE];
}
else
{
gfloat ratio = comp_alpha / new_alpha;
gint b;
for (b = RED; b < ALPHA; b++)
out[b] = comp[b] * ratio + layer[b] * (1.0f - ratio);
}
new_alpha *= layer_alpha;
out[ALPHA] = new_alpha;
in += 4;
layer += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
static inline void
composite_func_src_in_sub_core (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
while (samples--)
{
gfloat new_alpha = in[ALPHA] * layer[ALPHA] * comp[ALPHA] * opacity;
if (mask)
new_alpha *= *mask;
if (new_alpha == 0.0f)
{
out[RED] = in[RED];
out[GREEN] = in[GREEN];
out[BLUE] = in[BLUE];
}
else
{
out[RED] = comp[RED];
out[GREEN] = comp[GREEN];
out[BLUE] = comp[BLUE];
}
out[ALPHA] = new_alpha;
in += 4;
layer += 4;
comp += 4;
out += 4;
if (mask)
mask++;
}
}
#if COMPILE_SSE2_INTRINISICS
#include <emmintrin.h>
static inline void
composite_func_src_atop_sse2 (gfloat *in,
gfloat *layer,
gfloat *comp,
gfloat *mask,
gfloat opacity,
gfloat *out,
gint samples)
{
if ((((uintptr_t)in) | /* alignment check */
((uintptr_t)comp) |
((uintptr_t)out) ) & 0x0F)
{
return composite_func_src_atop_core (in, layer, comp, mask, opacity,
out, samples);
}
else
{
const __v4sf *v_in = (const __v4sf*) in;
const __v4sf *v_comp = (const __v4sf*) comp;
__v4sf *v_out = (__v4sf*) out;
const __v4sf v_one = _mm_set1_ps (1.0f);
const __v4sf v_opacity = _mm_set1_ps (opacity);
while (samples--)
{
__v4sf alpha, rgba_in, rgba_comp;
rgba_in = *v_in ++;
rgba_comp = *v_comp++;
alpha = (__v4sf)_mm_shuffle_epi32((__m128i)rgba_comp,_MM_SHUFFLE(3,3,3,3)) * v_opacity;
if (mask)
{
alpha = alpha * _mm_set1_ps (*mask++);
}
if (rgba_in[ALPHA] != 0.0f && _mm_ucomineq_ss (alpha, _mm_setzero_ps ()))
{
__v4sf out_pixel, out_pixel_rbaa, out_alpha;
out_alpha = (__v4sf)_mm_shuffle_epi32((__m128i)rgba_in,_MM_SHUFFLE(3,3,3,3));
out_pixel = rgba_comp * alpha + rgba_in * (v_one - alpha);
out_pixel_rbaa = _mm_shuffle_ps (out_pixel, out_alpha, _MM_SHUFFLE (3, 3, 2, 0));
out_pixel = _mm_shuffle_ps (out_pixel, out_pixel_rbaa, _MM_SHUFFLE (2, 1, 1, 0));
*v_out++ = out_pixel;
}
else
{
*v_out ++ = rgba_in;
}
}
}
}
#endif
static inline void
gimp_composite_blend (GimpOperationLayerMode *layer_mode,
gfloat *in,
gfloat *layer,
gfloat *mask,
gfloat *out,
glong samples,
GimpBlendFunc blend_func)
{
gfloat opacity = layer_mode->opacity;
GimpLayerColorSpace blend_space = layer_mode->blend_space;
GimpLayerColorSpace composite_space = layer_mode->composite_space;
GimpLayerCompositeMode composite_mode = layer_mode->composite_mode;
gfloat *blend_in;
gfloat *blend_layer;
gfloat *blend_out;
gboolean composite_needs_in_color =
composite_mode == GIMP_LAYER_COMPOSITE_SRC_OVER ||
composite_mode == GIMP_LAYER_COMPOSITE_SRC_ATOP;
const Babl *composite_to_blend_fish = NULL;
const Babl *blend_to_composite_fish = NULL;
/* make sure we don't process more than GIMP_COMPOSITE_BLEND_MAX_SAMPLES
* at a time, so that we don't overflow the stack if we allocate buffers
* on it. note that this has to be done with a nested function call,
* because alloca'd buffers remain for the duration of the stack frame.
