
2008-08-23 Janus Weil <janus@gcc.gnu.org> * gfortran.h (gfc_component): Add field "symbol_attribute attr", remove fields "pointer", "allocatable", "dimension", "access". Remove functions "gfc_set_component_attr" and "gfc_get_component_attr". * interface.c (gfc_compare_derived_types): Ditto. * trans-array.c (gfc_array_allocate,structure_alloc_comps): Ditto. * trans-expr.c (gfc_conv_component_ref,gfc_trans_subcomponent_assign, gfc_conv_structure): Ditto. * symbol.c (gfc_find_component,free_components,gfc_set_component_attr, gfc_get_component_attr,verify_bind_c_derived_type, generate_isocbinding_symbol): Ditto. * decl.c (build_struct): Ditto. * dump-parse-tree.c (show_components): Ditto. * trans-stmt.c (gfc_trans_deallocate): Ditto. * expr.c (gfc_check_assign,gfc_check_pointer_assign, gfc_default_initializer): Ditto. * module.c (mio_component): Ditto. * trans-types.c (copy_dt_decls_ifequal,gfc_get_derived_type): Ditto. * resolve.c (has_default_initializer,resolve_structure_cons, gfc_iso_c_func_interface,find_array_spec,resolve_ref, resolve_deallocate_expr,resolve_allocate_expr,resolve_fl_derived, resolve_equivalence_derived): Ditto. * trans-io.c (transfer_expr): Ditto. * parse.c (parse_derived): Ditto. * dependency.c (gfc_check_dependency): Ditto. * primary.c (gfc_variable_attr): Ditto. From-SVN: r139524
1274 lines
33 KiB
C
1274 lines
33 KiB
C
/* Dependency analysis
|
|
Copyright (C) 2000, 2001, 2002, 2005, 2006, 2007, 2008
|
|
Free Software Foundation, Inc.
|
|
Contributed by Paul Brook <paul@nowt.org>
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify it under
|
|
the terms of the GNU General Public License as published by the Free
|
|
Software Foundation; either version 3, or (at your option) any later
|
|
version.
|
|
|
|
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
|
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
|
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
|
for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
/* dependency.c -- Expression dependency analysis code. */
|
|
/* There's probably quite a bit of duplication in this file. We currently
|
|
have different dependency checking functions for different types
|
|
if dependencies. Ideally these would probably be merged. */
|
|
|
|
#include "config.h"
|
|
#include "gfortran.h"
|
|
#include "dependency.h"
|
|
|
|
/* static declarations */
|
|
/* Enums */
|
|
enum range {LHS, RHS, MID};
|
|
|
|
/* Dependency types. These must be in reverse order of priority. */
|
|
typedef enum
|
|
{
|
|
GFC_DEP_ERROR,
|
|
GFC_DEP_EQUAL, /* Identical Ranges. */
|
|
GFC_DEP_FORWARD, /* e.g., a(1:3), a(2:4). */
|
|
GFC_DEP_OVERLAP, /* May overlap in some other way. */
|
|
GFC_DEP_NODEP /* Distinct ranges. */
|
|
}
|
|
gfc_dependency;
|
|
|
|
/* Macros */
|
|
#define IS_ARRAY_EXPLICIT(as) ((as->type == AS_EXPLICIT ? 1 : 0))
|
|
|
|
|
|
/* Returns 1 if the expr is an integer constant value 1, 0 if it is not or
|
|
def if the value could not be determined. */
|
|
|
|
int
|
|
gfc_expr_is_one (gfc_expr *expr, int def)
|
|
{
|
|
gcc_assert (expr != NULL);
|
|
|
|
if (expr->expr_type != EXPR_CONSTANT)
|
|
return def;
|
|
|
|
if (expr->ts.type != BT_INTEGER)
|
|
return def;
|
|
|
|
return mpz_cmp_si (expr->value.integer, 1) == 0;
|
|
}
|
|
|
|
|
|
/* Compare two values. Returns 0 if e1 == e2, -1 if e1 < e2, +1 if e1 > e2,
|
|
and -2 if the relationship could not be determined. */
|
|
|
|
int
|
|
gfc_dep_compare_expr (gfc_expr *e1, gfc_expr *e2)
|
|
{
|
|
gfc_actual_arglist *args1;
|
|
gfc_actual_arglist *args2;
|
|
int i;
|
|
|
|
if (e1->expr_type == EXPR_OP
|
|
&& (e1->value.op.op == INTRINSIC_UPLUS
|
|
|| e1->value.op.op == INTRINSIC_PARENTHESES))
|
|
return gfc_dep_compare_expr (e1->value.op.op1, e2);
|
|
if (e2->expr_type == EXPR_OP
|
|
&& (e2->value.op.op == INTRINSIC_UPLUS
|
|
|| e2->value.op.op == INTRINSIC_PARENTHESES))
|
|
return gfc_dep_compare_expr (e1, e2->value.op.op1);
|
|
|
|
if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
/* Compare X+C vs. X. */
|
|
if (e1->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e1->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
|
|
return mpz_sgn (e1->value.op.op2->value.integer);
|
|
|
|
/* Compare P+Q vs. R+S. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
int l, r;
|
|
|
|
l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
|
|
r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
|
|
if (l == 0 && r == 0)
|
|
return 0;
|
|
if (l == 0 && r != -2)
|
|
return r;
|
|
if (l != -2 && r == 0)
|
|
return l;
|
|
if (l == 1 && r == 1)
|
|
return 1;
|
|
if (l == -1 && r == -1)
|
|
return -1;
|
|
|
|
l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op2);
|
|
r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op1);
|
|
if (l == 0 && r == 0)
|
|
return 0;
|
|
if (l == 0 && r != -2)
