
PR tree-optimization/86043 - strlen after memcpy partially overwriting a string not optimized PR tree-optimization/86042 - missing strlen optimization after second strcpy gcc/ChangeLog: PR tree-optimization/86043 PR tree-optimization/86042 * tree-ssa-strlen.c (handle_builtin_memcpy): Handle strict overlaps. (get_string_cst_length): Rename... (get_min_string_length): ...to this. Add argument. (handle_char_store): Extend to handle multi-character stores by MEM_REF. * tree.c (initializer_zerop): Use new argument. Handle MEM_REF. * tree.h (initializer_zerop): Add argument. gcc/testsuite/ChangeLog: PR tree-optimization/86043 PR tree-optimization/86042 * gcc/testsuite/gcc.dg/attr-nonstring-2.c: Xfail test cases due to pr86688. * gcc.dg/strlenopt-44.c: New test. From-SVN: r263018
14757 lines
416 KiB
C
14757 lines
416 KiB
C
/* Language-independent node constructors for parse phase of GNU compiler.
|
||
Copyright (C) 1987-2018 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This file contains the low level primitives for operating on tree nodes,
|
||
including allocation, list operations, interning of identifiers,
|
||
construction of data type nodes and statement nodes,
|
||
and construction of type conversion nodes. It also contains
|
||
tables index by tree code that describe how to take apart
|
||
nodes of that code.
|
||
|
||
It is intended to be language-independent but can occasionally
|
||
calls language-dependent routines. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "tree.h"
|
||
#include "gimple.h"
|
||
#include "tree-pass.h"
|
||
#include "ssa.h"
|
||
#include "cgraph.h"
|
||
#include "diagnostic.h"
|
||
#include "flags.h"
|
||
#include "alias.h"
|
||
#include "fold-const.h"
|
||
#include "stor-layout.h"
|
||
#include "calls.h"
|
||
#include "attribs.h"
|
||
#include "toplev.h" /* get_random_seed */
|
||
#include "output.h"
|
||
#include "common/common-target.h"
|
||
#include "langhooks.h"
|
||
#include "tree-inline.h"
|
||
#include "tree-iterator.h"
|
||
#include "internal-fn.h"
|
||
#include "gimple-iterator.h"
|
||
#include "gimplify.h"
|
||
#include "tree-dfa.h"
|
||
#include "params.h"
|
||
#include "langhooks-def.h"
|
||
#include "tree-diagnostic.h"
|
||
#include "except.h"
|
||
#include "builtins.h"
|
||
#include "print-tree.h"
|
||
#include "ipa-utils.h"
|
||
#include "selftest.h"
|
||
#include "stringpool.h"
|
||
#include "attribs.h"
|
||
#include "rtl.h"
|
||
#include "regs.h"
|
||
#include "tree-vector-builder.h"
|
||
|
||
/* Tree code classes. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
|
||
#define END_OF_BASE_TREE_CODES tcc_exceptional,
|
||
|
||
const enum tree_code_class tree_code_type[] = {
|
||
#include "all-tree.def"
|
||
};
|
||
|
||
#undef DEFTREECODE
|
||
#undef END_OF_BASE_TREE_CODES
|
||
|
||
/* Table indexed by tree code giving number of expression
|
||
operands beyond the fixed part of the node structure.
|
||
Not used for types or decls. */
|
||
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
|
||
#define END_OF_BASE_TREE_CODES 0,
|
||
|
||
const unsigned char tree_code_length[] = {
|
||
#include "all-tree.def"
|
||
};
|
||
|
||
#undef DEFTREECODE
|
||
#undef END_OF_BASE_TREE_CODES
|
||
|
||
/* Names of tree components.
|
||
Used for printing out the tree and error messages. */
|
||
#define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
|
||
#define END_OF_BASE_TREE_CODES "@dummy",
|
||
|
||
static const char *const tree_code_name[] = {
|
||
#include "all-tree.def"
|
||
};
|
||
|
||
#undef DEFTREECODE
|
||
#undef END_OF_BASE_TREE_CODES
|
||
|
||
/* Each tree code class has an associated string representation.
|
||
These must correspond to the tree_code_class entries. */
|
||
|
||
const char *const tree_code_class_strings[] =
|
||
{
|
||
"exceptional",
|
||
"constant",
|
||
"type",
|
||
"declaration",
|
||
"reference",
|
||
"comparison",
|
||
"unary",
|
||
"binary",
|
||
"statement",
|
||
"vl_exp",
|
||
"expression"
|
||
};
|
||
|
||
/* obstack.[ch] explicitly declined to prototype this. */
|
||
extern int _obstack_allocated_p (struct obstack *h, void *obj);
|
||
|
||
/* Statistics-gathering stuff. */
|
||
|
||
static uint64_t tree_code_counts[MAX_TREE_CODES];
|
||
uint64_t tree_node_counts[(int) all_kinds];
|
||
uint64_t tree_node_sizes[(int) all_kinds];
|
||
|
||
/* Keep in sync with tree.h:enum tree_node_kind. */
|
||
static const char * const tree_node_kind_names[] = {
|
||
"decls",
|
||
"types",
|
||
"blocks",
|
||
"stmts",
|
||
"refs",
|
||
"exprs",
|
||
"constants",
|
||
"identifiers",
|
||
"vecs",
|
||
"binfos",
|
||
"ssa names",
|
||
"constructors",
|
||
"random kinds",
|
||
"lang_decl kinds",
|
||
"lang_type kinds",
|
||
"omp clauses",
|
||
};
|
||
|
||
/* Unique id for next decl created. */
|
||
static GTY(()) int next_decl_uid;
|
||
/* Unique id for next type created. */
|
||
static GTY(()) unsigned next_type_uid = 1;
|
||
/* Unique id for next debug decl created. Use negative numbers,
|
||
to catch erroneous uses. */
|
||
static GTY(()) int next_debug_decl_uid;
|
||
|
||
/* Since we cannot rehash a type after it is in the table, we have to
|
||
keep the hash code. */
|
||
|
||
struct GTY((for_user)) type_hash {
|
||
unsigned long hash;
|
||
tree type;
|
||
};
|
||
|
||
/* Initial size of the hash table (rounded to next prime). */
|
||
#define TYPE_HASH_INITIAL_SIZE 1000
|
||
|
||
struct type_cache_hasher : ggc_cache_ptr_hash<type_hash>
|
||
{
|
||
static hashval_t hash (type_hash *t) { return t->hash; }
|
||
static bool equal (type_hash *a, type_hash *b);
|
||
|
||
static int
|
||
keep_cache_entry (type_hash *&t)
|
||
{
|
||
return ggc_marked_p (t->type);
|
||
}
|
||
};
|
||
|
||
/* Now here is the hash table. When recording a type, it is added to
|
||
the slot whose index is the hash code. Note that the hash table is
|
||
used for several kinds of types (function types, array types and
|
||
array index range types, for now). While all these live in the
|
||
same table, they are completely independent, and the hash code is
|
||
computed differently for each of these. */
|
||
|
||
static GTY ((cache)) hash_table<type_cache_hasher> *type_hash_table;
|
||
|
||
/* Hash table and temporary node for larger integer const values. */
|
||
static GTY (()) tree int_cst_node;
|
||
|
||
struct int_cst_hasher : ggc_cache_ptr_hash<tree_node>
|
||
{
|
||
static hashval_t hash (tree t);
|
||
static bool equal (tree x, tree y);
|
||
};
|
||
|
||
static GTY ((cache)) hash_table<int_cst_hasher> *int_cst_hash_table;
|
||
|
||
/* Class and variable for making sure that there is a single POLY_INT_CST
|
||
for a given value. */
|
||
struct poly_int_cst_hasher : ggc_cache_ptr_hash<tree_node>
|
||
{
|
||
typedef std::pair<tree, const poly_wide_int *> compare_type;
|
||
static hashval_t hash (tree t);
|
||
static bool equal (tree x, const compare_type &y);
|
||
};
|
||
|
||
static GTY ((cache)) hash_table<poly_int_cst_hasher> *poly_int_cst_hash_table;
|
||
|
||
/* Hash table for optimization flags and target option flags. Use the same
|
||
hash table for both sets of options. Nodes for building the current
|
||
optimization and target option nodes. The assumption is most of the time
|
||
the options created will already be in the hash table, so we avoid
|
||
allocating and freeing up a node repeatably. */
|
||
static GTY (()) tree cl_optimization_node;
|
||
static GTY (()) tree cl_target_option_node;
|
||
|
||
struct cl_option_hasher : ggc_cache_ptr_hash<tree_node>
|
||
{
|
||
static hashval_t hash (tree t);
|
||
static bool equal (tree x, tree y);
|
||
};
|
||
|
||
static GTY ((cache)) hash_table<cl_option_hasher> *cl_option_hash_table;
|
||
|
||
/* General tree->tree mapping structure for use in hash tables. */
|
||
|
||
|
||
static GTY ((cache))
|
||
hash_table<tree_decl_map_cache_hasher> *debug_expr_for_decl;
|
||
|
||
static GTY ((cache))
|
||
hash_table<tree_decl_map_cache_hasher> *value_expr_for_decl;
|
||
|
||
struct tree_vec_map_cache_hasher : ggc_cache_ptr_hash<tree_vec_map>
|
||
{
|
||
static hashval_t hash (tree_vec_map *m) { return DECL_UID (m->base.from); }
|
||
|
||
static bool
|
||
equal (tree_vec_map *a, tree_vec_map *b)
|
||
{
|
||
return a->base.from == b->base.from;
|
||
}
|
||
|
||
static int
|
||
keep_cache_entry (tree_vec_map *&m)
|
||
{
|
||
return ggc_marked_p (m->base.from);
|
||
}
|
||
};
|
||
|
||
static GTY ((cache))
|
||
hash_table<tree_vec_map_cache_hasher> *debug_args_for_decl;
|
||
|
||
static void set_type_quals (tree, int);
|
||
static void print_type_hash_statistics (void);
|
||
static void print_debug_expr_statistics (void);
|
||
static void print_value_expr_statistics (void);
|
||
|
||
tree global_trees[TI_MAX];
|
||
tree integer_types[itk_none];
|
||
|
||
bool int_n_enabled_p[NUM_INT_N_ENTS];
|
||
struct int_n_trees_t int_n_trees [NUM_INT_N_ENTS];
|
||
|
||
bool tree_contains_struct[MAX_TREE_CODES][64];
|
||
|
||
/* Number of operands for each OpenMP clause. */
|
||
unsigned const char omp_clause_num_ops[] =
|
||
{
|
||
0, /* OMP_CLAUSE_ERROR */
|
||
1, /* OMP_CLAUSE_PRIVATE */
|
||
1, /* OMP_CLAUSE_SHARED */
|
||
1, /* OMP_CLAUSE_FIRSTPRIVATE */
|
||
2, /* OMP_CLAUSE_LASTPRIVATE */
|
||
5, /* OMP_CLAUSE_REDUCTION */
|
||
1, /* OMP_CLAUSE_COPYIN */
|
||
1, /* OMP_CLAUSE_COPYPRIVATE */
|
||
3, /* OMP_CLAUSE_LINEAR */
|
||
2, /* OMP_CLAUSE_ALIGNED */
|
||
1, /* OMP_CLAUSE_DEPEND */
|
||
1, /* OMP_CLAUSE_UNIFORM */
|
||
1, /* OMP_CLAUSE_TO_DECLARE */
|
||
1, /* OMP_CLAUSE_LINK */
|
||
2, /* OMP_CLAUSE_FROM */
|
||
2, /* OMP_CLAUSE_TO */
|
||
2, /* OMP_CLAUSE_MAP */
|
||
1, /* OMP_CLAUSE_USE_DEVICE_PTR */
|
||
1, /* OMP_CLAUSE_IS_DEVICE_PTR */
|
||
2, /* OMP_CLAUSE__CACHE_ */
|
||
2, /* OMP_CLAUSE_GANG */
|
||
1, /* OMP_CLAUSE_ASYNC */
|
||
1, /* OMP_CLAUSE_WAIT */
|
||
0, /* OMP_CLAUSE_AUTO */
|
||
0, /* OMP_CLAUSE_SEQ */
|
||
1, /* OMP_CLAUSE__LOOPTEMP_ */
|
||
1, /* OMP_CLAUSE_IF */
|
||
1, /* OMP_CLAUSE_NUM_THREADS */
|
||
1, /* OMP_CLAUSE_SCHEDULE */
|
||
0, /* OMP_CLAUSE_NOWAIT */
|
||
1, /* OMP_CLAUSE_ORDERED */
|
||
0, /* OMP_CLAUSE_DEFAULT */
|
||
3, /* OMP_CLAUSE_COLLAPSE */
|
||
0, /* OMP_CLAUSE_UNTIED */
|
||
1, /* OMP_CLAUSE_FINAL */
|
||
0, /* OMP_CLAUSE_MERGEABLE */
|
||
1, /* OMP_CLAUSE_DEVICE */
|
||
1, /* OMP_CLAUSE_DIST_SCHEDULE */
|
||
0, /* OMP_CLAUSE_INBRANCH */
|
||
0, /* OMP_CLAUSE_NOTINBRANCH */
|
||
1, /* OMP_CLAUSE_NUM_TEAMS */
|
||
1, /* OMP_CLAUSE_THREAD_LIMIT */
|
||
0, /* OMP_CLAUSE_PROC_BIND */
|
||
1, /* OMP_CLAUSE_SAFELEN */
|
||
1, /* OMP_CLAUSE_SIMDLEN */
|
||
0, /* OMP_CLAUSE_FOR */
|
||
0, /* OMP_CLAUSE_PARALLEL */
|
||
0, /* OMP_CLAUSE_SECTIONS */
|
||
0, /* OMP_CLAUSE_TASKGROUP */
|
||
1, /* OMP_CLAUSE_PRIORITY */
|
||
1, /* OMP_CLAUSE_GRAINSIZE */
|
||
1, /* OMP_CLAUSE_NUM_TASKS */
|
||
0, /* OMP_CLAUSE_NOGROUP */
|
||
0, /* OMP_CLAUSE_THREADS */
|
||
0, /* OMP_CLAUSE_SIMD */
|
||
1, /* OMP_CLAUSE_HINT */
|
||
0, /* OMP_CLAUSE_DEFALTMAP */
|
||
1, /* OMP_CLAUSE__SIMDUID_ */
|
||
0, /* OMP_CLAUSE__SIMT_ */
|
||
0, /* OMP_CLAUSE_INDEPENDENT */
|
||
1, /* OMP_CLAUSE_WORKER */
|
||
1, /* OMP_CLAUSE_VECTOR */
|
||
1, /* OMP_CLAUSE_NUM_GANGS */
|
||
1, /* OMP_CLAUSE_NUM_WORKERS */
|
||
1, /* OMP_CLAUSE_VECTOR_LENGTH */
|
||
3, /* OMP_CLAUSE_TILE */
|
||
2, /* OMP_CLAUSE__GRIDDIM_ */
|
||
0, /* OMP_CLAUSE_IF_PRESENT */
|
||
0, /* OMP_CLAUSE_FINALIZE */
|
||
};
|
||
|
||
const char * const omp_clause_code_name[] =
|
||
{
|
||
"error_clause",
|
||
"private",
|
||
"shared",
|
||
"firstprivate",
|
||
"lastprivate",
|
||
"reduction",
|
||
"copyin",
|
||
"copyprivate",
|
||
"linear",
|
||
"aligned",
|
||
"depend",
|
||
"uniform",
|
||
"to",
|
||
"link",
|
||
"from",
|
||
"to",
|
||
"map",
|
||
"use_device_ptr",
|
||
"is_device_ptr",
|
||
"_cache_",
|
||
"gang",
|
||
"async",
|
||
"wait",
|
||
"auto",
|
||
"seq",
|
||
"_looptemp_",
|
||
"if",
|
||
"num_threads",
|
||
"schedule",
|
||
"nowait",
|
||
"ordered",
|
||
"default",
|
||
"collapse",
|
||
"untied",
|
||
"final",
|
||
"mergeable",
|
||
"device",
|
||
"dist_schedule",
|
||
"inbranch",
|
||
"notinbranch",
|
||
"num_teams",
|
||
"thread_limit",
|
||
"proc_bind",
|
||
"safelen",
|
||
"simdlen",
|
||
"for",
|
||
"parallel",
|
||
"sections",
|
||
"taskgroup",
|
||
"priority",
|
||
"grainsize",
|
||
"num_tasks",
|
||
"nogroup",
|
||
"threads",
|
||
"simd",
|
||
"hint",
|
||
"defaultmap",
|
||
"_simduid_",
|
||
"_simt_",
|
||
"independent",
|
||
"worker",
|
||
"vector",
|
||
"num_gangs",
|
||
"num_workers",
|
||
"vector_length",
|
||
"tile",
|
||
"_griddim_",
|
||
"if_present",
|
||
"finalize",
|
||
};
|
||
|
||
|
||
/* Return the tree node structure used by tree code CODE. */
|
||
|
||
static inline enum tree_node_structure_enum
|
||
tree_node_structure_for_code (enum tree_code code)
|
||
{
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_declaration:
|
||
{
|
||
switch (code)
|
||
{
|
||
case FIELD_DECL:
|
||
return TS_FIELD_DECL;
|
||
case PARM_DECL:
|
||
return TS_PARM_DECL;
|
||
case VAR_DECL:
|
||
return TS_VAR_DECL;
|
||
case LABEL_DECL:
|
||
return TS_LABEL_DECL;
|
||
case RESULT_DECL:
|
||
return TS_RESULT_DECL;
|
||
case DEBUG_EXPR_DECL:
|
||
return TS_DECL_WRTL;
|
||
case CONST_DECL:
|
||
return TS_CONST_DECL;
|
||
case TYPE_DECL:
|
||
return TS_TYPE_DECL;
|
||
case FUNCTION_DECL:
|
||
return TS_FUNCTION_DECL;
|
||
case TRANSLATION_UNIT_DECL:
|
||
return TS_TRANSLATION_UNIT_DECL;
|
||
default:
|
||
return TS_DECL_NON_COMMON;
|
||
}
|
||
}
|
||
case tcc_type:
|
||
return TS_TYPE_NON_COMMON;
|
||
case tcc_reference:
|
||
case tcc_comparison:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_expression:
|
||
case tcc_statement:
|
||
case tcc_vl_exp:
|
||
return TS_EXP;
|
||
default: /* tcc_constant and tcc_exceptional */
|
||
break;
|
||
}
|
||
switch (code)
|
||
{
|
||
/* tcc_constant cases. */
|
||
case VOID_CST: return TS_TYPED;
|
||
case INTEGER_CST: return TS_INT_CST;
|
||
case POLY_INT_CST: return TS_POLY_INT_CST;
|
||
case REAL_CST: return TS_REAL_CST;
|
||
case FIXED_CST: return TS_FIXED_CST;
|
||
case COMPLEX_CST: return TS_COMPLEX;
|
||
case VECTOR_CST: return TS_VECTOR;
|
||
case STRING_CST: return TS_STRING;
|
||
/* tcc_exceptional cases. */
|
||
case ERROR_MARK: return TS_COMMON;
|
||
case IDENTIFIER_NODE: return TS_IDENTIFIER;
|
||
case TREE_LIST: return TS_LIST;
|
||
case TREE_VEC: return TS_VEC;
|
||
case SSA_NAME: return TS_SSA_NAME;
|
||
case PLACEHOLDER_EXPR: return TS_COMMON;
|
||
case STATEMENT_LIST: return TS_STATEMENT_LIST;
|
||
case BLOCK: return TS_BLOCK;
|
||
case CONSTRUCTOR: return TS_CONSTRUCTOR;
|
||
case TREE_BINFO: return TS_BINFO;
|
||
case OMP_CLAUSE: return TS_OMP_CLAUSE;
|
||
case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
|
||
case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
|
||
/* Initialize tree_contains_struct to describe the hierarchy of tree
|
||
nodes. */
|
||
|
||
static void
|
||
initialize_tree_contains_struct (void)
|
||
{
|
||
unsigned i;
|
||
|
||
for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
|
||
{
|
||
enum tree_code code;
|
||
enum tree_node_structure_enum ts_code;
|
||
|
||
code = (enum tree_code) i;
|
||
ts_code = tree_node_structure_for_code (code);
|
||
|
||
/* Mark the TS structure itself. */
|
||
tree_contains_struct[code][ts_code] = 1;
|
||
|
||
/* Mark all the structures that TS is derived from. */
|
||
switch (ts_code)
|
||
{
|
||
case TS_TYPED:
|
||
case TS_BLOCK:
|
||
case TS_OPTIMIZATION:
|
||
case TS_TARGET_OPTION:
|
||
MARK_TS_BASE (code);
|
||
break;
|
||
|
||
case TS_COMMON:
|
||
case TS_INT_CST:
|
||
case TS_POLY_INT_CST:
|
||
case TS_REAL_CST:
|
||
case TS_FIXED_CST:
|
||
case TS_VECTOR:
|
||
case TS_STRING:
|
||
case TS_COMPLEX:
|
||
case TS_SSA_NAME:
|
||
case TS_CONSTRUCTOR:
|
||
case TS_EXP:
|
||
case TS_STATEMENT_LIST:
|
||
MARK_TS_TYPED (code);
|
||
break;
|
||
|
||
case TS_IDENTIFIER:
|
||
case TS_DECL_MINIMAL:
|
||
case TS_TYPE_COMMON:
|
||
case TS_LIST:
|
||
case TS_VEC:
|
||
case TS_BINFO:
|
||
case TS_OMP_CLAUSE:
|
||
MARK_TS_COMMON (code);
|
||
break;
|
||
|
||
case TS_TYPE_WITH_LANG_SPECIFIC:
|
||
MARK_TS_TYPE_COMMON (code);
|
||
break;
|
||
|
||
case TS_TYPE_NON_COMMON:
|
||
MARK_TS_TYPE_WITH_LANG_SPECIFIC (code);
|
||
break;
|
||
|
||
case TS_DECL_COMMON:
|
||
MARK_TS_DECL_MINIMAL (code);
|
||
break;
|
||
|
||
case TS_DECL_WRTL:
|
||
case TS_CONST_DECL:
|
||
MARK_TS_DECL_COMMON (code);
|
||
break;
|
||
|
||
case TS_DECL_NON_COMMON:
|
||
MARK_TS_DECL_WITH_VIS (code);
|
||
break;
|
||
|
||
case TS_DECL_WITH_VIS:
|
||
case TS_PARM_DECL:
|
||
case TS_LABEL_DECL:
|
||
case TS_RESULT_DECL:
|
||
MARK_TS_DECL_WRTL (code);
|
||
break;
|
||
|
||
case TS_FIELD_DECL:
|
||
MARK_TS_DECL_COMMON (code);
|
||
break;
|
||
|
||
case TS_VAR_DECL:
|
||
MARK_TS_DECL_WITH_VIS (code);
|
||
break;
|
||
|
||
case TS_TYPE_DECL:
|
||
case TS_FUNCTION_DECL:
|
||
MARK_TS_DECL_NON_COMMON (code);
|
||
break;
|
||
|
||
case TS_TRANSLATION_UNIT_DECL:
|
||
MARK_TS_DECL_COMMON (code);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Basic consistency checks for attributes used in fold. */
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
|
||
gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
|
||
gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
|
||
gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
|
||
gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
|
||
gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
|
||
gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
|
||
gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
|
||
gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
|
||
gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
|
||
gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
|
||
gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
|
||
gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_MINIMAL]);
|
||
gcc_assert (tree_contains_struct[NAMELIST_DECL][TS_DECL_COMMON]);
|
||
}
|
||
|
||
|
||
/* Init tree.c. */
|
||
|
||
void
|
||
init_ttree (void)
|
||
{
|
||
/* Initialize the hash table of types. */
|
||
type_hash_table
|
||
= hash_table<type_cache_hasher>::create_ggc (TYPE_HASH_INITIAL_SIZE);
|
||
|
||
debug_expr_for_decl
|
||
= hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
|
||
|
||
value_expr_for_decl
|
||
= hash_table<tree_decl_map_cache_hasher>::create_ggc (512);
|
||
|
||
int_cst_hash_table = hash_table<int_cst_hasher>::create_ggc (1024);
|
||
|
||
poly_int_cst_hash_table = hash_table<poly_int_cst_hasher>::create_ggc (64);
|
||
|
||
int_cst_node = make_int_cst (1, 1);
|
||
|
||
cl_option_hash_table = hash_table<cl_option_hasher>::create_ggc (64);
|
||
|
||
cl_optimization_node = make_node (OPTIMIZATION_NODE);
|
||
cl_target_option_node = make_node (TARGET_OPTION_NODE);
|
||
|
||
/* Initialize the tree_contains_struct array. */
|
||
initialize_tree_contains_struct ();
|
||
lang_hooks.init_ts ();
|
||
}
|
||
|
||
|
||
/* The name of the object as the assembler will see it (but before any
|
||
translations made by ASM_OUTPUT_LABELREF). Often this is the same
|
||
as DECL_NAME. It is an IDENTIFIER_NODE. */
|
||
tree
|
||
decl_assembler_name (tree decl)
|
||
{
|
||
if (!DECL_ASSEMBLER_NAME_SET_P (decl))
|
||
lang_hooks.set_decl_assembler_name (decl);
|
||
return DECL_ASSEMBLER_NAME_RAW (decl);
|
||
}
|
||
|
||
/* The DECL_ASSEMBLER_NAME_RAW of DECL is being explicitly set to NAME
|
||
(either of which may be NULL). Inform the FE, if this changes the
|
||
name. */
|
||
|
||
void
|
||
overwrite_decl_assembler_name (tree decl, tree name)
|
||
{
|
||
if (DECL_ASSEMBLER_NAME_RAW (decl) != name)
|
||
lang_hooks.overwrite_decl_assembler_name (decl, name);
|
||
}
|
||
|
||
/* When the target supports COMDAT groups, this indicates which group the
|
||
DECL is associated with. This can be either an IDENTIFIER_NODE or a
|
||
decl, in which case its DECL_ASSEMBLER_NAME identifies the group. */
|
||
tree
|
||
decl_comdat_group (const_tree node)
|
||
{
|
||
struct symtab_node *snode = symtab_node::get (node);
|
||
if (!snode)
|
||
return NULL;
|
||
return snode->get_comdat_group ();
|
||
}
|
||
|
||
/* Likewise, but make sure it's been reduced to an IDENTIFIER_NODE. */
|
||
tree
|
||
decl_comdat_group_id (const_tree node)
|
||
{
|
||
struct symtab_node *snode = symtab_node::get (node);
|
||
if (!snode)
|
||
return NULL;
|
||
return snode->get_comdat_group_id ();
|
||
}
|
||
|
||
/* When the target supports named section, return its name as IDENTIFIER_NODE
|
||
or NULL if it is in no section. */
|
||
const char *
|
||
decl_section_name (const_tree node)
|
||
{
|
||
struct symtab_node *snode = symtab_node::get (node);
|
||
if (!snode)
|
||
return NULL;
|
||
return snode->get_section ();
|
||
}
|
||
|
||
/* Set section name of NODE to VALUE (that is expected to be
|
||
identifier node) */
|
||
void
|
||
set_decl_section_name (tree node, const char *value)
|
||
{
|
||
struct symtab_node *snode;
|
||
|
||
if (value == NULL)
|
||
{
|
||
snode = symtab_node::get (node);
|
||
if (!snode)
|
||
return;
|
||
}
|
||
else if (VAR_P (node))
|
||
snode = varpool_node::get_create (node);
|
||
else
|
||
snode = cgraph_node::get_create (node);
|
||
snode->set_section (value);
|
||
}
|
||
|
||
/* Return TLS model of a variable NODE. */
|
||
enum tls_model
|
||
decl_tls_model (const_tree node)
|
||
{
|
||
struct varpool_node *snode = varpool_node::get (node);
|
||
if (!snode)
|
||
return TLS_MODEL_NONE;
|
||
return snode->tls_model;
|
||
}
|
||
|
||
/* Set TLS model of variable NODE to MODEL. */
|
||
void
|
||
set_decl_tls_model (tree node, enum tls_model model)
|
||
{
|
||
struct varpool_node *vnode;
|
||
|
||
if (model == TLS_MODEL_NONE)
|
||
{
|
||
vnode = varpool_node::get (node);
|
||
if (!vnode)
|
||
return;
|
||
}
|
||
else
|
||
vnode = varpool_node::get_create (node);
|
||
vnode->tls_model = model;
|
||
}
|
||
|
||
/* Compute the number of bytes occupied by a tree with code CODE.