*/
while (samples > GIMP_COMPOSITE_BLEND_MAX_SAMPLES)
{
gimp_composite_blend (layer_mode,
in, layer, mask, out,
GIMP_COMPOSITE_BLEND_MAX_SAMPLES,
blend_func);
in += 4 * GIMP_COMPOSITE_BLEND_MAX_SAMPLES;
layer += 4 * GIMP_COMPOSITE_BLEND_MAX_SAMPLES;
if (mask)
mask += GIMP_COMPOSITE_BLEND_MAX_SAMPLES;
out += 4 * GIMP_COMPOSITE_BLEND_MAX_SAMPLES;
samples -= GIMP_COMPOSITE_BLEND_MAX_SAMPLES;
}
blend_in = in;
blend_layer = layer;
blend_out = out;
if (blend_space != GIMP_LAYER_COLOR_SPACE_AUTO)
{
g_assert (composite_space >= 1 && composite_space < 4);
g_assert (blend_space >= 1 && blend_space < 4);
composite_to_blend_fish = gimp_layer_color_space_fish [composite_space - 1]
[blend_space - 1];
blend_to_composite_fish = gimp_layer_color_space_fish [blend_space - 1]
[composite_space - 1];
}
/* if we need to convert the samples between the composite and blend
* spaces...
*/
if (composite_to_blend_fish)
{
gint i;
gint end;
if (in != out || composite_needs_in_color)
{
/* don't convert input in-place if we're not doing in-place output,
* or if we're going to need the original input for compositing.
*/
blend_in = g_alloca (sizeof (gfloat) * 4 * samples);
}
blend_layer = g_alloca (sizeof (gfloat) * 4 * samples);
if (in == out) /* in-place detected, avoid clobbering since we need to
read 'in' for the compositing stage */
{
if (blend_layer != layer)
blend_out = blend_layer;
else
blend_out = g_alloca (sizeof (gfloat) * 4 * samples);
}
/* samples whose the source or destination alpha is zero are not blended,
* and therefore do not need to be converted. while it's generally
* desirable to perform conversion and blending in bulk, when we have
* more than a certain number of consecutive unblended samples, the cost
* of converting them outweighs the cost of splitting the process around
* them to avoid the conversion.
*/
i = ALPHA;
end = 4 * samples + ALPHA;
while (TRUE)
{
gint first;
gint last;
gint count;
/* skip any unblended samples. the color values of `blend_out` for
* these samples are unconstrained, in particular, they may be NaN,
* but the alpha values should generally be finite, and specifically
* 0 when the source alpha is 0. when `blend_out == blend_layer`,
* this is the case anyway, but otherwise, we need to manually set
* the unblended samples' alpha to zero.
*/
if (blend_out == blend_layer)
{
while (i < end && (in[i] == 0.0f || layer[i] == 0.0f))
{
i += 4;
}
}
else
{
while (i < end && (in[i] == 0.0f || layer[i] == 0.0f))
{
blend_out[i] = 0.0f;
i += 4;
}
}
/* stop if there are no more samples */
if (i == end)
break;
/* otherwise, keep scanning the samples until we find
* GIMP_COMPOSITE_BLEND_SPLIT_THRESHOLD consecutive unblended
* samples.
*/
first = i;
i += 4;
last = i;
while (i < end && i - last < 4 * GIMP_COMPOSITE_BLEND_SPLIT_THRESHOLD)
{
gboolean blended;
blended = (in[i] != 0.0f && layer[i] != 0.0f);
i += 4;
if (blended)
last = i;
}
/* convert and blend the samples in the range [first, last) */
count = (last - first) / 4;
first -= ALPHA;
babl_process (composite_to_blend_fish,
in + first, blend_in + first, count);
babl_process (composite_to_blend_fish,
layer + first, blend_layer + first, count);
blend_func (blend_in + first, blend_layer + first,
blend_out + first, count);
babl_process (blend_to_composite_fish,
blend_out + first, blend_out + first, count);
/* make sure the alpha values of `blend_out` are valid for the
* trailing unblended samples.