|
|
return r;
|
|
if (l != -2 && r == 0)
|
|
return l;
|
|
if (l == 1 && r == 1)
|
|
return 1;
|
|
if (l == -1 && r == -1)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Compare X vs. X+C. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_PLUS)
|
|
{
|
|
if (e2->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e2->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
|
|
return -mpz_sgn (e2->value.op.op2->value.integer);
|
|
}
|
|
|
|
/* Compare X-C vs. X. */
|
|
if (e1->expr_type == EXPR_OP && e1->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
if (e1->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e1->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1->value.op.op1, e2) == 0)
|
|
return -mpz_sgn (e1->value.op.op2->value.integer);
|
|
|
|
/* Compare P-Q vs. R-S. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
int l, r;
|
|
|
|
l = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
|
|
r = gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2);
|
|
if (l == 0 && r == 0)
|
|
return 0;
|
|
if (l != -2 && r == 0)
|
|
return l;
|
|
if (l == 0 && r != -2)
|
|
return -r;
|
|
if (l == 1 && r == -1)
|
|
return 1;
|
|
if (l == -1 && r == 1)
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Compare X vs. X-C. */
|
|
if (e2->expr_type == EXPR_OP && e2->value.op.op == INTRINSIC_MINUS)
|
|
{
|
|
if (e2->value.op.op2->expr_type == EXPR_CONSTANT
|
|
&& e2->value.op.op2->ts.type == BT_INTEGER
|
|
&& gfc_dep_compare_expr (e1, e2->value.op.op1) == 0)
|
|
return mpz_sgn (e2->value.op.op2->value.integer);
|
|
}
|
|
|
|
if (e1->expr_type != e2->expr_type)
|
|
return -2;
|
|
|
|
switch (e1->expr_type)
|
|
{
|
|
case EXPR_CONSTANT:
|
|
if (e1->ts.type != BT_INTEGER || e2->ts.type != BT_INTEGER)
|
|
return -2;
|
|
|
|
i = mpz_cmp (e1->value.integer, e2->value.integer);
|
|
if (i == 0)
|
|
return 0;
|
|
else if (i < 0)
|
|
return -1;
|
|
return 1;
|
|
|
|
case EXPR_VARIABLE:
|
|
if (e1->ref || e2->ref)
|
|
return -2;
|
|
if (e1->symtree->n.sym == e2->symtree->n.sym)
|
|
return 0;
|
|
return -2;
|
|
|
|
case EXPR_OP:
|
|
/* Intrinsic operators are the same if their operands are the same. */
|
|
if (e1->value.op.op != e2->value.op.op)
|
|
return -2;
|
|
if (e1->value.op.op2 == 0)
|
|
{
|
|
i = gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1);
|
|
return i == 0 ? 0 : -2;
|
|
}
|
|
if (gfc_dep_compare_expr (e1->value.op.op1, e2->value.op.op1) == 0
|
|
&& gfc_dep_compare_expr (e1->value.op.op2, e2->value.op.op2) == 0)
|
|
return 0;
|
|
/* TODO Handle commutative binary operators here? */
|
|
return -2;
|
|
|
|
case EXPR_FUNCTION:
|
|
/* We can only compare calls to the same intrinsic function. */
|
|
if (e1->value.function.isym == 0 || e2->value.function.isym == 0
|
|
|| e1->value.function.isym != e2->value.function.isym)
|
|
return -2;
|
|
|
|
args1 = e1->value.function.actual;
|
|
args2 = e2->value.function.actual;
|
|
|
|
/* We should list the "constant" intrinsic functions. Those
|
|
without side-effects that provide equal results given equal
|
|
argument lists. */
|
|
switch (e1->value.function.isym->id)
|
|
{
|
|
case GFC_ISYM_CONVERSION:
|
|
/* Handle integer extensions specially, as __convert_i4_i8
|
|
is not only "constant" but also "unary" and "increasing". */
|
|
if (args1 && !args1->next
|
|
&& args2 && !args2->next
|
|
&& e1->ts.type == BT_INTEGER
|
|
&& args1->expr->ts.type == BT_INTEGER
|
|
&& e1->ts.kind > args1->expr->ts.kind
|
|
&& e2->ts.type == e1->ts.type
|
|
&& e2->ts.kind == e1->ts.kind
|
|
&& args2->expr->ts.type == args1->expr->ts.type
|
|
&& args2->expr->ts.kind == args2->expr->ts.kind)
|
|
return gfc_dep_compare_expr (args1->expr, args2->expr);
|
|
break;
|
|
|
|
case GFC_ISYM_REAL:
|
|
case GFC_ISYM_LOGICAL:
|
|
case GFC_ISYM_DBLE:
|
|
break;
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
|
|
/* Compare the argument lists for equality. */
|
|
while (args1 && args2)
|
|
{
|
|
if (gfc_dep_compare_expr (args1->expr, args2->expr) != 0)
|
|
return -2;
|
|
args1 = args1->next;
|
|
args2 = args2->next;
|
|
}
|
|
return (args1 || args2) ? -2 : 0;
|
|
|
|
default:
|
|
return -2;
|
|
}
|
|
}
|
|
|
|
|
|
/* Returns 1 if the two ranges are the same, 0 if they are not, and def
|
|
if the results are indeterminate. N is the dimension to compare. */
|
|
|
|
int
|
|
gfc_is_same_range (gfc_array_ref *ar1, gfc_array_ref *ar2, int n, int def)
|
|
{
|
|
gfc_expr *e1;
|
|
gfc_expr *e2;
|
|
int i;
|
|
|
|
/* TODO: More sophisticated range comparison. */
|
|
gcc_assert (ar1 && ar2);
|
|
|
|
gcc_assert (ar1->dimen_type[n] == ar2->dimen_type[n]);
|
|
|
|
e1 = ar1->stride[n];
|
|
e2 = ar2->stride[n];
|
|
/* Check for mismatching strides. A NULL stride means a stride of 1. */
|
|
if (e1 && !e2)
|
|
{
|
|
i = gfc_expr_is_one (e1, -1);
|
|
if (i == -1)
|
|
return def;
|
|
