gimp/plug-ins/common/nlfilt.c

1054 lines
34 KiB
C
Raw Normal View History

1997-11-24 22:05:25 +00:00
/**************************************************
* file: nlfilt/nlfilt.c
*
* Copyright (c) 1997 Eric L. Hernes (erich@rrnet.com)
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software withough specific prior written permission
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
/* add any necessary includes */
#include <string.h>
1998-06-08 08:38:16 +00:00
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
1997-11-24 22:05:25 +00:00
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <libgimp/gimp.h>
#include <gtk/gtk.h>
#include "libgimp/stdplugins-intl.h"
#include <plug-ins/megawidget/megawidget.h>
1997-11-24 22:05:25 +00:00
static mw_preview_t nlfilt_do_preview;
struct Grgb {
guint8 red;
guint8 green;
guint8 blue;
};
struct GRegion {
gint32 x;
gint32 y;
gint32 width;
gint32 height;
};
struct piArgs {
gint32 img;
gint32 drw;
gdouble alpha;
gdouble radius;
gint filter;
};
typedef enum {
filter_alpha_trim,
filter_opt_est,
filter_edge_enhance
1997-11-24 22:05:25 +00:00
} FilterType;
/* other structure declarations */
static struct mwPreview *thePreview;
/* function protos */
static void query(void);
static void run(char *name, gint nparam, GParam *param,
gint *nretvals, GParam **retvals);
gint pluginCore(struct piArgs *argp);
gint pluginCoreIA(struct piArgs *argp);
static inline gint nlfiltInit(gdouble alpha, gdouble radius,
FilterType filter);
static inline void nlfiltRow(guchar *src, guchar *dst, gint width,
gint Bpp, gint filtno);
GPlugInInfo PLUG_IN_INFO = {
NULL, /* init */
NULL, /* quit */
query, /* query */
run, /* run */
};
MAIN()
static void
query(void){
static GParamDef args[] = {
{ PARAM_INT32, "run_mode", "Interactive, non-interactive" },
{ PARAM_IMAGE, "img", "The Image to Filter" },
{ PARAM_DRAWABLE, "drw", "The Drawable" },
{ PARAM_FLOAT, "alpha", "The amount of the filter to apply" },
{ PARAM_FLOAT, "radius", "The filter radius" },
{ PARAM_INT32, "filter", "The Filter to Run, 0 - alpha trimmed mean; 1 - optimal estimation (alpha controls noise variance); 2 - edge enhancement" },
};
static gint nargs = 6;
static GParamDef *rets = NULL;
static gint nrets = 0;
INIT_I18N();
1997-11-24 22:05:25 +00:00
gimp_install_procedure("plug_in_nlfilt",
_("Nonlinear swiss army knife filter"),
_("This is the pnmnlfilt, in gimp's clothing. See the pnmnlfilt manpage for details."),
1997-11-24 22:05:25 +00:00
"Graeme W. Gill, gimp 0.99 plugin by Eric L. Hernes",
"Graeme W. Gill, Eric L. Hernes",
"1997",
N_("<Image>/Filters/Enhance/NL Filter..."),
1997-11-24 22:05:25 +00:00
"RGB,GRAY",
PROC_PLUG_IN,
nargs, nrets,
args, rets);
}
static void
run(char *name, gint nparam, GParam *param,
gint *nretvals, GParam **retvals){
static GParam rvals[1];
struct piArgs args;
*nretvals = 1;
*retvals = rvals;
memset(&args,(int)0,sizeof(struct piArgs));
args.radius=-1.0;
gimp_get_data("plug_in_nlfilt", &args);
args.img = param[1].data.d_image;
args.drw = param[2].data.d_drawable;
1997-11-24 22:05:25 +00:00
rvals[0].type = PARAM_STATUS;
rvals[0].data.d_status = STATUS_SUCCESS;
switch (param[0].data.d_int32) {
GDrawable *drw;