*/
if (blend_out != blend_layer)
{
for (; last < i; last += 4)
blend_out[last] = 0.0f;
}
}
}
else
{
/* if both blending and compositing use the same color space, things are
* much simpler.
*/
if (in == out) /* in-place detected, avoid clobbering since we need to
read 'in' for the compositing stage */
{
blend_out = g_alloca (sizeof (gfloat) * 4 * samples);
}
blend_func (blend_in, blend_layer, blend_out, samples);
}
if (! gimp_layer_mode_is_subtractive (layer_mode->layer_mode))
{
switch (composite_mode)
{
case GIMP_LAYER_COMPOSITE_SRC_ATOP:
default:
composite_func_src_atop (in, layer, blend_out,
mask, opacity,
out, samples);
break;
case GIMP_LAYER_COMPOSITE_SRC_OVER:
composite_func_src_over (in, layer, blend_out,
mask, opacity,
out, samples);
break;
case GIMP_LAYER_COMPOSITE_DST_ATOP:
composite_func_dst_atop (in, layer, blend_out,
mask, opacity,
out, samples);
break;
case GIMP_LAYER_COMPOSITE_SRC_IN:
composite_func_src_in (in, layer, blend_out,
mask, opacity,
out, samples);
break;
}
}
else
{
switch (composite_mode)
{
case GIMP_LAYER_COMPOSITE_SRC_ATOP:
default:
composite_func_src_atop_sub (in, layer, blend_out,
mask, opacity,
out, samples);
break;
case GIMP_LAYER_COMPOSITE_SRC_OVER:
composite_func_src_over_sub (in, layer, blend_out,
mask, opacity,
out, samples);
break;
case GIMP_LAYER_COMPOSITE_DST_ATOP:
composite_func_dst_atop_sub (in, layer, blend_out,
mask, opacity,
out, samples);
break;
case GIMP_LAYER_COMPOSITE_SRC_IN:
composite_func_src_in_sub (in, layer, blend_out,
mask, opacity,
out, samples);
break;
}
}
}
static inline void
blendfun_screen (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = 1.0f - (1.0f - dest[c]) * (1.0f - src[c]);
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void /* aka linear_dodge */
blendfun_addition (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = dest[c] + src[c];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_linear_burn (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = dest[c] + src[c] - 1.0f;
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_subtract (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = dest[c] - src[c];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_multiply (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = dest[c] * src[c];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_normal (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = src[c];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_burn (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp = 1.0f - (1.0f - dest[c]) / src[c];
/* The CLAMP macro is deliberately inlined and written
* to map comp == NAN (0 / 0) -> 1
*/
out[c] = comp < 0 ? 0.0f : comp < 1.0f ? comp : 1.0f;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_darken_only (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = MIN (dest[c], src[c]);
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_luminance_lighten_only (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
float dest_luminance =
GIMP_RGB_LUMINANCE(dest[0], dest[1], dest[2]);
float src_luminance =
GIMP_RGB_LUMINANCE(src[0], src[1], src[2]);
if (dest_luminance >= src_luminance)
for (c = 0; c < 3; c++)
out[c] = dest[c];
else
for (c = 0; c < 3; c++)