else if (i == 0)
|
|
return 0;
|
|
}
|
|
else if (e2 && !e1)
|
|
{
|
|
i = gfc_expr_is_one (e2, -1);
|
|
if (i == -1)
|
|
return def;
|
|
else if (i == 0)
|
|
return 0;
|
|
}
|
|
else if (e1 && e2)
|
|
{
|
|
i = gfc_dep_compare_expr (e1, e2);
|
|
if (i == -2)
|
|
return def;
|
|
else if (i != 0)
|
|
return 0;
|
|
}
|
|
/* The strides match. */
|
|
|
|
/* Check the range start. */
|
|
e1 = ar1->start[n];
|
|
e2 = ar2->start[n];
|
|
if (e1 || e2)
|
|
{
|
|
/* Use the bound of the array if no bound is specified. */
|
|
if (ar1->as && !e1)
|
|
e1 = ar1->as->lower[n];
|
|
|
|
if (ar2->as && !e2)
|
|
e2 = ar2->as->lower[n];
|
|
|
|
/* Check we have values for both. */
|
|
if (!(e1 && e2))
|
|
return def;
|
|
|
|
i = gfc_dep_compare_expr (e1, e2);
|
|
if (i == -2)
|
|
return def;
|
|
else if (i != 0)
|
|
return 0;
|
|
}
|
|
|
|
/* Check the range end. */
|
|
e1 = ar1->end[n];
|
|
e2 = ar2->end[n];
|
|
if (e1 || e2)
|
|
{
|
|
/* Use the bound of the array if no bound is specified. */
|
|
if (ar1->as && !e1)
|
|
e1 = ar1->as->upper[n];
|
|
|
|
if (ar2->as && !e2)
|
|
e2 = ar2->as->upper[n];
|
|
|
|
/* Check we have values for both. */
|
|
if (!(e1 && e2))
|
|
return def;
|
|
|
|
i = gfc_dep_compare_expr (e1, e2);
|
|
if (i == -2)
|
|
return def;
|
|
else if (i != 0)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
|
|
/* Some array-returning intrinsics can be implemented by reusing the
|
|
data from one of the array arguments. For example, TRANSPOSE does
|
|
not necessarily need to allocate new data: it can be implemented
|
|
by copying the original array's descriptor and simply swapping the
|
|
two dimension specifications.
|
|
|
|
If EXPR is a call to such an intrinsic, return the argument
|
|
whose data can be reused, otherwise return NULL. */
|
|
|
|
gfc_expr *
|
|
gfc_get_noncopying_intrinsic_argument (gfc_expr *expr)
|
|
{
|
|
if (expr->expr_type != EXPR_FUNCTION || !expr->value.function.isym)
|
|
return NULL;
|
|
|
|
switch (expr->value.function.isym->id)
|
|
{
|
|
case GFC_ISYM_TRANSPOSE:
|
|
return expr->value.function.actual->expr;
|
|
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
|
|
/* Return true if the result of reference REF can only be constructed
|
|
using a temporary array. */
|
|
|
|
bool
|
|
gfc_ref_needs_temporary_p (gfc_ref *ref)
|
|
{
|
|
int n;
|
|
bool subarray_p;
|
|
|
|
subarray_p = false;
|
|
for (; ref; ref = ref->next)
|
|
switch (ref->type)
|
|
{
|
|
case REF_ARRAY:
|
|
/* Vector dimensions are generally not monotonic and must be
|
|
handled using a temporary. */
|
|
if (ref->u.ar.type == AR_SECTION)
|
|
for (n = 0; n < ref->u.ar.dimen; n++)
|
|
if (ref->u.ar.dimen_type[n] == DIMEN_VECTOR)
|
|
return true;
|
|
|
|
subarray_p = true;
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
/* Within an array reference, character substrings generally
|
|
need a temporary. Character array strides are expressed as
|
|
multiples of the element size (consistent with other array
|
|
types), not in characters. */
|
|
return subarray_p;
|
|
|
|
case REF_COMPONENT:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
/* Return true if array variable VAR could be passed to the same function
|
|
as argument EXPR without interfering with EXPR. INTENT is the intent
|
|
of VAR.
|
|
|
|
This is considerably less conservative than other dependencies
|
|
because many function arguments will already be copied into a
|
|
temporary. */
|
|
|
|
static int
|
|
gfc_check_argument_var_dependency (gfc_expr *var, sym_intent intent,
|
|
gfc_expr *expr)
|
|
{
|
|
gcc_assert (var->expr_type == EXPR_VARIABLE);
|
|
gcc_assert (var->rank > 0);
|
|
|
|
switch (expr->expr_type)
|
|
{
|
|
case EXPR_VARIABLE:
|
|
return (gfc_ref_needs_temporary_p (expr->ref)
|
|
|| gfc_check_dependency (var, expr, 1));
|
|
|
|
case EXPR_ARRAY:
|
|
return gfc_check_dependency (var, expr, 1);
|
|
|
|
case EXPR_FUNCTION:
|
|
if (intent != INTENT_IN && expr->inline_noncopying_intrinsic)
|
|
{
|
|
expr = gfc_get_noncopying_intrinsic_argument (expr);
|
|
return gfc_check_argument_var_dependency (var, intent, expr);
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Like gfc_check_argument_var_dependency, but extended to any
|
|
array expression OTHER, not just variables. */
|
|
|
|
static int
|
|
gfc_check_argument_dependency (gfc_expr *other, sym_intent intent,
|
|
gfc_expr *expr)
|
|
{
|
|
switch (other->expr_type)
|
|
{
|
|
case EXPR_VARIABLE:
|
|
return gfc_check_argument_var_dependency (other, intent, expr);
|
|
|
|
case EXPR_FUNCTION:
|
|
if (other->inline_noncopying_intrinsic)
|
|
{
|
|
other = gfc_get_noncopying_intrinsic_argument (other);
|
|
return gfc_check_argument_dependency (other, INTENT_IN, expr);
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
/* Like gfc_check_argument_dependency, but check all the arguments in ACTUAL.