|
||
This function cannot be used for nodes that have variable sizes,
|
||
including TREE_VEC, INTEGER_CST, STRING_CST, and CALL_EXPR. */
|
||
size_t
|
||
tree_code_size (enum tree_code code)
|
||
{
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_declaration: /* A decl node */
|
||
switch (code)
|
||
{
|
||
case FIELD_DECL: return sizeof (tree_field_decl);
|
||
case PARM_DECL: return sizeof (tree_parm_decl);
|
||
case VAR_DECL: return sizeof (tree_var_decl);
|
||
case LABEL_DECL: return sizeof (tree_label_decl);
|
||
case RESULT_DECL: return sizeof (tree_result_decl);
|
||
case CONST_DECL: return sizeof (tree_const_decl);
|
||
case TYPE_DECL: return sizeof (tree_type_decl);
|
||
case FUNCTION_DECL: return sizeof (tree_function_decl);
|
||
case DEBUG_EXPR_DECL: return sizeof (tree_decl_with_rtl);
|
||
case TRANSLATION_UNIT_DECL: return sizeof (tree_translation_unit_decl);
|
||
case NAMESPACE_DECL:
|
||
case IMPORTED_DECL:
|
||
case NAMELIST_DECL: return sizeof (tree_decl_non_common);
|
||
default:
|
||
gcc_checking_assert (code >= NUM_TREE_CODES);
|
||
return lang_hooks.tree_size (code);
|
||
}
|
||
|
||
case tcc_type: /* a type node */
|
||
switch (code)
|
||
{
|
||
case OFFSET_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case NULLPTR_TYPE:
|
||
case FIXED_POINT_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case VECTOR_TYPE:
|
||
case ARRAY_TYPE:
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
case VOID_TYPE:
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
case LANG_TYPE: return sizeof (tree_type_non_common);
|
||
default:
|
||
gcc_checking_assert (code >= NUM_TREE_CODES);
|
||
return lang_hooks.tree_size (code);
|
||
}
|
||
|
||
case tcc_reference: /* a reference */
|
||
case tcc_expression: /* an expression */
|
||
case tcc_statement: /* an expression with side effects */
|
||
case tcc_comparison: /* a comparison expression */
|
||
case tcc_unary: /* a unary arithmetic expression */
|
||
case tcc_binary: /* a binary arithmetic expression */
|
||
return (sizeof (struct tree_exp)
|
||
+ (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
|
||
|
||
case tcc_constant: /* a constant */
|
||
switch (code)
|
||
{
|
||
case VOID_CST: return sizeof (tree_typed);
|
||
case INTEGER_CST: gcc_unreachable ();
|
||
case POLY_INT_CST: return sizeof (tree_poly_int_cst);
|
||
case REAL_CST: return sizeof (tree_real_cst);
|
||
case FIXED_CST: return sizeof (tree_fixed_cst);
|
||
case COMPLEX_CST: return sizeof (tree_complex);
|
||
case VECTOR_CST: gcc_unreachable ();
|
||
case STRING_CST: gcc_unreachable ();
|
||
default:
|
||
gcc_checking_assert (code >= NUM_TREE_CODES);
|
||
return lang_hooks.tree_size (code);
|
||
}
|
||
|
||
case tcc_exceptional: /* something random, like an identifier. */
|
||
switch (code)
|
||
{
|
||
case IDENTIFIER_NODE: return lang_hooks.identifier_size;
|
||
case TREE_LIST: return sizeof (tree_list);
|
||
|
||
case ERROR_MARK:
|
||
case PLACEHOLDER_EXPR: return sizeof (tree_common);
|
||
|
||
case TREE_VEC: gcc_unreachable ();
|
||
case OMP_CLAUSE: gcc_unreachable ();
|
||
|
||
case SSA_NAME: return sizeof (tree_ssa_name);
|
||
|
||
case STATEMENT_LIST: return sizeof (tree_statement_list);
|
||
case BLOCK: return sizeof (struct tree_block);
|
||
case CONSTRUCTOR: return sizeof (tree_constructor);
|
||
case OPTIMIZATION_NODE: return sizeof (tree_optimization_option);
|
||
case TARGET_OPTION_NODE: return sizeof (tree_target_option);
|
||
|
||
default:
|
||
gcc_checking_assert (code >= NUM_TREE_CODES);
|
||
return lang_hooks.tree_size (code);
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Compute the number of bytes occupied by NODE. This routine only
|
||
looks at TREE_CODE, except for those nodes that have variable sizes. */
|
||
size_t
|
||
tree_size (const_tree node)
|
||
{
|
||
const enum tree_code code = TREE_CODE (node);
|
||
switch (code)
|
||
{
|
||
case INTEGER_CST:
|
||
return (sizeof (struct tree_int_cst)
|
||
+ (TREE_INT_CST_EXT_NUNITS (node) - 1) * sizeof (HOST_WIDE_INT));
|
||
|
||
case TREE_BINFO:
|
||
return (offsetof (struct tree_binfo, base_binfos)
|
||
+ vec<tree, va_gc>
|
||
::embedded_size (BINFO_N_BASE_BINFOS (node)));
|
||
|
||
case TREE_VEC:
|
||
return (sizeof (struct tree_vec)
|
||
+ (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
|
||
|
||
case VECTOR_CST:
|
||
return (sizeof (struct tree_vector)
|
||
+ (vector_cst_encoded_nelts (node) - 1) * sizeof (tree));
|
||
|
||
case STRING_CST:
|
||
return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
|
||
|
||
case OMP_CLAUSE:
|
||
return (sizeof (struct tree_omp_clause)
|
||
+ (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
|
||
* sizeof (tree));
|
||
|
||
default:
|
||
if (TREE_CODE_CLASS (code) == tcc_vl_exp)
|
||
return (sizeof (struct tree_exp)
|
||
+ (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
|
||
else
|
||
return tree_code_size (code);
|
||
}
|
||
}
|
||
|
||
/* Return tree node kind based on tree CODE. */
|
||
|
||
static tree_node_kind
|
||
get_stats_node_kind (enum tree_code code)
|
||
{
|
||
enum tree_code_class type = TREE_CODE_CLASS (code);
|
||
|
||
switch (type)
|
||
{
|
||
case tcc_declaration: /* A decl node */
|
||
return d_kind;
|
||
case tcc_type: /* a type node */
|
||
return t_kind;
|
||
case tcc_statement: /* an expression with side effects */
|
||
return s_kind;
|
||
case tcc_reference: /* a reference */
|
||
return r_kind;
|
||
case tcc_expression: /* an expression */
|
||
case tcc_comparison: /* a comparison expression */
|
||
case tcc_unary: /* a unary arithmetic expression */
|
||
case tcc_binary: /* a binary arithmetic expression */
|
||
return e_kind;
|
||
case tcc_constant: /* a constant */
|
||
return c_kind;
|
||
case tcc_exceptional: /* something random, like an identifier. */
|
||
switch (code)
|
||
{
|
||
case IDENTIFIER_NODE:
|
||
return id_kind;
|
||
case TREE_VEC:
|
||
return vec_kind;
|
||
case TREE_BINFO:
|
||
return binfo_kind;
|
||
case SSA_NAME:
|
||
return ssa_name_kind;
|
||
case BLOCK:
|
||
return b_kind;
|
||
case CONSTRUCTOR:
|
||
return constr_kind;
|
||
case OMP_CLAUSE:
|
||
return omp_clause_kind;
|
||
default:
|
||
return x_kind;
|
||
}
|
||
break;
|
||
case tcc_vl_exp:
|
||
return e_kind;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Record interesting allocation statistics for a tree node with CODE
|
||
and LENGTH. */
|
||
|
||
static void
|
||
record_node_allocation_statistics (enum tree_code code, size_t length)
|
||
{
|
||
if (!GATHER_STATISTICS)
|
||
return;
|
||
|
||
tree_node_kind kind = get_stats_node_kind (code);
|
||
|
||
tree_code_counts[(int) code]++;
|
||
tree_node_counts[(int) kind]++;
|
||
tree_node_sizes[(int) kind] += length;
|
||
}
|
||
|
||
/* Allocate and return a new UID from the DECL_UID namespace. */
|
||
|
||
int
|
||
allocate_decl_uid (void)
|
||
{
|
||
return next_decl_uid++;
|
||
}
|
||
|
||
/* Return a newly allocated node of code CODE. For decl and type
|
||
nodes, some other fields are initialized. The rest of the node is
|
||
initialized to zero. This function cannot be used for TREE_VEC,
|
||
INTEGER_CST or OMP_CLAUSE nodes, which is enforced by asserts in
|
||
tree_code_size.
|
||
|
||
Achoo! I got a code in the node. */
|
||
|
||
tree
|
||
make_node (enum tree_code code MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
enum tree_code_class type = TREE_CODE_CLASS (code);
|
||
size_t length = tree_code_size (code);
|
||
|
||
record_node_allocation_statistics (code, length);
|
||
|
||
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
|
||
TREE_SET_CODE (t, code);
|
||
|
||
switch (type)
|
||
{
|
||
case tcc_statement:
|
||
if (code != DEBUG_BEGIN_STMT)
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
break;
|
||
|
||
case tcc_declaration:
|
||
if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
|
||
{
|
||
if (code == FUNCTION_DECL)
|
||
{
|
||
SET_DECL_ALIGN (t, FUNCTION_ALIGNMENT (FUNCTION_BOUNDARY));
|
||
SET_DECL_MODE (t, FUNCTION_MODE);
|
||
}
|
||
else
|
||
SET_DECL_ALIGN (t, 1);
|
||
}
|
||
DECL_SOURCE_LOCATION (t) = input_location;
|
||
if (TREE_CODE (t) == DEBUG_EXPR_DECL)
|
||
DECL_UID (t) = --next_debug_decl_uid;
|
||
else
|
||
{
|
||
DECL_UID (t) = allocate_decl_uid ();
|
||
SET_DECL_PT_UID (t, -1);
|
||
}
|
||
if (TREE_CODE (t) == LABEL_DECL)
|
||
LABEL_DECL_UID (t) = -1;
|
||
|
||
break;
|
||
|
||
case tcc_type:
|
||
TYPE_UID (t) = next_type_uid++;
|
||
SET_TYPE_ALIGN (t, BITS_PER_UNIT);
|
||
TYPE_USER_ALIGN (t) = 0;
|
||
TYPE_MAIN_VARIANT (t) = t;
|
||
TYPE_CANONICAL (t) = t;
|
||
|
||
/* Default to no attributes for type, but let target change that. */
|
||
TYPE_ATTRIBUTES (t) = NULL_TREE;
|
||
targetm.set_default_type_attributes (t);
|
||
|
||
/* We have not yet computed the alias set for this type. */
|
||
TYPE_ALIAS_SET (t) = -1;
|
||
break;
|
||
|
||
case tcc_constant:
|
||
TREE_CONSTANT (t) = 1;
|
||
break;
|
||
|
||
case tcc_expression:
|
||
switch (code)
|
||
{
|
||
case INIT_EXPR:
|
||
case MODIFY_EXPR:
|
||
case VA_ARG_EXPR:
|
||
case PREDECREMENT_EXPR:
|
||
case PREINCREMENT_EXPR:
|
||
case POSTDECREMENT_EXPR:
|
||
case POSTINCREMENT_EXPR:
|
||
/* All of these have side-effects, no matter what their
|
||
operands are. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
case tcc_exceptional:
|
||
switch (code)
|
||
{
|
||
case TARGET_OPTION_NODE:
|
||
TREE_TARGET_OPTION(t)
|
||
= ggc_cleared_alloc<struct cl_target_option> ();
|
||
break;
|
||
|
||
case OPTIMIZATION_NODE:
|
||
TREE_OPTIMIZATION (t)
|
||
= ggc_cleared_alloc<struct cl_optimization> ();
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Other classes need no special treatment. */
|
||
break;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Free tree node. */
|
||
|
||
void
|
||
free_node (tree node)
|
||
{
|
||
enum tree_code code = TREE_CODE (node);
|
||
if (GATHER_STATISTICS)
|
||
{
|
||
enum tree_node_kind kind = get_stats_node_kind (code);
|
||
|
||
gcc_checking_assert (tree_code_counts[(int) TREE_CODE (node)] != 0);
|
||
gcc_checking_assert (tree_node_counts[(int) kind] != 0);
|
||
gcc_checking_assert (tree_node_sizes[(int) kind] >= tree_size (node));
|
||
|
||
tree_code_counts[(int) TREE_CODE (node)]--;
|
||
tree_node_counts[(int) kind]--;
|
||
tree_node_sizes[(int) kind] -= tree_size (node);
|
||
}
|
||
if (CODE_CONTAINS_STRUCT (code, TS_CONSTRUCTOR))
|
||
vec_free (CONSTRUCTOR_ELTS (node));
|
||
else if (code == BLOCK)
|
||
vec_free (BLOCK_NONLOCALIZED_VARS (node));
|
||
else if (code == TREE_BINFO)
|
||
vec_free (BINFO_BASE_ACCESSES (node));
|
||
ggc_free (node);
|
||
}
|
||
|
||
/* Return a new node with the same contents as NODE except that its
|
||
TREE_CHAIN, if it has one, is zero and it has a fresh uid. */
|
||
|
||
tree
|
||
copy_node (tree node MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
enum tree_code code = TREE_CODE (node);
|
||
size_t length;
|
||
|
||
gcc_assert (code != STATEMENT_LIST);
|
||
|
||
length = tree_size (node);
|
||
record_node_allocation_statistics (code, length);
|
||
t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
|
||
memcpy (t, node, length);
|
||
|
||
if (CODE_CONTAINS_STRUCT (code, TS_COMMON))
|
||
TREE_CHAIN (t) = 0;
|
||
TREE_ASM_WRITTEN (t) = 0;
|
||
TREE_VISITED (t) = 0;
|
||
|
||
if (TREE_CODE_CLASS (code) == tcc_declaration)
|
||
{
|
||
if (code == DEBUG_EXPR_DECL)
|
||
DECL_UID (t) = --next_debug_decl_uid;
|
||
else
|
||
{
|
||
DECL_UID (t) = allocate_decl_uid ();
|
||
if (DECL_PT_UID_SET_P (node))
|
||
SET_DECL_PT_UID (t, DECL_PT_UID (node));
|
||
}
|
||
if ((TREE_CODE (node) == PARM_DECL || VAR_P (node))
|
||
&& DECL_HAS_VALUE_EXPR_P (node))
|
||
{
|
||
SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
|
||
DECL_HAS_VALUE_EXPR_P (t) = 1;
|
||
}
|
||
/* DECL_DEBUG_EXPR is copied explicitely by callers. */
|
||
if (VAR_P (node))
|
||
{
|
||
DECL_HAS_DEBUG_EXPR_P (t) = 0;
|
||
t->decl_with_vis.symtab_node = NULL;
|
||
}
|
||
if (VAR_P (node) && DECL_HAS_INIT_PRIORITY_P (node))
|
||
{
|
||
SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
|
||
DECL_HAS_INIT_PRIORITY_P (t) = 1;
|
||
}
|
||
if (TREE_CODE (node) == FUNCTION_DECL)
|
||
{
|
||
DECL_STRUCT_FUNCTION (t) = NULL;
|
||
t->decl_with_vis.symtab_node = NULL;
|
||
}
|
||
}
|
||
else if (TREE_CODE_CLASS (code) == tcc_type)
|
||
{
|
||
TYPE_UID (t) = next_type_uid++;
|
||
/* The following is so that the debug code for
|
||
the copy is different from the original type.
|
||
The two statements usually duplicate each other
|
||
(because they clear fields of the same union),
|
||
but the optimizer should catch that. */
|
||
TYPE_SYMTAB_ADDRESS (t) = 0;
|
||
TYPE_SYMTAB_DIE (t) = 0;
|
||
|
||
/* Do not copy the values cache. */
|
||
if (TYPE_CACHED_VALUES_P (t))
|
||
{
|
||
TYPE_CACHED_VALUES_P (t) = 0;
|
||
TYPE_CACHED_VALUES (t) = NULL_TREE;
|
||
}
|
||
}
|
||
else if (code == TARGET_OPTION_NODE)
|
||
{
|
||
TREE_TARGET_OPTION (t) = ggc_alloc<struct cl_target_option>();
|
||
memcpy (TREE_TARGET_OPTION (t), TREE_TARGET_OPTION (node),
|
||
sizeof (struct cl_target_option));
|
||
}
|
||
else if (code == OPTIMIZATION_NODE)
|
||
{
|
||
TREE_OPTIMIZATION (t) = ggc_alloc<struct cl_optimization>();
|
||
memcpy (TREE_OPTIMIZATION (t), TREE_OPTIMIZATION (node),
|
||
sizeof (struct cl_optimization));
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
|
||
For example, this can copy a list made of TREE_LIST nodes. */
|
||
|
||
tree
|
||
copy_list (tree list)
|
||
{
|
||
tree head;
|
||
tree prev, next;
|
||
|
||
if (list == 0)
|
||
return 0;
|
||
|
||
head = prev = copy_node (list);
|
||
next = TREE_CHAIN (list);
|
||
while (next)
|
||
{
|
||
TREE_CHAIN (prev) = copy_node (next);
|
||
prev = TREE_CHAIN (prev);
|
||
next = TREE_CHAIN (next);
|
||
}
|
||
return head;
|
||
}
|
||
|
||
|
||
/* Return the value that TREE_INT_CST_EXT_NUNITS should have for an
|
||
INTEGER_CST with value CST and type TYPE. */
|
||
|
||
static unsigned int
|
||
get_int_cst_ext_nunits (tree type, const wide_int &cst)
|
||
{
|
||
gcc_checking_assert (cst.get_precision () == TYPE_PRECISION (type));
|
||
/* We need extra HWIs if CST is an unsigned integer with its
|
||
upper bit set. */
|
||
if (TYPE_UNSIGNED (type) && wi::neg_p (cst))
|
||
return cst.get_precision () / HOST_BITS_PER_WIDE_INT + 1;
|
||
return cst.get_len ();
|
||
}
|
||
|
||
/* Return a new INTEGER_CST with value CST and type TYPE. */
|
||
|
||
static tree
|
||
build_new_int_cst (tree type, const wide_int &cst)
|
||
{
|
||
unsigned int len = cst.get_len ();
|
||
unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
|
||
tree nt = make_int_cst (len, ext_len);
|
||
|
||
if (len < ext_len)
|
||
{
|
||
--ext_len;
|
||
TREE_INT_CST_ELT (nt, ext_len)
|
||
= zext_hwi (-1, cst.get_precision () % HOST_BITS_PER_WIDE_INT);
|
||
for (unsigned int i = len; i < ext_len; ++i)
|
||
TREE_INT_CST_ELT (nt, i) = -1;
|
||
}
|
||
else if (TYPE_UNSIGNED (type)
|
||
&& cst.get_precision () < len * HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
len--;
|
||
TREE_INT_CST_ELT (nt, len)
|
||
= zext_hwi (cst.elt (len),
|
||
cst.get_precision () % HOST_BITS_PER_WIDE_INT);
|
||
}
|
||
|
||
for (unsigned int i = 0; i < len; i++)
|
||
TREE_INT_CST_ELT (nt, i) = cst.elt (i);
|
||
TREE_TYPE (nt) = type;
|
||
return nt;
|
||
}
|
||
|
||
/* Return a new POLY_INT_CST with coefficients COEFFS and type TYPE. */
|
||
|
||
static tree
|
||
build_new_poly_int_cst (tree type, tree (&coeffs)[NUM_POLY_INT_COEFFS]
|
||
CXX_MEM_STAT_INFO)
|
||
{
|
||
size_t length = sizeof (struct tree_poly_int_cst);
|
||
record_node_allocation_statistics (POLY_INT_CST, length);
|
||
|
||
tree t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
|
||
|
||
TREE_SET_CODE (t, POLY_INT_CST);
|
||
TREE_CONSTANT (t) = 1;
|
||
TREE_TYPE (t) = type;
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
POLY_INT_CST_COEFF (t, i) = coeffs[i];
|
||
return t;
|
||
}
|
||
|
||
/* Create a constant tree that contains CST sign-extended to TYPE. */
|
||
|
||
tree
|
||
build_int_cst (tree type, poly_int64 cst)
|
||
{
|
||
/* Support legacy code. */
|
||
if (!type)
|
||
type = integer_type_node;
|
||
|
||
return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
|
||
}
|
||
|
||
/* Create a constant tree that contains CST zero-extended to TYPE. */
|
||
|
||
tree
|
||
build_int_cstu (tree type, poly_uint64 cst)
|
||
{
|
||
return wide_int_to_tree (type, wi::uhwi (cst, TYPE_PRECISION (type)));
|
||
}
|
||
|
||
/* Create a constant tree that contains CST sign-extended to TYPE. */
|
||
|
||
tree
|
||
build_int_cst_type (tree type, poly_int64 cst)
|
||
{
|
||
gcc_assert (type);
|
||
return wide_int_to_tree (type, wi::shwi (cst, TYPE_PRECISION (type)));
|
||
}
|
||
|
||
/* Constructs tree in type TYPE from with value given by CST. Signedness
|
||
of CST is assumed to be the same as the signedness of TYPE. */
|
||
|
||
tree
|
||
double_int_to_tree (tree type, double_int cst)
|
||
{
|
||
return wide_int_to_tree (type, widest_int::from (cst, TYPE_SIGN (type)));
|
||
}
|
||
|
||
/* We force the wide_int CST to the range of the type TYPE by sign or
|
||
zero extending it. OVERFLOWABLE indicates if we are interested in
|
||
overflow of the value, when >0 we are only interested in signed
|
||
overflow, for <0 we are interested in any overflow. OVERFLOWED
|
||
indicates whether overflow has already occurred. CONST_OVERFLOWED
|
||
indicates whether constant overflow has already occurred. We force
|
||
T's value to be within range of T's type (by setting to 0 or 1 all
|
||
the bits outside the type's range). We set TREE_OVERFLOWED if,
|
||
OVERFLOWED is nonzero,
|
||
or OVERFLOWABLE is >0 and signed overflow occurs
|
||
or OVERFLOWABLE is <0 and any overflow occurs
|
||
We return a new tree node for the extended wide_int. The node
|
||
is shared if no overflow flags are set. */
|
||
|
||
|
||
tree
|
||
force_fit_type (tree type, const poly_wide_int_ref &cst,
|
||
int overflowable, bool overflowed)
|
||
{
|
||
signop sign = TYPE_SIGN (type);
|
||
|
||
/* If we need to set overflow flags, return a new unshared node. */
|
||
if (overflowed || !wi::fits_to_tree_p (cst, type))
|
||
{
|
||
if (overflowed
|
||
|| overflowable < 0
|
||
|| (overflowable > 0 && sign == SIGNED))
|
||
{
|
||
poly_wide_int tmp = poly_wide_int::from (cst, TYPE_PRECISION (type),
|
||
sign);
|
||
tree t;
|
||
if (tmp.is_constant ())
|
||
t = build_new_int_cst (type, tmp.coeffs[0]);
|
||
else
|
||
{
|
||
tree coeffs[NUM_POLY_INT_COEFFS];
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
{
|
||
coeffs[i] = build_new_int_cst (type, tmp.coeffs[i]);
|
||
TREE_OVERFLOW (coeffs[i]) = 1;
|
||
}
|
||
t = build_new_poly_int_cst (type, coeffs);
|
||
}
|
||
TREE_OVERFLOW (t) = 1;
|
||
return t;
|
||
}
|
||
}
|
||
|
||
/* Else build a shared node. */
|
||
return wide_int_to_tree (type, cst);
|
||
}
|
||
|
||
/* These are the hash table functions for the hash table of INTEGER_CST
|
||
nodes of a sizetype. */
|
||
|
||
/* Return the hash code X, an INTEGER_CST. */
|
||
|
||
hashval_t
|
||
int_cst_hasher::hash (tree x)
|
||
{
|
||
const_tree const t = x;
|
||
hashval_t code = TYPE_UID (TREE_TYPE (t));
|
||
int i;
|
||
|
||
for (i = 0; i < TREE_INT_CST_NUNITS (t); i++)
|
||
code = iterative_hash_host_wide_int (TREE_INT_CST_ELT(t, i), code);
|
||
|
||
return code;
|
||
}
|
||
|
||
/* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
|
||
is the same as that given by *Y, which is the same. */
|
||
|
||
bool
|
||
int_cst_hasher::equal (tree x, tree y)
|
||
{
|
||
const_tree const xt = x;
|
||
const_tree const yt = y;
|
||
|
||
if (TREE_TYPE (xt) != TREE_TYPE (yt)
|
||
|| TREE_INT_CST_NUNITS (xt) != TREE_INT_CST_NUNITS (yt)
|
||
|| TREE_INT_CST_EXT_NUNITS (xt) != TREE_INT_CST_EXT_NUNITS (yt))
|
||
return false;
|
||
|
||
for (int i = 0; i < TREE_INT_CST_NUNITS (xt); i++)
|
||
if (TREE_INT_CST_ELT (xt, i) != TREE_INT_CST_ELT (yt, i))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Create an INT_CST node of TYPE and value CST.
|
||
The returned node is always shared. For small integers we use a
|
||
per-type vector cache, for larger ones we use a single hash table.
|
||
The value is extended from its precision according to the sign of
|
||
the type to be a multiple of HOST_BITS_PER_WIDE_INT. This defines
|
||
the upper bits and ensures that hashing and value equality based
|
||
upon the underlying HOST_WIDE_INTs works without masking. */
|
||
|
||
static tree
|
||
wide_int_to_tree_1 (tree type, const wide_int_ref &pcst)
|
||
{
|
||
tree t;
|
||
int ix = -1;
|
||
int limit = 0;
|
||
|
||
gcc_assert (type);
|
||
unsigned int prec = TYPE_PRECISION (type);
|
||
signop sgn = TYPE_SIGN (type);
|
||
|
||
/* Verify that everything is canonical. */
|
||
int l = pcst.get_len ();
|
||
if (l > 1)
|
||
{
|
||
if (pcst.elt (l - 1) == 0)
|
||
gcc_checking_assert (pcst.elt (l - 2) < 0);
|
||
if (pcst.elt (l - 1) == HOST_WIDE_INT_M1)
|
||
gcc_checking_assert (pcst.elt (l - 2) >= 0);
|
||
}
|
||
|
||
wide_int cst = wide_int::from (pcst, prec, sgn);
|
||
unsigned int ext_len = get_int_cst_ext_nunits (type, cst);
|
||
|
||
if (ext_len == 1)
|
||
{
|
||
/* We just need to store a single HOST_WIDE_INT. */
|
||
HOST_WIDE_INT hwi;
|
||
if (TYPE_UNSIGNED (type))
|
||
hwi = cst.to_uhwi ();
|
||
else
|
||
hwi = cst.to_shwi ();
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case NULLPTR_TYPE:
|
||
gcc_assert (hwi == 0);
|
||
/* Fallthru. */
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
/* Cache NULL pointer and zero bounds. */
|
||
if (hwi == 0)
|
||
{
|
||
limit = 1;
|
||
ix = 0;
|
||
}
|
||
break;
|
||
|
||
case BOOLEAN_TYPE:
|
||
/* Cache false or true. */
|
||
limit = 2;
|
||
if (IN_RANGE (hwi, 0, 1))
|
||
ix = hwi;
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
case OFFSET_TYPE:
|
||
if (TYPE_SIGN (type) == UNSIGNED)
|
||
{
|
||
/* Cache [0, N). */
|
||
limit = INTEGER_SHARE_LIMIT;
|
||
if (IN_RANGE (hwi, 0, INTEGER_SHARE_LIMIT - 1))
|
||
ix = hwi;
|
||
}
|
||
else
|
||
{
|
||
/* Cache [-1, N). */
|
||
limit = INTEGER_SHARE_LIMIT + 1;
|
||
if (IN_RANGE (hwi, -1, INTEGER_SHARE_LIMIT - 1))
|
||
ix = hwi + 1;
|
||
}
|
||
break;
|
||
|
||
case ENUMERAL_TYPE:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (ix >= 0)
|
||
{
|
||
/* Look for it in the type's vector of small shared ints. */
|
||
if (!TYPE_CACHED_VALUES_P (type))
|
||
{
|
||
TYPE_CACHED_VALUES_P (type) = 1;
|
||
TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
|
||
}
|
||
|
||
t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
|
||
if (t)
|
||
/* Make sure no one is clobbering the shared constant. */
|
||
gcc_checking_assert (TREE_TYPE (t) == type
|
||
&& TREE_INT_CST_NUNITS (t) == 1
|
||
&& TREE_INT_CST_OFFSET_NUNITS (t) == 1
|
||
&& TREE_INT_CST_EXT_NUNITS (t) == 1
|
||
&& TREE_INT_CST_ELT (t, 0) == hwi);
|
||
else
|
||
{
|
||
/* Create a new shared int. */
|
||
t = build_new_int_cst (type, cst);
|
||
TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Use the cache of larger shared ints, using int_cst_node as
|
||
a temporary. */
|
||
|
||
TREE_INT_CST_ELT (int_cst_node, 0) = hwi;
|
||
TREE_TYPE (int_cst_node) = type;
|
||
|
||
tree *slot = int_cst_hash_table->find_slot (int_cst_node, INSERT);
|
||
t = *slot;
|
||
if (!t)
|
||
{
|
||
/* Insert this one into the hash table. */
|
||
t = int_cst_node;
|
||
*slot = t;
|
||
/* Make a new node for next time round. */
|
||
int_cst_node = make_int_cst (1, 1);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* The value either hashes properly or we drop it on the floor
|
||
for the gc to take care of. There will not be enough of them
|
||
to worry about. */
|
||
|
||
tree nt = build_new_int_cst (type, cst);
|
||
tree *slot = int_cst_hash_table->find_slot (nt, INSERT);
|
||
t = *slot;
|
||
if (!t)
|
||
{
|
||
/* Insert this one into the hash table. */
|
||
t = nt;
|
||
*slot = t;
|
||
}
|
||
else
|
||
ggc_free (nt);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
hashval_t
|
||
poly_int_cst_hasher::hash (tree t)
|
||
{
|
||
inchash::hash hstate;
|
||
|
||
hstate.add_int (TYPE_UID (TREE_TYPE (t)));
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
|
||
|
||
return hstate.end ();
|
||
}
|
||
|
||
bool
|
||
poly_int_cst_hasher::equal (tree x, const compare_type &y)
|
||
{
|
||
if (TREE_TYPE (x) != y.first)
|
||
return false;
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
if (wi::to_wide (POLY_INT_CST_COEFF (x, i)) != y.second->coeffs[i])
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Build a POLY_INT_CST node with type TYPE and with the elements in VALUES.