out[c] = src[c];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_luminance_darken_only (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
float dest_luminance =
GIMP_RGB_LUMINANCE(dest[0], dest[1], dest[2]);
float src_luminance =
GIMP_RGB_LUMINANCE(src[0], src[1], src[2]);
if (dest_luminance <= src_luminance)
for (c = 0; c < 3; c++)
out[c] = dest[c];
else
for (c = 0; c < 3; c++)
out[c] = src[c];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_lighten_only (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = MAX (dest[c], src[c]);
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_difference (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
out[c] = dest[c] - src[c];
if (out[c] < 0)
out[c] = -out[c];
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_divide (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp = dest[c] / src[c];
/* make infinities(or NaN) correspond to a high number,
* to get more predictable math, ideally higher than 5.0
* but it seems like some babl conversions might be
* acting up then
*/
if (!(comp > -42949672.0f && comp < 5.0f))
comp = 5.0f;
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_dodge (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp = dest[c] / (1.0f - src[c]);
comp = MIN (comp, 1.0f);
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_grain_extract (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = dest[c] - src[c] + 0.5f;
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_grain_merge (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
out[c] = dest[c] + src[c] - 0.5f;
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_hardlight (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp;
if (src[c] > 0.5f)
{
comp = (1.0f - dest[c]) * (1.0f - (src[c] - 0.5f) * 2.0f);
comp = MIN (1 - comp, 1);
}
else
{
comp = dest[c] * (src[c] * 2.0f);
comp = MIN (comp, 1.0f);
}
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_softlight (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat multiply = dest[c] * src[c];
gfloat screen = 1.0f - (1.0f - dest[c]) * (1.0f - src[c]);
gfloat comp = (1.0f - dest[c]) * multiply + dest[c] * screen;
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_overlay (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp;
if (dest[c] < 0.5f)
{
comp = 2.0f * dest[c] * src[c];
}
else
{
comp = 1.0f - 2.0f * (1.0f - src[c]) * (1.0f - dest[c]);
}
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_hsl_color (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gfloat dest_min, dest_max, dest_l;
gfloat src_min, src_max, src_l;
dest_min = MIN (dest[0], dest[1]);
dest_min = MIN (dest_min, dest[2]);
dest_max = MAX (dest[0], dest[1]);
dest_max = MAX (dest_max, dest[2]);
dest_l = (dest_min + dest_max) / 2.0f;
src_min = MIN (src[0], src[1]);
src_min = MIN (src_min, src[2]);
src_max = MAX (src[0], src[1]);
src_max = MAX (src_max, src[2]);
src_l = (src_min + src_max) / 2.0f;
if (src_l != 0.0f && src_l != 1.0f)
{
gfloat factor;
gfloat offset;
gint c;
if (src_l < 0.5f)
{
if (dest_l < 0.5f)
{
factor = dest_l / src_l;
offset = 0.0f;
}
else
{
factor = 1.0f - dest_l / src_l;
offset = 2.0f * dest_l - 1.0f;
}
}
else
{
if (dest_l < 0.5f)
{
factor = dest_l / (1.0f - src_l);
offset = 2.0f * dest_l - factor;
}
else
{