|
|
FNSYM is the function being called, or NULL if not known. */
|
|
|
|
int
|
|
gfc_check_fncall_dependency (gfc_expr *other, sym_intent intent,
|
|
gfc_symbol *fnsym, gfc_actual_arglist *actual)
|
|
{
|
|
gfc_formal_arglist *formal;
|
|
gfc_expr *expr;
|
|
|
|
formal = fnsym ? fnsym->formal : NULL;
|
|
for (; actual; actual = actual->next, formal = formal ? formal->next : NULL)
|
|
{
|
|
expr = actual->expr;
|
|
|
|
/* Skip args which are not present. */
|
|
if (!expr)
|
|
continue;
|
|
|
|
/* Skip other itself. */
|
|
if (expr == other)
|
|
continue;
|
|
|
|
/* Skip intent(in) arguments if OTHER itself is intent(in). */
|
|
if (formal && intent == INTENT_IN
|
|
&& formal->sym->attr.intent == INTENT_IN)
|
|
continue;
|
|
|
|
if (gfc_check_argument_dependency (other, intent, expr))
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return 1 if e1 and e2 are equivalenced arrays, either
|
|
directly or indirectly; i.e., equivalence (a,b) for a and b
|
|
or equivalence (a,c),(b,c). This function uses the equiv_
|
|
lists, generated in trans-common(add_equivalences), that are
|
|
guaranteed to pick up indirect equivalences. We explicitly
|
|
check for overlap using the offset and length of the equivalence.
|
|
This function is symmetric.
|
|
TODO: This function only checks whether the full top-level
|
|
symbols overlap. An improved implementation could inspect
|
|
e1->ref and e2->ref to determine whether the actually accessed
|
|
portions of these variables/arrays potentially overlap. */
|
|
|
|
int
|
|
gfc_are_equivalenced_arrays (gfc_expr *e1, gfc_expr *e2)
|
|
{
|
|
gfc_equiv_list *l;
|
|
gfc_equiv_info *s, *fl1, *fl2;
|
|
|
|
gcc_assert (e1->expr_type == EXPR_VARIABLE
|
|
&& e2->expr_type == EXPR_VARIABLE);
|
|
|
|
if (!e1->symtree->n.sym->attr.in_equivalence
|
|
|| !e2->symtree->n.sym->attr.in_equivalence|| !e1->rank || !e2->rank)
|
|
return 0;
|
|
|
|
/* Go through the equiv_lists and return 1 if the variables
|
|
e1 and e2 are members of the same group and satisfy the
|
|
requirement on their relative offsets. */
|
|
for (l = gfc_current_ns->equiv_lists; l; l = l->next)
|
|
{
|
|
fl1 = NULL;
|
|
fl2 = NULL;
|
|
for (s = l->equiv; s; s = s->next)
|
|
{
|
|
if (s->sym == e1->symtree->n.sym)
|
|
{
|
|
fl1 = s;
|
|
if (fl2)
|
|
break;
|
|
}
|
|
if (s->sym == e2->symtree->n.sym)
|
|
{
|
|
fl2 = s;
|
|
if (fl1)
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (s)
|
|
{
|
|
/* Can these lengths be zero? */
|
|
if (fl1->length <= 0 || fl2->length <= 0)
|
|
return 1;
|
|
/* These can't overlap if [f11,fl1+length] is before
|
|
[fl2,fl2+length], or [fl2,fl2+length] is before
|
|
[fl1,fl1+length], otherwise they do overlap. */
|
|
if (fl1->offset + fl1->length > fl2->offset
|
|
&& fl2->offset + fl2->length > fl1->offset)
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
/* Return true if the statement body redefines the condition. Returns
|
|
true if expr2 depends on expr1. expr1 should be a single term
|
|
suitable for the lhs of an assignment. The IDENTICAL flag indicates
|
|
whether array references to the same symbol with identical range
|
|
references count as a dependency or not. Used for forall and where
|
|
statements. Also used with functions returning arrays without a
|
|
temporary. */
|
|
|
|
int
|
|
gfc_check_dependency (gfc_expr *expr1, gfc_expr *expr2, bool identical)
|
|
{
|
|
gfc_actual_arglist *actual;
|
|
gfc_constructor *c;
|
|
gfc_ref *ref;
|
|
int n;
|
|
|
|
gcc_assert (expr1->expr_type == EXPR_VARIABLE);
|
|
|
|
switch (expr2->expr_type)
|
|
{
|
|
case EXPR_OP:
|
|
n = gfc_check_dependency (expr1, expr2->value.op.op1, identical);
|
|
if (n)
|
|
return n;
|
|
if (expr2->value.op.op2)
|
|
return gfc_check_dependency (expr1, expr2->value.op.op2, identical);
|
|
return 0;
|
|
|
|
case EXPR_VARIABLE:
|
|
/* The interesting cases are when the symbols don't match. */
|
|
if (expr1->symtree->n.sym != expr2->symtree->n.sym)
|
|
{
|
|
gfc_typespec *ts1 = &expr1->symtree->n.sym->ts;
|
|
gfc_typespec *ts2 = &expr2->symtree->n.sym->ts;
|
|
|
|
/* Return 1 if expr1 and expr2 are equivalenced arrays. */
|
|
if (gfc_are_equivalenced_arrays (expr1, expr2))
|
|
return 1;
|
|
|
|
/* Symbols can only alias if they have the same type. */
|
|
if (ts1->type != BT_UNKNOWN && ts2->type != BT_UNKNOWN
|
|
&& ts1->type != BT_DERIVED && ts2->type != BT_DERIVED)
|
|
{
|
|
if (ts1->type != ts2->type || ts1->kind != ts2->kind)
|
|
return 0;
|
|
}
|
|
|
|
/* If either variable is a pointer, assume the worst. */
|
|
/* TODO: -fassume-no-pointer-aliasing */
|
|
if (expr1->symtree->n.sym->attr.pointer)
|
|
return 1;
|
|
for (ref = expr1->ref; ref; ref = ref->next)