case RUN_INTERACTIVE:
INIT_I18N_UI();
1997-11-24 22:05:25 +00:00
/* XXX: add code here for interactive running */
if (args.radius == -1) {
args.alpha = (gdouble)0.3;
args.radius = (gdouble)0.3;
args.filter = 0;
}
drw = gimp_drawable_get(args.drw);
thePreview = mw_preview_build(drw);
if (pluginCoreIA(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
} else {
gimp_set_data("plug_in_nlfilt", &args, sizeof(struct piArgs));
}
break;
case RUN_NONINTERACTIVE:
INIT_I18N();
1997-11-24 22:05:25 +00:00
/* XXX: add code here for non-interactive running */
if (nparam != 6) {
rvals[0].data.d_status = STATUS_CALLING_ERROR;
break;
}
args.alpha = param[3].data.d_float;
args.radius = param[4].data.d_float;
args.filter = param[5].data.d_int32;
if (pluginCore(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
break;
}
break;
case RUN_WITH_LAST_VALS:
INIT_I18N();
1997-11-24 22:05:25 +00:00
/* XXX: add code here for last-values running */
if (pluginCore(&args)==-1) {
rvals[0].data.d_status = STATUS_EXECUTION_ERROR;
}
break;
}
}
gint pluginCore(struct piArgs *argp) {
GDrawable *drw;
GPixelRgn srcPr, dstPr;
guchar *srcbuf, *dstbuf;
guint width, height, Bpp;
gint filtno, y, rowsize, p_update;
drw = gimp_drawable_get(argp->drw);
width = drw->width;
height = drw->height;
Bpp = drw->bpp;
rowsize = width * Bpp;
p_update = width / 20;
gimp_pixel_rgn_init (&srcPr, drw, 0, 0, width, height, FALSE, FALSE);
gimp_pixel_rgn_init (&dstPr, drw, 0, 0, width, height, TRUE, TRUE);
srcbuf=(guchar*)malloc(width*Bpp*3);
dstbuf=(guchar*)malloc(width*Bpp);
memset(srcbuf,(int)0,(size_t)(rowsize*3));
memset(dstbuf,(int)0,(size_t)rowsize);
filtno=nlfiltInit(argp->alpha, argp->radius, argp->filter);
gimp_progress_init( _("NL Filter"));
1997-11-24 22:05:25 +00:00
/* first row */
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, 0, width, 3);
1998-03-21 02:17:49 +00:00
memcpy(srcbuf, srcbuf+width*Bpp, rowsize);
1997-11-24 22:05:25 +00:00
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, 0, width);
/* last row */
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, height-3, width, 3);
1998-03-21 02:17:49 +00:00
memcpy(srcbuf+rowsize*2, srcbuf+rowsize, rowsize);
1997-11-24 22:05:25 +00:00
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, height-1, width);
for(y=0 ;y<height-2; y++){
if (y%p_update==0) gimp_progress_update((gdouble)y/(gdouble)height);
gimp_pixel_rgn_get_rect(&srcPr, srcbuf, 0, y, width, 3);
nlfiltRow(srcbuf, dstbuf, width, Bpp, filtno);
gimp_pixel_rgn_set_row(&dstPr, dstbuf, 0, y, width);
}
free(srcbuf);
free(dstbuf);
gimp_drawable_flush(drw);
gimp_drawable_merge_shadow (drw->id, TRUE);
gimp_drawable_update(drw->id, 0, 0, width, height);
gimp_displays_flush();
return 0;
}
gint pluginCoreIA(struct piArgs *argp) {
gint retval=-1; /* default to error return */
GtkWidget *dlg;
GtkWidget *frame;
GtkWidget *hbox;
GtkWidget *table;
GtkWidget *preview;
gint runp;
gint i;
1997-11-24 22:05:25 +00:00
struct mwRadioGroup filter[] = {
{ N_("Alpha Trimmed Mean"), 0 },
{ N_("Optimal Estimation"), 0 },
{ N_("Edge Enhancement"), 0 },
1997-11-24 22:05:25 +00:00
{ NULL, 0 }
};
gchar **argv;
gint argc;
/* Set args */
argc = 1;
argv = g_new(gchar *, 1);