|
||
The elements must also have type TYPE. */
|
||
|
||
tree
|
||
build_poly_int_cst (tree type, const poly_wide_int_ref &values)
|
||
{
|
||
unsigned int prec = TYPE_PRECISION (type);
|
||
gcc_assert (prec <= values.coeffs[0].get_precision ());
|
||
poly_wide_int c = poly_wide_int::from (values, prec, SIGNED);
|
||
|
||
inchash::hash h;
|
||
h.add_int (TYPE_UID (type));
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
h.add_wide_int (c.coeffs[i]);
|
||
poly_int_cst_hasher::compare_type comp (type, &c);
|
||
tree *slot = poly_int_cst_hash_table->find_slot_with_hash (comp, h.end (),
|
||
INSERT);
|
||
if (*slot == NULL_TREE)
|
||
{
|
||
tree coeffs[NUM_POLY_INT_COEFFS];
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
coeffs[i] = wide_int_to_tree_1 (type, c.coeffs[i]);
|
||
*slot = build_new_poly_int_cst (type, coeffs);
|
||
}
|
||
return *slot;
|
||
}
|
||
|
||
/* Create a constant tree with value VALUE in type TYPE. */
|
||
|
||
tree
|
||
wide_int_to_tree (tree type, const poly_wide_int_ref &value)
|
||
{
|
||
if (value.is_constant ())
|
||
return wide_int_to_tree_1 (type, value.coeffs[0]);
|
||
return build_poly_int_cst (type, value);
|
||
}
|
||
|
||
void
|
||
cache_integer_cst (tree t)
|
||
{
|
||
tree type = TREE_TYPE (t);
|
||
int ix = -1;
|
||
int limit = 0;
|
||
int prec = TYPE_PRECISION (type);
|
||
|
||
gcc_assert (!TREE_OVERFLOW (t));
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case NULLPTR_TYPE:
|
||
gcc_assert (integer_zerop (t));
|
||
/* Fallthru. */
|
||
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
/* Cache NULL pointer. */
|
||
if (integer_zerop (t))
|
||
{
|
||
limit = 1;
|
||
ix = 0;
|
||
}
|
||
break;
|
||
|
||
case BOOLEAN_TYPE:
|
||
/* Cache false or true. */
|
||
limit = 2;
|
||
if (wi::ltu_p (wi::to_wide (t), 2))
|
||
ix = TREE_INT_CST_ELT (t, 0);
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
case OFFSET_TYPE:
|
||
if (TYPE_UNSIGNED (type))
|
||
{
|
||
/* Cache 0..N */
|
||
limit = INTEGER_SHARE_LIMIT;
|
||
|
||
/* This is a little hokie, but if the prec is smaller than
|
||
what is necessary to hold INTEGER_SHARE_LIMIT, then the
|
||
obvious test will not get the correct answer. */
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (tree_to_uhwi (t) < (unsigned HOST_WIDE_INT) INTEGER_SHARE_LIMIT)
|
||
ix = tree_to_uhwi (t);
|
||
}
|
||
else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
|
||
ix = tree_to_uhwi (t);
|
||
}
|
||
else
|
||
{
|
||
/* Cache -1..N */
|
||
limit = INTEGER_SHARE_LIMIT + 1;
|
||
|
||
if (integer_minus_onep (t))
|
||
ix = 0;
|
||
else if (!wi::neg_p (wi::to_wide (t)))
|
||
{
|
||
if (prec < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
if (tree_to_shwi (t) < INTEGER_SHARE_LIMIT)
|
||
ix = tree_to_shwi (t) + 1;
|
||
}
|
||
else if (wi::ltu_p (wi::to_wide (t), INTEGER_SHARE_LIMIT))
|
||
ix = tree_to_shwi (t) + 1;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ENUMERAL_TYPE:
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (ix >= 0)
|
||
{
|
||
/* Look for it in the type's vector of small shared ints. */
|
||
if (!TYPE_CACHED_VALUES_P (type))
|
||
{
|
||
TYPE_CACHED_VALUES_P (type) = 1;
|
||
TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
|
||
}
|
||
|
||
gcc_assert (TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) == NULL_TREE);
|
||
TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
|
||
}
|
||
else
|
||
{
|
||
/* Use the cache of larger shared ints. */
|
||
tree *slot = int_cst_hash_table->find_slot (t, INSERT);
|
||
/* If there is already an entry for the number verify it's the
|
||
same. */
|
||
if (*slot)
|
||
gcc_assert (wi::to_wide (tree (*slot)) == wi::to_wide (t));
|
||
else
|
||
/* Otherwise insert this one into the hash table. */
|
||
*slot = t;
|
||
}
|
||
}
|
||
|
||
|
||
/* Builds an integer constant in TYPE such that lowest BITS bits are ones
|
||
and the rest are zeros. */
|
||
|
||
tree
|
||
build_low_bits_mask (tree type, unsigned bits)
|
||
{
|
||
gcc_assert (bits <= TYPE_PRECISION (type));
|
||
|
||
return wide_int_to_tree (type, wi::mask (bits, false,
|
||
TYPE_PRECISION (type)));
|
||
}
|
||
|
||
/* Checks that X is integer constant that can be expressed in (unsigned)
|
||
HOST_WIDE_INT without loss of precision. */
|
||
|
||
bool
|
||
cst_and_fits_in_hwi (const_tree x)
|
||
{
|
||
return (TREE_CODE (x) == INTEGER_CST
|
||
&& (tree_fits_shwi_p (x) || tree_fits_uhwi_p (x)));
|
||
}
|
||
|
||
/* Build a newly constructed VECTOR_CST with the given values of
|
||
(VECTOR_CST_)LOG2_NPATTERNS and (VECTOR_CST_)NELTS_PER_PATTERN. */
|
||
|
||
tree
|
||
make_vector (unsigned log2_npatterns,
|
||
unsigned int nelts_per_pattern MEM_STAT_DECL)
|
||
{
|
||
gcc_assert (IN_RANGE (nelts_per_pattern, 1, 3));
|
||
tree t;
|
||
unsigned npatterns = 1 << log2_npatterns;
|
||
unsigned encoded_nelts = npatterns * nelts_per_pattern;
|
||
unsigned length = (sizeof (struct tree_vector)
|
||
+ (encoded_nelts - 1) * sizeof (tree));
|
||
|
||
record_node_allocation_statistics (VECTOR_CST, length);
|
||
|
||
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
|
||
|
||
TREE_SET_CODE (t, VECTOR_CST);
|
||
TREE_CONSTANT (t) = 1;
|
||
VECTOR_CST_LOG2_NPATTERNS (t) = log2_npatterns;
|
||
VECTOR_CST_NELTS_PER_PATTERN (t) = nelts_per_pattern;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a new VECTOR_CST node whose type is TYPE and whose values
|
||
are extracted from V, a vector of CONSTRUCTOR_ELT. */
|
||
|
||
tree
|
||
build_vector_from_ctor (tree type, vec<constructor_elt, va_gc> *v)
|
||
{
|
||
unsigned HOST_WIDE_INT idx, nelts;
|
||
tree value;
|
||
|
||
/* We can't construct a VECTOR_CST for a variable number of elements. */
|
||
nelts = TYPE_VECTOR_SUBPARTS (type).to_constant ();
|
||
tree_vector_builder vec (type, nelts, 1);
|
||
FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
|
||
{
|
||
if (TREE_CODE (value) == VECTOR_CST)
|
||
{
|
||
/* If NELTS is constant then this must be too. */
|
||
unsigned int sub_nelts = VECTOR_CST_NELTS (value).to_constant ();
|
||
for (unsigned i = 0; i < sub_nelts; ++i)
|
||
vec.quick_push (VECTOR_CST_ELT (value, i));
|
||
}
|
||
else
|
||
vec.quick_push (value);
|
||
}
|
||
while (vec.length () < nelts)
|
||
vec.quick_push (build_zero_cst (TREE_TYPE (type)));
|
||
|
||
return vec.build ();
|
||
}
|
||
|
||
/* Build a vector of type VECTYPE where all the elements are SCs. */
|
||
tree
|
||
build_vector_from_val (tree vectype, tree sc)
|
||
{
|
||
unsigned HOST_WIDE_INT i, nunits;
|
||
|
||
if (sc == error_mark_node)
|
||
return sc;
|
||
|
||
/* Verify that the vector type is suitable for SC. Note that there
|
||
is some inconsistency in the type-system with respect to restrict
|
||
qualifications of pointers. Vector types always have a main-variant
|
||
element type and the qualification is applied to the vector-type.
|
||
So TREE_TYPE (vector-type) does not return a properly qualified
|
||
vector element-type. */
|
||
gcc_checking_assert (types_compatible_p (TYPE_MAIN_VARIANT (TREE_TYPE (sc)),
|
||
TREE_TYPE (vectype)));
|
||
|
||
if (CONSTANT_CLASS_P (sc))
|
||
{
|
||
tree_vector_builder v (vectype, 1, 1);
|
||
v.quick_push (sc);
|
||
return v.build ();
|
||
}
|
||
else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant (&nunits))
|
||
return fold_build1 (VEC_DUPLICATE_EXPR, vectype, sc);
|
||
else
|
||
{
|
||
vec<constructor_elt, va_gc> *v;
|
||
vec_alloc (v, nunits);
|
||
for (i = 0; i < nunits; ++i)
|
||
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
|
||
return build_constructor (vectype, v);
|
||
}
|
||
}
|
||
|
||
/* Build a vector series of type TYPE in which element I has the value
|
||
BASE + I * STEP. The result is a constant if BASE and STEP are constant
|
||
and a VEC_SERIES_EXPR otherwise. */
|
||
|
||
tree
|
||
build_vec_series (tree type, tree base, tree step)
|
||
{
|
||
if (integer_zerop (step))
|
||
return build_vector_from_val (type, base);
|
||
if (TREE_CODE (base) == INTEGER_CST && TREE_CODE (step) == INTEGER_CST)
|
||
{
|
||
tree_vector_builder builder (type, 1, 3);
|
||
tree elt1 = wide_int_to_tree (TREE_TYPE (base),
|
||
wi::to_wide (base) + wi::to_wide (step));
|
||
tree elt2 = wide_int_to_tree (TREE_TYPE (base),
|
||
wi::to_wide (elt1) + wi::to_wide (step));
|
||
builder.quick_push (base);
|
||
builder.quick_push (elt1);
|
||
builder.quick_push (elt2);
|
||
return builder.build ();
|
||
}
|
||
return build2 (VEC_SERIES_EXPR, type, base, step);
|
||
}
|
||
|
||
/* Return a vector with the same number of units and number of bits
|
||
as VEC_TYPE, but in which the elements are a linear series of unsigned
|
||
integers { BASE, BASE + STEP, BASE + STEP * 2, ... }. */
|
||
|
||
tree
|
||
build_index_vector (tree vec_type, poly_uint64 base, poly_uint64 step)
|
||
{
|
||
tree index_vec_type = vec_type;
|
||
tree index_elt_type = TREE_TYPE (vec_type);
|
||
poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vec_type);
|
||
if (!INTEGRAL_TYPE_P (index_elt_type) || !TYPE_UNSIGNED (index_elt_type))
|
||
{
|
||
index_elt_type = build_nonstandard_integer_type
|
||
(GET_MODE_BITSIZE (SCALAR_TYPE_MODE (index_elt_type)), true);
|
||
index_vec_type = build_vector_type (index_elt_type, nunits);
|
||
}
|
||
|
||
tree_vector_builder v (index_vec_type, 1, 3);
|
||
for (unsigned int i = 0; i < 3; ++i)
|
||
v.quick_push (build_int_cstu (index_elt_type, base + i * step));
|
||
return v.build ();
|
||
}
|
||
|
||
/* Something has messed with the elements of CONSTRUCTOR C after it was built;
|
||
calculate TREE_CONSTANT and TREE_SIDE_EFFECTS. */
|
||
|
||
void
|
||
recompute_constructor_flags (tree c)
|
||
{
|
||
unsigned int i;
|
||
tree val;
|
||
bool constant_p = true;
|
||
bool side_effects_p = false;
|
||
vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
|
||
{
|
||
/* Mostly ctors will have elts that don't have side-effects, so
|
||
the usual case is to scan all the elements. Hence a single
|
||
loop for both const and side effects, rather than one loop
|
||
each (with early outs). */
|
||
if (!TREE_CONSTANT (val))
|
||
constant_p = false;
|
||
if (TREE_SIDE_EFFECTS (val))
|
||
side_effects_p = true;
|
||
}
|
||
|
||
TREE_SIDE_EFFECTS (c) = side_effects_p;
|
||
TREE_CONSTANT (c) = constant_p;
|
||
}
|
||
|
||
/* Make sure that TREE_CONSTANT and TREE_SIDE_EFFECTS are correct for
|
||
CONSTRUCTOR C. */
|
||
|
||
void
|
||
verify_constructor_flags (tree c)
|
||
{
|
||
unsigned int i;
|
||
tree val;
|
||
bool constant_p = TREE_CONSTANT (c);
|
||
bool side_effects_p = TREE_SIDE_EFFECTS (c);
|
||
vec<constructor_elt, va_gc> *vals = CONSTRUCTOR_ELTS (c);
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (vals, i, val)
|
||
{
|
||
if (constant_p && !TREE_CONSTANT (val))
|
||
internal_error ("non-constant element in constant CONSTRUCTOR");
|
||
if (!side_effects_p && TREE_SIDE_EFFECTS (val))
|
||
internal_error ("side-effects element in no-side-effects CONSTRUCTOR");
|
||
}
|
||
}
|
||
|
||
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
|
||
are in the vec pointed to by VALS. */
|
||
tree
|
||
build_constructor (tree type, vec<constructor_elt, va_gc> *vals)
|
||
{
|
||
tree c = make_node (CONSTRUCTOR);
|
||
|
||
TREE_TYPE (c) = type;
|
||
CONSTRUCTOR_ELTS (c) = vals;
|
||
|
||
recompute_constructor_flags (c);
|
||
|
||
return c;
|
||
}
|
||
|
||
/* Build a CONSTRUCTOR node made of a single initializer, with the specified
|
||
INDEX and VALUE. */
|
||
tree
|
||
build_constructor_single (tree type, tree index, tree value)
|
||
{
|
||
vec<constructor_elt, va_gc> *v;
|
||
constructor_elt elt = {index, value};
|
||
|
||
vec_alloc (v, 1);
|
||
v->quick_push (elt);
|
||
|
||
return build_constructor (type, v);
|
||
}
|
||
|
||
|
||
/* Return a new CONSTRUCTOR node whose type is TYPE and whose values
|
||
are in a list pointed to by VALS. */
|
||
tree
|
||
build_constructor_from_list (tree type, tree vals)
|
||
{
|
||
tree t;
|
||
vec<constructor_elt, va_gc> *v = NULL;
|
||
|
||
if (vals)
|
||
{
|
||
vec_alloc (v, list_length (vals));
|
||
for (t = vals; t; t = TREE_CHAIN (t))
|
||
CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
|
||
}
|
||
|
||
return build_constructor (type, v);
|
||
}
|
||
|
||
/* Return a new CONSTRUCTOR node whose type is TYPE. NELTS is the number
|
||
of elements, provided as index/value pairs. */
|
||
|
||
tree
|
||
build_constructor_va (tree type, int nelts, ...)
|
||
{
|
||
vec<constructor_elt, va_gc> *v = NULL;
|
||
va_list p;
|
||
|
||
va_start (p, nelts);
|
||
vec_alloc (v, nelts);
|
||
while (nelts--)
|
||
{
|
||
tree index = va_arg (p, tree);
|
||
tree value = va_arg (p, tree);
|
||
CONSTRUCTOR_APPEND_ELT (v, index, value);
|
||
}
|
||
va_end (p);
|
||
return build_constructor (type, v);
|
||
}
|
||
|
||
/* Return a node of type TYPE for which TREE_CLOBBER_P is true. */
|
||
|
||
tree
|
||
build_clobber (tree type)
|
||
{
|
||
tree clobber = build_constructor (type, NULL);
|
||
TREE_THIS_VOLATILE (clobber) = true;
|
||
return clobber;
|
||
}
|
||
|
||
/* Return a new FIXED_CST node whose type is TYPE and value is F. */
|
||
|
||
tree
|
||
build_fixed (tree type, FIXED_VALUE_TYPE f)
|
||
{
|
||
tree v;
|
||
FIXED_VALUE_TYPE *fp;
|
||
|
||
v = make_node (FIXED_CST);
|
||
fp = ggc_alloc<fixed_value> ();
|
||
memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
|
||
|
||
TREE_TYPE (v) = type;
|
||
TREE_FIXED_CST_PTR (v) = fp;
|
||
return v;
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE and value is D. */
|
||
|
||
tree
|
||
build_real (tree type, REAL_VALUE_TYPE d)
|
||
{
|
||
tree v;
|
||
REAL_VALUE_TYPE *dp;
|
||
int overflow = 0;
|
||
|
||
/* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
|
||
Consider doing it via real_convert now. */
|
||
|
||
v = make_node (REAL_CST);
|
||
dp = ggc_alloc<real_value> ();
|
||
memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
|
||
|
||
TREE_TYPE (v) = type;
|
||
TREE_REAL_CST_PTR (v) = dp;
|
||
TREE_OVERFLOW (v) = overflow;
|
||
return v;
|
||
}
|
||
|
||
/* Like build_real, but first truncate D to the type. */
|
||
|
||
tree
|
||
build_real_truncate (tree type, REAL_VALUE_TYPE d)
|
||
{
|
||
return build_real (type, real_value_truncate (TYPE_MODE (type), d));
|
||
}
|
||
|
||
/* Return a new REAL_CST node whose type is TYPE
|
||
and whose value is the integer value of the INTEGER_CST node I. */
|
||
|
||
REAL_VALUE_TYPE
|
||
real_value_from_int_cst (const_tree type, const_tree i)
|
||
{
|
||
REAL_VALUE_TYPE d;
|
||
|
||
/* Clear all bits of the real value type so that we can later do
|
||
bitwise comparisons to see if two values are the same. */
|
||
memset (&d, 0, sizeof d);
|
||
|
||
real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode, wi::to_wide (i),
|
||
TYPE_SIGN (TREE_TYPE (i)));
|
||
return d;
|
||
}
|
||
|
||
/* Given a tree representing an integer constant I, return a tree
|
||
representing the same value as a floating-point constant of type TYPE. */
|
||
|
||
tree
|
||
build_real_from_int_cst (tree type, const_tree i)
|
||
{
|
||
tree v;
|
||
int overflow = TREE_OVERFLOW (i);
|
||
|
||
v = build_real (type, real_value_from_int_cst (type, i));
|
||
|
||
TREE_OVERFLOW (v) |= overflow;
|
||
return v;
|
||
}
|
||
|
||
/* Return a newly constructed STRING_CST node whose value is
|
||
the LEN characters at STR.
|
||
Note that for a C string literal, LEN should include the trailing NUL.
|
||
The TREE_TYPE is not initialized. */
|
||
|
||
tree
|
||
build_string (int len, const char *str)
|
||
{
|
||
tree s;
|
||
size_t length;
|
||
|
||
/* Do not waste bytes provided by padding of struct tree_string. */
|
||
length = len + offsetof (struct tree_string, str) + 1;
|
||
|
||
record_node_allocation_statistics (STRING_CST, length);
|
||
|
||
s = (tree) ggc_internal_alloc (length);
|
||
|
||
memset (s, 0, sizeof (struct tree_typed));
|
||
TREE_SET_CODE (s, STRING_CST);
|
||
TREE_CONSTANT (s) = 1;
|
||
TREE_STRING_LENGTH (s) = len;
|
||
memcpy (s->string.str, str, len);
|
||
s->string.str[len] = '\0';
|
||
|
||
return s;
|
||
}
|
||
|
||
/* Return a newly constructed COMPLEX_CST node whose value is
|
||
specified by the real and imaginary parts REAL and IMAG.
|
||
Both REAL and IMAG should be constant nodes. TYPE, if specified,
|
||
will be the type of the COMPLEX_CST; otherwise a new type will be made. */
|
||
|
||
tree
|
||
build_complex (tree type, tree real, tree imag)
|
||
{
|
||
tree t = make_node (COMPLEX_CST);
|
||
|
||
TREE_REALPART (t) = real;
|
||
TREE_IMAGPART (t) = imag;
|
||
TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
|
||
TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
|
||
return t;
|
||
}
|
||
|
||
/* Build a complex (inf +- 0i), such as for the result of cproj.
|
||
TYPE is the complex tree type of the result. If NEG is true, the
|
||
imaginary zero is negative. */
|
||
|
||
tree
|
||
build_complex_inf (tree type, bool neg)
|
||
{
|
||
REAL_VALUE_TYPE rinf, rzero = dconst0;
|
||
|
||
real_inf (&rinf);
|
||
rzero.sign = neg;
|
||
return build_complex (type, build_real (TREE_TYPE (type), rinf),
|
||
build_real (TREE_TYPE (type), rzero));
|
||
}
|
||
|
||
/* Return the constant 1 in type TYPE. If TYPE has several elements, each
|
||
element is set to 1. In particular, this is 1 + i for complex types. */
|
||
|
||
tree
|
||
build_each_one_cst (tree type)
|
||
{
|
||
if (TREE_CODE (type) == COMPLEX_TYPE)
|
||
{
|
||
tree scalar = build_one_cst (TREE_TYPE (type));
|
||
return build_complex (type, scalar, scalar);
|
||
}
|
||
else
|
||
return build_one_cst (type);
|
||
}
|
||
|
||
/* Return a constant of arithmetic type TYPE which is the
|
||
multiplicative identity of the set TYPE. */
|
||
|
||
tree
|
||
build_one_cst (tree type)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
|
||
case POINTER_TYPE: case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
return build_int_cst (type, 1);
|
||
|
||
case REAL_TYPE:
|
||
return build_real (type, dconst1);
|
||
|
||
case FIXED_POINT_TYPE:
|
||
/* We can only generate 1 for accum types. */
|
||
gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
|
||
return build_fixed (type, FCONST1 (TYPE_MODE (type)));
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
tree scalar = build_one_cst (TREE_TYPE (type));
|
||
|
||
return build_vector_from_val (type, scalar);
|
||
}
|
||
|
||
case COMPLEX_TYPE:
|
||
return build_complex (type,
|
||
build_one_cst (TREE_TYPE (type)),
|
||
build_zero_cst (TREE_TYPE (type)));
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Return an integer of type TYPE containing all 1's in as much precision as
|
||
it contains, or a complex or vector whose subparts are such integers. */
|
||
|
||
tree
|
||
build_all_ones_cst (tree type)
|
||
{
|
||
if (TREE_CODE (type) == COMPLEX_TYPE)
|
||
{
|
||
tree scalar = build_all_ones_cst (TREE_TYPE (type));
|
||
return build_complex (type, scalar, scalar);
|
||
}
|
||
else
|
||
return build_minus_one_cst (type);
|
||
}
|
||
|
||
/* Return a constant of arithmetic type TYPE which is the
|
||
opposite of the multiplicative identity of the set TYPE. */
|
||
|
||
tree
|
||
build_minus_one_cst (tree type)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
|
||
case POINTER_TYPE: case REFERENCE_TYPE:
|
||
case OFFSET_TYPE:
|
||
return build_int_cst (type, -1);
|
||
|
||
case REAL_TYPE:
|
||
return build_real (type, dconstm1);
|
||
|
||
case FIXED_POINT_TYPE:
|
||
/* We can only generate 1 for accum types. */
|
||
gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
|
||
return build_fixed (type,
|
||
fixed_from_double_int (double_int_minus_one,
|
||
SCALAR_TYPE_MODE (type)));
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
tree scalar = build_minus_one_cst (TREE_TYPE (type));
|
||
|
||
return build_vector_from_val (type, scalar);
|
||
}
|
||
|
||
case COMPLEX_TYPE:
|
||
return build_complex (type,
|
||
build_minus_one_cst (TREE_TYPE (type)),
|
||
build_zero_cst (TREE_TYPE (type)));
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Build 0 constant of type TYPE. This is used by constructor folding
|
||
and thus the constant should be represented in memory by
|
||
zero(es). */
|
||
|
||
tree
|
||
build_zero_cst (tree type)
|
||
{
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
|
||
case POINTER_TYPE: case REFERENCE_TYPE:
|
||
case OFFSET_TYPE: case NULLPTR_TYPE:
|
||
return build_int_cst (type, 0);
|
||
|
||
case REAL_TYPE:
|
||
return build_real (type, dconst0);
|
||
|
||
case FIXED_POINT_TYPE:
|
||
return build_fixed (type, FCONST0 (TYPE_MODE (type)));
|
||
|
||
case VECTOR_TYPE:
|
||
{
|
||
tree scalar = build_zero_cst (TREE_TYPE (type));
|
||
|
||
return build_vector_from_val (type, scalar);
|
||
}
|
||
|
||
case COMPLEX_TYPE:
|
||
{
|
||
tree zero = build_zero_cst (TREE_TYPE (type));
|
||
|
||
return build_complex (type, zero, zero);
|
||
}
|
||
|
||
default:
|
||
if (!AGGREGATE_TYPE_P (type))
|
||
return fold_convert (type, integer_zero_node);
|
||
return build_constructor (type, NULL);
|
||
}
|
||
}
|
||
|
||
|
||
/* Build a BINFO with LEN language slots. */
|
||
|
||
tree
|
||
make_tree_binfo (unsigned base_binfos MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
size_t length = (offsetof (struct tree_binfo, base_binfos)
|
||
+ vec<tree, va_gc>::embedded_size (base_binfos));
|
||
|
||
record_node_allocation_statistics (TREE_BINFO, length);
|
||
|
||
t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
|
||
|
||
memset (t, 0, offsetof (struct tree_binfo, base_binfos));
|
||
|
||
TREE_SET_CODE (t, TREE_BINFO);
|
||
|
||
BINFO_BASE_BINFOS (t)->embedded_init (base_binfos);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a CASE_LABEL_EXPR tree node and return it. */
|
||
|
||
tree
|
||
build_case_label (tree low_value, tree high_value, tree label_decl)
|
||
{
|
||
tree t = make_node (CASE_LABEL_EXPR);
|
||
|
||
TREE_TYPE (t) = void_type_node;
|
||
SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (label_decl));
|
||
|
||
CASE_LOW (t) = low_value;
|
||
CASE_HIGH (t) = high_value;
|
||
CASE_LABEL (t) = label_decl;
|
||
CASE_CHAIN (t) = NULL_TREE;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a newly constructed INTEGER_CST node. LEN and EXT_LEN are the
|
||
values of TREE_INT_CST_NUNITS and TREE_INT_CST_EXT_NUNITS respectively.