|
|
if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
|
|
return 1;
|
|
|
|
if (expr2->symtree->n.sym->attr.pointer)
|
|
return 1;
|
|
for (ref = expr2->ref; ref; ref = ref->next)
|
|
if (ref->type == REF_COMPONENT && ref->u.c.component->attr.pointer)
|
|
return 1;
|
|
|
|
/* Otherwise distinct symbols have no dependencies. */
|
|
return 0;
|
|
}
|
|
|
|
if (identical)
|
|
return 1;
|
|
|
|
/* Identical and disjoint ranges return 0,
|
|
overlapping ranges return 1. */
|
|
if (expr1->ref && expr2->ref)
|
|
return gfc_dep_resolver (expr1->ref, expr2->ref);
|
|
|
|
return 1;
|
|
|
|
case EXPR_FUNCTION:
|
|
if (expr2->inline_noncopying_intrinsic)
|
|
identical = 1;
|
|
/* Remember possible differences between elemental and
|
|
transformational functions. All functions inside a FORALL
|
|
will be pure. */
|
|
for (actual = expr2->value.function.actual;
|
|
actual; actual = actual->next)
|
|
{
|
|
if (!actual->expr)
|
|
continue;
|
|
n = gfc_check_dependency (expr1, actual->expr, identical);
|
|
if (n)
|
|
return n;
|
|
}
|
|
return 0;
|
|
|
|
case EXPR_CONSTANT:
|
|
case EXPR_NULL:
|
|
return 0;
|
|
|
|
case EXPR_ARRAY:
|
|
/* Loop through the array constructor's elements. */
|
|
for (c = expr2->value.constructor; c; c = c->next)
|
|
{
|
|
/* If this is an iterator, assume the worst. */
|
|
if (c->iterator)
|
|
return 1;
|
|
/* Avoid recursion in the common case. */
|
|
if (c->expr->expr_type == EXPR_CONSTANT)
|
|
continue;
|
|
if (gfc_check_dependency (expr1, c->expr, 1))
|
|
return 1;
|
|
}
|
|
return 0;
|
|
|
|
default:
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
|
|
/* Determines overlapping for two array sections. */
|
|
|
|
static gfc_dependency
|
|
gfc_check_section_vs_section (gfc_ref *lref, gfc_ref *rref, int n)
|
|
{
|
|
gfc_array_ref l_ar;
|
|
gfc_expr *l_start;
|
|
gfc_expr *l_end;
|
|
gfc_expr *l_stride;
|
|
gfc_expr *l_lower;
|
|
gfc_expr *l_upper;
|
|
int l_dir;
|
|
|
|
gfc_array_ref r_ar;
|
|
gfc_expr *r_start;
|
|
gfc_expr *r_end;
|
|
gfc_expr *r_stride;
|
|
gfc_expr *r_lower;
|
|
gfc_expr *r_upper;
|
|
int r_dir;
|
|
|
|
l_ar = lref->u.ar;
|
|
r_ar = rref->u.ar;
|
|
|
|
/* If they are the same range, return without more ado. */
|
|
if (gfc_is_same_range (&l_ar, &r_ar, n, 0))
|
|
return GFC_DEP_EQUAL;
|
|
|
|
l_start = l_ar.start[n];
|
|
l_end = l_ar.end[n];
|
|
l_stride = l_ar.stride[n];
|
|
|
|
r_start = r_ar.start[n];
|
|
r_end = r_ar.end[n];
|
|
r_stride = r_ar.stride[n];
|
|
|
|
/* If l_start is NULL take it from array specifier. */
|
|
if (NULL == l_start && IS_ARRAY_EXPLICIT (l_ar.as))
|
|
l_start = l_ar.as->lower[n];
|
|
/* If l_end is NULL take it from array specifier. */
|
|
if (NULL == l_end && IS_ARRAY_EXPLICIT (l_ar.as))
|
|
l_end = l_ar.as->upper[n];
|
|
|
|
/* If r_start is NULL take it from array specifier. */
|
|
if (NULL == r_start && IS_ARRAY_EXPLICIT (r_ar.as))
|
|
r_start = r_ar.as->lower[n];
|
|
/* If r_end is NULL take it from array specifier. */
|
|
if (NULL == r_end && IS_ARRAY_EXPLICIT (r_ar.as))
|
|
r_end = r_ar.as->upper[n];
|
|
|
|
/* Determine whether the l_stride is positive or negative. */
|
|
if (!l_stride)
|
|
l_dir = 1;
|
|
else if (l_stride->expr_type == EXPR_CONSTANT
|
|
&& l_stride->ts.type == BT_INTEGER)
|
|
l_dir = mpz_sgn (l_stride->value.integer);
|
|
else if (l_start && l_end)
|
|
l_dir = gfc_dep_compare_expr (l_end, l_start);
|
|
else
|
|
l_dir = -2;
|
|
|
|
/* Determine whether the r_stride is positive or negative. */
|
|
if (!r_stride)
|
|
r_dir = 1;
|
|
else if (r_stride->expr_type == EXPR_CONSTANT
|
|
&& r_stride->ts.type == BT_INTEGER)
|
|
r_dir = mpz_sgn (r_stride->value.integer);
|
|
else if (r_start && r_end)
|
|
r_dir = gfc_dep_compare_expr (r_end, r_start);
|
|
else
|
|
r_dir = -2;
|
|
|
|
/* The strides should never be zero. */
|
|
if (l_dir == 0 || r_dir == 0)
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
/* Determine LHS upper and lower bounds. */
|
|
if (l_dir == 1)
|
|
{
|
|
l_lower = l_start;
|
|
l_upper = l_end;
|
|
}
|
|
else if (l_dir == -1)
|
|
{
|
|
l_lower = l_end;
|
|
l_upper = l_start;
|
|
}
|
|
else
|
|
{
|
|
l_lower = NULL;
|
|
l_upper = NULL;
|
|
}
|
|
|
|
/* Determine RHS upper and lower bounds. */
|
|
if (r_dir == 1)
|
|
{
|
|
r_lower = r_start;
|
|
r_upper = r_end;
|
|
}
|
|
else if (r_dir == -1)
|
|
{
|
|
r_lower = r_end;
|
|
r_upper = r_start;
|
|
}
|
|
else
|
|
{
|
|
r_lower = NULL;
|
|
r_upper = NULL;
|
|
}
|
|
|
|
/* Check whether the ranges are disjoint. */
|
|
if (l_upper && r_lower && gfc_dep_compare_expr (l_upper, r_lower) == -1)
|
|
return GFC_DEP_NODEP;
|
|
if (r_upper && l_lower && gfc_dep_compare_expr (r_upper, l_lower) == -1)
|