argv[0] = g_strdup("nlfilt");
gtk_init(&argc, &argv);
gtk_rc_parse(gimp_gtkrc());
filter[argp->filter].var = 1;
for (i = 0; filter[i].name != NULL; i++)
filter[i].name = gettext(filter[i].name);
dlg = mw_app_new("plug_in_nlfilt", _("NL Filter"), &runp);
1997-11-24 22:05:25 +00:00
hbox = gtk_hbox_new(FALSE, 5);
gtk_container_border_width(GTK_CONTAINER(hbox), 5);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), hbox, TRUE, TRUE, 0);
gtk_widget_show(hbox);
preview = mw_preview_new(hbox, thePreview, &nlfilt_do_preview);
gtk_object_set_data(GTK_OBJECT(preview), "piArgs", argp);
gtk_object_set_data(GTK_OBJECT(preview), "mwRadioGroup", &filter);
nlfilt_do_preview(preview);
mw_radio_group_new(hbox, _("Filter"), filter);
1997-11-24 22:05:25 +00:00
frame = gtk_frame_new( _("Parameters"));
1997-11-24 22:05:25 +00:00
gtk_frame_set_shadow_type(GTK_FRAME(frame), GTK_SHADOW_ETCHED_IN);
gtk_container_border_width(GTK_CONTAINER(frame), 5);
gtk_box_pack_start(GTK_BOX(GTK_DIALOG(dlg)->vbox), frame, FALSE, FALSE, 0);
gtk_widget_show(frame);
table = gtk_table_new(4, 2, FALSE);
gtk_container_border_width(GTK_CONTAINER (table), 5);
gtk_container_add(GTK_CONTAINER(frame), table);
mw_fscale_entry_new(table, _("Alpha"), 0.0, 1.0, 0.05, 0.1, 0.0,
1997-11-24 22:05:25 +00:00
0, 1, 1, 2, &argp->alpha);
mw_fscale_entry_new(table, _("Radius"), 0.3333333, 1.0, 0.05, 0.1, 0.0,
1997-11-24 22:05:25 +00:00
0, 1, 2, 3, &argp->radius);
gtk_widget_show(table);
gtk_widget_show(table);
gtk_widget_show(dlg);
gtk_main();
gdk_flush();
argp->filter = mw_radio_result(filter);
if(runp){
#if 0
fprintf(stderr, "running:\n");
fprintf(stderr, "\t(image %d)\n", argp->img);
fprintf(stderr, "\t(drawable %d)\n", argp->drw);
fprintf(stderr, "\t(alpha %f)\n", argp->alpha);
fprintf(stderr, "\t(radius %f)\n", argp->radius);
#endif
return pluginCore(argp);
} else {
return retval;
}
}
static void
nlfilt_do_preview(GtkWidget *w) {
static GtkWidget *theWidget = NULL;
struct piArgs *ap;
struct mwRadioGroup *rgp;
guchar *dst, *c;
gint y, rowsize, filtno;
if(theWidget==NULL){
theWidget=w;
}
ap = gtk_object_get_data(GTK_OBJECT(theWidget), "piArgs");
rgp = gtk_object_get_data(GTK_OBJECT(theWidget), "mwRadioGroup");
ap->filter = mw_radio_result(rgp);
rowsize=thePreview->width*thePreview->bpp;
dst = malloc(rowsize);
c = malloc(rowsize*3);
1998-03-21 02:17:49 +00:00
memcpy(c, thePreview->bits, rowsize);
memcpy(c+rowsize, thePreview->bits, rowsize*2);
1997-11-24 22:05:25 +00:00
filtno = nlfiltInit(ap->alpha, ap->radius, ap->filter);
nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
dst, 0, 0, thePreview->width);
1998-03-21 02:17:49 +00:00
memcpy(c, thePreview->bits+((thePreview->height-2)*rowsize), rowsize*2);
memcpy(c+(rowsize*2), thePreview->bits+((thePreview->height-1)*rowsize),
rowsize);
1997-11-24 22:05:25 +00:00
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
dst, 0, thePreview->height-1, thePreview->width);
free(c);
for(y=0, c=thePreview->bits;y<thePreview->height-2; y++, c+=rowsize){
nlfiltRow(c, dst, thePreview->width, thePreview->bpp, filtno);
gtk_preview_draw_row(GTK_PREVIEW(theWidget),
dst, 0, y, thePreview->width);
}
gtk_widget_draw(theWidget, NULL);
gdk_flush();
free(dst);