|
||
The latter determines the length of the HOST_WIDE_INT vector. */
|
||
|
||
tree
|
||
make_int_cst (int len, int ext_len MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
int length = ((ext_len - 1) * sizeof (HOST_WIDE_INT)
|
||
+ sizeof (struct tree_int_cst));
|
||
|
||
gcc_assert (len);
|
||
record_node_allocation_statistics (INTEGER_CST, length);
|
||
|
||
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
|
||
|
||
TREE_SET_CODE (t, INTEGER_CST);
|
||
TREE_INT_CST_NUNITS (t) = len;
|
||
TREE_INT_CST_EXT_NUNITS (t) = ext_len;
|
||
/* to_offset can only be applied to trees that are offset_int-sized
|
||
or smaller. EXT_LEN is correct if it fits, otherwise the constant
|
||
must be exactly the precision of offset_int and so LEN is correct. */
|
||
if (ext_len <= OFFSET_INT_ELTS)
|
||
TREE_INT_CST_OFFSET_NUNITS (t) = ext_len;
|
||
else
|
||
TREE_INT_CST_OFFSET_NUNITS (t) = len;
|
||
|
||
TREE_CONSTANT (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a newly constructed TREE_VEC node of length LEN. */
|
||
|
||
tree
|
||
make_tree_vec (int len MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
|
||
|
||
record_node_allocation_statistics (TREE_VEC, length);
|
||
|
||
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
|
||
|
||
TREE_SET_CODE (t, TREE_VEC);
|
||
TREE_VEC_LENGTH (t) = len;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Grow a TREE_VEC node to new length LEN. */
|
||
|
||
tree
|
||
grow_tree_vec (tree v, int len MEM_STAT_DECL)
|
||
{
|
||
gcc_assert (TREE_CODE (v) == TREE_VEC);
|
||
|
||
int oldlen = TREE_VEC_LENGTH (v);
|
||
gcc_assert (len > oldlen);
|
||
|
||
size_t oldlength = (oldlen - 1) * sizeof (tree) + sizeof (struct tree_vec);
|
||
size_t length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
|
||
|
||
record_node_allocation_statistics (TREE_VEC, length - oldlength);
|
||
|
||
v = (tree) ggc_realloc (v, length PASS_MEM_STAT);
|
||
|
||
TREE_VEC_LENGTH (v) = len;
|
||
|
||
return v;
|
||
}
|
||
|
||
/* Return 1 if EXPR is the constant zero, whether it is integral, float or
|
||
fixed, and scalar, complex or vector. */
|
||
|
||
int
|
||
zerop (const_tree expr)
|
||
{
|
||
return (integer_zerop (expr)
|
||
|| real_zerop (expr)
|
||
|| fixed_zerop (expr));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant zero or a complex constant
|
||
of zero. */
|
||
|
||
int
|
||
integer_zerop (const_tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case INTEGER_CST:
|
||
return wi::to_wide (expr) == 0;
|
||
case COMPLEX_CST:
|
||
return (integer_zerop (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)));
|
||
case VECTOR_CST:
|
||
return (VECTOR_CST_NPATTERNS (expr) == 1
|
||
&& VECTOR_CST_DUPLICATE_P (expr)
|
||
&& integer_zerop (VECTOR_CST_ENCODED_ELT (expr, 0)));
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant one or the corresponding
|
||
complex constant. */
|
||
|
||
int
|
||
integer_onep (const_tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case INTEGER_CST:
|
||
return wi::eq_p (wi::to_widest (expr), 1);
|
||
case COMPLEX_CST:
|
||
return (integer_onep (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)));
|
||
case VECTOR_CST:
|
||
return (VECTOR_CST_NPATTERNS (expr) == 1
|
||
&& VECTOR_CST_DUPLICATE_P (expr)
|
||
&& integer_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant one. For complex and vector,
|
||
return 1 if every piece is the integer constant one. */
|
||
|
||
int
|
||
integer_each_onep (const_tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return (integer_onep (TREE_REALPART (expr))
|
||
&& integer_onep (TREE_IMAGPART (expr)));
|
||
else
|
||
return integer_onep (expr);
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer containing all 1's in as much precision as
|
||
it contains, or a complex or vector whose subparts are such integers. */
|
||
|
||
int
|
||
integer_all_onesp (const_tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_all_onesp (TREE_REALPART (expr))
|
||
&& integer_all_onesp (TREE_IMAGPART (expr)))
|
||
return 1;
|
||
|
||
else if (TREE_CODE (expr) == VECTOR_CST)
|
||
return (VECTOR_CST_NPATTERNS (expr) == 1
|
||
&& VECTOR_CST_DUPLICATE_P (expr)
|
||
&& integer_all_onesp (VECTOR_CST_ENCODED_ELT (expr, 0)));
|
||
|
||
else if (TREE_CODE (expr) != INTEGER_CST)
|
||
return 0;
|
||
|
||
return (wi::max_value (TYPE_PRECISION (TREE_TYPE (expr)), UNSIGNED)
|
||
== wi::to_wide (expr));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant minus one. */
|
||
|
||
int
|
||
integer_minus_onep (const_tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return (integer_all_onesp (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)));
|
||
else
|
||
return integer_all_onesp (expr);
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
|
||
one bit on). */
|
||
|
||
int
|
||
integer_pow2p (const_tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == COMPLEX_CST
|
||
&& integer_pow2p (TREE_REALPART (expr))
|
||
&& integer_zerop (TREE_IMAGPART (expr)))
|
||
return 1;
|
||
|
||
if (TREE_CODE (expr) != INTEGER_CST)
|
||
return 0;
|
||
|
||
return wi::popcount (wi::to_wide (expr)) == 1;
|
||
}
|
||
|
||
/* Return 1 if EXPR is an integer constant other than zero or a
|
||
complex constant other than zero. */
|
||
|
||
int
|
||
integer_nonzerop (const_tree expr)
|
||
{
|
||
return ((TREE_CODE (expr) == INTEGER_CST
|
||
&& wi::to_wide (expr) != 0)
|
||
|| (TREE_CODE (expr) == COMPLEX_CST
|
||
&& (integer_nonzerop (TREE_REALPART (expr))
|
||
|| integer_nonzerop (TREE_IMAGPART (expr)))));
|
||
}
|
||
|
||
/* Return 1 if EXPR is the integer constant one. For vector,
|
||
return 1 if every piece is the integer constant minus one
|
||
(representing the value TRUE). */
|
||
|
||
int
|
||
integer_truep (const_tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == VECTOR_CST)
|
||
return integer_all_onesp (expr);
|
||
return integer_onep (expr);
|
||
}
|
||
|
||
/* Return 1 if EXPR is the fixed-point constant zero. */
|
||
|
||
int
|
||
fixed_zerop (const_tree expr)
|
||
{
|
||
return (TREE_CODE (expr) == FIXED_CST
|
||
&& TREE_FIXED_CST (expr).data.is_zero ());
|
||
}
|
||
|
||
/* Return the power of two represented by a tree node known to be a
|
||
power of two. */
|
||
|
||
int
|
||
tree_log2 (const_tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return tree_log2 (TREE_REALPART (expr));
|
||
|
||
return wi::exact_log2 (wi::to_wide (expr));
|
||
}
|
||
|
||
/* Similar, but return the largest integer Y such that 2 ** Y is less
|
||
than or equal to EXPR. */
|
||
|
||
int
|
||
tree_floor_log2 (const_tree expr)
|
||
{
|
||
if (TREE_CODE (expr) == COMPLEX_CST)
|
||
return tree_log2 (TREE_REALPART (expr));
|
||
|
||
return wi::floor_log2 (wi::to_wide (expr));
|
||
}
|
||
|
||
/* Return number of known trailing zero bits in EXPR, or, if the value of
|
||
EXPR is known to be zero, the precision of it's type. */
|
||
|
||
unsigned int
|
||
tree_ctz (const_tree expr)
|
||
{
|
||
if (!INTEGRAL_TYPE_P (TREE_TYPE (expr))
|
||
&& !POINTER_TYPE_P (TREE_TYPE (expr)))
|
||
return 0;
|
||
|
||
unsigned int ret1, ret2, prec = TYPE_PRECISION (TREE_TYPE (expr));
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case INTEGER_CST:
|
||
ret1 = wi::ctz (wi::to_wide (expr));
|
||
return MIN (ret1, prec);
|
||
case SSA_NAME:
|
||
ret1 = wi::ctz (get_nonzero_bits (expr));
|
||
return MIN (ret1, prec);
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
if (ret1 == 0)
|
||
return ret1;
|
||
ret2 = tree_ctz (TREE_OPERAND (expr, 1));
|
||
return MIN (ret1, ret2);
|
||
case POINTER_PLUS_EXPR:
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
ret2 = tree_ctz (TREE_OPERAND (expr, 1));
|
||
/* Second operand is sizetype, which could be in theory
|
||
wider than pointer's precision. Make sure we never
|
||
return more than prec. */
|
||
ret2 = MIN (ret2, prec);
|
||
return MIN (ret1, ret2);
|
||
case BIT_AND_EXPR:
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
ret2 = tree_ctz (TREE_OPERAND (expr, 1));
|
||
return MAX (ret1, ret2);
|
||
case MULT_EXPR:
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
ret2 = tree_ctz (TREE_OPERAND (expr, 1));
|
||
return MIN (ret1 + ret2, prec);
|
||
case LSHIFT_EXPR:
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
|
||
&& (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
|
||
{
|
||
ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
|
||
return MIN (ret1 + ret2, prec);
|
||
}
|
||
return ret1;
|
||
case RSHIFT_EXPR:
|
||
if (tree_fits_uhwi_p (TREE_OPERAND (expr, 1))
|
||
&& (tree_to_uhwi (TREE_OPERAND (expr, 1)) < prec))
|
||
{
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
ret2 = tree_to_uhwi (TREE_OPERAND (expr, 1));
|
||
if (ret1 > ret2)
|
||
return ret1 - ret2;
|
||
}
|
||
return 0;
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST
|
||
&& tree_int_cst_sgn (TREE_OPERAND (expr, 1)) == 1)
|
||
{
|
||
int l = tree_log2 (TREE_OPERAND (expr, 1));
|
||
if (l >= 0)
|
||
{
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
ret2 = l;
|
||
if (ret1 > ret2)
|
||
return ret1 - ret2;
|
||
}
|
||
}
|
||
return 0;
|
||
CASE_CONVERT:
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 0));
|
||
if (ret1 && ret1 == TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (expr, 0))))
|
||
ret1 = prec;
|
||
return MIN (ret1, prec);
|
||
case SAVE_EXPR:
|
||
return tree_ctz (TREE_OPERAND (expr, 0));
|
||
case COND_EXPR:
|
||
ret1 = tree_ctz (TREE_OPERAND (expr, 1));
|
||
if (ret1 == 0)
|
||
return 0;
|
||
ret2 = tree_ctz (TREE_OPERAND (expr, 2));
|
||
return MIN (ret1, ret2);
|
||
case COMPOUND_EXPR:
|
||
return tree_ctz (TREE_OPERAND (expr, 1));
|
||
case ADDR_EXPR:
|
||
ret1 = get_pointer_alignment (CONST_CAST_TREE (expr));
|
||
if (ret1 > BITS_PER_UNIT)
|
||
{
|
||
ret1 = ctz_hwi (ret1 / BITS_PER_UNIT);
|
||
return MIN (ret1, prec);
|
||
}
|
||
return 0;
|
||
default:
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
|
||
decimal float constants, so don't return 1 for them. */
|
||
|
||
int
|
||
real_zerop (const_tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case REAL_CST:
|
||
return real_equal (&TREE_REAL_CST (expr), &dconst0)
|
||
&& !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
|
||
case COMPLEX_CST:
|
||
return real_zerop (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr));
|
||
case VECTOR_CST:
|
||
{
|
||
/* Don't simply check for a duplicate because the predicate
|
||
accepts both +0.0 and -0.0. */
|
||
unsigned count = vector_cst_encoded_nelts (expr);
|
||
for (unsigned int i = 0; i < count; ++i)
|
||
if (!real_zerop (VECTOR_CST_ENCODED_ELT (expr, i)))
|
||
return false;
|
||
return true;
|
||
}
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant one in real or complex form.
|
||
Trailing zeroes matter for decimal float constants, so don't return
|
||
1 for them. */
|
||
|
||
int
|
||
real_onep (const_tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case REAL_CST:
|
||
return real_equal (&TREE_REAL_CST (expr), &dconst1)
|
||
&& !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
|
||
case COMPLEX_CST:
|
||
return real_onep (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr));
|
||
case VECTOR_CST:
|
||
return (VECTOR_CST_NPATTERNS (expr) == 1
|
||
&& VECTOR_CST_DUPLICATE_P (expr)
|
||
&& real_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Return 1 if EXPR is the real constant minus one. Trailing zeroes
|
||
matter for decimal float constants, so don't return 1 for them. */
|
||
|
||
int
|
||
real_minus_onep (const_tree expr)
|
||
{
|
||
switch (TREE_CODE (expr))
|
||
{
|
||
case REAL_CST:
|
||
return real_equal (&TREE_REAL_CST (expr), &dconstm1)
|
||
&& !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr))));
|
||
case COMPLEX_CST:
|
||
return real_minus_onep (TREE_REALPART (expr))
|
||
&& real_zerop (TREE_IMAGPART (expr));
|
||
case VECTOR_CST:
|
||
return (VECTOR_CST_NPATTERNS (expr) == 1
|
||
&& VECTOR_CST_DUPLICATE_P (expr)
|
||
&& real_minus_onep (VECTOR_CST_ENCODED_ELT (expr, 0)));
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Nonzero if EXP is a constant or a cast of a constant. */
|
||
|
||
int
|
||
really_constant_p (const_tree exp)
|
||
{
|
||
/* This is not quite the same as STRIP_NOPS. It does more. */
|
||
while (CONVERT_EXPR_P (exp)
|
||
|| TREE_CODE (exp) == NON_LVALUE_EXPR)
|
||
exp = TREE_OPERAND (exp, 0);
|
||
return TREE_CONSTANT (exp);
|
||
}
|
||
|
||
/* Return true if T holds a polynomial pointer difference, storing it in
|
||
*VALUE if so. A true return means that T's precision is no greater
|
||
than 64 bits, which is the largest address space we support, so *VALUE
|
||
never loses precision. However, the signedness of the result does
|
||
not necessarily match the signedness of T: sometimes an unsigned type
|
||
like sizetype is used to encode a value that is actually negative. */
|
||
|
||
bool
|
||
ptrdiff_tree_p (const_tree t, poly_int64_pod *value)
|
||
{
|
||
if (!t)
|
||
return false;
|
||
if (TREE_CODE (t) == INTEGER_CST)
|
||
{
|
||
if (!cst_and_fits_in_hwi (t))
|
||
return false;
|
||
*value = int_cst_value (t);
|
||
return true;
|
||
}
|
||
if (POLY_INT_CST_P (t))
|
||
{
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
if (!cst_and_fits_in_hwi (POLY_INT_CST_COEFF (t, i)))
|
||
return false;
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
value->coeffs[i] = int_cst_value (POLY_INT_CST_COEFF (t, i));
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
poly_int64
|
||
tree_to_poly_int64 (const_tree t)
|
||
{
|
||
gcc_assert (tree_fits_poly_int64_p (t));
|
||
if (POLY_INT_CST_P (t))
|
||
return poly_int_cst_value (t).force_shwi ();
|
||
return TREE_INT_CST_LOW (t);
|
||
}
|
||
|
||
poly_uint64
|
||
tree_to_poly_uint64 (const_tree t)
|
||
{
|
||
gcc_assert (tree_fits_poly_uint64_p (t));
|
||
if (POLY_INT_CST_P (t))
|
||
return poly_int_cst_value (t).force_uhwi ();
|
||
return TREE_INT_CST_LOW (t);
|
||
}
|
||
|
||
/* Return first list element whose TREE_VALUE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
|
||
tree
|
||
value_member (tree elem, tree list)
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_VALUE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return first list element whose TREE_PURPOSE is ELEM.
|
||
Return 0 if ELEM is not in LIST. */
|
||
|
||
tree
|
||
purpose_member (const_tree elem, tree list)
|
||
{
|
||
while (list)
|
||
{
|
||
if (elem == TREE_PURPOSE (list))
|
||
return list;
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return true if ELEM is in V. */
|
||
|
||
bool
|
||
vec_member (const_tree elem, vec<tree, va_gc> *v)
|
||
{
|
||
unsigned ix;
|
||
tree t;
|
||
FOR_EACH_VEC_SAFE_ELT (v, ix, t)
|
||
if (elem == t)
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Returns element number IDX (zero-origin) of chain CHAIN, or
|
||
NULL_TREE. */
|
||
|
||
tree
|
||
chain_index (int idx, tree chain)
|
||
{
|
||
for (; chain && idx > 0; --idx)
|
||
chain = TREE_CHAIN (chain);
|
||
return chain;
|
||
}
|
||
|
||
/* Return nonzero if ELEM is part of the chain CHAIN. */
|
||
|
||
int
|
||
chain_member (const_tree elem, const_tree chain)
|
||
{
|
||
while (chain)
|
||
{
|
||
if (elem == chain)
|
||
return 1;
|
||
chain = DECL_CHAIN (chain);
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return the length of a chain of nodes chained through TREE_CHAIN.
|
||
We expect a null pointer to mark the end of the chain.
|
||
This is the Lisp primitive `length'. */
|
||
|
||
int
|
||
list_length (const_tree t)
|
||
{
|
||
const_tree p = t;
|
||
#ifdef ENABLE_TREE_CHECKING
|
||
const_tree q = t;
|
||
#endif
|
||
int len = 0;
|
||
|
||
while (p)
|
||
{
|
||
p = TREE_CHAIN (p);
|
||
#ifdef ENABLE_TREE_CHECKING
|
||
if (len % 2)
|
||
q = TREE_CHAIN (q);
|
||
gcc_assert (p != q);
|
||
#endif
|
||
len++;
|
||
}
|
||
|
||
return len;
|
||
}
|
||
|
||
/* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
|
||
UNION_TYPE TYPE, or NULL_TREE if none. */
|
||
|
||
tree
|
||
first_field (const_tree type)
|
||
{
|
||
tree t = TYPE_FIELDS (type);
|
||
while (t && TREE_CODE (t) != FIELD_DECL)
|
||
t = TREE_CHAIN (t);
|
||
return t;
|
||
}
|
||
|
||
/* Concatenate two chains of nodes (chained through TREE_CHAIN)
|
||
by modifying the last node in chain 1 to point to chain 2.
|
||
This is the Lisp primitive `nconc'. */
|
||
|
||
tree
|
||
chainon (tree op1, tree op2)
|
||
{
|
||
tree t1;
|
||
|
||
if (!op1)
|
||
return op2;
|
||
if (!op2)
|
||
return op1;
|
||
|
||
for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
|
||
continue;
|
||
TREE_CHAIN (t1) = op2;
|
||
|
||
#ifdef ENABLE_TREE_CHECKING
|
||
{
|
||
tree t2;
|
||
for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
|
||
gcc_assert (t2 != t1);
|
||
}
|
||
#endif
|
||
|
||
return op1;
|
||
}
|
||
|
||
/* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
|
||
|
||
tree
|
||
tree_last (tree chain)
|
||
{
|
||
tree next;
|
||
if (chain)
|
||
while ((next = TREE_CHAIN (chain)))
|
||
chain = next;
|
||
return chain;
|
||
}
|
||
|
||
/* Reverse the order of elements in the chain T,
|
||
and return the new head of the chain (old last element). */
|
||
|
||
tree
|
||
nreverse (tree t)
|
||
{
|
||
tree prev = 0, decl, next;
|
||
for (decl = t; decl; decl = next)
|
||
{
|
||
/* We shouldn't be using this function to reverse BLOCK chains; we
|
||
have blocks_nreverse for that. */
|
||
gcc_checking_assert (TREE_CODE (decl) != BLOCK);
|
||
next = TREE_CHAIN (decl);
|
||
TREE_CHAIN (decl) = prev;
|
||
prev = decl;
|
||
}
|
||
return prev;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PARM and VALUE. */
|
||
|
||
tree
|
||
build_tree_list (tree parm, tree value MEM_STAT_DECL)
|
||
{
|
||
tree t = make_node (TREE_LIST PASS_MEM_STAT);
|
||
TREE_PURPOSE (t) = parm;
|
||
TREE_VALUE (t) = value;
|
||
return t;
|
||
}
|
||
|
||
/* Build a chain of TREE_LIST nodes from a vector. */
|
||
|
||
tree
|
||
build_tree_list_vec (const vec<tree, va_gc> *vec MEM_STAT_DECL)
|
||
{
|
||
tree ret = NULL_TREE;
|
||
tree *pp = &ret;
|
||
unsigned int i;
|
||
tree t;
|
||
FOR_EACH_VEC_SAFE_ELT (vec, i, t)
|
||
{
|
||
*pp = build_tree_list (NULL, t PASS_MEM_STAT);
|
||
pp = &TREE_CHAIN (*pp);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
/* Return a newly created TREE_LIST node whose
|
||
purpose and value fields are PURPOSE and VALUE
|
||
and whose TREE_CHAIN is CHAIN. */
|
||
|
||
tree
|
||
tree_cons (tree purpose, tree value, tree chain MEM_STAT_DECL)
|
||
{
|
||
tree node;
|
||
|
||
node = ggc_alloc_tree_node_stat (sizeof (struct tree_list) PASS_MEM_STAT);
|
||
memset (node, 0, sizeof (struct tree_common));
|
||
|
||
record_node_allocation_statistics (TREE_LIST, sizeof (struct tree_list));
|
||
|
||
TREE_SET_CODE (node, TREE_LIST);
|
||
TREE_CHAIN (node) = chain;
|
||
TREE_PURPOSE (node) = purpose;
|
||
TREE_VALUE (node) = value;
|
||
return node;
|
||
}
|
||
|
||
/* Return the values of the elements of a CONSTRUCTOR as a vector of
|
||
trees. */
|
||
|
||
vec<tree, va_gc> *
|
||
ctor_to_vec (tree ctor)
|
||
{
|
||
vec<tree, va_gc> *vec;
|
||
vec_alloc (vec, CONSTRUCTOR_NELTS (ctor));
|
||
unsigned int ix;
|
||
tree val;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
|
||
vec->quick_push (val);
|
||
|
||
return vec;
|
||
}
|
||
|
||
/* Return the size nominally occupied by an object of type TYPE
|
||
when it resides in memory. The value is measured in units of bytes,
|
||
and its data type is that normally used for type sizes
|
||
(which is the first type created by make_signed_type or
|
||
make_unsigned_type). */
|
||
|
||
tree
|
||
size_in_bytes_loc (location_t loc, const_tree type)
|
||
{
|
||
tree t;
|
||
|
||
if (type == error_mark_node)
|
||
return integer_zero_node;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
t = TYPE_SIZE_UNIT (type);
|
||
|
||
if (t == 0)
|
||
{
|
||
lang_hooks.types.incomplete_type_error (loc, NULL_TREE, type);
|
||
return size_zero_node;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return the size of TYPE (in bytes) as a wide integer
|
||
or return -1 if the size can vary or is larger than an integer. */
|
||
|
||
HOST_WIDE_INT
|
||
int_size_in_bytes (const_tree type)
|
||
{
|
||
tree t;
|
||
|
||
if (type == error_mark_node)
|
||
return 0;
|
||
|
||
type = TYPE_MAIN_VARIANT (type);
|
||
t = TYPE_SIZE_UNIT (type);
|
||
|
||
if (t && tree_fits_uhwi_p (t))
|
||
return TREE_INT_CST_LOW (t);
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
/* Return the maximum size of TYPE (in bytes) as a wide integer
|
||
or return -1 if the size can vary or is larger than an integer. */
|
||
|
||
HOST_WIDE_INT
|
||
max_int_size_in_bytes (const_tree type)
|
||
{
|
||
HOST_WIDE_INT size = -1;
|
||
tree size_tree;
|
||
|
||
/* If this is an array type, check for a possible MAX_SIZE attached. */
|
||
|
||
if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
size_tree = TYPE_ARRAY_MAX_SIZE (type);
|
||
|
||
if (size_tree && tree_fits_uhwi_p (size_tree))
|
||
size = tree_to_uhwi (size_tree);
|
||
}
|
||
|
||
/* If we still haven't been able to get a size, see if the language
|
||
can compute a maximum size. */
|
||
|
||
if (size == -1)
|
||
{
|
||
size_tree = lang_hooks.types.max_size (type);
|
||
|
||
if (size_tree && tree_fits_uhwi_p (size_tree))
|
||
size = tree_to_uhwi (size_tree);
|
||
}
|
||
|
||
return size;
|
||
}
|
||
|
||
/* Return the bit position of FIELD, in bits from the start of the record.
|
||
This is a tree of type bitsizetype. */
|
||
|
||
tree
|
||
bit_position (const_tree field)
|
||
{
|
||
return bit_from_pos (DECL_FIELD_OFFSET (field),
|
||
DECL_FIELD_BIT_OFFSET (field));
|
||
}
|
||
|
||
/* Return the byte position of FIELD, in bytes from the start of the record.
|
||
This is a tree of type sizetype. */
|
||
|
||
tree
|
||
byte_position (const_tree field)
|
||
{
|
||
return byte_from_pos (DECL_FIELD_OFFSET (field),
|
||
DECL_FIELD_BIT_OFFSET (field));
|
||
}
|
||
|
||
/* Likewise, but return as an integer. It must be representable in
|
||
that way (since it could be a signed value, we don't have the
|
||
option of returning -1 like int_size_in_byte can. */
|
||
|
||
HOST_WIDE_INT
|
||
int_byte_position (const_tree field)
|
||
{
|
||
return tree_to_shwi (byte_position (field));
|
||
}
|
||
|
||
/* Return the strictest alignment, in bits, that T is known to have. */
|
||
|
||
unsigned int
|
||
expr_align (const_tree t)
|
||
{
|
||
unsigned int align0, align1;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
CASE_CONVERT: case NON_LVALUE_EXPR:
|
||
/* If we have conversions, we know that the alignment of the
|
||
object must meet each of the alignments of the types. */
|
||
align0 = expr_align (TREE_OPERAND (t, 0));
|
||
align1 = TYPE_ALIGN (TREE_TYPE (t));
|
||
return MAX (align0, align1);
|
||
|
||
case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
|
||
case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
|
||
case CLEANUP_POINT_EXPR:
|
||
/* These don't change the alignment of an object. */
|
||
return expr_align (TREE_OPERAND (t, 0));
|
||
|
||
case COND_EXPR:
|
||
/* The best we can do is say that the alignment is the least aligned
|
||
of the two arms. */
|
||
align0 = expr_align (TREE_OPERAND (t, 1));
|
||
align1 = expr_align (TREE_OPERAND (t, 2));
|
||
return MIN (align0, align1);
|
||
|
||
/* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
|
||
meaningfully, it's always 1. */
|
||
case LABEL_DECL: case CONST_DECL:
|
||
case VAR_DECL: case PARM_DECL: case RESULT_DECL:
|
||
case FUNCTION_DECL:
|
||
gcc_assert (DECL_ALIGN (t) != 0);
|
||
return DECL_ALIGN (t);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Otherwise take the alignment from that of the type. */
|
||
return TYPE_ALIGN (TREE_TYPE (t));
|
||
}
|
||
|
||
/* Return, as a tree node, the number of elements for TYPE (which is an
|
||
ARRAY_TYPE) minus one. This counts only elements of the top array. */
|
||
|
||
tree
|
||
array_type_nelts (const_tree type)
|
||
{
|
||
tree index_type, min, max;
|
||
|
||
/* If they did it with unspecified bounds, then we should have already
|
||
given an error about it before we got here. */
|
||
if (! TYPE_DOMAIN (type))
|
||
return error_mark_node;
|
||
|
||
index_type = TYPE_DOMAIN (type);
|
||
min = TYPE_MIN_VALUE (index_type);
|
||
max = TYPE_MAX_VALUE (index_type);
|
||
|
||
/* TYPE_MAX_VALUE may not be set if the array has unknown length. */
|
||
if (!max)
|
||
return error_mark_node;
|
||
|
||
return (integer_zerop (min)
|
||
? max
|
||
: fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
|
||
}
|
||
|
||
/* If arg is static -- a reference to an object in static storage -- then
|
||
return the object. This is not the same as the C meaning of `static'.