|
return GFC_DEP_NODEP;
|
|
|
|
/* Handle cases like x:y:1 vs. x:z:-1 as GFC_DEP_EQUAL. */
|
|
if (l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == 0)
|
|
{
|
|
if (l_dir == 1 && r_dir == -1)
|
|
return GFC_DEP_EQUAL;
|
|
if (l_dir == -1 && r_dir == 1)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
|
|
/* Handle cases like x:y:1 vs. z:y:-1 as GFC_DEP_EQUAL. */
|
|
if (l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == 0)
|
|
{
|
|
if (l_dir == 1 && r_dir == -1)
|
|
return GFC_DEP_EQUAL;
|
|
if (l_dir == -1 && r_dir == 1)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
|
|
/* Check for forward dependencies x:y vs. x+1:z. */
|
|
if (l_dir == 1 && r_dir == 1
|
|
&& l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == -1
|
|
&& l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == -1)
|
|
{
|
|
/* Check that the strides are the same. */
|
|
if (!l_stride && !r_stride)
|
|
return GFC_DEP_FORWARD;
|
|
if (l_stride && r_stride
|
|
&& gfc_dep_compare_expr (l_stride, r_stride) == 0)
|
|
return GFC_DEP_FORWARD;
|
|
}
|
|
|
|
/* Check for forward dependencies x:y:-1 vs. x-1:z:-1. */
|
|
if (l_dir == -1 && r_dir == -1
|
|
&& l_start && r_start && gfc_dep_compare_expr (l_start, r_start) == 1
|
|
&& l_end && r_end && gfc_dep_compare_expr (l_end, r_end) == 1)
|
|
{
|
|
/* Check that the strides are the same. */
|
|
if (!l_stride && !r_stride)
|
|
return GFC_DEP_FORWARD;
|
|
if (l_stride && r_stride
|
|
&& gfc_dep_compare_expr (l_stride, r_stride) == 0)
|
|
return GFC_DEP_FORWARD;
|
|
}
|
|
|
|
return GFC_DEP_OVERLAP;
|
|
}
|
|
|
|
|
|
/* Determines overlapping for a single element and a section. */
|
|
|
|
static gfc_dependency
|
|
gfc_check_element_vs_section( gfc_ref *lref, gfc_ref *rref, int n)
|
|
{
|
|
gfc_array_ref *ref;
|
|
gfc_expr *elem;
|
|
gfc_expr *start;
|
|
gfc_expr *end;
|
|
gfc_expr *stride;
|
|
int s;
|
|
|
|
elem = lref->u.ar.start[n];
|
|
if (!elem)
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
ref = &rref->u.ar;
|
|
start = ref->start[n] ;
|
|
end = ref->end[n] ;
|
|
stride = ref->stride[n];
|
|
|
|
if (!start && IS_ARRAY_EXPLICIT (ref->as))
|
|
start = ref->as->lower[n];
|
|
if (!end && IS_ARRAY_EXPLICIT (ref->as))
|
|
end = ref->as->upper[n];
|
|
|
|
/* Determine whether the stride is positive or negative. */
|
|
if (!stride)
|
|
s = 1;
|
|
else if (stride->expr_type == EXPR_CONSTANT
|
|
&& stride->ts.type == BT_INTEGER)
|
|
s = mpz_sgn (stride->value.integer);
|
|
else
|
|
s = -2;
|
|
|
|
/* Stride should never be zero. */
|
|
if (s == 0)
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
/* Positive strides. */
|
|
if (s == 1)
|
|
{
|
|
/* Check for elem < lower. */
|
|
if (start && gfc_dep_compare_expr (elem, start) == -1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem > upper. */
|
|
if (end && gfc_dep_compare_expr (elem, end) == 1)
|
|
return GFC_DEP_NODEP;
|
|
|
|
if (start && end)
|
|
{
|
|
s = gfc_dep_compare_expr (start, end);
|
|
/* Check for an empty range. */
|
|
if (s == 1)
|
|
return GFC_DEP_NODEP;
|
|
if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
}
|
|
/* Negative strides. */
|
|
else if (s == -1)
|
|
{
|
|
/* Check for elem > upper. */
|
|
if (end && gfc_dep_compare_expr (elem, start) == 1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem < lower. */
|
|
if (start && gfc_dep_compare_expr (elem, end) == -1)
|
|
return GFC_DEP_NODEP;
|
|
|
|
if (start && end)
|
|
{
|
|
s = gfc_dep_compare_expr (start, end);
|
|
/* Check for an empty range. */
|
|
if (s == -1)
|
|
return GFC_DEP_NODEP;
|
|
if (s == 0 && gfc_dep_compare_expr (elem, start) == 0)
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
}
|
|
/* Unknown strides. */
|
|
else
|
|
{
|
|
if (!start || !end)
|
|
return GFC_DEP_OVERLAP;
|
|
s = gfc_dep_compare_expr (start, end);
|
|
if (s == -2)
|
|
return GFC_DEP_OVERLAP;
|
|
/* Assume positive stride. */
|
|
if (s == -1)
|
|
{
|
|
/* Check for elem < lower. */
|
|
if (gfc_dep_compare_expr (elem, start) == -1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem > upper. */
|
|
if (gfc_dep_compare_expr (elem, end) == 1)
|
|
return GFC_DEP_NODEP;
|
|
}
|
|
/* Assume negative stride. */
|
|
else if (s == 1)
|
|
{
|
|
/* Check for elem > upper. */
|
|
if (gfc_dep_compare_expr (elem, start) == 1)
|
|
return GFC_DEP_NODEP;
|
|
/* Check for elem < lower. */
|
|
if (gfc_dep_compare_expr (elem, end) == -1)
|
|
return GFC_DEP_NODEP;
|
|
}
|
|
/* Equal bounds. */
|
|
else if (s == 0)
|
|
{
|
|
s = gfc_dep_compare_expr (elem, start);
|
|
if (s == 0)
|
|
return GFC_DEP_EQUAL;
|
|
if (s == 1 || s == -1)
|
|
return GFC_DEP_NODEP;
|
|
}
|
|
}
|
|
|
|
return GFC_DEP_OVERLAP;
|
|