}
/* pnmnlfilt.c - 4 in 1 (2 non-linear) filter
** - smooth an anyimage
** - do alpha trimmed mean filtering on an anyimage
** - do optimal estimation smoothing on an anyimage
** - do edge enhancement on an anyimage
**
** Version 1.0
**
** The implementation of an alpha-trimmed mean filter
** is based on the description in IEEE CG&A May 1990
** Page 23 by Mark E. Lee and Richard A. Redner.
**
** The paper recommends using a hexagon sampling region around each
** pixel being processed, allowing an effective sub pixel radius to be
** specified. The hexagon values are sythesised by area sampling the
** rectangular pixels with a hexagon grid. The seven hexagon values
** obtained from the 3x3 pixel grid are used to compute the alpha
** trimmed mean. Note that an alpha value of 0.0 gives a conventional
** mean filter (where the radius controls the contribution of
** surrounding pixels), while a value of 0.5 gives a median filter.
** Although there are only seven values to trim from before finding
** the mean, the algorithm has been extended from that described in
** CG&A by using interpolation, to allow a continuous selection of
** alpha value between and including 0.0 to 0.5 The useful values
** for radius are between 0.3333333 (where the filter will have no
** effect because only one pixel is sampled), to 1.0, where all
** pixels in the 3x3 grid are sampled.
**
** The optimal estimation filter is taken from an article "Converting Dithered
** Images Back to Gray Scale" by Allen Stenger, Dr Dobb's Journal, November
** 1992, and this article references "Digital Image Enhancement andNoise Filtering by
** Use of Local Statistics", Jong-Sen Lee, IEEE Transactions on Pattern Analysis and
** Machine Intelligence, March 1980.
**
** Also borrow the technique used in pgmenhance(1) to allow edge
** enhancement if the alpha value is negative.
**
** Author:
** Graeme W. Gill, 30th Jan 1993
** graeme@labtam.oz.au
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation. This software is provided "as is" without express or
** implied warranty.
*/
/* ************************************************** */
/* Hexagon intersecting square area functions */
/* Compute the area of the intersection of a triangle */
/* and a rectangle */
gdouble triang_area(gdouble, gdouble, gdouble, gdouble, gdouble,
gdouble, gdouble, gdouble, gint);
gdouble rectang_area(gdouble, gdouble, gdouble, gdouble,
gdouble, gdouble, gdouble, gdouble);
gdouble hex_area(gdouble, gdouble, gdouble, gdouble, gdouble);
gint atfilt0(gint *p);
gint atfilt1(gint *p);
gint atfilt2(gint *p);
gint atfilt3(gint *p);
gint atfilt4(gint *p);
gint atfilt5(gint *p);
gint (*atfuncs[6])(gint *) = {
atfilt0,
atfilt1,
atfilt2,
atfilt3,
atfilt4,
atfilt5
};
gint noisevariance; /* global so that pixel processing code can get at it quickly */
#define MXIVAL 255 /* maximum input value */
#define NOIVAL (MXIVAL + 1) /* number of possible input values */
#define SCALEB 8 /* scale bits */
#define SCALE (1 << SCALEB) /* scale factor */
#define MXSVAL (MXIVAL * SCALE) /* maximum scaled values */
#define CSCALEB 2 /* coarse scale bits */
#define CSCALE (1 << CSCALEB) /* coarse scale factor */
#define MXCSVAL (MXIVAL * CSCALE) /* maximum coarse scaled values */
#define NOCSVAL (MXCSVAL + 1) /* number of coarse scaled values */
#define SCTOCSC(x) ((x) >> (SCALEB - CSCALEB)) /* convert from scaled to coarse scaled */
#define CSCTOSC(x) ((x) << (SCALEB - CSCALEB)) /* convert from course scaled to scaled */
#ifndef MAXINT
# define MAXINT 0x7fffffff /* assume this is a 32 bit machine */
#endif
/* round and scale floating point to scaled integer */
1999-11-12 03:02:53 +00:00
#define SROUND(x) ((gint)(((x) * (gdouble)SCALE) + 0.5))
1997-11-24 22:05:25 +00:00
/* round and un-scale scaled integer value */
#define RUNSCALE(x) (((x) + (1 << (SCALEB-1))) >> SCALEB) /* rounded un-scale */