|
||
If arg isn't static, return NULL. */
|
||
|
||
tree
|
||
staticp (tree arg)
|
||
{
|
||
switch (TREE_CODE (arg))
|
||
{
|
||
case FUNCTION_DECL:
|
||
/* Nested functions are static, even though taking their address will
|
||
involve a trampoline as we unnest the nested function and create
|
||
the trampoline on the tree level. */
|
||
return arg;
|
||
|
||
case VAR_DECL:
|
||
return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
|
||
&& ! DECL_THREAD_LOCAL_P (arg)
|
||
&& ! DECL_DLLIMPORT_P (arg)
|
||
? arg : NULL);
|
||
|
||
case CONST_DECL:
|
||
return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
|
||
? arg : NULL);
|
||
|
||
case CONSTRUCTOR:
|
||
return TREE_STATIC (arg) ? arg : NULL;
|
||
|
||
case LABEL_DECL:
|
||
case STRING_CST:
|
||
return arg;
|
||
|
||
case COMPONENT_REF:
|
||
/* If the thing being referenced is not a field, then it is
|
||
something language specific. */
|
||
gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
|
||
|
||
/* If we are referencing a bitfield, we can't evaluate an
|
||
ADDR_EXPR at compile time and so it isn't a constant. */
|
||
if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
|
||
return NULL;
|
||
|
||
return staticp (TREE_OPERAND (arg, 0));
|
||
|
||
case BIT_FIELD_REF:
|
||
return NULL;
|
||
|
||
case INDIRECT_REF:
|
||
return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
|
||
&& TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
|
||
return staticp (TREE_OPERAND (arg, 0));
|
||
else
|
||
return NULL;
|
||
|
||
case COMPOUND_LITERAL_EXPR:
|
||
return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
|
||
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Return whether OP is a DECL whose address is function-invariant. */
|
||
|
||
bool
|
||
decl_address_invariant_p (const_tree op)
|
||
{
|
||
/* The conditions below are slightly less strict than the one in
|
||
staticp. */
|
||
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
case LABEL_DECL:
|
||
case FUNCTION_DECL:
|
||
return true;
|
||
|
||
case VAR_DECL:
|
||
if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
|
||
|| DECL_THREAD_LOCAL_P (op)
|
||
|| DECL_CONTEXT (op) == current_function_decl
|
||
|| decl_function_context (op) == current_function_decl)
|
||
return true;
|
||
break;
|
||
|
||
case CONST_DECL:
|
||
if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
|
||
|| decl_function_context (op) == current_function_decl)
|
||
return true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return whether OP is a DECL whose address is interprocedural-invariant. */
|
||
|
||
bool
|
||
decl_address_ip_invariant_p (const_tree op)
|
||
{
|
||
/* The conditions below are slightly less strict than the one in
|
||
staticp. */
|
||
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case LABEL_DECL:
|
||
case FUNCTION_DECL:
|
||
case STRING_CST:
|
||
return true;
|
||
|
||
case VAR_DECL:
|
||
if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
|
||
&& !DECL_DLLIMPORT_P (op))
|
||
|| DECL_THREAD_LOCAL_P (op))
|
||
return true;
|
||
break;
|
||
|
||
case CONST_DECL:
|
||
if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
|
||
return true;
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
|
||
/* Return true if T is function-invariant (internal function, does
|
||
not handle arithmetic; that's handled in skip_simple_arithmetic and
|
||
tree_invariant_p). */
|
||
|
||
static bool
|
||
tree_invariant_p_1 (tree t)
|
||
{
|
||
tree op;
|
||
|
||
if (TREE_CONSTANT (t)
|
||
|| (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
|
||
return true;
|
||
|
||
switch (TREE_CODE (t))
|
||
{
|
||
case SAVE_EXPR:
|
||
return true;
|
||
|
||
case ADDR_EXPR:
|
||
op = TREE_OPERAND (t, 0);
|
||
while (handled_component_p (op))
|
||
{
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
if (!tree_invariant_p (TREE_OPERAND (op, 1))
|
||
|| TREE_OPERAND (op, 2) != NULL_TREE
|
||
|| TREE_OPERAND (op, 3) != NULL_TREE)
|
||
return false;
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (op, 2) != NULL_TREE)
|
||
return false;
|
||
break;
|
||
|
||
default:;
|
||
}
|
||
op = TREE_OPERAND (op, 0);
|
||
}
|
||
|
||
return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Return true if T is function-invariant. */
|
||
|
||
bool
|
||
tree_invariant_p (tree t)
|
||
{
|
||
tree inner = skip_simple_arithmetic (t);
|
||
return tree_invariant_p_1 (inner);
|
||
}
|
||
|
||
/* Wrap a SAVE_EXPR around EXPR, if appropriate.
|
||
Do this to any expression which may be used in more than one place,
|
||
but must be evaluated only once.
|
||
|
||
Normally, expand_expr would reevaluate the expression each time.
|
||
Calling save_expr produces something that is evaluated and recorded
|
||
the first time expand_expr is called on it. Subsequent calls to
|
||
expand_expr just reuse the recorded value.
|
||
|
||
The call to expand_expr that generates code that actually computes
|
||
the value is the first call *at compile time*. Subsequent calls
|
||
*at compile time* generate code to use the saved value.
|
||
This produces correct result provided that *at run time* control
|
||
always flows through the insns made by the first expand_expr
|
||
before reaching the other places where the save_expr was evaluated.
|
||
You, the caller of save_expr, must make sure this is so.
|
||
|
||
Constants, and certain read-only nodes, are returned with no
|
||
SAVE_EXPR because that is safe. Expressions containing placeholders
|
||
are not touched; see tree.def for an explanation of what these
|
||
are used for. */
|
||
|
||
tree
|
||
save_expr (tree expr)
|
||
{
|
||
tree inner;
|
||
|
||
/* If the tree evaluates to a constant, then we don't want to hide that
|
||
fact (i.e. this allows further folding, and direct checks for constants).
|
||
However, a read-only object that has side effects cannot be bypassed.
|
||
Since it is no problem to reevaluate literals, we just return the
|
||
literal node. */
|
||
inner = skip_simple_arithmetic (expr);
|
||
if (TREE_CODE (inner) == ERROR_MARK)
|
||
return inner;
|
||
|
||
if (tree_invariant_p_1 (inner))
|
||
return expr;
|
||
|
||
/* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
|
||
it means that the size or offset of some field of an object depends on
|
||
the value within another field.
|
||
|
||
Note that it must not be the case that EXPR contains both a PLACEHOLDER_EXPR
|
||
and some variable since it would then need to be both evaluated once and
|
||
evaluated more than once. Front-ends must assure this case cannot
|
||
happen by surrounding any such subexpressions in their own SAVE_EXPR
|
||
and forcing evaluation at the proper time. */
|
||
if (contains_placeholder_p (inner))
|
||
return expr;
|
||
|
||
expr = build1_loc (EXPR_LOCATION (expr), SAVE_EXPR, TREE_TYPE (expr), expr);
|
||
|
||
/* This expression might be placed ahead of a jump to ensure that the
|
||
value was computed on both sides of the jump. So make sure it isn't
|
||
eliminated as dead. */
|
||
TREE_SIDE_EFFECTS (expr) = 1;
|
||
return expr;
|
||
}
|
||
|
||
/* Look inside EXPR into any simple arithmetic operations. Return the
|
||
outermost non-arithmetic or non-invariant node. */
|
||
|
||
tree
|
||
skip_simple_arithmetic (tree expr)
|
||
{
|
||
/* We don't care about whether this can be used as an lvalue in this
|
||
context. */
|
||
while (TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
expr = TREE_OPERAND (expr, 0);
|
||
|
||
/* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
|
||
a constant, it will be more efficient to not make another SAVE_EXPR since
|
||
it will allow better simplification and GCSE will be able to merge the
|
||
computations if they actually occur. */
|
||
while (true)
|
||
{
|
||
if (UNARY_CLASS_P (expr))
|
||
expr = TREE_OPERAND (expr, 0);
|
||
else if (BINARY_CLASS_P (expr))
|
||
{
|
||
if (tree_invariant_p (TREE_OPERAND (expr, 1)))
|
||
expr = TREE_OPERAND (expr, 0);
|
||
else if (tree_invariant_p (TREE_OPERAND (expr, 0)))
|
||
expr = TREE_OPERAND (expr, 1);
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Look inside EXPR into simple arithmetic operations involving constants.
|
||
Return the outermost non-arithmetic or non-constant node. */
|
||
|
||
tree
|
||
skip_simple_constant_arithmetic (tree expr)
|
||
{
|
||
while (TREE_CODE (expr) == NON_LVALUE_EXPR)
|
||
expr = TREE_OPERAND (expr, 0);
|
||
|
||
while (true)
|
||
{
|
||
if (UNARY_CLASS_P (expr))
|
||
expr = TREE_OPERAND (expr, 0);
|
||
else if (BINARY_CLASS_P (expr))
|
||
{
|
||
if (TREE_CONSTANT (TREE_OPERAND (expr, 1)))
|
||
expr = TREE_OPERAND (expr, 0);
|
||
else if (TREE_CONSTANT (TREE_OPERAND (expr, 0)))
|
||
expr = TREE_OPERAND (expr, 1);
|
||
else
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
return expr;
|
||
}
|
||
|
||
/* Return which tree structure is used by T. */
|
||
|
||
enum tree_node_structure_enum
|
||
tree_node_structure (const_tree t)
|
||
{
|
||
const enum tree_code code = TREE_CODE (t);
|
||
return tree_node_structure_for_code (code);
|
||
}
|
||
|
||
/* Set various status flags when building a CALL_EXPR object T. */
|
||
|
||
static void
|
||
process_call_operands (tree t)
|
||
{
|
||
bool side_effects = TREE_SIDE_EFFECTS (t);
|
||
bool read_only = false;
|
||
int i = call_expr_flags (t);
|
||
|
||
/* Calls have side-effects, except those to const or pure functions. */
|
||
if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
|
||
side_effects = true;
|
||
/* Propagate TREE_READONLY of arguments for const functions. */
|
||
if (i & ECF_CONST)
|
||
read_only = true;
|
||
|
||
if (!side_effects || read_only)
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
|
||
{
|
||
tree op = TREE_OPERAND (t, i);
|
||
if (op && TREE_SIDE_EFFECTS (op))
|
||
side_effects = true;
|
||
if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
|
||
read_only = false;
|
||
}
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_READONLY (t) = read_only;
|
||
}
|
||
|
||
/* Return true if EXP contains a PLACEHOLDER_EXPR, i.e. if it represents a
|
||
size or offset that depends on a field within a record. */
|
||
|
||
bool
|
||
contains_placeholder_p (const_tree exp)
|
||
{
|
||
enum tree_code code;
|
||
|
||
if (!exp)
|
||
return 0;
|
||
|
||
code = TREE_CODE (exp);
|
||
if (code == PLACEHOLDER_EXPR)
|
||
return 1;
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_reference:
|
||
/* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
|
||
position computations since they will be converted into a
|
||
WITH_RECORD_EXPR involving the reference, which will assume
|
||
here will be valid. */
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
|
||
|
||
case tcc_exceptional:
|
||
if (code == TREE_LIST)
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
|
||
break;
|
||
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_expression:
|
||
switch (code)
|
||
{
|
||
case COMPOUND_EXPR:
|
||
/* Ignoring the first operand isn't quite right, but works best. */
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
|
||
|
||
case COND_EXPR:
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
|
||
|
||
case SAVE_EXPR:
|
||
/* The save_expr function never wraps anything containing
|
||
a PLACEHOLDER_EXPR. */
|
||
return 0;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 1:
|
||
return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
|
||
case 2:
|
||
return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
|
||
|| CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
case tcc_vl_exp:
|
||
switch (code)
|
||
{
|
||
case CALL_EXPR:
|
||
{
|
||
const_tree arg;
|
||
const_call_expr_arg_iterator iter;
|
||
FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
|
||
if (CONTAINS_PLACEHOLDER_P (arg))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if any part of the structure of TYPE involves a PLACEHOLDER_EXPR
|
||
directly. This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and
|
||
field positions. */
|
||
|
||
static bool
|
||
type_contains_placeholder_1 (const_tree type)
|
||
{
|
||
/* If the size contains a placeholder or the parent type (component type in
|
||
the case of arrays) type involves a placeholder, this type does. */
|
||
if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
|
||
|| CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
|
||
|| (!POINTER_TYPE_P (type)
|
||
&& TREE_TYPE (type)
|
||
&& type_contains_placeholder_p (TREE_TYPE (type))))
|
||
return true;
|
||
|
||
/* Now do type-specific checks. Note that the last part of the check above
|
||
greatly limits what we have to do below. */
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case VOID_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
case POINTER_TYPE:
|
||
case OFFSET_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case METHOD_TYPE:
|
||
case FUNCTION_TYPE:
|
||
case VECTOR_TYPE:
|
||
case NULLPTR_TYPE:
|
||
return false;
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case FIXED_POINT_TYPE:
|
||
/* Here we just check the bounds. */
|
||
return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
|
||
|| CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
|
||
|
||
case ARRAY_TYPE:
|
||
/* We have already checked the component type above, so just check
|
||
the domain type. Flexible array members have a null domain. */
|
||
return TYPE_DOMAIN (type) ?
|
||
type_contains_placeholder_p (TYPE_DOMAIN (type)) : false;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
tree field;
|
||
|
||
for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
|
||
|| (TREE_CODE (type) == QUAL_UNION_TYPE
|
||
&& CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
|
||
|| type_contains_placeholder_p (TREE_TYPE (field))))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Wrapper around above function used to cache its result. */
|
||
|
||
bool
|
||
type_contains_placeholder_p (tree type)
|
||
{
|
||
bool result;
|
||
|
||
/* If the contains_placeholder_bits field has been initialized,
|
||
then we know the answer. */
|
||
if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
|
||
return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
|
||
|
||
/* Indicate that we've seen this type node, and the answer is false.
|
||
This is what we want to return if we run into recursion via fields. */
|
||
TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
|
||
|
||
/* Compute the real value. */
|
||
result = type_contains_placeholder_1 (type);
|
||
|
||
/* Store the real value. */
|
||
TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Push tree EXP onto vector QUEUE if it is not already present. */
|
||
|
||
static void
|
||
push_without_duplicates (tree exp, vec<tree> *queue)
|
||
{
|
||
unsigned int i;
|
||
tree iter;
|
||
|
||
FOR_EACH_VEC_ELT (*queue, i, iter)
|
||
if (simple_cst_equal (iter, exp) == 1)
|
||
break;
|
||
|
||
if (!iter)
|
||
queue->safe_push (exp);
|
||
}
|
||
|
||
/* Given a tree EXP, find all occurrences of references to fields
|
||
in a PLACEHOLDER_EXPR and place them in vector REFS without
|
||
duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
|
||
we assume here that EXP contains only arithmetic expressions
|
||
or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
|
||
argument list. */
|
||
|
||
void
|
||
find_placeholder_in_expr (tree exp, vec<tree> *refs)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
tree inner;
|
||
int i;
|
||
|
||
/* We handle TREE_LIST and COMPONENT_REF separately. */
|
||
if (code == TREE_LIST)
|
||
{
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
|
||
}
|
||
else if (code == COMPONENT_REF)
|
||
{
|
||
for (inner = TREE_OPERAND (exp, 0);
|
||
REFERENCE_CLASS_P (inner);
|
||
inner = TREE_OPERAND (inner, 0))
|
||
;
|
||
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
|
||
push_without_duplicates (exp, refs);
|
||
else
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
|
||
}
|
||
else
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_constant:
|
||
break;
|
||
|
||
case tcc_declaration:
|
||
/* Variables allocated to static storage can stay. */
|
||
if (!TREE_STATIC (exp))
|
||
push_without_duplicates (exp, refs);
|
||
break;
|
||
|
||
case tcc_expression:
|
||
/* This is the pattern built in ada/make_aligning_type. */
|
||
if (code == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
|
||
{
|
||
push_without_duplicates (exp, refs);
|
||
break;
|
||
}
|
||
|
||
/* Fall through. */
|
||
|
||
case tcc_exceptional:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_reference:
|
||
for (i = 0; i < TREE_CODE_LENGTH (code); i++)
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
|
||
break;
|
||
|
||
case tcc_vl_exp:
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
|
||
FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
}
|
||
|
||
/* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
|
||
return a tree with all occurrences of references to F in a
|
||
PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
|
||
CONST_DECLs. Note that we assume here that EXP contains only
|
||
arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
|
||
occurring only in their argument list. */
|
||
|
||
tree
|
||
substitute_in_expr (tree exp, tree f, tree r)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
tree op0, op1, op2, op3;
|
||
tree new_tree;
|
||
|
||
/* We handle TREE_LIST and COMPONENT_REF separately. */
|
||
if (code == TREE_LIST)
|
||
{
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
|
||
if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
|
||
return exp;
|
||
|
||
return tree_cons (TREE_PURPOSE (exp), op1, op0);
|
||
}
|
||
else if (code == COMPONENT_REF)
|
||
{
|
||
tree inner;
|
||
|
||
/* If this expression is getting a value from a PLACEHOLDER_EXPR
|
||
and it is the right field, replace it with R. */
|
||
for (inner = TREE_OPERAND (exp, 0);
|
||
REFERENCE_CLASS_P (inner);
|
||
inner = TREE_OPERAND (inner, 0))
|
||
;
|
||
|
||
/* The field. */
|
||
op1 = TREE_OPERAND (exp, 1);
|
||
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
|
||
return r;
|
||
|
||
/* If this expression hasn't been completed let, leave it alone. */
|
||
if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
|
||
return exp;
|
||
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new_tree
|
||
= fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
|
||
}
|
||
else
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_constant:
|
||
return exp;
|
||
|
||
case tcc_declaration:
|
||
if (exp == f)
|
||
return r;
|
||
else
|
||
return exp;
|
||
|
||
case tcc_expression:
|
||
if (exp == f)
|
||
return r;
|
||
|
||
/* Fall through. */
|
||
|
||
case tcc_exceptional:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_reference:
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 0:
|
||
return exp;
|
||
|
||
case 1:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
|
||
break;
|
||
|
||
case 2:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
|
||
return exp;
|
||
|
||
new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
|
||
break;
|
||
|
||
case 3:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
|
||
op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2))
|
||
return exp;
|
||
|
||
new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
|
||
break;
|
||
|
||
case 4:
|
||
op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
|
||
op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
|
||
op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
|
||
op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2)
|
||
&& op3 == TREE_OPERAND (exp, 3))
|
||
return exp;
|
||
|
||
new_tree
|
||
= fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case tcc_vl_exp:
|
||
{
|
||
int i;
|
||
|
||
new_tree = NULL_TREE;
|
||
|
||
/* If we are trying to replace F with a constant or with another
|
||
instance of one of the arguments of the call, inline back
|
||
functions which do nothing else than computing a value from
|
||
the arguments they are passed. This makes it possible to
|
||
fold partially or entirely the replacement expression. */
|
||
if (code == CALL_EXPR)
|
||
{
|
||
bool maybe_inline = false;
|
||
if (CONSTANT_CLASS_P (r))
|
||
maybe_inline = true;
|
||
else
|
||
for (i = 3; i < TREE_OPERAND_LENGTH (exp); i++)
|
||
if (operand_equal_p (TREE_OPERAND (exp, i), r, 0))
|
||
{
|
||
maybe_inline = true;
|
||
break;
|
||
}
|
||
if (maybe_inline)
|
||
{
|
||
tree t = maybe_inline_call_in_expr (exp);
|
||
if (t)
|
||
return SUBSTITUTE_IN_EXPR (t, f, r);
|
||
}
|
||
}
|
||
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
|
||
{
|
||
tree op = TREE_OPERAND (exp, i);
|
||
tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
|
||
if (new_op != op)
|
||
{
|
||
if (!new_tree)
|
||
new_tree = copy_node (exp);
|
||
TREE_OPERAND (new_tree, i) = new_op;
|
||
}
|
||
}
|
||
|
||
if (new_tree)
|
||
{
|
||
new_tree = fold (new_tree);
|
||
if (TREE_CODE (new_tree) == CALL_EXPR)
|
||
process_call_operands (new_tree);
|
||
}
|
||
else
|
||
return exp;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
TREE_READONLY (new_tree) |= TREE_READONLY (exp);
|
||
|
||
if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
|
||
TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
|
||
|
||
return new_tree;
|
||
}
|
||
|
||
/* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
|
||
for it within OBJ, a tree that is an object or a chain of references. */
|
||
|
||
tree
|
||
substitute_placeholder_in_expr (tree exp, tree obj)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
tree op0, op1, op2, op3;
|
||
tree new_tree;
|
||
|
||
/* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
|
||
in the chain of OBJ. */
|
||
if (code == PLACEHOLDER_EXPR)
|
||
{
|
||
tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
|
||
tree elt;
|
||
|
||
for (elt = obj; elt != 0;
|
||
elt = ((TREE_CODE (elt) == COMPOUND_EXPR
|
||
|| TREE_CODE (elt) == COND_EXPR)
|
||
? TREE_OPERAND (elt, 1)
|
||
: (REFERENCE_CLASS_P (elt)
|
||
|| UNARY_CLASS_P (elt)
|
||
|| BINARY_CLASS_P (elt)
|
||
|| VL_EXP_CLASS_P (elt)
|
||
|| EXPRESSION_CLASS_P (elt))
|
||
? TREE_OPERAND (elt, 0) : 0))
|
||
if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
|
||
return elt;
|
||
|
||
for (elt = obj; elt != 0;
|
||
elt = ((TREE_CODE (elt) == COMPOUND_EXPR
|
||
|| TREE_CODE (elt) == COND_EXPR)
|
||
? TREE_OPERAND (elt, 1)
|
||
: (REFERENCE_CLASS_P (elt)
|
||
|| UNARY_CLASS_P (elt)
|
||
|| BINARY_CLASS_P (elt)
|
||
|| VL_EXP_CLASS_P (elt)
|
||
|| EXPRESSION_CLASS_P (elt))
|
||
? TREE_OPERAND (elt, 0) : 0))
|
||
if (POINTER_TYPE_P (TREE_TYPE (elt))
|
||
&& (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
|
||
== need_type))
|
||
return fold_build1 (INDIRECT_REF, need_type, elt);
|
||
|
||
/* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
|
||
survives until RTL generation, there will be an error. */
|
||
return exp;
|
||
}
|
||
|
||
/* TREE_LIST is special because we need to look at TREE_VALUE
|
||
and TREE_CHAIN, not TREE_OPERANDS. */
|
||
else if (code == TREE_LIST)
|
||
{
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
|
||
if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
|
||
return exp;
|
||
|
||
return tree_cons (TREE_PURPOSE (exp), op1, op0);
|
||
}
|
||
else
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_constant:
|
||
case tcc_declaration:
|
||
return exp;
|
||
|
||
case tcc_exceptional:
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
case tcc_statement:
|
||
switch (TREE_CODE_LENGTH (code))
|
||
{
|
||
case 0:
|
||
return exp;
|
||
|
||
case 1:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
if (op0 == TREE_OPERAND (exp, 0))
|
||
return exp;
|
||
|
||
new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
|
||
break;
|
||
|
||
case 2:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
|
||
return exp;
|
||
|
||
new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
|
||
break;
|
||
|
||
case 3:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
|
||
op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2))
|
||
return exp;
|
||
|
||
new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
|
||
break;
|
||
|
||
case 4:
|
||
op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
|
||
op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
|
||
op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
|
||
op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
|
||
|
||
if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
|
||
&& op2 == TREE_OPERAND (exp, 2)
|
||
&& op3 == TREE_OPERAND (exp, 3))
|
||
return exp;
|
||
|
||
new_tree
|
||
= fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case tcc_vl_exp:
|
||
{
|
||
int i;
|
||
|
||
new_tree = NULL_TREE;
|
||
|
||
for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
|
||
{
|
||
tree op = TREE_OPERAND (exp, i);
|
||
tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
|
||
if (new_op != op)
|
||
{
|
||
if (!new_tree)
|
||
new_tree = copy_node (exp);
|
||
TREE_OPERAND (new_tree, i) = new_op;
|
||
}
|
||
}
|
||
|
||
if (new_tree)
|
||
{
|
||
new_tree = fold (new_tree);
|
||
if (TREE_CODE (new_tree) == CALL_EXPR)
|
||
process_call_operands (new_tree);
|
||
}
|
||
else
|
||
return exp;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
TREE_READONLY (new_tree) |= TREE_READONLY (exp);
|
||
|
||
if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
|
||
TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
|
||
|
||
return new_tree;
|
||
}
|
||
|
||
|
||
/* Subroutine of stabilize_reference; this is called for subtrees of
|
||
references. Any expression with side-effects must be put in a SAVE_EXPR
|
||
to ensure that it is only evaluated once.
|
||
|
||
We don't put SAVE_EXPR nodes around everything, because assigning very
|
||
simple expressions to temporaries causes us to miss good opportunities
|
||
for optimizations. Among other things, the opportunity to fold in the
|
||
addition of a constant into an addressing mode often gets lost, e.g.
|
||
"y[i+1] += x;". In general, we take the approach that we should not make
|
||
an assignment unless we are forced into it - i.e., that any non-side effect
|
||
operator should be allowed, and that cse should take care of coalescing
|
||
multiple utterances of the same expression should that prove fruitful. */
|
||
|
||
static tree
|
||
stabilize_reference_1 (tree e)
|
||
{
|
||
tree result;
|
||
enum tree_code code = TREE_CODE (e);
|
||
|
||
/* We cannot ignore const expressions because it might be a reference
|
||
to a const array but whose index contains side-effects. But we can
|
||
ignore things that are actual constant or that already have been
|
||
handled by this function. */
|
||
|
||
if (tree_invariant_p (e))
|
||
return e;
|
||
|
||
switch (TREE_CODE_CLASS (code))
|
||
{
|
||
case tcc_exceptional:
|
||
/* Always wrap STATEMENT_LIST into SAVE_EXPR, even if it doesn't
|
||
have side-effects. */
|
||
if (code == STATEMENT_LIST)
|
||
return save_expr (e);
|
||
/* FALLTHRU */
|
||
case tcc_type:
|
||
case tcc_declaration:
|
||
case tcc_comparison:
|
||
case tcc_statement:
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
case tcc_vl_exp:
|
||
/* If the expression has side-effects, then encase it in a SAVE_EXPR
|
||
so that it will only be evaluated once. */
|
||
/* The reference (r) and comparison (<) classes could be handled as
|
||
below, but it is generally faster to only evaluate them once. */
|
||
if (TREE_SIDE_EFFECTS (e))
|
||
return save_expr (e);
|
||
return e;
|
||
|
||
case tcc_constant:
|
||
/* Constants need no processing. In fact, we should never reach
|
||
here. */
|
||
return e;
|
||
|
||
case tcc_binary:
|
||
/* Division is slow and tends to be compiled with jumps,
|
||
especially the division by powers of 2 that is often
|
||
found inside of an array reference. So do it just once. */
|
||
if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
|
||
|| code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
|
||
|| code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
|
||
|| code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
|
||
return save_expr (e);
|
||
/* Recursively stabilize each operand. */
|
||
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (e, 1)));
|
||
break;
|
||
|
||
case tcc_unary:
|
||
/* Recursively stabilize each operand. */
|
||
result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
TREE_TYPE (result) = TREE_TYPE (e);
|
||
TREE_READONLY (result) = TREE_READONLY (e);
|
||
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
|
||
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Stabilize a reference so that we can use it any number of times
|
||
without causing its operands to be evaluated more than once.
|
||
Returns the stabilized reference. This works by means of save_expr,
|
||
so see the caveats in the comments about save_expr.
|
||
|
||
Also allows conversion expressions whose operands are references.
|
||
Any other kind of expression is returned unchanged. */
|
||
|
||
tree
|
||
stabilize_reference (tree ref)
|
||
{
|
||
tree result;
|
||
enum tree_code code = TREE_CODE (ref);
|
||
|
||
switch (code)
|
||
{
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case RESULT_DECL:
|
||
/* No action is needed in this case. */
|
||
return ref;
|
||
|
||
CASE_CONVERT:
|
||
case FLOAT_EXPR:
|
||
case FIX_TRUNC_EXPR:
|
||
result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
result = build_nt (INDIRECT_REF,
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 0)));
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
result = build_nt (COMPONENT_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
TREE_OPERAND (ref, 1), NULL_TREE);
|
||
break;
|
||
|
||
case BIT_FIELD_REF:
|
||
result = build_nt (BIT_FIELD_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
TREE_OPERAND (ref, 1), TREE_OPERAND (ref, 2));
|
||
REF_REVERSE_STORAGE_ORDER (result) = REF_REVERSE_STORAGE_ORDER (ref);
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
result = build_nt (ARRAY_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)),
|
||
TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
|
||
break;
|
||
|
||
case ARRAY_RANGE_REF:
|
||
result = build_nt (ARRAY_RANGE_REF,
|
||
stabilize_reference (TREE_OPERAND (ref, 0)),
|
||
stabilize_reference_1 (TREE_OPERAND (ref, 1)),
|
||
TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
|
||
break;
|
||
|
||
case COMPOUND_EXPR:
|
||
/* We cannot wrap the first expression in a SAVE_EXPR, as then
|
||
it wouldn't be ignored. This matters when dealing with
|
||
volatiles. */
|
||
return stabilize_reference_1 (ref);
|
||
|
||
/* If arg isn't a kind of lvalue we recognize, make no change.