}
|
|
|
|
|
|
/* Traverse expr, checking all EXPR_VARIABLE symbols for their
|
|
forall_index attribute. Return true if any variable may be
|
|
being used as a FORALL index. Its safe to pessimistically
|
|
return true, and assume a dependency. */
|
|
|
|
static bool
|
|
contains_forall_index_p (gfc_expr *expr)
|
|
{
|
|
gfc_actual_arglist *arg;
|
|
gfc_constructor *c;
|
|
gfc_ref *ref;
|
|
int i;
|
|
|
|
if (!expr)
|
|
return false;
|
|
|
|
switch (expr->expr_type)
|
|
{
|
|
case EXPR_VARIABLE:
|
|
if (expr->symtree->n.sym->forall_index)
|
|
return true;
|
|
break;
|
|
|
|
case EXPR_OP:
|
|
if (contains_forall_index_p (expr->value.op.op1)
|
|
|| contains_forall_index_p (expr->value.op.op2))
|
|
return true;
|
|
break;
|
|
|
|
case EXPR_FUNCTION:
|
|
for (arg = expr->value.function.actual; arg; arg = arg->next)
|
|
if (contains_forall_index_p (arg->expr))
|
|
return true;
|
|
break;
|
|
|
|
case EXPR_CONSTANT:
|
|
case EXPR_NULL:
|
|
case EXPR_SUBSTRING:
|
|
break;
|
|
|
|
case EXPR_STRUCTURE:
|
|
case EXPR_ARRAY:
|
|
for (c = expr->value.constructor; c; c = c->next)
|
|
if (contains_forall_index_p (c->expr))
|
|
return true;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
for (ref = expr->ref; ref; ref = ref->next)
|
|
switch (ref->type)
|
|
{
|
|
case REF_ARRAY:
|
|
for (i = 0; i < ref->u.ar.dimen; i++)
|
|
if (contains_forall_index_p (ref->u.ar.start[i])
|
|
|| contains_forall_index_p (ref->u.ar.end[i])
|
|
|| contains_forall_index_p (ref->u.ar.stride[i]))
|
|
return true;
|
|
break;
|
|
|
|
case REF_COMPONENT:
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
if (contains_forall_index_p (ref->u.ss.start)
|
|
|| contains_forall_index_p (ref->u.ss.end))
|
|
return true;
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/* Determines overlapping for two single element array references. */
|
|
|
|
static gfc_dependency
|
|
gfc_check_element_vs_element (gfc_ref *lref, gfc_ref *rref, int n)
|
|
{
|
|
gfc_array_ref l_ar;
|
|
gfc_array_ref r_ar;
|
|
gfc_expr *l_start;
|
|
gfc_expr *r_start;
|
|
int i;
|
|
|
|
l_ar = lref->u.ar;
|
|
r_ar = rref->u.ar;
|
|
l_start = l_ar.start[n] ;
|
|
r_start = r_ar.start[n] ;
|
|
i = gfc_dep_compare_expr (r_start, l_start);
|
|
if (i == 0)
|
|
return GFC_DEP_EQUAL;
|
|
|
|
/* Treat two scalar variables as potentially equal. This allows
|
|
us to prove that a(i,:) and a(j,:) have no dependency. See
|
|
Gerald Roth, "Evaluation of Array Syntax Dependence Analysis",
|
|
Proceedings of the International Conference on Parallel and
|
|
Distributed Processing Techniques and Applications (PDPTA2001),
|
|
Las Vegas, Nevada, June 2001. */
|
|
/* However, we need to be careful when either scalar expression
|
|
contains a FORALL index, as these can potentially change value
|
|
during the scalarization/traversal of this array reference. */
|
|
if (contains_forall_index_p (r_start) || contains_forall_index_p (l_start))
|
|
return GFC_DEP_OVERLAP;
|
|
|
|
if (i != -2)
|
|
return GFC_DEP_NODEP;
|
|
return GFC_DEP_EQUAL;
|
|
}
|
|
|
|
|
|
/* Determine if an array ref, usually an array section specifies the
|
|
entire array. */
|
|
|
|
bool
|
|
gfc_full_array_ref_p (gfc_ref *ref)
|
|
{
|
|
int i;
|
|
|
|
if (ref->type != REF_ARRAY)
|
|
return false;
|
|
if (ref->u.ar.type == AR_FULL)
|
|
return true;
|
|
if (ref->u.ar.type != AR_SECTION)
|
|
return false;
|
|
if (ref->next)
|
|
return false;
|
|
|
|
for (i = 0; i < ref->u.ar.dimen; i++)
|
|
{
|
|
/* If we have a single element in the reference, we need to check
|
|
that the array has a single element and that we actually reference
|
|
the correct element. */
|
|
if (ref->u.ar.dimen_type[i] == DIMEN_ELEMENT)
|
|
{
|
|
if (!ref->u.ar.as
|
|
|| !ref->u.ar.as->lower[i]
|
|
|| !ref->u.ar.as->upper[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.as->lower[i],
|
|
ref->u.ar.as->upper[i])
|
|
|| !ref->u.ar.start[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.start[i],
|
|
ref->u.ar.as->lower[i]))
|
|
return false;
|
|
else
|
|
continue;
|
|
}
|
|
|
|
/* Check the lower bound. */
|
|
if (ref->u.ar.start[i]
|
|
&& (!ref->u.ar.as
|
|
|| !ref->u.ar.as->lower[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.start[i],
|
|
ref->u.ar.as->lower[i])))
|
|
return false;
|
|
/* Check the upper bound. */
|
|
if (ref->u.ar.end[i]
|
|
&& (!ref->u.ar.as
|
|
|| !ref->u.ar.as->upper[i]
|
|
|| gfc_dep_compare_expr (ref->u.ar.end[i],
|
|
ref->u.ar.as->upper[i])))
|
|
return false;
|
|
/* Check the stride. */
|
|
if (ref->u.ar.stride[i] && !gfc_expr_is_one (ref->u.ar.stride[i], 0))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
/* Finds if two array references are overlapping or not.