#define UNSCALE(x) ((x) >> SCALEB)
static void
1997-11-24 22:05:25 +00:00
nlfiltRow(guchar *src, guchar *dst, gint width, gint Bpp, gint filtno) {
gint x, po, no;
gint pf[9];
guchar *r0, *r1, *r2;
guchar *ip0, *ip1, *ip2, *or;
r0=src;
r1=src+(width*Bpp);
r2=src+(width*Bpp*2);
or=dst;
for (x=(width-1)*Bpp, ip0=r0, ip1=r1, ip2=r2, po=x>0?1:0, no=0;
x>0;
x--, ip0++, ip1++, ip2++, or++, po=(x!=0), no|=1) {
pf[0] = *ip1;
pf[1] = *(ip1-no);
pf[2] = *(ip2-no);
pf[3] = *(ip2);
pf[4] = *(ip2+po);
pf[5] = *(ip1+po);
pf[6] = *(ip0+po);
pf[7] = *(ip0);
pf[8] = *(ip0-no);
*or=(atfuncs[filtno])(pf);
}
}
/* We restrict radius to the values: 0.333333 <= radius <= 1.0 */
/* so that no fewer and no more than a 3x3 grid of pixels around */
/* the pixel in question needs to be read. Given this, we only */
/* need 3 or 4 weightings per hexagon, as follows: */
/* _ _ */
/* Virtical hex: |_|_| 1 2 */
/* |X|_| 0 3 */
/* _ */
/* _ _|_| 1 */
/* Middle hex: |_| 1 Horizontal hex: |X|_| 0 2 */
/* |X| 0 |_| 3 */
/* |_| 2 */
/* all filters */
gint V0[NOIVAL],V1[NOIVAL],V2[NOIVAL],V3[NOIVAL]; /* vertical hex */
gint M0[NOIVAL],M1[NOIVAL],M2[NOIVAL]; /* middle hex */
gint H0[NOIVAL],H1[NOIVAL],H2[NOIVAL],H3[NOIVAL]; /* horizontal hex */
/* alpha trimmed and edge enhancement only */
gint ALFRAC[NOIVAL * 8]; /* fractional alpha divider table */
/* optimal estimation only */
gint AVEDIV[7 * NOCSVAL]; /* divide by 7 to give average value */
gint SQUARE[2 * NOCSVAL]; /* scaled square lookup table */
/* Table initialisation function - return alpha range */
static inline gint
1997-11-24 22:05:25 +00:00
nlfiltInit(gdouble alpha, gdouble radius, FilterType filter) {
gint alpharange; /* alpha range value 0 - 3 */
gdouble meanscale; /* scale for finding mean */
gdouble mmeanscale; /* scale for finding mean - midle hex */
gdouble alphafraction; /* fraction of next largest/smallest
* to subtract from sum
*/
switch (filter) {
case filter_alpha_trim: {
gdouble noinmean;
/* number of elements (out of a possible 7) used in the mean */
noinmean = ((0.5 - alpha) * 12.0) + 1.0;
mmeanscale = meanscale = 1.0/noinmean;
if (alpha == 0.0) { /* mean filter */
alpharange = 0;
alphafraction = 0.0; /* not used */
} else if (alpha < (1.0/6.0)) { /* mean of 5 to 7 middle values */
alpharange = 1;
alphafraction = (7.0 - noinmean)/2.0;
} else if (alpha < (1.0/3.0)) { /* mean of 3 to 5 middle values */
alpharange = 2;
alphafraction = (5.0 - noinmean)/2.0;
} else { /* mean of 1 to 3 middle values */
/* alpha==0.5 => median filter */
alpharange = 3;
alphafraction = (3.0 - noinmean)/2.0;
}
}
break;
case filter_opt_est: {
gint i;
gdouble noinmean = 7.0;
/* edge enhancement function */
alpharange = 5;
/* compute scaled hex values */
mmeanscale=meanscale=1.0;
/* Set up 1:1 division lookup - not used */
alphafraction=1.0/noinmean;
/* estimate of noise variance */
noisevariance = alpha * (gdouble)255;
noisevariance = noisevariance * noisevariance / 8.0;
/* set yp optimal estimation specific stuff */
for (i=0;i<(7*NOCSVAL);i++) { /* divide scaled value by 7 lookup */
AVEDIV[i] = CSCTOSC(i)/7; /* scaled divide by 7 */
}
/* compute square and rescale by
* (val >> (2 * SCALEB + 2)) table
*/
for (i=0;i<(2*NOCSVAL);i++) {
gint val;
/* NOCSVAL offset to cope with -ve input values */
val = CSCTOSC(i - NOCSVAL);
SQUARE[i] = (val * val) >> (2 * SCALEB + 2);
}
}
break;
case filter_edge_enhance: {
if (alpha == 1.0) alpha = 0.99;
alpharange = 4;
/* mean of 7 and scaled by -alpha/(1-alpha) */
meanscale = 1.0 * (-alpha/((1.0 - alpha) * 7.0));
/* middle pixel has 1/(1-alpha) as well */
mmeanscale = 1.0 * (1.0/(1.0 - alpha) + meanscale);
alphafraction = 0.0; /* not used */
}
break;
default:
fprintf(stderr, "unknown filter %d\n", filter);
return -1;
}
/*
* Setup pixel weighting tables -
* note we pre-compute mean division here too.