|
||
Caller should recognize the error for an invalid lvalue. */
|
||
default:
|
||
return ref;
|
||
|
||
case ERROR_MARK:
|
||
return error_mark_node;
|
||
}
|
||
|
||
TREE_TYPE (result) = TREE_TYPE (ref);
|
||
TREE_READONLY (result) = TREE_READONLY (ref);
|
||
TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
|
||
TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
|
||
|
||
return result;
|
||
}
|
||
|
||
/* Low-level constructors for expressions. */
|
||
|
||
/* A helper function for build1 and constant folders. Set TREE_CONSTANT,
|
||
and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
|
||
|
||
void
|
||
recompute_tree_invariant_for_addr_expr (tree t)
|
||
{
|
||
tree node;
|
||
bool tc = true, se = false;
|
||
|
||
gcc_assert (TREE_CODE (t) == ADDR_EXPR);
|
||
|
||
/* We started out assuming this address is both invariant and constant, but
|
||
does not have side effects. Now go down any handled components and see if
|
||
any of them involve offsets that are either non-constant or non-invariant.
|
||
Also check for side-effects.
|
||
|
||
??? Note that this code makes no attempt to deal with the case where
|
||
taking the address of something causes a copy due to misalignment. */
|
||
|
||
#define UPDATE_FLAGS(NODE) \
|
||
do { tree _node = (NODE); \
|
||
if (_node && !TREE_CONSTANT (_node)) tc = false; \
|
||
if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
|
||
|
||
for (node = TREE_OPERAND (t, 0); handled_component_p (node);
|
||
node = TREE_OPERAND (node, 0))
|
||
{
|
||
/* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
|
||
array reference (probably made temporarily by the G++ front end),
|
||
so ignore all the operands. */
|
||
if ((TREE_CODE (node) == ARRAY_REF
|
||
|| TREE_CODE (node) == ARRAY_RANGE_REF)
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
|
||
{
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 1));
|
||
if (TREE_OPERAND (node, 2))
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 2));
|
||
if (TREE_OPERAND (node, 3))
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 3));
|
||
}
|
||
/* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
|
||
FIELD_DECL, apparently. The G++ front end can put something else
|
||
there, at least temporarily. */
|
||
else if (TREE_CODE (node) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
|
||
{
|
||
if (TREE_OPERAND (node, 2))
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 2));
|
||
}
|
||
}
|
||
|
||
node = lang_hooks.expr_to_decl (node, &tc, &se);
|
||
|
||
/* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
|
||
the address, since &(*a)->b is a form of addition. If it's a constant, the
|
||
address is constant too. If it's a decl, its address is constant if the
|
||
decl is static. Everything else is not constant and, furthermore,
|
||
taking the address of a volatile variable is not volatile. */
|
||
if (TREE_CODE (node) == INDIRECT_REF
|
||
|| TREE_CODE (node) == MEM_REF)
|
||
UPDATE_FLAGS (TREE_OPERAND (node, 0));
|
||
else if (CONSTANT_CLASS_P (node))
|
||
;
|
||
else if (DECL_P (node))
|
||
tc &= (staticp (node) != NULL_TREE);
|
||
else
|
||
{
|
||
tc = false;
|
||
se |= TREE_SIDE_EFFECTS (node);
|
||
}
|
||
|
||
|
||
TREE_CONSTANT (t) = tc;
|
||
TREE_SIDE_EFFECTS (t) = se;
|
||
#undef UPDATE_FLAGS
|
||
}
|
||
|
||
/* Build an expression of code CODE, data type TYPE, and operands as
|
||
specified. Expressions and reference nodes can be created this way.
|
||
Constants, decls, types and misc nodes cannot be.
|
||
|
||
We define 5 non-variadic functions, from 0 to 4 arguments. This is
|
||
enough for all extant tree codes. */
|
||
|
||
tree
|
||
build0 (enum tree_code code, tree tt MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 0);
|
||
|
||
t = make_node (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build1 (enum tree_code code, tree type, tree node MEM_STAT_DECL)
|
||
{
|
||
int length = sizeof (struct tree_exp);
|
||
tree t;
|
||
|
||
record_node_allocation_statistics (code, length);
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 1);
|
||
|
||
t = ggc_alloc_tree_node_stat (length PASS_MEM_STAT);
|
||
|
||
memset (t, 0, sizeof (struct tree_common));
|
||
|
||
TREE_SET_CODE (t, code);
|
||
|
||
TREE_TYPE (t) = type;
|
||
SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
|
||
TREE_OPERAND (t, 0) = node;
|
||
if (node && !TYPE_P (node))
|
||
{
|
||
TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
|
||
TREE_READONLY (t) = TREE_READONLY (node);
|
||
}
|
||
|
||
if (TREE_CODE_CLASS (code) == tcc_statement)
|
||
{
|
||
if (code != DEBUG_BEGIN_STMT)
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
}
|
||
else switch (code)
|
||
{
|
||
case VA_ARG_EXPR:
|
||
/* All of these have side-effects, no matter what their
|
||
operands are. */
|
||
TREE_SIDE_EFFECTS (t) = 1;
|
||
TREE_READONLY (t) = 0;
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
/* Whether a dereference is readonly has nothing to do with whether
|
||
its operand is readonly. */
|
||
TREE_READONLY (t) = 0;
|
||
break;
|
||
|
||
case ADDR_EXPR:
|
||
if (node)
|
||
recompute_tree_invariant_for_addr_expr (t);
|
||
break;
|
||
|
||
default:
|
||
if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
|
||
&& node && !TYPE_P (node)
|
||
&& TREE_CONSTANT (node))
|
||
TREE_CONSTANT (t) = 1;
|
||
if (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& node && TREE_THIS_VOLATILE (node))
|
||
TREE_THIS_VOLATILE (t) = 1;
|
||
break;
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
#define PROCESS_ARG(N) \
|
||
do { \
|
||
TREE_OPERAND (t, N) = arg##N; \
|
||
if (arg##N &&!TYPE_P (arg##N)) \
|
||
{ \
|
||
if (TREE_SIDE_EFFECTS (arg##N)) \
|
||
side_effects = 1; \
|
||
if (!TREE_READONLY (arg##N) \
|
||
&& !CONSTANT_CLASS_P (arg##N)) \
|
||
(void) (read_only = 0); \
|
||
if (!TREE_CONSTANT (arg##N)) \
|
||
(void) (constant = 0); \
|
||
} \
|
||
} while (0)
|
||
|
||
tree
|
||
build2 (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects, div_by_zero;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 2);
|
||
|
||
if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
|
||
&& arg0 && arg1 && tt && POINTER_TYPE_P (tt)
|
||
/* When sizetype precision doesn't match that of pointers
|
||
we need to be able to build explicit extensions or truncations
|
||
of the offset argument. */
|
||
&& TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
|
||
gcc_assert (TREE_CODE (arg0) == INTEGER_CST
|
||
&& TREE_CODE (arg1) == INTEGER_CST);
|
||
|
||
if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
|
||
gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
|
||
&& ptrofftype_p (TREE_TYPE (arg1)));
|
||
|
||
t = make_node (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
/* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
|
||
result based on those same flags for the arguments. But if the
|
||
arguments aren't really even `tree' expressions, we shouldn't be trying
|
||
to do this. */
|
||
|
||
/* Expressions without side effects may be constant if their
|
||
arguments are as well. */
|
||
constant = (TREE_CODE_CLASS (code) == tcc_comparison
|
||
|| TREE_CODE_CLASS (code) == tcc_binary);
|
||
read_only = 1;
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
switch (code)
|
||
{
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
div_by_zero = integer_zerop (arg1);
|
||
break;
|
||
default:
|
||
div_by_zero = false;
|
||
}
|
||
|
||
PROCESS_ARG (0);
|
||
PROCESS_ARG (1);
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
if (code == MEM_REF)
|
||
{
|
||
if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
|
||
{
|
||
tree o = TREE_OPERAND (arg0, 0);
|
||
TREE_READONLY (t) = TREE_READONLY (o);
|
||
TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
TREE_READONLY (t) = read_only;
|
||
/* Don't mark X / 0 as constant. */
|
||
TREE_CONSTANT (t) = constant && !div_by_zero;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
tree
|
||
build3 (enum tree_code code, tree tt, tree arg0, tree arg1,
|
||
tree arg2 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 3);
|
||
gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
|
||
|
||
t = make_node (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
read_only = 1;
|
||
|
||
/* As a special exception, if COND_EXPR has NULL branches, we
|
||
assume that it is a gimple statement and always consider
|
||
it to have side effects. */
|
||
if (code == COND_EXPR
|
||
&& tt == void_type_node
|
||
&& arg1 == NULL_TREE
|
||
&& arg2 == NULL_TREE)
|
||
side_effects = true;
|
||
else
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG (0);
|
||
PROCESS_ARG (1);
|
||
PROCESS_ARG (2);
|
||
|
||
if (code == COND_EXPR)
|
||
TREE_READONLY (t) = read_only;
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build4 (enum tree_code code, tree tt, tree arg0, tree arg1,
|
||
tree arg2, tree arg3 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 4);
|
||
|
||
t = make_node (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG (0);
|
||
PROCESS_ARG (1);
|
||
PROCESS_ARG (2);
|
||
PROCESS_ARG (3);
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
|
||
return t;
|
||
}
|
||
|
||
tree
|
||
build5 (enum tree_code code, tree tt, tree arg0, tree arg1,
|
||
tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
|
||
{
|
||
bool constant, read_only, side_effects;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE_LENGTH (code) == 5);
|
||
|
||
t = make_node (code PASS_MEM_STAT);
|
||
TREE_TYPE (t) = tt;
|
||
|
||
side_effects = TREE_SIDE_EFFECTS (t);
|
||
|
||
PROCESS_ARG (0);
|
||
PROCESS_ARG (1);
|
||
PROCESS_ARG (2);
|
||
PROCESS_ARG (3);
|
||
PROCESS_ARG (4);
|
||
|
||
TREE_SIDE_EFFECTS (t) = side_effects;
|
||
if (code == TARGET_MEM_REF)
|
||
{
|
||
if (arg0 && TREE_CODE (arg0) == ADDR_EXPR)
|
||
{
|
||
tree o = TREE_OPERAND (arg0, 0);
|
||
TREE_READONLY (t) = TREE_READONLY (o);
|
||
TREE_THIS_VOLATILE (t) = TREE_THIS_VOLATILE (o);
|
||
}
|
||
}
|
||
else
|
||
TREE_THIS_VOLATILE (t)
|
||
= (TREE_CODE_CLASS (code) == tcc_reference
|
||
&& arg0 && TREE_THIS_VOLATILE (arg0));
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
|
||
on the pointer PTR. */
|
||
|
||
tree
|
||
build_simple_mem_ref_loc (location_t loc, tree ptr)
|
||
{
|
||
poly_int64 offset = 0;
|
||
tree ptype = TREE_TYPE (ptr);
|
||
tree tem;
|
||
/* For convenience allow addresses that collapse to a simple base
|
||
and offset. */
|
||
if (TREE_CODE (ptr) == ADDR_EXPR
|
||
&& (handled_component_p (TREE_OPERAND (ptr, 0))
|
||
|| TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
|
||
{
|
||
ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
|
||
gcc_assert (ptr);
|
||
if (TREE_CODE (ptr) == MEM_REF)
|
||
{
|
||
offset += mem_ref_offset (ptr).force_shwi ();
|
||
ptr = TREE_OPERAND (ptr, 0);
|
||
}
|
||
else
|
||
ptr = build_fold_addr_expr (ptr);
|
||
gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
|
||
}
|
||
tem = build2 (MEM_REF, TREE_TYPE (ptype),
|
||
ptr, build_int_cst (ptype, offset));
|
||
SET_EXPR_LOCATION (tem, loc);
|
||
return tem;
|
||
}
|
||
|
||
/* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
|
||
|
||
poly_offset_int
|
||
mem_ref_offset (const_tree t)
|
||
{
|
||
return poly_offset_int::from (wi::to_poly_wide (TREE_OPERAND (t, 1)),
|
||
SIGNED);
|
||
}
|
||
|
||
/* Return an invariant ADDR_EXPR of type TYPE taking the address of BASE
|
||
offsetted by OFFSET units. */
|
||
|
||
tree
|
||
build_invariant_address (tree type, tree base, poly_int64 offset)
|
||
{
|
||
tree ref = fold_build2 (MEM_REF, TREE_TYPE (type),
|
||
build_fold_addr_expr (base),
|
||
build_int_cst (ptr_type_node, offset));
|
||
tree addr = build1 (ADDR_EXPR, type, ref);
|
||
recompute_tree_invariant_for_addr_expr (addr);
|
||
return addr;
|
||
}
|
||
|
||
/* Similar except don't specify the TREE_TYPE
|
||
and leave the TREE_SIDE_EFFECTS as 0.
|
||
It is permissible for arguments to be null,
|
||
or even garbage if their values do not matter. */
|
||
|
||
tree
|
||
build_nt (enum tree_code code, ...)
|
||
{
|
||
tree t;
|
||
int length;
|
||
int i;
|
||
va_list p;
|
||
|
||
gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
|
||
|
||
va_start (p, code);
|
||
|
||
t = make_node (code);
|
||
length = TREE_CODE_LENGTH (code);
|
||
|
||
for (i = 0; i < length; i++)
|
||
TREE_OPERAND (t, i) = va_arg (p, tree);
|
||
|
||
va_end (p);
|
||
return t;
|
||
}
|
||
|
||
/* Similar to build_nt, but for creating a CALL_EXPR object with a
|
||
tree vec. */
|
||
|
||
tree
|
||
build_nt_call_vec (tree fn, vec<tree, va_gc> *args)
|
||
{
|
||
tree ret, t;
|
||
unsigned int ix;
|
||
|
||
ret = build_vl_exp (CALL_EXPR, vec_safe_length (args) + 3);
|
||
CALL_EXPR_FN (ret) = fn;
|
||
CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
|
||
FOR_EACH_VEC_SAFE_ELT (args, ix, t)
|
||
CALL_EXPR_ARG (ret, ix) = t;
|
||
return ret;
|
||
}
|
||
|
||
/* Create a DECL_... node of code CODE, name NAME and data type TYPE.
|
||
We do NOT enter this node in any sort of symbol table.
|
||
|
||
LOC is the location of the decl.
|
||
|
||
layout_decl is used to set up the decl's storage layout.
|
||
Other slots are initialized to 0 or null pointers. */
|
||
|
||
tree
|
||
build_decl (location_t loc, enum tree_code code, tree name,
|
||
tree type MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
|
||
t = make_node (code PASS_MEM_STAT);
|
||
DECL_SOURCE_LOCATION (t) = loc;
|
||
|
||
/* if (type == error_mark_node)
|
||
type = integer_type_node; */
|
||
/* That is not done, deliberately, so that having error_mark_node
|
||
as the type can suppress useless errors in the use of this variable. */
|
||
|
||
DECL_NAME (t) = name;
|
||
TREE_TYPE (t) = type;
|
||
|
||
if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
|
||
layout_decl (t, 0);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Builds and returns function declaration with NAME and TYPE. */
|
||
|
||
tree
|
||
build_fn_decl (const char *name, tree type)
|
||
{
|
||
tree id = get_identifier (name);
|
||
tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
|
||
|
||
DECL_EXTERNAL (decl) = 1;
|
||
TREE_PUBLIC (decl) = 1;
|
||
DECL_ARTIFICIAL (decl) = 1;
|
||
TREE_NOTHROW (decl) = 1;
|
||
|
||
return decl;
|
||
}
|
||
|
||
vec<tree, va_gc> *all_translation_units;
|
||
|
||
/* Builds a new translation-unit decl with name NAME, queues it in the
|
||
global list of translation-unit decls and returns it. */
|
||
|
||
tree
|
||
build_translation_unit_decl (tree name)
|
||
{
|
||
tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
|
||
name, NULL_TREE);
|
||
TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
|
||
vec_safe_push (all_translation_units, tu);
|
||
return tu;
|
||
}
|
||
|
||
|
||
/* BLOCK nodes are used to represent the structure of binding contours
|
||
and declarations, once those contours have been exited and their contents
|
||
compiled. This information is used for outputting debugging info. */
|
||
|
||
tree
|
||
build_block (tree vars, tree subblocks, tree supercontext, tree chain)
|
||
{
|
||
tree block = make_node (BLOCK);
|
||
|
||
BLOCK_VARS (block) = vars;
|
||
BLOCK_SUBBLOCKS (block) = subblocks;
|
||
BLOCK_SUPERCONTEXT (block) = supercontext;
|
||
BLOCK_CHAIN (block) = chain;
|
||
return block;
|
||
}
|
||
|
||
|
||
/* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
|
||
|
||
LOC is the location to use in tree T. */
|
||
|
||
void
|
||
protected_set_expr_location (tree t, location_t loc)
|
||
{
|
||
if (CAN_HAVE_LOCATION_P (t))
|
||
SET_EXPR_LOCATION (t, loc);
|
||
}
|
||
|
||
/* Reset the expression *EXPR_P, a size or position.
|
||
|
||
??? We could reset all non-constant sizes or positions. But it's cheap
|
||
enough to not do so and refrain from adding workarounds to dwarf2out.c.
|
||
|
||
We need to reset self-referential sizes or positions because they cannot
|
||
be gimplified and thus can contain a CALL_EXPR after the gimplification
|
||
is finished, which will run afoul of LTO streaming. And they need to be
|
||
reset to something essentially dummy but not constant, so as to preserve
|
||
the properties of the object they are attached to. */
|
||
|
||
static inline void
|
||
free_lang_data_in_one_sizepos (tree *expr_p)
|
||
{
|
||
tree expr = *expr_p;
|
||
if (CONTAINS_PLACEHOLDER_P (expr))
|
||
*expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
|
||
}
|
||
|
||
|
||
/* Reset all the fields in a binfo node BINFO. We only keep
|
||
BINFO_VTABLE, which is used by gimple_fold_obj_type_ref. */
|
||
|
||
static void
|
||
free_lang_data_in_binfo (tree binfo)
|
||
{
|
||
unsigned i;
|
||
tree t;
|
||
|
||
gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
|
||
|
||
BINFO_VIRTUALS (binfo) = NULL_TREE;
|
||
BINFO_BASE_ACCESSES (binfo) = NULL;
|
||
BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
|
||
BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
|
||
BINFO_VPTR_FIELD (binfo) = NULL_TREE;
|
||
|
||
FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (binfo), i, t)
|
||
free_lang_data_in_binfo (t);
|
||
}
|
||
|
||
|
||
/* Reset all language specific information still present in TYPE. */
|
||
|
||
static void
|
||
free_lang_data_in_type (tree type)
|
||
{
|
||
gcc_assert (TYPE_P (type));
|
||
|
||
/* Give the FE a chance to remove its own data first. */
|
||
lang_hooks.free_lang_data (type);
|
||
|
||
TREE_LANG_FLAG_0 (type) = 0;
|
||
TREE_LANG_FLAG_1 (type) = 0;
|
||
TREE_LANG_FLAG_2 (type) = 0;
|
||
TREE_LANG_FLAG_3 (type) = 0;
|
||
TREE_LANG_FLAG_4 (type) = 0;
|
||
TREE_LANG_FLAG_5 (type) = 0;
|
||
TREE_LANG_FLAG_6 (type) = 0;
|
||
|
||
if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
/* Remove the const and volatile qualifiers from arguments. The
|
||
C++ front end removes them, but the C front end does not,
|
||
leading to false ODR violation errors when merging two
|
||
instances of the same function signature compiled by
|
||
different front ends. */
|
||
for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
|
||
{
|
||
tree arg_type = TREE_VALUE (p);
|
||
|
||
if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
|
||
{
|
||
int quals = TYPE_QUALS (arg_type)
|
||
& ~TYPE_QUAL_CONST
|
||
& ~TYPE_QUAL_VOLATILE;
|
||
TREE_VALUE (p) = build_qualified_type (arg_type, quals);
|
||
free_lang_data_in_type (TREE_VALUE (p));
|
||
}
|
||
/* C++ FE uses TREE_PURPOSE to store initial values. */
|
||
TREE_PURPOSE (p) = NULL;
|
||
}
|
||
}
|
||
else if (TREE_CODE (type) == METHOD_TYPE)
|
||
for (tree p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
|
||
/* C++ FE uses TREE_PURPOSE to store initial values. */
|
||
TREE_PURPOSE (p) = NULL;
|
||
else if (RECORD_OR_UNION_TYPE_P (type))
|
||
{
|
||
/* Remove members that are not FIELD_DECLs from the field list
|
||
of an aggregate. These occur in C++. */
|
||
for (tree *prev = &TYPE_FIELDS (type), member; (member = *prev);)
|
||
if (TREE_CODE (member) == FIELD_DECL)
|
||
prev = &DECL_CHAIN (member);
|
||
else
|
||
*prev = DECL_CHAIN (member);
|
||
|
||
TYPE_VFIELD (type) = NULL_TREE;
|
||
|
||
if (TYPE_BINFO (type))
|
||
{
|
||
free_lang_data_in_binfo (TYPE_BINFO (type));
|
||
/* We need to preserve link to bases and virtual table for all
|
||
polymorphic types to make devirtualization machinery working. */
|
||
if (!BINFO_VTABLE (TYPE_BINFO (type))
|
||
|| !flag_devirtualize)
|
||
TYPE_BINFO (type) = NULL;
|
||
}
|
||
}
|
||
else if (INTEGRAL_TYPE_P (type)
|
||
|| SCALAR_FLOAT_TYPE_P (type)
|
||
|| FIXED_POINT_TYPE_P (type))
|
||
{
|
||
free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
|
||
free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
|
||
}
|
||
|
||
TYPE_LANG_SLOT_1 (type) = NULL_TREE;
|
||
|
||
free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
|
||
free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
|
||
|
||
if (TYPE_CONTEXT (type)
|
||
&& TREE_CODE (TYPE_CONTEXT (type)) == BLOCK)
|
||
{
|
||
tree ctx = TYPE_CONTEXT (type);
|
||
do
|
||
{
|
||
ctx = BLOCK_SUPERCONTEXT (ctx);
|
||
}
|
||
while (ctx && TREE_CODE (ctx) == BLOCK);
|
||
TYPE_CONTEXT (type) = ctx;
|
||
}
|
||
|
||
/* Drop TYPE_DECLs in TYPE_NAME in favor of the identifier in the
|
||
TYPE_DECL if the type doesn't have linkage. */
|
||
if (! type_with_linkage_p (type))
|
||
{
|
||
TYPE_NAME (type) = TYPE_IDENTIFIER (type);
|
||
TYPE_STUB_DECL (type) = NULL;
|
||
}
|
||
}
|
||
|
||
|
||
/* Return true if DECL may need an assembler name to be set. */
|
||
|
||
static inline bool
|
||
need_assembler_name_p (tree decl)
|
||
{
|
||
/* We use DECL_ASSEMBLER_NAME to hold mangled type names for One Definition
|
||
Rule merging. This makes type_odr_p to return true on those types during
|
||
LTO and by comparing the mangled name, we can say what types are intended
|
||
to be equivalent across compilation unit.
|
||
|
||
We do not store names of type_in_anonymous_namespace_p.
|
||
|
||
Record, union and enumeration type have linkage that allows use
|
||
to check type_in_anonymous_namespace_p. We do not mangle compound types
|
||
that always can be compared structurally.
|
||
|
||
Similarly for builtin types, we compare properties of their main variant.
|
||
A special case are integer types where mangling do make differences
|
||
between char/signed char/unsigned char etc. Storing name for these makes
|
||
e.g. -fno-signed-char/-fsigned-char mismatches to be handled well.
|
||
See cp/mangle.c:write_builtin_type for details. */
|
||
|
||
if (flag_lto_odr_type_mering
|
||
&& TREE_CODE (decl) == TYPE_DECL
|
||
&& DECL_NAME (decl)
|
||
&& decl == TYPE_NAME (TREE_TYPE (decl))
|
||
&& TYPE_MAIN_VARIANT (TREE_TYPE (decl)) == TREE_TYPE (decl)
|
||
&& !TYPE_ARTIFICIAL (TREE_TYPE (decl))
|
||
&& (type_with_linkage_p (TREE_TYPE (decl))
|
||
|| TREE_CODE (TREE_TYPE (decl)) == INTEGER_TYPE)
|
||
&& !variably_modified_type_p (TREE_TYPE (decl), NULL_TREE))
|
||
return !DECL_ASSEMBLER_NAME_SET_P (decl);
|
||
/* Only FUNCTION_DECLs and VAR_DECLs are considered. */
|
||
if (!VAR_OR_FUNCTION_DECL_P (decl))
|
||
return false;
|
||
|
||
/* If DECL already has its assembler name set, it does not need a
|
||
new one. */
|
||
if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
|
||
|| DECL_ASSEMBLER_NAME_SET_P (decl))
|
||
return false;
|
||
|
||
/* Abstract decls do not need an assembler name. */
|
||
if (DECL_ABSTRACT_P (decl))
|
||
return false;
|
||
|
||
/* For VAR_DECLs, only static, public and external symbols need an
|
||
assembler name. */
|
||
if (VAR_P (decl)
|
||
&& !TREE_STATIC (decl)
|
||
&& !TREE_PUBLIC (decl)
|
||
&& !DECL_EXTERNAL (decl))
|
||
return false;
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
/* Do not set assembler name on builtins. Allow RTL expansion to
|
||
decide whether to expand inline or via a regular call. */
|
||
if (DECL_BUILT_IN (decl)
|
||
&& DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
|
||
return false;
|
||
|
||
/* Functions represented in the callgraph need an assembler name. */
|
||
if (cgraph_node::get (decl) != NULL)
|
||
return true;
|
||
|
||
/* Unused and not public functions don't need an assembler name. */
|
||
if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Reset all language specific information still present in symbol
|
||
DECL. */
|
||
|
||
static void
|
||
free_lang_data_in_decl (tree decl)
|
||
{
|
||
gcc_assert (DECL_P (decl));
|
||
|
||
/* Give the FE a chance to remove its own data first. */
|
||
lang_hooks.free_lang_data (decl);
|
||
|
||
TREE_LANG_FLAG_0 (decl) = 0;
|
||
TREE_LANG_FLAG_1 (decl) = 0;
|
||
TREE_LANG_FLAG_2 (decl) = 0;
|
||
TREE_LANG_FLAG_3 (decl) = 0;
|
||
TREE_LANG_FLAG_4 (decl) = 0;
|
||
TREE_LANG_FLAG_5 (decl) = 0;
|
||
TREE_LANG_FLAG_6 (decl) = 0;
|
||
|
||
free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
|
||
free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
|
||
if (TREE_CODE (decl) == FIELD_DECL)
|
||
{
|
||
DECL_FCONTEXT (decl) = NULL;
|
||
free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
|
||
if (TREE_CODE (DECL_CONTEXT (decl)) == QUAL_UNION_TYPE)
|
||
DECL_QUALIFIER (decl) = NULL_TREE;
|
||
}
|
||
|
||
if (TREE_CODE (decl) == FUNCTION_DECL)
|
||
{
|
||
struct cgraph_node *node;
|
||
if (!(node = cgraph_node::get (decl))
|
||
|| (!node->definition && !node->clones))
|
||
{
|
||
if (node)
|
||
node->release_body ();
|
||
else
|
||
{
|
||
release_function_body (decl);
|
||
DECL_ARGUMENTS (decl) = NULL;
|
||
DECL_RESULT (decl) = NULL;
|
||
DECL_INITIAL (decl) = error_mark_node;
|
||
}
|
||
}
|
||
if (gimple_has_body_p (decl) || (node && node->thunk.thunk_p))
|
||
{
|
||
tree t;
|
||
|
||
/* If DECL has a gimple body, then the context for its
|
||
arguments must be DECL. Otherwise, it doesn't really
|
||
matter, as we will not be emitting any code for DECL. In
|
||
general, there may be other instances of DECL created by
|
||
the front end and since PARM_DECLs are generally shared,
|
||
their DECL_CONTEXT changes as the replicas of DECL are
|
||
created. The only time where DECL_CONTEXT is important
|
||
is for the FUNCTION_DECLs that have a gimple body (since
|
||
the PARM_DECL will be used in the function's body). */
|
||
for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
|
||
DECL_CONTEXT (t) = decl;
|
||
if (!DECL_FUNCTION_SPECIFIC_TARGET (decl))
|
||
DECL_FUNCTION_SPECIFIC_TARGET (decl)
|
||
= target_option_default_node;
|
||
if (!DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl))
|
||
DECL_FUNCTION_SPECIFIC_OPTIMIZATION (decl)
|
||
= optimization_default_node;
|
||
}
|
||
|
||
/* DECL_SAVED_TREE holds the GENERIC representation for DECL.