factor = (1.0f - dest_l) / (1.0f - src_l);
offset = 1.0f - factor;
}
}
for (c = 0; c < 3; c++)
out[c] = src[c] * factor + offset;
}
else
{
out[RED] = dest_l;
out[GREEN] = dest_l;
out[BLUE] = dest_l;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_hsv_hue (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
GimpRGB dest_rgb = { dest[0], dest[1], dest[2] };
GimpRGB src_rgb = { src[0], src[1], src[2] };
GimpHSV src_hsv, dest_hsv;
gimp_rgb_to_hsv (&dest_rgb, &dest_hsv);
gimp_rgb_to_hsv (&src_rgb, &src_hsv);
dest_hsv.h = src_hsv.h;
gimp_hsv_to_rgb (&dest_hsv, &dest_rgb);
out[RED] = dest_rgb.r;
out[GREEN] = dest_rgb.g;
out[BLUE] = dest_rgb.b;
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_hsv_saturation (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gfloat src_min, src_max, src_delta, src_s;
gfloat dest_min, dest_max, dest_delta;
dest_min = MIN (dest[0], dest[1]);
dest_min = MIN (dest_min, dest[2]);
dest_max = MAX (dest[0], dest[1]);
dest_max = MAX (dest_max, dest[2]);
dest_delta = dest_max - dest_min;
if (dest_delta != 0.0f)
{
gfloat ratio;
gint c;
src_min = MIN (src[0], src[1]);
src_min = MIN (src_min, src[2]);
src_max = MAX (src[0], src[1]);
src_max = MAX (src_max, src[2]);
src_delta = src_max - src_min;
src_s = src_max ? src_delta / src_max : 0.0f;
ratio = src_s * dest_max / dest_delta;
for (c = 0; c < 3; c++)
out[c] = (dest[c] - dest_max) * ratio + dest_max;
}
else
{
out[RED] = dest_max;
out[GREEN] = dest_max;
out[BLUE] = dest_max;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_hsv_value (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gfloat dest_v;
gfloat src_v;
dest_v = MAX (dest[0], dest[1]);
dest_v = MAX (dest_v, dest[2]);
src_v = MAX (src[0], src[1]);
src_v = MAX (src_v, src[2]);
if (dest_v != 0.0f)
{
gfloat ratio = src_v / dest_v;
gint c;
for (c = 0; c < 3; c++)
out[c] = dest[c] * ratio;
}
else
{
out[RED] = src_v;
out[GREEN] = src_v;
out[BLUE] = src_v;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_lch_chroma (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gfloat A1 = dest[1];
gfloat B1 = dest[2];
gfloat c1 = hypotf (A1, B1);
if (c1 != 0.0f)
{
gfloat A2 = src[1];
gfloat B2 = src[2];
gfloat c2 = hypotf (A2, B2);
gfloat A = c2 * A1 / c1;
gfloat B = c2 * B1 / c1;
out[0] = dest[0];
out[1] = A;
out[2] = B;
}
else
{
out[0] = dest[0];
out[1] = dest[1];
out[2] = dest[2];
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_lch_color (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
out[0] = dest[0];
out[1] = src[1];
out[2] = src[2];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_lch_hue (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gfloat A2 = src[1];
gfloat B2 = src[2];
gfloat c2 = hypotf (A2, B2);
if (c2 > 0.1f)
{
gfloat A1 = dest[1];
gfloat B1 = dest[2];
gfloat c1 = hypotf (A1, B1);
gfloat A = c1 * A2 / c2;
gfloat B = c1 * B2 / c2;
out[0] = dest[0];
out[1] = A;
out[2] = B;
}
else
{
out[0] = dest[0];
out[1] = dest[1];
out[2] = dest[2];
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_lch_lightness (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
out[0] = src[0];
out[1] = dest[1];
out[2] = dest[2];
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_luminance (const float *dest,//*in,
const float *src,//*layer,