*/
{
gint i;
gdouble hexhoff,hexvoff;
gdouble tabscale,mtabscale;
gdouble v0,v1,v2,v3,m0,m1,m2,h0,h1,h2,h3;
/* horizontal offset of virtical hex centers */
hexhoff = radius/2;
/* vertical offset of virtical hex centers */
hexvoff = 3.0 * radius/sqrt(12.0);
/*
* scale tables to normalise by hexagon
* area, and number of hexes used in mean
*/
tabscale = meanscale / (radius * hexvoff);
mtabscale = mmeanscale / (radius * hexvoff);
v0 = hex_area(0.0,0.0,hexhoff,hexvoff,radius) * tabscale;
v1 = hex_area(0.0,1.0,hexhoff,hexvoff,radius) * tabscale;
v2 = hex_area(1.0,1.0,hexhoff,hexvoff,radius) * tabscale;
v3 = hex_area(1.0,0.0,hexhoff,hexvoff,radius) * tabscale;
m0 = hex_area(0.0,0.0,0.0,0.0,radius) * mtabscale;
m1 = hex_area(0.0,1.0,0.0,0.0,radius) * mtabscale;
m2 = hex_area(0.0,-1.0,0.0,0.0,radius) * mtabscale;
h0 = hex_area(0.0,0.0,radius,0.0,radius) * tabscale;
h1 = hex_area(1.0,1.0,radius,0.0,radius) * tabscale;
h2 = hex_area(1.0,0.0,radius,0.0,radius) * tabscale;
h3 = hex_area(1.0,-1.0,radius,0.0,radius) * tabscale;
for (i=0; i <= MXIVAL; i++) {
gdouble fi;
fi = (gdouble)i;
1999-11-12 03:02:53 +00:00
V0[i] = SROUND(fi * v0);
V1[i] = SROUND(fi * v1);
V2[i] = SROUND(fi * v2);
V3[i] = SROUND(fi * v3);
M0[i] = SROUND(fi * m0);
M1[i] = SROUND(fi * m1);
M2[i] = SROUND(fi * m2);
H0[i] = SROUND(fi * h0);
H1[i] = SROUND(fi * h1);
H2[i] = SROUND(fi * h2);
H3[i] = SROUND(fi * h3);
1997-11-24 22:05:25 +00:00
}
/* set up alpha fraction lookup table used on big/small */
for (i=0; i < (NOIVAL * 8); i++) {
1999-11-12 03:02:53 +00:00
ALFRAC[i] = SROUND((gdouble)i * alphafraction);
1997-11-24 22:05:25 +00:00
}
}
return alpharange;
}
/* Core pixel processing function - hand it 3x3 pixels and return result. */
/* Mean filter */
gint
atfilt0(gint32 *p) {
gint retv;
/* map to scaled hexagon values */
retv = M0[p[0]] + M1[p[3]] + M2[p[7]];
retv += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
retv += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
retv += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
retv += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
retv += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
retv += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
return UNSCALE(retv);
}
/* Mean of 5 - 7 middle values */
gint
atfilt1(gint32 *p) {
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
gint big,small;
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
/* sum values and also discover the largest and smallest */
big = small = h0;
#define CHECK(xx) \
h0 += xx; \
if (xx > big) \
big = xx; \
else if (xx < small) \
small = xx;
CHECK(h1)
CHECK(h2)
CHECK(h3)
CHECK(h4)
CHECK(h5)
CHECK(h6)
#undef CHECK
/* Compute mean of middle 5-7 values */
return UNSCALE(h0 -ALFRAC[(big + small)>>SCALEB]);
}
/* Mean of 3 - 5 middle values */
gint
atfilt2(gint32 *p) {
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
gint big0,big1,small0,small1;
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
/* sum values and also discover the 2 largest and 2 smallest */
big0 = small0 = h0;
small1 = MAXINT;
big1 = 0;
#define CHECK(xx) \
h0 += xx; \
if (xx > big1) \
{ \
if (xx > big0) \
{ \
big1 = big0; \
big0 = xx; \
} \
else \
big1 = xx; \
} \
if (xx < small1) \
{ \
if (xx < small0) \
{ \
small1 = small0; \
small0 = xx; \
} \
else \
small1 = xx; \
}
CHECK(h1)
CHECK(h2)
CHECK(h3)
CHECK(h4)
CHECK(h5)
CHECK(h6)
#undef CHECK
/* Compute mean of middle 3-5 values */
return UNSCALE(h0 -big0 -small0 -ALFRAC[(big1 + small1)>>SCALEB]);
}
/*
* Mean of 1 - 3 middle values.
* If only 1 value, then this is a median filter.