|
||
At this point, it is not needed anymore. */
|
||
DECL_SAVED_TREE (decl) = NULL_TREE;
|
||
|
||
/* Clear the abstract origin if it refers to a method.
|
||
Otherwise dwarf2out.c will ICE as we splice functions out of
|
||
TYPE_FIELDS and thus the origin will not be output
|
||
correctly. */
|
||
if (DECL_ABSTRACT_ORIGIN (decl)
|
||
&& DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
|
||
&& RECORD_OR_UNION_TYPE_P
|
||
(DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
|
||
DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
|
||
|
||
/* Sometimes the C++ frontend doesn't manage to transform a temporary
|
||
DECL_VINDEX referring to itself into a vtable slot number as it
|
||
should. Happens with functions that are copied and then forgotten
|
||
about. Just clear it, it won't matter anymore. */
|
||
if (DECL_VINDEX (decl) && !tree_fits_shwi_p (DECL_VINDEX (decl)))
|
||
DECL_VINDEX (decl) = NULL_TREE;
|
||
}
|
||
else if (VAR_P (decl))
|
||
{
|
||
if ((DECL_EXTERNAL (decl)
|
||
&& (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
|
||
|| (decl_function_context (decl) && !TREE_STATIC (decl)))
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (decl) == TYPE_DECL)
|
||
{
|
||
DECL_VISIBILITY (decl) = VISIBILITY_DEFAULT;
|
||
DECL_VISIBILITY_SPECIFIED (decl) = 0;
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
DECL_ORIGINAL_TYPE (decl) = NULL_TREE;
|
||
}
|
||
else if (TREE_CODE (decl) == FIELD_DECL)
|
||
DECL_INITIAL (decl) = NULL_TREE;
|
||
else if (TREE_CODE (decl) == TRANSLATION_UNIT_DECL
|
||
&& DECL_INITIAL (decl)
|
||
&& TREE_CODE (DECL_INITIAL (decl)) == BLOCK)
|
||
{
|
||
/* Strip builtins from the translation-unit BLOCK. We still have targets
|
||
without builtin_decl_explicit support and also builtins are shared
|
||
nodes and thus we can't use TREE_CHAIN in multiple lists. */
|
||
tree *nextp = &BLOCK_VARS (DECL_INITIAL (decl));
|
||
while (*nextp)
|
||
{
|
||
tree var = *nextp;
|
||
if (TREE_CODE (var) == FUNCTION_DECL
|
||
&& DECL_BUILT_IN (var))
|
||
*nextp = TREE_CHAIN (var);
|
||
else
|
||
nextp = &TREE_CHAIN (var);
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Data used when collecting DECLs and TYPEs for language data removal. */
|
||
|
||
struct free_lang_data_d
|
||
{
|
||
free_lang_data_d () : decls (100), types (100) {}
|
||
|
||
/* Worklist to avoid excessive recursion. */
|
||
auto_vec<tree> worklist;
|
||
|
||
/* Set of traversed objects. Used to avoid duplicate visits. */
|
||
hash_set<tree> pset;
|
||
|
||
/* Array of symbols to process with free_lang_data_in_decl. */
|
||
auto_vec<tree> decls;
|
||
|
||
/* Array of types to process with free_lang_data_in_type. */
|
||
auto_vec<tree> types;
|
||
};
|
||
|
||
|
||
/* Add type or decl T to one of the list of tree nodes that need their
|
||
language data removed. The lists are held inside FLD. */
|
||
|
||
static void
|
||
add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
|
||
{
|
||
if (DECL_P (t))
|
||
fld->decls.safe_push (t);
|
||
else if (TYPE_P (t))
|
||
fld->types.safe_push (t);
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Push tree node T into FLD->WORKLIST. */
|
||
|
||
static inline void
|
||
fld_worklist_push (tree t, struct free_lang_data_d *fld)
|
||
{
|
||
if (t && !is_lang_specific (t) && !fld->pset.contains (t))
|
||
fld->worklist.safe_push ((t));
|
||
}
|
||
|
||
|
||
/* Operand callback helper for free_lang_data_in_node. *TP is the
|
||
subtree operand being considered. */
|
||
|
||
static tree
|
||
find_decls_types_r (tree *tp, int *ws, void *data)
|
||
{
|
||
tree t = *tp;
|
||
struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
|
||
|
||
if (TREE_CODE (t) == TREE_LIST)
|
||
return NULL_TREE;
|
||
|
||
/* Language specific nodes will be removed, so there is no need
|
||
to gather anything under them. */
|
||
if (is_lang_specific (t))
|
||
{
|
||
*ws = 0;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (DECL_P (t))
|
||
{
|
||
/* Note that walk_tree does not traverse every possible field in
|
||
decls, so we have to do our own traversals here. */
|
||
add_tree_to_fld_list (t, fld);
|
||
|
||
fld_worklist_push (DECL_NAME (t), fld);
|
||
fld_worklist_push (DECL_CONTEXT (t), fld);
|
||
fld_worklist_push (DECL_SIZE (t), fld);
|
||
fld_worklist_push (DECL_SIZE_UNIT (t), fld);
|
||
|
||
/* We are going to remove everything under DECL_INITIAL for
|
||
TYPE_DECLs. No point walking them. */
|
||
if (TREE_CODE (t) != TYPE_DECL)
|
||
fld_worklist_push (DECL_INITIAL (t), fld);
|
||
|
||
fld_worklist_push (DECL_ATTRIBUTES (t), fld);
|
||
fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
|
||
|
||
if (TREE_CODE (t) == FUNCTION_DECL)
|
||
{
|
||
fld_worklist_push (DECL_ARGUMENTS (t), fld);
|
||
fld_worklist_push (DECL_RESULT (t), fld);
|
||
}
|
||
else if (TREE_CODE (t) == FIELD_DECL)
|
||
{
|
||
fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
|
||
fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
|
||
fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
|
||
fld_worklist_push (DECL_FCONTEXT (t), fld);
|
||
}
|
||
|
||
if ((VAR_P (t) || TREE_CODE (t) == PARM_DECL)
|
||
&& DECL_HAS_VALUE_EXPR_P (t))
|
||
fld_worklist_push (DECL_VALUE_EXPR (t), fld);
|
||
|
||
if (TREE_CODE (t) != FIELD_DECL
|
||
&& TREE_CODE (t) != TYPE_DECL)
|
||
fld_worklist_push (TREE_CHAIN (t), fld);
|
||
*ws = 0;
|
||
}
|
||
else if (TYPE_P (t))
|
||
{
|
||
/* Note that walk_tree does not traverse every possible field in
|
||
types, so we have to do our own traversals here. */
|
||
add_tree_to_fld_list (t, fld);
|
||
|
||
if (!RECORD_OR_UNION_TYPE_P (t))
|
||
fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
|
||
fld_worklist_push (TYPE_SIZE (t), fld);
|
||
fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
|
||
fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
|
||
fld_worklist_push (TYPE_POINTER_TO (t), fld);
|
||
fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
|
||
fld_worklist_push (TYPE_NAME (t), fld);
|
||
/* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
|
||
them and thus do not and want not to reach unused pointer types
|
||
this way. */
|
||
if (!POINTER_TYPE_P (t))
|
||
fld_worklist_push (TYPE_MIN_VALUE_RAW (t), fld);
|
||
/* TYPE_MAX_VALUE_RAW is TYPE_BINFO for record types. */
|
||
if (!RECORD_OR_UNION_TYPE_P (t))
|
||
fld_worklist_push (TYPE_MAX_VALUE_RAW (t), fld);
|
||
fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
|
||
/* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
|
||
do not and want not to reach unused variants this way. */
|
||
if (TYPE_CONTEXT (t))
|
||
{
|
||
tree ctx = TYPE_CONTEXT (t);
|
||
/* We adjust BLOCK TYPE_CONTEXTs to the innermost non-BLOCK one.
|
||
So push that instead. */
|
||
while (ctx && TREE_CODE (ctx) == BLOCK)
|
||
ctx = BLOCK_SUPERCONTEXT (ctx);
|
||
fld_worklist_push (ctx, fld);
|
||
}
|
||
/* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
|
||
and want not to reach unused types this way. */
|
||
|
||
if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
|
||
{
|
||
unsigned i;
|
||
tree tem;
|
||
FOR_EACH_VEC_ELT (*BINFO_BASE_BINFOS (TYPE_BINFO (t)), i, tem)
|
||
fld_worklist_push (TREE_TYPE (tem), fld);
|
||
fld_worklist_push (BINFO_TYPE (TYPE_BINFO (t)), fld);
|
||
fld_worklist_push (BINFO_VTABLE (TYPE_BINFO (t)), fld);
|
||
}
|
||
if (RECORD_OR_UNION_TYPE_P (t))
|
||
{
|
||
tree tem;
|
||
/* Push all TYPE_FIELDS - there can be interleaving interesting
|
||
and non-interesting things. */
|
||
tem = TYPE_FIELDS (t);
|
||
while (tem)
|
||
{
|
||
if (TREE_CODE (tem) == FIELD_DECL
|
||
|| (TREE_CODE (tem) == TYPE_DECL
|
||
&& !DECL_IGNORED_P (tem)
|
||
&& debug_info_level > DINFO_LEVEL_TERSE
|
||
&& !is_redundant_typedef (tem)))
|
||
fld_worklist_push (tem, fld);
|
||
tem = TREE_CHAIN (tem);
|
||
}
|
||
}
|
||
if (FUNC_OR_METHOD_TYPE_P (t))
|
||
fld_worklist_push (TYPE_METHOD_BASETYPE (t), fld);
|
||
|
||
fld_worklist_push (TYPE_STUB_DECL (t), fld);
|
||
*ws = 0;
|
||
}
|
||
else if (TREE_CODE (t) == BLOCK)
|
||
{
|
||
for (tree *tem = &BLOCK_VARS (t); *tem; )
|
||
{
|
||
if (TREE_CODE (*tem) != VAR_DECL
|
||
|| !auto_var_in_fn_p (*tem, DECL_CONTEXT (*tem)))
|
||
{
|
||
gcc_assert (TREE_CODE (*tem) != RESULT_DECL
|
||
&& TREE_CODE (*tem) != PARM_DECL);
|
||
*tem = TREE_CHAIN (*tem);
|
||
}
|
||
else
|
||
{
|
||
fld_worklist_push (*tem, fld);
|
||
tem = &TREE_CHAIN (*tem);
|
||
}
|
||
}
|
||
for (tree tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
|
||
fld_worklist_push (tem, fld);
|
||
fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
|
||
}
|
||
|
||
if (TREE_CODE (t) != IDENTIFIER_NODE
|
||
&& CODE_CONTAINS_STRUCT (TREE_CODE (t), TS_TYPED))
|
||
fld_worklist_push (TREE_TYPE (t), fld);
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
/* Find decls and types in T. */
|
||
|
||
static void
|
||
find_decls_types (tree t, struct free_lang_data_d *fld)
|
||
{
|
||
while (1)
|
||
{
|
||
if (!fld->pset.contains (t))
|
||
walk_tree (&t, find_decls_types_r, fld, &fld->pset);
|
||
if (fld->worklist.is_empty ())
|
||
break;
|
||
t = fld->worklist.pop ();
|
||
}
|
||
}
|
||
|
||
/* Translate all the types in LIST with the corresponding runtime
|
||
types. */
|
||
|
||
static tree
|
||
get_eh_types_for_runtime (tree list)
|
||
{
|
||
tree head, prev;
|
||
|
||
if (list == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
|
||
prev = head;
|
||
list = TREE_CHAIN (list);
|
||
while (list)
|
||
{
|
||
tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
|
||
TREE_CHAIN (prev) = n;
|
||
prev = TREE_CHAIN (prev);
|
||
list = TREE_CHAIN (list);
|
||
}
|
||
|
||
return head;
|
||
}
|
||
|
||
|
||
/* Find decls and types referenced in EH region R and store them in
|
||
FLD->DECLS and FLD->TYPES. */
|
||
|
||
static void
|
||
find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
|
||
{
|
||
switch (r->type)
|
||
{
|
||
case ERT_CLEANUP:
|
||
break;
|
||
|
||
case ERT_TRY:
|
||
{
|
||
eh_catch c;
|
||
|
||
/* The types referenced in each catch must first be changed to the
|
||
EH types used at runtime. This removes references to FE types
|
||
in the region. */
|
||
for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
|
||
{
|
||
c->type_list = get_eh_types_for_runtime (c->type_list);
|
||
walk_tree (&c->type_list, find_decls_types_r, fld, &fld->pset);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ERT_ALLOWED_EXCEPTIONS:
|
||
r->u.allowed.type_list
|
||
= get_eh_types_for_runtime (r->u.allowed.type_list);
|
||
walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, &fld->pset);
|
||
break;
|
||
|
||
case ERT_MUST_NOT_THROW:
|
||
walk_tree (&r->u.must_not_throw.failure_decl,
|
||
find_decls_types_r, fld, &fld->pset);
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
/* Find decls and types referenced in cgraph node N and store them in
|
||
FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
|
||
look for *every* kind of DECL and TYPE node reachable from N,
|
||
including those embedded inside types and decls (i.e,, TYPE_DECLs,
|
||
NAMESPACE_DECLs, etc). */
|
||
|
||
static void
|
||
find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
|
||
{
|
||
basic_block bb;
|
||
struct function *fn;
|
||
unsigned ix;
|
||
tree t;
|
||
|
||
find_decls_types (n->decl, fld);
|
||
|
||
if (!gimple_has_body_p (n->decl))
|
||
return;
|
||
|
||
gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
|
||
|
||
fn = DECL_STRUCT_FUNCTION (n->decl);
|
||
|
||
/* Traverse locals. */
|
||
FOR_EACH_LOCAL_DECL (fn, ix, t)
|
||
find_decls_types (t, fld);
|
||
|
||
/* Traverse EH regions in FN. */
|
||
{
|
||
eh_region r;
|
||
FOR_ALL_EH_REGION_FN (r, fn)
|
||
find_decls_types_in_eh_region (r, fld);
|
||
}
|
||
|
||
/* Traverse every statement in FN. */
|
||
FOR_EACH_BB_FN (bb, fn)
|
||
{
|
||
gphi_iterator psi;
|
||
gimple_stmt_iterator si;
|
||
unsigned i;
|
||
|
||
for (psi = gsi_start_phis (bb); !gsi_end_p (psi); gsi_next (&psi))
|
||
{
|
||
gphi *phi = psi.phi ();
|
||
|
||
for (i = 0; i < gimple_phi_num_args (phi); i++)
|
||
{
|
||
tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
|
||
find_decls_types (*arg_p, fld);
|
||
}
|
||
}
|
||
|
||
for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
|
||
{
|
||
gimple *stmt = gsi_stmt (si);
|
||
|
||
if (is_gimple_call (stmt))
|
||
find_decls_types (gimple_call_fntype (stmt), fld);
|
||
|
||
for (i = 0; i < gimple_num_ops (stmt); i++)
|
||
{
|
||
tree arg = gimple_op (stmt, i);
|
||
find_decls_types (arg, fld);
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* Find decls and types referenced in varpool node N and store them in
|
||
FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
|
||
look for *every* kind of DECL and TYPE node reachable from N,
|
||
including those embedded inside types and decls (i.e,, TYPE_DECLs,
|
||
NAMESPACE_DECLs, etc). */
|
||
|
||
static void
|
||
find_decls_types_in_var (varpool_node *v, struct free_lang_data_d *fld)
|
||
{
|
||
find_decls_types (v->decl, fld);
|
||
}
|
||
|
||
/* If T needs an assembler name, have one created for it. */
|
||
|
||
void
|
||
assign_assembler_name_if_needed (tree t)
|
||
{
|
||
if (need_assembler_name_p (t))
|
||
{
|
||
/* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
|
||
diagnostics that use input_location to show locus
|
||
information. The problem here is that, at this point,
|
||
input_location is generally anchored to the end of the file
|
||
(since the parser is long gone), so we don't have a good
|
||
position to pin it to.
|
||
|
||
To alleviate this problem, this uses the location of T's
|
||
declaration. Examples of this are
|
||
testsuite/g++.dg/template/cond2.C and
|
||
testsuite/g++.dg/template/pr35240.C. */
|
||
location_t saved_location = input_location;
|
||
input_location = DECL_SOURCE_LOCATION (t);
|
||
|
||
decl_assembler_name (t);
|
||
|
||
input_location = saved_location;
|
||
}
|
||
}
|
||
|
||
|
||
/* Free language specific information for every operand and expression
|
||
in every node of the call graph. This process operates in three stages:
|
||
|
||
1- Every callgraph node and varpool node is traversed looking for
|
||
decls and types embedded in them. This is a more exhaustive
|
||
search than that done by find_referenced_vars, because it will
|
||
also collect individual fields, decls embedded in types, etc.
|
||
|
||
2- All the decls found are sent to free_lang_data_in_decl.
|
||
|
||
3- All the types found are sent to free_lang_data_in_type.
|
||
|
||
The ordering between decls and types is important because
|
||
free_lang_data_in_decl sets assembler names, which includes
|
||
mangling. So types cannot be freed up until assembler names have
|
||
been set up. */
|
||
|
||
static void
|
||
free_lang_data_in_cgraph (void)
|
||
{
|
||
struct cgraph_node *n;
|
||
varpool_node *v;
|
||
struct free_lang_data_d fld;
|
||
tree t;
|
||
unsigned i;
|
||
alias_pair *p;
|
||
|
||
/* Find decls and types in the body of every function in the callgraph. */
|
||
FOR_EACH_FUNCTION (n)
|
||
find_decls_types_in_node (n, &fld);
|
||
|
||
FOR_EACH_VEC_SAFE_ELT (alias_pairs, i, p)
|
||
find_decls_types (p->decl, &fld);
|
||
|
||
/* Find decls and types in every varpool symbol. */
|
||
FOR_EACH_VARIABLE (v)
|
||
find_decls_types_in_var (v, &fld);
|
||
|
||
/* Set the assembler name on every decl found. We need to do this
|
||
now because free_lang_data_in_decl will invalidate data needed
|
||
for mangling. This breaks mangling on interdependent decls. */
|
||
FOR_EACH_VEC_ELT (fld.decls, i, t)
|
||
assign_assembler_name_if_needed (t);
|
||
|
||
/* Traverse every decl found freeing its language data. */
|
||
FOR_EACH_VEC_ELT (fld.decls, i, t)
|
||
free_lang_data_in_decl (t);
|
||
|
||
/* Traverse every type found freeing its language data. */
|
||
FOR_EACH_VEC_ELT (fld.types, i, t)
|
||
free_lang_data_in_type (t);
|
||
if (flag_checking)
|
||
{
|
||
FOR_EACH_VEC_ELT (fld.types, i, t)
|
||
verify_type (t);
|
||
}
|
||
}
|
||
|
||
|
||
/* Free resources that are used by FE but are not needed once they are done. */
|
||
|
||
static unsigned
|
||
free_lang_data (void)
|
||
{
|
||
unsigned i;
|
||
|
||
/* If we are the LTO frontend we have freed lang-specific data already. */
|
||
if (in_lto_p
|
||
|| (!flag_generate_lto && !flag_generate_offload))
|
||
return 0;
|
||
|
||
/* Provide a dummy TRANSLATION_UNIT_DECL if the FE failed to provide one. */
|
||
if (vec_safe_is_empty (all_translation_units))
|
||
build_translation_unit_decl (NULL_TREE);
|
||
|
||
/* Allocate and assign alias sets to the standard integer types
|
||
while the slots are still in the way the frontends generated them. */
|
||
for (i = 0; i < itk_none; ++i)
|
||
if (integer_types[i])
|
||
TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
|
||
|
||
/* Traverse the IL resetting language specific information for
|
||
operands, expressions, etc. */
|
||
free_lang_data_in_cgraph ();
|
||
|
||
/* Create gimple variants for common types. */
|
||
for (unsigned i = 0;
|
||
i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
|
||
++i)
|
||
builtin_structptr_types[i].node = builtin_structptr_types[i].base;
|
||
|
||
/* Reset some langhooks. Do not reset types_compatible_p, it may
|
||
still be used indirectly via the get_alias_set langhook. */
|
||
lang_hooks.dwarf_name = lhd_dwarf_name;
|
||
lang_hooks.decl_printable_name = gimple_decl_printable_name;
|
||
lang_hooks.gimplify_expr = lhd_gimplify_expr;
|
||
|
||
/* We do not want the default decl_assembler_name implementation,
|
||
rather if we have fixed everything we want a wrapper around it
|
||
asserting that all non-local symbols already got their assembler
|
||
name and only produce assembler names for local symbols. Or rather
|
||
make sure we never call decl_assembler_name on local symbols and
|
||
devise a separate, middle-end private scheme for it. */
|
||
|
||
/* Reset diagnostic machinery. */
|
||
tree_diagnostics_defaults (global_dc);
|
||
|
||
rebuild_type_inheritance_graph ();
|
||
|
||
return 0;
|
||
}
|
||
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_ipa_free_lang_data =
|
||
{
|
||
SIMPLE_IPA_PASS, /* type */
|
||
"*free_lang_data", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_IPA_FREE_LANG_DATA, /* tv_id */
|
||
0, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
0, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_ipa_free_lang_data : public simple_ipa_opt_pass
|
||
{
|
||
public:
|
||
pass_ipa_free_lang_data (gcc::context *ctxt)
|
||
: simple_ipa_opt_pass (pass_data_ipa_free_lang_data, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual unsigned int execute (function *) { return free_lang_data (); }
|
||
|
||
}; // class pass_ipa_free_lang_data
|
||
|
||
} // anon namespace
|
||
|
||
simple_ipa_opt_pass *
|
||
make_pass_ipa_free_lang_data (gcc::context *ctxt)
|
||
{
|
||
return new pass_ipa_free_lang_data (ctxt);
|
||
}
|
||
|
||
/* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
|
||
of the various TYPE_QUAL values. */
|
||
|
||
static void
|
||
set_type_quals (tree type, int type_quals)
|
||
{
|
||
TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
|
||
TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
|
||
TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
|
||
TYPE_ATOMIC (type) = (type_quals & TYPE_QUAL_ATOMIC) != 0;
|
||
TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
|
||
}
|
||
|
||
/* Returns true iff CAND and BASE have equivalent language-specific
|
||
qualifiers. */
|
||
|
||
bool
|
||
check_lang_type (const_tree cand, const_tree base)
|
||
{
|
||
if (lang_hooks.types.type_hash_eq == NULL)
|
||
return true;
|
||
/* type_hash_eq currently only applies to these types. */
|
||
if (TREE_CODE (cand) != FUNCTION_TYPE
|
||
&& TREE_CODE (cand) != METHOD_TYPE)
|
||
return true;
|
||
return lang_hooks.types.type_hash_eq (cand, base);
|
||
}
|
||
|
||
/* Returns true iff unqualified CAND and BASE are equivalent. */
|
||
|
||
bool
|
||
check_base_type (const_tree cand, const_tree base)
|
||
{
|
||
return (TYPE_NAME (cand) == TYPE_NAME (base)
|
||
/* Apparently this is needed for Objective-C. */
|
||
&& TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
|
||
/* Check alignment. */
|
||
&& TYPE_ALIGN (cand) == TYPE_ALIGN (base)
|
||
&& attribute_list_equal (TYPE_ATTRIBUTES (cand),
|
||
TYPE_ATTRIBUTES (base)));
|
||
}
|
||
|
||
/* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
|
||
|
||
bool
|
||
check_qualified_type (const_tree cand, const_tree base, int type_quals)
|
||
{
|
||
return (TYPE_QUALS (cand) == type_quals
|
||
&& check_base_type (cand, base)
|
||
&& check_lang_type (cand, base));
|
||
}
|
||
|
||
/* Returns true iff CAND is equivalent to BASE with ALIGN. */
|
||
|
||
static bool
|
||
check_aligned_type (const_tree cand, const_tree base, unsigned int align)
|
||
{
|
||
return (TYPE_QUALS (cand) == TYPE_QUALS (base)
|
||
&& TYPE_NAME (cand) == TYPE_NAME (base)
|
||
/* Apparently this is needed for Objective-C. */
|
||
&& TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
|
||
/* Check alignment. */
|
||
&& TYPE_ALIGN (cand) == align
|
||
&& attribute_list_equal (TYPE_ATTRIBUTES (cand),
|
||
TYPE_ATTRIBUTES (base))
|
||
&& check_lang_type (cand, base));
|
||
}
|
||
|
||
/* This function checks to see if TYPE matches the size one of the built-in
|
||
atomic types, and returns that core atomic type. */
|
||
|
||
static tree
|
||
find_atomic_core_type (tree type)
|
||
{
|
||
tree base_atomic_type;
|
||
|
||
/* Only handle complete types. */
|
||
if (!tree_fits_uhwi_p (TYPE_SIZE (type)))
|
||
return NULL_TREE;
|
||
|
||
switch (tree_to_uhwi (TYPE_SIZE (type)))
|
||
{
|
||
case 8:
|
||
base_atomic_type = atomicQI_type_node;
|
||
break;
|
||
|
||
case 16:
|
||
base_atomic_type = atomicHI_type_node;
|
||
break;
|
||
|
||
case 32:
|
||
base_atomic_type = atomicSI_type_node;
|
||
break;
|
||
|
||
case 64:
|
||
base_atomic_type = atomicDI_type_node;
|
||
break;
|
||
|
||
case 128:
|
||
base_atomic_type = atomicTI_type_node;
|
||
break;
|
||
|
||
default:
|
||
base_atomic_type = NULL_TREE;
|
||
}
|
||
|
||
return base_atomic_type;
|
||
}
|
||
|
||
/* Return a version of the TYPE, qualified as indicated by the
|
||
TYPE_QUALS, if one exists. If no qualified version exists yet,
|
||
return NULL_TREE. */
|
||
|
||
tree
|
||
get_qualified_type (tree type, int type_quals)
|
||
{
|
||
tree t;
|
||
|
||
if (TYPE_QUALS (type) == type_quals)
|
||
return type;
|
||
|
||
/* Search the chain of variants to see if there is already one there just
|
||
like the one we need to have. If so, use that existing one. We must
|
||
preserve the TYPE_NAME, since there is code that depends on this. */
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (check_qualified_type (t, type, type_quals))
|
||
return t;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Like get_qualified_type, but creates the type if it does not
|
||
exist. This function never returns NULL_TREE. */
|
||
|
||
tree
|
||
build_qualified_type (tree type, int type_quals MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
|
||
/* See if we already have the appropriate qualified variant. */
|
||
t = get_qualified_type (type, type_quals);
|
||
|
||
/* If not, build it. */
|
||
if (!t)
|
||
{
|
||
t = build_variant_type_copy (type PASS_MEM_STAT);
|
||
set_type_quals (t, type_quals);
|
||
|
||
if (((type_quals & TYPE_QUAL_ATOMIC) == TYPE_QUAL_ATOMIC))
|
||
{
|
||
/* See if this object can map to a basic atomic type. */
|
||
tree atomic_type = find_atomic_core_type (type);
|
||
if (atomic_type)
|
||
{
|
||
/* Ensure the alignment of this type is compatible with
|
||
the required alignment of the atomic type. */
|
||
if (TYPE_ALIGN (atomic_type) > TYPE_ALIGN (t))
|
||
SET_TYPE_ALIGN (t, TYPE_ALIGN (atomic_type));
|
||
}
|
||
}
|
||
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (type))
|
||
/* Propagate structural equality. */
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (type) != type)
|
||
/* Build the underlying canonical type, since it is different
|
||
from TYPE. */
|
||
{
|
||
tree c = build_qualified_type (TYPE_CANONICAL (type), type_quals);
|
||
TYPE_CANONICAL (t) = TYPE_CANONICAL (c);
|
||
}
|
||
else
|
||
/* T is its own canonical type. */
|
||
TYPE_CANONICAL (t) = t;
|
||
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a variant of type T with alignment ALIGN. */
|
||
|
||
tree
|
||
build_aligned_type (tree type, unsigned int align)
|
||
{
|
||
tree t;
|
||
|
||
if (TYPE_PACKED (type)
|
||