float *out,
int samples)
{
gfloat layer_Y[samples], *layer;
gfloat in_Y[samples], *in;
babl_process (babl_fish ("RGBA float", "Y float"), src, layer_Y, samples);
babl_process (babl_fish ("RGBA float", "Y float"), dest, in_Y, samples);
layer = &layer_Y[0];
in = &in_Y[0];
while (samples--)
{
if (src[ALPHA] != 0.0f && dest[ALPHA] != 0.0f)
{
gfloat ratio = layer[0] / MAX(in[0], 0.0000000000000000001);
int c;
for (c = 0; c < 3; c ++)
out[c] = dest[c] * ratio;
}
out[ALPHA] = src[ALPHA];
out += 4;
dest += 4;
src += 4;
in ++;
layer ++;
}
}
static inline void
blendfun_copy (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
gint c;
for (c = 0; c < 4; c++)
out[c] = src[c];
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
/* added according to:
http://www.simplefilter.de/en/basics/mixmods.html */
static inline void
blendfun_vivid_light (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp;
if (src[c] <= 0.5f)
{
comp = 1.0f - (1.0f - dest[c]) / (2.0f * (src[c]));
}
else
{
comp = dest[c] / (2.0f * (1.0f - src[c]));
}
comp = MIN (comp, 1.0f);
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
/* added according to:
http://www.deepskycolors.com/archivo/2010/04/21/formulas-for-Photoshop-blending-modes.html */
static inline void
blendfun_linear_light (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp;
if (src[c] <= 0.5f)
{
comp = dest[c] + 2.0 * src[c] - 1.0f;
}
else
{
comp = dest[c] + 2.0 * (src[c] - 0.5f);
}
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
/* added according to:
http://www.deepskycolors.com/archivo/2010/04/21/formulas-for-Photoshop-blending-modes.html */
static inline void
blendfun_pin_light (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
gfloat comp;
if (src[c] > 0.5f)
{
comp = MAX(dest[c], 2 * (src[c] - 0.5));
}
else
{
comp = MIN(dest[c], 2 * src[c]);
}
out[c] = comp;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_hard_mix (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
out[c] = dest[c] + src[c] < 1.0f ? 0.0f : 1.0f;
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_exclusion (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
gint c;
for (c = 0; c < 3; c++)
{
out[c] = 0.5f - 2.0f * (dest[c] - 0.5f) * (src[c] - 0.5f);
}
}
out[ALPHA] = src[ALPHA];
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_color_erase (const float *dest,
const float *src,
float *out,
int samples)
{
while (samples--)
{
if (dest[ALPHA] != 0.0f && src[ALPHA] != 0.0f)
{
const float *color = dest;
const float *bgcolor = src;
gfloat alpha;
gint c;
alpha = 0.0f;
for (c = 0; c < 3; c++)
{
gfloat col = CLAMP (color[c], 0.0f, 1.0f);
gfloat bgcol = CLAMP (bgcolor[c], 0.0f, 1.0f);
if (col != bgcol)
{
gfloat a;
if (col > bgcol)
a = (col - bgcol) / (1.0f - bgcol);
else
a = (bgcol - col) / bgcol;
alpha = MAX (alpha, a);
}
}
if (alpha > 0.0f)
{
gfloat alpha_inv = 1.0f / alpha;
for (c = 0; c < 3; c++)
out[c] = (color[c] - bgcolor[c]) * alpha_inv + bgcolor[c];
}
else
{
out[RED] = out[GREEN] = out[BLUE] = 0.0f;
}
out[ALPHA] = alpha;
}
else
out[ALPHA] = 0.0f;
out += 4;
src += 4;
dest += 4;
}
}
static inline void
blendfun_dummy (const float *dest,
const float *src,
float *out,
int samples)
{
}
static inline GimpBlendFunc
gimp_layer_mode_get_blend_fun (GimpLayerMode mode)
{