*/
gint32
atfilt3(gint32 *p) {
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
gint big0,big1,big2,small0,small1,small2;
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
/* sum values and also discover the 3 largest and 3 smallest */
big0 = small0 = h0;
small1 = small2 = MAXINT;
big1 = big2 = 0;
#define CHECK(xx) \
h0 += xx; \
if (xx > big2) \
{ \
if (xx > big1) \
{ \
if (xx > big0) \
{ \
big2 = big1; \
big1 = big0; \
big0 = xx; \
} \
else \
{ \
big2 = big1; \
big1 = xx; \
} \
} \
else \
big2 = xx; \
} \
if (xx < small2) \
{ \
if (xx < small1) \
{ \
if (xx < small0) \
{ \
small2 = small1; \
small1 = small0; \
small0 = xx; \
} \
else \
{ \
small2 = small1; \
small1 = xx; \
} \
} \
else \
small2 = xx; \
}
CHECK(h1)
CHECK(h2)
CHECK(h3)
CHECK(h4)
CHECK(h5)
CHECK(h6)
#undef CHECK
/* Compute mean of middle 1-3 values */
return UNSCALE(h0-big0-big1-small0-small1-ALFRAC[(big2+small2)>>SCALEB]);
}
/* Edge enhancement */
gint
atfilt4(gint *p) {
gint hav;
/* map to scaled hexagon values and compute enhance value */
hav = M0[p[0]] + M1[p[3]] + M2[p[7]];
hav += H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
hav += V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
hav += V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
hav += H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
hav += V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
hav += V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
if (hav < 0)
hav = 0;
hav = UNSCALE(hav);
if (hav > (gdouble)255)
hav = (gdouble)255;
return hav;
}
/* Optimal estimation - do smoothing in inverse proportion */
/* to the local variance. */
/* notice we use the globals noisevariance */
gint
atfilt5(gint *p) {
gint mean,variance,temp;
gint h0,h1,h2,h3,h4,h5,h6; /* hexagon values 2 3 */
/* 1 0 4 */
/* 6 5 */
/* map to scaled hexagon values */
h0 = M0[p[0]] + M1[p[3]] + M2[p[7]];
h1 = H0[p[0]] + H1[p[2]] + H2[p[1]] + H3[p[8]];
h2 = V0[p[0]] + V1[p[3]] + V2[p[2]] + V3[p[1]];
h3 = V0[p[0]] + V1[p[3]] + V2[p[4]] + V3[p[5]];
h4 = H0[p[0]] + H1[p[4]] + H2[p[5]] + H3[p[6]];
h5 = V0[p[0]] + V1[p[7]] + V2[p[6]] + V3[p[5]];
h6 = V0[p[0]] + V1[p[7]] + V2[p[8]] + V3[p[1]];
mean = h0 + h1 + h2 + h3 + h4 + h5 + h6;
/* compute scaled mean by dividing by 7 */
mean = AVEDIV[SCTOCSC(mean)];
/* compute scaled variance */
temp = (h1 - mean); variance = SQUARE[NOCSVAL + SCTOCSC(temp)];
/* and rescale to keep */
temp = (h2 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
/* within 32 bit limits */
temp = (h3 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
temp = (h4 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
temp = (h5 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
temp = (h6 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
/* (temp = h0 - mean) */
temp = (h0 - mean); variance += SQUARE[NOCSVAL + SCTOCSC(temp)];
if (variance != 0) /* avoid possible divide by 0 */
/* optimal estimate */
temp = mean + (variance * temp) / (variance + noisevariance);
else temp = h0;
if (temp < 0)
temp = 0;
temp = RUNSCALE(temp);
if (temp > (gdouble)255) temp = (gdouble)255;
return temp;
}
/* Triangle orientation is per geometric axes (not graphical axies) */
#define NW 0 /* North west triangle /| */
#define NE 1 /* North east triangle |\ */
#define SW 2 /* South west triangle \| */
#define SE 3 /* South east triangle |/ */