|
|
Return value
|
|
1 : array references are overlapping.
|
|
0 : array references are identical or not overlapping. */
|
|
|
|
int
|
|
gfc_dep_resolver (gfc_ref *lref, gfc_ref *rref)
|
|
{
|
|
int n;
|
|
gfc_dependency fin_dep;
|
|
gfc_dependency this_dep;
|
|
|
|
fin_dep = GFC_DEP_ERROR;
|
|
/* Dependencies due to pointers should already have been identified.
|
|
We only need to check for overlapping array references. */
|
|
|
|
while (lref && rref)
|
|
{
|
|
/* We're resolving from the same base symbol, so both refs should be
|
|
the same type. We traverse the reference chain until we find ranges
|
|
that are not equal. */
|
|
gcc_assert (lref->type == rref->type);
|
|
switch (lref->type)
|
|
{
|
|
case REF_COMPONENT:
|
|
/* The two ranges can't overlap if they are from different
|
|
components. */
|
|
if (lref->u.c.component != rref->u.c.component)
|
|
return 0;
|
|
break;
|
|
|
|
case REF_SUBSTRING:
|
|
/* Substring overlaps are handled by the string assignment code
|
|
if there is not an underlying dependency. */
|
|
return (fin_dep == GFC_DEP_OVERLAP) ? 1 : 0;
|
|
|
|
case REF_ARRAY:
|
|
if (lref->u.ar.dimen != rref->u.ar.dimen)
|
|
{
|
|
if (lref->u.ar.type == AR_FULL)
|
|
fin_dep = gfc_full_array_ref_p (rref) ? GFC_DEP_EQUAL
|
|
: GFC_DEP_OVERLAP;
|
|
else if (rref->u.ar.type == AR_FULL)
|
|
fin_dep = gfc_full_array_ref_p (lref) ? GFC_DEP_EQUAL
|
|
: GFC_DEP_OVERLAP;
|
|
else
|
|
return 1;
|
|
break;
|
|
}
|
|
|
|
for (n=0; n < lref->u.ar.dimen; n++)
|
|
{
|
|
/* Assume dependency when either of array reference is vector
|
|
subscript. */
|
|
if (lref->u.ar.dimen_type[n] == DIMEN_VECTOR
|
|
|| rref->u.ar.dimen_type[n] == DIMEN_VECTOR)
|
|
return 1;
|
|
if (lref->u.ar.dimen_type[n] == DIMEN_RANGE
|
|
&& rref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
|
this_dep = gfc_check_section_vs_section (lref, rref, n);
|
|
else if (lref->u.ar.dimen_type[n] == DIMEN_ELEMENT
|
|
&& rref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
|
this_dep = gfc_check_element_vs_section (lref, rref, n);
|
|
else if (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
|
|
&& lref->u.ar.dimen_type[n] == DIMEN_RANGE)
|
|
this_dep = gfc_check_element_vs_section (rref, lref, n);
|
|
else
|
|
{
|
|
gcc_assert (rref->u.ar.dimen_type[n] == DIMEN_ELEMENT
|
|
&& lref->u.ar.dimen_type[n] == DIMEN_ELEMENT);
|
|
this_dep = gfc_check_element_vs_element (rref, lref, n);
|
|
}
|
|
|
|
/* If any dimension doesn't overlap, we have no dependency. */
|
|
if (this_dep == GFC_DEP_NODEP)
|
|
return 0;
|
|
|
|
/* Overlap codes are in order of priority. We only need to
|
|
know the worst one.*/
|
|
if (this_dep > fin_dep)
|
|
fin_dep = this_dep;
|
|
}
|
|
/* Exactly matching and forward overlapping ranges don't cause a
|
|
dependency. */
|
|
if (fin_dep < GFC_DEP_OVERLAP)
|
|
return 0;
|
|
|
|
/* Keep checking. We only have a dependency if
|
|
subsequent references also overlap. */
|
|
break;
|
|
|
|
default:
|
|
gcc_unreachable ();
|
|
}
|
|
lref = lref->next;
|
|
rref = rref->next;
|
|
}
|
|
|
|
/* If we haven't seen any array refs then something went wrong. */
|
|
gcc_assert (fin_dep != GFC_DEP_ERROR);
|
|
|
|
/* Assume the worst if we nest to different depths. */
|
|
if (lref || rref)
|
|
return 1;
|
|
|
|
return fin_dep == GFC_DEP_OVERLAP;
|
|
}
|
|
|