switch (mode)
{
case GIMP_LAYER_MODE_SCREEN: return blendfun_screen;
case GIMP_LAYER_MODE_ADDITION: return blendfun_addition;
case GIMP_LAYER_MODE_SUBTRACT: return blendfun_subtract;
case GIMP_LAYER_MODE_MULTIPLY: return blendfun_multiply;
case GIMP_LAYER_MODE_NORMAL_LEGACY:
case GIMP_LAYER_MODE_NORMAL: return blendfun_normal;
case GIMP_LAYER_MODE_BURN: return blendfun_burn;
case GIMP_LAYER_MODE_GRAIN_MERGE: return blendfun_grain_merge;
case GIMP_LAYER_MODE_GRAIN_EXTRACT: return blendfun_grain_extract;
case GIMP_LAYER_MODE_DODGE: return blendfun_dodge;
case GIMP_LAYER_MODE_OVERLAY: return blendfun_overlay;
case GIMP_LAYER_MODE_HSL_COLOR: return blendfun_hsl_color;
case GIMP_LAYER_MODE_HSV_HUE: return blendfun_hsv_hue;
case GIMP_LAYER_MODE_HSV_SATURATION: return blendfun_hsv_saturation;
case GIMP_LAYER_MODE_HSV_VALUE: return blendfun_hsv_value;
case GIMP_LAYER_MODE_LCH_CHROMA: return blendfun_lch_chroma;
case GIMP_LAYER_MODE_LCH_COLOR: return blendfun_lch_color;
case GIMP_LAYER_MODE_LCH_HUE: return blendfun_lch_hue;
case GIMP_LAYER_MODE_LCH_LIGHTNESS: return blendfun_lch_lightness;
case GIMP_LAYER_MODE_LUMINANCE: return blendfun_luminance;
case GIMP_LAYER_MODE_HARDLIGHT: return blendfun_hardlight;
case GIMP_LAYER_MODE_SOFTLIGHT: return blendfun_softlight;
case GIMP_LAYER_MODE_DIVIDE: return blendfun_divide;
case GIMP_LAYER_MODE_DIFFERENCE: return blendfun_difference;
case GIMP_LAYER_MODE_DARKEN_ONLY: return blendfun_darken_only;
case GIMP_LAYER_MODE_LIGHTEN_ONLY: return blendfun_lighten_only;
case GIMP_LAYER_MODE_LUMA_DARKEN_ONLY: return blendfun_luminance_darken_only;
case GIMP_LAYER_MODE_LUMA_LIGHTEN_ONLY: return blendfun_luminance_lighten_only;
case GIMP_LAYER_MODE_VIVID_LIGHT: return blendfun_vivid_light;
case GIMP_LAYER_MODE_PIN_LIGHT: return blendfun_pin_light;
case GIMP_LAYER_MODE_LINEAR_LIGHT: return blendfun_linear_light;
case GIMP_LAYER_MODE_HARD_MIX: return blendfun_hard_mix;
case GIMP_LAYER_MODE_EXCLUSION: return blendfun_exclusion;
case GIMP_LAYER_MODE_LINEAR_BURN: return blendfun_linear_burn;
case GIMP_LAYER_MODE_COLOR_ERASE_LEGACY:
case GIMP_LAYER_MODE_COLOR_ERASE: return blendfun_color_erase;
case GIMP_LAYER_MODE_DISSOLVE:
case GIMP_LAYER_MODE_BEHIND_LEGACY:
case GIMP_LAYER_MODE_BEHIND:
case GIMP_LAYER_MODE_MULTIPLY_LEGACY:
case GIMP_LAYER_MODE_SCREEN_LEGACY:
case GIMP_LAYER_MODE_OVERLAY_LEGACY:
case GIMP_LAYER_MODE_DIFFERENCE_LEGACY:
case GIMP_LAYER_MODE_ADDITION_LEGACY:
case GIMP_LAYER_MODE_SUBTRACT_LEGACY:
case GIMP_LAYER_MODE_DARKEN_ONLY_LEGACY:
case GIMP_LAYER_MODE_LIGHTEN_ONLY_LEGACY:
case GIMP_LAYER_MODE_HSV_HUE_LEGACY:
case GIMP_LAYER_MODE_HSV_SATURATION_LEGACY:
case GIMP_LAYER_MODE_HSV_COLOR_LEGACY:
case GIMP_LAYER_MODE_HSV_VALUE_LEGACY:
case GIMP_LAYER_MODE_DIVIDE_LEGACY:
case GIMP_LAYER_MODE_DODGE_LEGACY:
case GIMP_LAYER_MODE_BURN_LEGACY:
case GIMP_LAYER_MODE_HARDLIGHT_LEGACY:
case GIMP_LAYER_MODE_SOFTLIGHT_LEGACY:
case GIMP_LAYER_MODE_GRAIN_EXTRACT_LEGACY:
case GIMP_LAYER_MODE_GRAIN_MERGE_LEGACY:
case GIMP_LAYER_MODE_ERASE:
case GIMP_LAYER_MODE_MERGE:
case GIMP_LAYER_MODE_SPLIT:
case GIMP_LAYER_MODE_REPLACE:
case GIMP_LAYER_MODE_ANTI_ERASE:
case GIMP_LAYER_MODE_SEPARATOR: /* to stop GCC from complaining :P */
return blendfun_dummy;
}
return blendfun_dummy;
}