#define STH 2
#define EST 1
#define SWAPI(a,b) (t = a, a = -b, b = -t)
/* compute the area of overlap of a hexagon diameter d, */
/* centered at hx,hy, with a unit square of center sx,sy. */
gdouble
hex_area(gdouble sx, gdouble sy, gdouble hx, gdouble hy, gdouble d) {
gdouble hx0,hx1,hx2,hy0,hy1,hy2,hy3;
gdouble sx0,sx1,sy0,sy1;
/* compute square co-ordinates */
sx0 = sx - 0.5;
sy0 = sy - 0.5;
sx1 = sx + 0.5;
sy1 = sy + 0.5;
/* compute hexagon co-ordinates */
hx0 = hx - d/2.0;
hx1 = hx;
hx2 = hx + d/2.0;
hy0 = hy - 0.5773502692 * d; /* d / sqrt(3) */
hy1 = hy - 0.2886751346 * d; /* d / sqrt(12) */
hy2 = hy + 0.2886751346 * d; /* d / sqrt(12) */
hy3 = hy + 0.5773502692 * d; /* d / sqrt(3) */
return
triang_area(sx0,sy0,sx1,sy1,hx0,hy2,hx1,hy3,NW) +
triang_area(sx0,sy0,sx1,sy1,hx1,hy2,hx2,hy3,NE) +
rectang_area(sx0,sy0,sx1,sy1,hx0,hy1,hx2,hy2) +
triang_area(sx0,sy0,sx1,sy1,hx0,hy0,hx1,hy1,SW) +
triang_area(sx0,sy0,sx1,sy1,hx1,hy0,hx2,hy1,SE);
}
gdouble
triang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
gdouble ty0, gdouble tx1, gdouble ty1, gint tt) {
gdouble a,b,c,d;
gdouble lx0,ly0,lx1,ly1;
/* Convert everything to a NW triangle */
if (tt & STH) {
gdouble t;
SWAPI(ry0,ry1);
SWAPI(ty0,ty1);
} if (tt & EST) {
gdouble t;
SWAPI(rx0,rx1);
SWAPI(tx0,tx1);
}
/* Compute overlapping box */
if (tx0 > rx0)
rx0 = tx0;
if (ty0 > ry0)
ry0 = ty0;
if (tx1 < rx1)
rx1 = tx1;
if (ty1 < ry1)
ry1 = ty1;
if (rx1 <= rx0 || ry1 <= ry0)
return 0.0;
/* Need to compute diagonal line intersection with the box */
/* First compute co-efficients to formulas x = a + by and y = c + dx */
b = (tx1 - tx0)/(ty1 - ty0);
a = tx0 - b * ty0;
d = (ty1 - ty0)/(tx1 - tx0);
c = ty0 - d * tx0;
/* compute top or right intersection */
tt = 0;
ly1 = ry1;
lx1 = a + b * ly1;
if (lx1 <= rx0)
return (rx1 - rx0) * (ry1 - ry0);
else if (lx1 > rx1) { /* could be right hand side */
lx1 = rx1;
ly1 = c + d * lx1;
if (ly1 <= ry0)
return (rx1 - rx0) * (ry1 - ry0);
tt = 1; /* right hand side intersection */
}
/* compute left or bottom intersection */
lx0 = rx0;
ly0 = c + d * lx0;
if (ly0 >= ry1)
return (rx1 - rx0) * (ry1 - ry0);
else if (ly0 < ry0) { /* could be right hand side */
ly0 = ry0;
lx0 = a + b * ly0;
if (lx0 >= rx1)
return (rx1 - rx0) * (ry1 - ry0);
tt |= 2; /* bottom intersection */
}
if (tt == 0) { /* top and left intersection */
/* rectangle minus triangle */
return ((rx1 - rx0) * (ry1 - ry0))
- (0.5 * (lx1 - rx0) * (ry1 - ly0));
}
else if (tt == 1) { /* right and left intersection */
return ((rx1 - rx0) * (ly0 - ry0))
+ (0.5 * (rx1 - rx0) * (ly1 - ly0));
} else if (tt == 2) { /* top and bottom intersection */
return ((rx1 - lx1) * (ry1 - ry0))
+ (0.5 * (lx1 - lx0) * (ry1 - ry0));
} else { /* tt == 3 */ /* right and bottom intersection */
/* triangle */
return (0.5 * (rx1 - lx0) * (ly1 - ry0));
}
}
/* Compute rectangle area */
gdouble
rectang_area(gdouble rx0, gdouble ry0, gdouble rx1, gdouble ry1, gdouble tx0,
gdouble ty0, gdouble tx1, gdouble ty1) {
/* Compute overlapping box */
if (tx0 > rx0)
rx0 = tx0;
if (ty0 > ry0)
ry0 = ty0;
if (tx1 < rx1)
rx1 = tx1;
if (ty1 < ry1)
ry1 = ty1;
if (rx1 <= rx0 || ry1 <= ry0)
return 0.0;
return (rx1 - rx0) * (ry1 - ry0);
}
/*
* Local Variables:
* mode: C
* c-auto-newline: t
* c-indent-level: 3
*
* End:
*/
/* end of file: nlfilt/nlfilt.c */