|| TYPE_ALIGN (type) == align)
|
||
return type;
|
||
|
||
for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
|
||
if (check_aligned_type (t, type, align))
|
||
return t;
|
||
|
||
t = build_variant_type_copy (type);
|
||
SET_TYPE_ALIGN (t, align);
|
||
TYPE_USER_ALIGN (t) = 1;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a new distinct copy of TYPE. The new type is made its own
|
||
MAIN_VARIANT. If TYPE requires structural equality checks, the
|
||
resulting type requires structural equality checks; otherwise, its
|
||
TYPE_CANONICAL points to itself. */
|
||
|
||
tree
|
||
build_distinct_type_copy (tree type MEM_STAT_DECL)
|
||
{
|
||
tree t = copy_node (type PASS_MEM_STAT);
|
||
|
||
TYPE_POINTER_TO (t) = 0;
|
||
TYPE_REFERENCE_TO (t) = 0;
|
||
|
||
/* Set the canonical type either to a new equivalence class, or
|
||
propagate the need for structural equality checks. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (type))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else
|
||
TYPE_CANONICAL (t) = t;
|
||
|
||
/* Make it its own variant. */
|
||
TYPE_MAIN_VARIANT (t) = t;
|
||
TYPE_NEXT_VARIANT (t) = 0;
|
||
|
||
/* Note that it is now possible for TYPE_MIN_VALUE to be a value
|
||
whose TREE_TYPE is not t. This can also happen in the Ada
|
||
frontend when using subtypes. */
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a new variant of TYPE, equivalent but distinct. This is so
|
||
the caller can modify it. TYPE_CANONICAL for the return type will
|
||
be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
|
||
are considered equal by the language itself (or that both types
|
||
require structural equality checks). */
|
||
|
||
tree
|
||
build_variant_type_copy (tree type MEM_STAT_DECL)
|
||
{
|
||
tree t, m = TYPE_MAIN_VARIANT (type);
|
||
|
||
t = build_distinct_type_copy (type PASS_MEM_STAT);
|
||
|
||
/* Since we're building a variant, assume that it is a non-semantic
|
||
variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
|
||
TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
|
||
/* Type variants have no alias set defined. */
|
||
TYPE_ALIAS_SET (t) = -1;
|
||
|
||
/* Add the new type to the chain of variants of TYPE. */
|
||
TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
|
||
TYPE_NEXT_VARIANT (m) = t;
|
||
TYPE_MAIN_VARIANT (t) = m;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return true if the from tree in both tree maps are equal. */
|
||
|
||
int
|
||
tree_map_base_eq (const void *va, const void *vb)
|
||
{
|
||
const struct tree_map_base *const a = (const struct tree_map_base *) va,
|
||
*const b = (const struct tree_map_base *) vb;
|
||
return (a->from == b->from);
|
||
}
|
||
|
||
/* Hash a from tree in a tree_base_map. */
|
||
|
||
unsigned int
|
||
tree_map_base_hash (const void *item)
|
||
{
|
||
return htab_hash_pointer (((const struct tree_map_base *)item)->from);
|
||
}
|
||
|
||
/* Return true if this tree map structure is marked for garbage collection
|
||
purposes. We simply return true if the from tree is marked, so that this
|
||
structure goes away when the from tree goes away. */
|
||
|
||
int
|
||
tree_map_base_marked_p (const void *p)
|
||
{
|
||
return ggc_marked_p (((const struct tree_map_base *) p)->from);
|
||
}
|
||
|
||
/* Hash a from tree in a tree_map. */
|
||
|
||
unsigned int
|
||
tree_map_hash (const void *item)
|
||
{
|
||
return (((const struct tree_map *) item)->hash);
|
||
}
|
||
|
||
/* Hash a from tree in a tree_decl_map. */
|
||
|
||
unsigned int
|
||
tree_decl_map_hash (const void *item)
|
||
{
|
||
return DECL_UID (((const struct tree_decl_map *) item)->base.from);
|
||
}
|
||
|
||
/* Return the initialization priority for DECL. */
|
||
|
||
priority_type
|
||
decl_init_priority_lookup (tree decl)
|
||
{
|
||
symtab_node *snode = symtab_node::get (decl);
|
||
|
||
if (!snode)
|
||
return DEFAULT_INIT_PRIORITY;
|
||
return
|
||
snode->get_init_priority ();
|
||
}
|
||
|
||
/* Return the finalization priority for DECL. */
|
||
|
||
priority_type
|
||
decl_fini_priority_lookup (tree decl)
|
||
{
|
||
cgraph_node *node = cgraph_node::get (decl);
|
||
|
||
if (!node)
|
||
return DEFAULT_INIT_PRIORITY;
|
||
return
|
||
node->get_fini_priority ();
|
||
}
|
||
|
||
/* Set the initialization priority for DECL to PRIORITY. */
|
||
|
||
void
|
||
decl_init_priority_insert (tree decl, priority_type priority)
|
||
{
|
||
struct symtab_node *snode;
|
||
|
||
if (priority == DEFAULT_INIT_PRIORITY)
|
||
{
|
||
snode = symtab_node::get (decl);
|
||
if (!snode)
|
||
return;
|
||
}
|
||
else if (VAR_P (decl))
|
||
snode = varpool_node::get_create (decl);
|
||
else
|
||
snode = cgraph_node::get_create (decl);
|
||
snode->set_init_priority (priority);
|
||
}
|
||
|
||
/* Set the finalization priority for DECL to PRIORITY. */
|
||
|
||
void
|
||
decl_fini_priority_insert (tree decl, priority_type priority)
|
||
{
|
||
struct cgraph_node *node;
|
||
|
||
if (priority == DEFAULT_INIT_PRIORITY)
|
||
{
|
||
node = cgraph_node::get (decl);
|
||
if (!node)
|
||
return;
|
||
}
|
||
else
|
||
node = cgraph_node::get_create (decl);
|
||
node->set_fini_priority (priority);
|
||
}
|
||
|
||
/* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
|
||
|
||
static void
|
||
print_debug_expr_statistics (void)
|
||
{
|
||
fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
|
||
(long) debug_expr_for_decl->size (),
|
||
(long) debug_expr_for_decl->elements (),
|
||
debug_expr_for_decl->collisions ());
|
||
}
|
||
|
||
/* Print out the statistics for the DECL_VALUE_EXPR hash table. */
|
||
|
||
static void
|
||
print_value_expr_statistics (void)
|
||
{
|
||
fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
|
||
(long) value_expr_for_decl->size (),
|
||
(long) value_expr_for_decl->elements (),
|
||
value_expr_for_decl->collisions ());
|
||
}
|
||
|
||
/* Lookup a debug expression for FROM, and return it if we find one. */
|
||
|
||
tree
|
||
decl_debug_expr_lookup (tree from)
|
||
{
|
||
struct tree_decl_map *h, in;
|
||
in.base.from = from;
|
||
|
||
h = debug_expr_for_decl->find_with_hash (&in, DECL_UID (from));
|
||
if (h)
|
||
return h->to;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Insert a mapping FROM->TO in the debug expression hashtable. */
|
||
|
||
void
|
||
decl_debug_expr_insert (tree from, tree to)
|
||
{
|
||
struct tree_decl_map *h;
|
||
|
||
h = ggc_alloc<tree_decl_map> ();
|
||
h->base.from = from;
|
||
h->to = to;
|
||
*debug_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
|
||
}
|
||
|
||
/* Lookup a value expression for FROM, and return it if we find one. */
|
||
|
||
tree
|
||
decl_value_expr_lookup (tree from)
|
||
{
|
||
struct tree_decl_map *h, in;
|
||
in.base.from = from;
|
||
|
||
h = value_expr_for_decl->find_with_hash (&in, DECL_UID (from));
|
||
if (h)
|
||
return h->to;
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Insert a mapping FROM->TO in the value expression hashtable. */
|
||
|
||
void
|
||
decl_value_expr_insert (tree from, tree to)
|
||
{
|
||
struct tree_decl_map *h;
|
||
|
||
h = ggc_alloc<tree_decl_map> ();
|
||
h->base.from = from;
|
||
h->to = to;
|
||
*value_expr_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT) = h;
|
||
}
|
||
|
||
/* Lookup a vector of debug arguments for FROM, and return it if we
|
||
find one. */
|
||
|
||
vec<tree, va_gc> **
|
||
decl_debug_args_lookup (tree from)
|
||
{
|
||
struct tree_vec_map *h, in;
|
||
|
||
if (!DECL_HAS_DEBUG_ARGS_P (from))
|
||
return NULL;
|
||
gcc_checking_assert (debug_args_for_decl != NULL);
|
||
in.base.from = from;
|
||
h = debug_args_for_decl->find_with_hash (&in, DECL_UID (from));
|
||
if (h)
|
||
return &h->to;
|
||
return NULL;
|
||
}
|
||
|
||
/* Insert a mapping FROM->empty vector of debug arguments in the value
|
||
expression hashtable. */
|
||
|
||
vec<tree, va_gc> **
|
||
decl_debug_args_insert (tree from)
|
||
{
|
||
struct tree_vec_map *h;
|
||
tree_vec_map **loc;
|
||
|
||
if (DECL_HAS_DEBUG_ARGS_P (from))
|
||
return decl_debug_args_lookup (from);
|
||
if (debug_args_for_decl == NULL)
|
||
debug_args_for_decl = hash_table<tree_vec_map_cache_hasher>::create_ggc (64);
|
||
h = ggc_alloc<tree_vec_map> ();
|
||
h->base.from = from;
|
||
h->to = NULL;
|
||
loc = debug_args_for_decl->find_slot_with_hash (h, DECL_UID (from), INSERT);
|
||
*loc = h;
|
||
DECL_HAS_DEBUG_ARGS_P (from) = 1;
|
||
return &h->to;
|
||
}
|
||
|
||
/* Hashing of types so that we don't make duplicates.
|
||
The entry point is `type_hash_canon'. */
|
||
|
||
/* Generate the default hash code for TYPE. This is designed for
|
||
speed, rather than maximum entropy. */
|
||
|
||
hashval_t
|
||
type_hash_canon_hash (tree type)
|
||
{
|
||
inchash::hash hstate;
|
||
|
||
hstate.add_int (TREE_CODE (type));
|
||
|
||
if (TREE_TYPE (type))
|
||
hstate.add_object (TYPE_HASH (TREE_TYPE (type)));
|
||
|
||
for (tree t = TYPE_ATTRIBUTES (type); t; t = TREE_CHAIN (t))
|
||
/* Just the identifier is adequate to distinguish. */
|
||
hstate.add_object (IDENTIFIER_HASH_VALUE (get_attribute_name (t)));
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case METHOD_TYPE:
|
||
hstate.add_object (TYPE_HASH (TYPE_METHOD_BASETYPE (type)));
|
||
/* FALLTHROUGH. */
|
||
case FUNCTION_TYPE:
|
||
for (tree t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
|
||
if (TREE_VALUE (t) != error_mark_node)
|
||
hstate.add_object (TYPE_HASH (TREE_VALUE (t)));
|
||
break;
|
||
|
||
case OFFSET_TYPE:
|
||
hstate.add_object (TYPE_HASH (TYPE_OFFSET_BASETYPE (type)));
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
{
|
||
if (TYPE_DOMAIN (type))
|
||
hstate.add_object (TYPE_HASH (TYPE_DOMAIN (type)));
|
||
if (!AGGREGATE_TYPE_P (TREE_TYPE (type)))
|
||
{
|
||
unsigned typeless = TYPE_TYPELESS_STORAGE (type);
|
||
hstate.add_object (typeless);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
{
|
||
tree t = TYPE_MAX_VALUE (type);
|
||
if (!t)
|
||
t = TYPE_MIN_VALUE (type);
|
||
for (int i = 0; i < TREE_INT_CST_NUNITS (t); i++)
|
||
hstate.add_object (TREE_INT_CST_ELT (t, i));
|
||
break;
|
||
}
|
||
|
||
case REAL_TYPE:
|
||
case FIXED_POINT_TYPE:
|
||
{
|
||
unsigned prec = TYPE_PRECISION (type);
|
||
hstate.add_object (prec);
|
||
break;
|
||
}
|
||
|
||
case VECTOR_TYPE:
|
||
hstate.add_poly_int (TYPE_VECTOR_SUBPARTS (type));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return hstate.end ();
|
||
}
|
||
|
||
/* These are the Hashtable callback functions. */
|
||
|
||
/* Returns true iff the types are equivalent. */
|
||
|
||
bool
|
||
type_cache_hasher::equal (type_hash *a, type_hash *b)
|
||
{
|
||
/* First test the things that are the same for all types. */
|
||
if (a->hash != b->hash
|
||
|| TREE_CODE (a->type) != TREE_CODE (b->type)
|
||
|| TREE_TYPE (a->type) != TREE_TYPE (b->type)
|
||
|| !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
|
||
TYPE_ATTRIBUTES (b->type))
|
||
|| (TREE_CODE (a->type) != COMPLEX_TYPE
|
||
&& TYPE_NAME (a->type) != TYPE_NAME (b->type)))
|
||
return 0;
|
||
|
||
/* Be careful about comparing arrays before and after the element type
|
||
has been completed; don't compare TYPE_ALIGN unless both types are
|
||
complete. */
|
||
if (COMPLETE_TYPE_P (a->type) && COMPLETE_TYPE_P (b->type)
|
||
&& (TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
|
||
|| TYPE_MODE (a->type) != TYPE_MODE (b->type)))
|
||
return 0;
|
||
|
||
switch (TREE_CODE (a->type))
|
||
{
|
||
case VOID_TYPE:
|
||
case COMPLEX_TYPE:
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case NULLPTR_TYPE:
|
||
return 1;
|
||
|
||
case VECTOR_TYPE:
|
||
return known_eq (TYPE_VECTOR_SUBPARTS (a->type),
|
||
TYPE_VECTOR_SUBPARTS (b->type));
|
||
|
||
case ENUMERAL_TYPE:
|
||
if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
|
||
&& !(TYPE_VALUES (a->type)
|
||
&& TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
|
||
&& TYPE_VALUES (b->type)
|
||
&& TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_VALUES (a->type),
|
||
TYPE_VALUES (b->type))))
|
||
return 0;
|
||
|
||
/* fall through */
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
if (TYPE_PRECISION (a->type) != TYPE_PRECISION (b->type))
|
||
return false;
|
||
return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
|
||
|| tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
|
||
TYPE_MAX_VALUE (b->type)))
|
||
&& (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
|
||
|| tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
|
||
TYPE_MIN_VALUE (b->type))));
|
||
|
||
case FIXED_POINT_TYPE:
|
||
return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
|
||
|
||
case OFFSET_TYPE:
|
||
return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
|
||
|
||
case METHOD_TYPE:
|
||
if (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
|
||
&& (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
|
||
|| (TYPE_ARG_TYPES (a->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
|
||
&& TYPE_ARG_TYPES (b->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_ARG_TYPES (a->type),
|
||
TYPE_ARG_TYPES (b->type)))))
|
||
break;
|
||
return 0;
|
||
case ARRAY_TYPE:
|
||
/* Don't compare TYPE_TYPELESS_STORAGE flag on aggregates,
|
||
where the flag should be inherited from the element type
|
||
and can change after ARRAY_TYPEs are created; on non-aggregates
|
||
compare it and hash it, scalars will never have that flag set
|
||
and we need to differentiate between arrays created by different
|
||
front-ends or middle-end created arrays. */
|
||
return (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
|
||
&& (AGGREGATE_TYPE_P (TREE_TYPE (a->type))
|
||
|| (TYPE_TYPELESS_STORAGE (a->type)
|
||
== TYPE_TYPELESS_STORAGE (b->type))));
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
|
||
|| (TYPE_FIELDS (a->type)
|
||
&& TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
|
||
&& TYPE_FIELDS (b->type)
|
||
&& TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_FIELDS (a->type),
|
||
TYPE_FIELDS (b->type))));
|
||
|
||
case FUNCTION_TYPE:
|
||
if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
|
||
|| (TYPE_ARG_TYPES (a->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
|
||
&& TYPE_ARG_TYPES (b->type)
|
||
&& TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
|
||
&& type_list_equal (TYPE_ARG_TYPES (a->type),
|
||
TYPE_ARG_TYPES (b->type))))
|
||
break;
|
||
return 0;
|
||
|
||
default:
|
||
return 0;
|
||
}
|
||
|
||
if (lang_hooks.types.type_hash_eq != NULL)
|
||
return lang_hooks.types.type_hash_eq (a->type, b->type);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Given TYPE, and HASHCODE its hash code, return the canonical
|
||
object for an identical type if one already exists.
|
||
Otherwise, return TYPE, and record it as the canonical object.
|
||
|
||
To use this function, first create a type of the sort you want.
|
||
Then compute its hash code from the fields of the type that
|
||
make it different from other similar types.
|
||
Then call this function and use the value. */
|
||
|
||
tree
|
||
type_hash_canon (unsigned int hashcode, tree type)
|
||
{
|
||
type_hash in;
|
||
type_hash **loc;
|
||
|
||
/* The hash table only contains main variants, so ensure that's what we're
|
||
being passed. */
|
||
gcc_assert (TYPE_MAIN_VARIANT (type) == type);
|
||
|
||
/* The TYPE_ALIGN field of a type is set by layout_type(), so we
|
||
must call that routine before comparing TYPE_ALIGNs. */
|
||
layout_type (type);
|
||
|
||
in.hash = hashcode;
|
||
in.type = type;
|
||
|
||
loc = type_hash_table->find_slot_with_hash (&in, hashcode, INSERT);
|
||
if (*loc)
|
||
{
|
||
tree t1 = ((type_hash *) *loc)->type;
|
||
gcc_assert (TYPE_MAIN_VARIANT (t1) == t1
|
||
&& t1 != type);
|
||
if (TYPE_UID (type) + 1 == next_type_uid)
|
||
--next_type_uid;
|
||
/* Free also min/max values and the cache for integer
|
||
types. This can't be done in free_node, as LTO frees
|
||
those on its own. */
|
||
if (TREE_CODE (type) == INTEGER_TYPE)
|
||
{
|
||
if (TYPE_MIN_VALUE (type)
|
||
&& TREE_TYPE (TYPE_MIN_VALUE (type)) == type)
|
||
{
|
||
/* Zero is always in TYPE_CACHED_VALUES. */
|
||
if (! TYPE_UNSIGNED (type))
|
||
int_cst_hash_table->remove_elt (TYPE_MIN_VALUE (type));
|
||
ggc_free (TYPE_MIN_VALUE (type));
|
||
}
|
||
if (TYPE_MAX_VALUE (type)
|
||
&& TREE_TYPE (TYPE_MAX_VALUE (type)) == type)
|
||
{
|
||
int_cst_hash_table->remove_elt (TYPE_MAX_VALUE (type));
|
||
ggc_free (TYPE_MAX_VALUE (type));
|
||
}
|
||
if (TYPE_CACHED_VALUES_P (type))
|
||
ggc_free (TYPE_CACHED_VALUES (type));
|
||
}
|
||
free_node (type);
|
||
return t1;
|
||
}
|
||
else
|
||
{
|
||
struct type_hash *h;
|
||
|
||
h = ggc_alloc<type_hash> ();
|
||
h->hash = hashcode;
|
||
h->type = type;
|
||
*loc = h;
|
||
|
||
return type;
|
||
}
|
||
}
|
||
|
||
static void
|
||
print_type_hash_statistics (void)
|
||
{
|
||
fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
|
||
(long) type_hash_table->size (),
|
||
(long) type_hash_table->elements (),
|
||
type_hash_table->collisions ());
|
||
}
|
||
|
||
/* Given two lists of types
|
||
(chains of TREE_LIST nodes with types in the TREE_VALUE slots)
|
||
return 1 if the lists contain the same types in the same order.
|
||
Also, the TREE_PURPOSEs must match. */
|
||
|
||
int
|
||
type_list_equal (const_tree l1, const_tree l2)
|
||
{
|
||
const_tree t1, t2;
|
||
|
||
for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
|
||
if (TREE_VALUE (t1) != TREE_VALUE (t2)
|
||
|| (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
|
||
&& ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
|
||
&& (TREE_TYPE (TREE_PURPOSE (t1))
|
||
== TREE_TYPE (TREE_PURPOSE (t2))))))
|
||
return 0;
|
||
|
||
return t1 == t2;
|
||
}
|
||
|
||
/* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
|
||
given by TYPE. If the argument list accepts variable arguments,
|
||
then this function counts only the ordinary arguments. */
|
||
|
||
int
|
||
type_num_arguments (const_tree type)
|
||
{
|
||
int i = 0;
|
||
tree t;
|
||
|
||
for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
|
||
/* If the function does not take a variable number of arguments,
|
||
the last element in the list will have type `void'. */
|
||
if (VOID_TYPE_P (TREE_VALUE (t)))
|
||
break;
|
||
else
|
||
++i;
|
||
|
||
return i;
|
||
}
|
||
|
||
/* Nonzero if integer constants T1 and T2
|
||
represent the same constant value. */
|
||
|
||
int
|
||
tree_int_cst_equal (const_tree t1, const_tree t2)
|
||
{
|
||
if (t1 == t2)
|
||
return 1;
|
||
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
|
||
if (TREE_CODE (t1) == INTEGER_CST
|
||
&& TREE_CODE (t2) == INTEGER_CST
|
||
&& wi::to_widest (t1) == wi::to_widest (t2))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if T is an INTEGER_CST whose numerical value (extended
|
||
according to TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. */
|
||
|
||
bool
|
||
tree_fits_shwi_p (const_tree t)
|
||
{
|
||
return (t != NULL_TREE
|
||
&& TREE_CODE (t) == INTEGER_CST
|
||
&& wi::fits_shwi_p (wi::to_widest (t)));
|
||
}
|
||
|
||
/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
|
||
value (extended according to TYPE_UNSIGNED) fits in a poly_int64. */
|
||
|
||
bool
|
||
tree_fits_poly_int64_p (const_tree t)
|
||
{
|
||
if (t == NULL_TREE)
|
||
return false;
|
||
if (POLY_INT_CST_P (t))
|
||
{
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
|
||
if (!wi::fits_shwi_p (wi::to_wide (POLY_INT_CST_COEFF (t, i))))
|
||
return false;
|
||
return true;
|
||
}
|
||
return (TREE_CODE (t) == INTEGER_CST
|
||
&& wi::fits_shwi_p (wi::to_widest (t)));
|
||
}
|
||
|
||
/* Return true if T is an INTEGER_CST whose numerical value (extended
|
||
according to TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. */
|
||
|
||
bool
|
||
tree_fits_uhwi_p (const_tree t)
|
||
{
|
||
return (t != NULL_TREE
|
||
&& TREE_CODE (t) == INTEGER_CST
|
||
&& wi::fits_uhwi_p (wi::to_widest (t)));
|
||
}
|
||
|
||
/* Return true if T is an INTEGER_CST or POLY_INT_CST whose numerical
|
||
value (extended according to TYPE_UNSIGNED) fits in a poly_uint64. */
|
||
|
||
bool
|
||
tree_fits_poly_uint64_p (const_tree t)
|
||
{
|
||
if (t == NULL_TREE)
|
||
return false;
|
||
if (POLY_INT_CST_P (t))
|
||
{
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; i++)
|
||
if (!wi::fits_uhwi_p (wi::to_widest (POLY_INT_CST_COEFF (t, i))))
|
||
return false;
|
||
return true;
|
||
}
|
||
return (TREE_CODE (t) == INTEGER_CST
|
||
&& wi::fits_uhwi_p (wi::to_widest (t)));
|
||
}
|
||
|
||
/* T is an INTEGER_CST whose numerical value (extended according to
|
||
TYPE_UNSIGNED) fits in a signed HOST_WIDE_INT. Return that
|
||
HOST_WIDE_INT. */
|
||
|
||
HOST_WIDE_INT
|
||
tree_to_shwi (const_tree t)
|
||
{
|
||
gcc_assert (tree_fits_shwi_p (t));
|
||
return TREE_INT_CST_LOW (t);
|
||
}
|
||
|
||
/* T is an INTEGER_CST whose numerical value (extended according to
|
||
TYPE_UNSIGNED) fits in an unsigned HOST_WIDE_INT. Return that
|
||
HOST_WIDE_INT. */
|
||
|
||
unsigned HOST_WIDE_INT
|
||
tree_to_uhwi (const_tree t)
|
||
{
|
||
gcc_assert (tree_fits_uhwi_p (t));
|
||
return TREE_INT_CST_LOW (t);
|
||
}
|
||
|
||
/* Return the most significant (sign) bit of T. */
|
||
|
||
int
|
||
tree_int_cst_sign_bit (const_tree t)
|
||
{
|
||
unsigned bitno = TYPE_PRECISION (TREE_TYPE (t)) - 1;
|
||
|
||
return wi::extract_uhwi (wi::to_wide (t), bitno, 1);
|
||
}
|
||
|
||
/* Return an indication of the sign of the integer constant T.
|
||
The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
|
||
Note that -1 will never be returned if T's type is unsigned. */
|
||
|
||
int
|
||
tree_int_cst_sgn (const_tree t)
|
||
{
|
||
if (wi::to_wide (t) == 0)
|
||
return 0;
|
||
else if (TYPE_UNSIGNED (TREE_TYPE (t)))
|
||
return 1;
|
||
else if (wi::neg_p (wi::to_wide (t)))
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Return the minimum number of bits needed to represent VALUE in a
|
||
signed or unsigned type, UNSIGNEDP says which. */
|
||
|
||
unsigned int
|
||
tree_int_cst_min_precision (tree value, signop sgn)
|
||
{
|
||
/* If the value is negative, compute its negative minus 1. The latter
|
||
adjustment is because the absolute value of the largest negative value
|
||
is one larger than the largest positive value. This is equivalent to
|
||
a bit-wise negation, so use that operation instead. */
|
||
|
||
if (tree_int_cst_sgn (value) < 0)
|
||
value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
|
||
|
||
/* Return the number of bits needed, taking into account the fact
|
||
that we need one more bit for a signed than unsigned type.
|
||
If value is 0 or -1, the minimum precision is 1 no matter
|
||
whether unsignedp is true or false. */
|
||
|
||
if (integer_zerop (value))
|
||
return 1;
|
||
else
|
||
return tree_floor_log2 (value) + 1 + (sgn == SIGNED ? 1 : 0) ;
|
||
}
|
||
|
||
/* Return truthvalue of whether T1 is the same tree structure as T2.
|
||
Return 1 if they are the same.
|
||
Return 0 if they are understandably different.
|
||
Return -1 if either contains tree structure not understood by
|
||
this function. */
|
||
|
||
int
|
||
simple_cst_equal (const_tree t1, const_tree t2)
|
||
{
|
||
enum tree_code code1, code2;
|
||
int cmp;
|
||
int i;
|
||
|
||
if (t1 == t2)
|
||
return 1;
|
||
if (t1 == 0 || t2 == 0)
|
||
return 0;
|
||
|
||
code1 = TREE_CODE (t1);
|
||
code2 = TREE_CODE (t2);
|
||
|
||
if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
|
||
{
|
||
if (CONVERT_EXPR_CODE_P (code2)
|
||
|| code2 == NON_LVALUE_EXPR)
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
else
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
|
||
}
|
||
|
||
else if (CONVERT_EXPR_CODE_P (code2)
|
||
|| code2 == NON_LVALUE_EXPR)
|
||
return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
|
||
|
||
if (code1 != code2)
|
||
return 0;
|
||
|
||
switch (code1)
|
||
{
|
||
case INTEGER_CST:
|
||
return wi::to_widest (t1) == wi::to_widest (t2);
|
||
|
||
case REAL_CST:
|
||
return real_identical (&TREE_REAL_CST (t1), &TREE_REAL_CST (t2));
|
||
|
||
case FIXED_CST:
|
||
return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
|
||
|
||
case STRING_CST:
|
||
return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
|
||
&& ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
|
||
TREE_STRING_LENGTH (t1)));
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
vec<constructor_elt, va_gc> *v1 = CONSTRUCTOR_ELTS (t1);
|
||
vec<constructor_elt, va_gc> *v2 = CONSTRUCTOR_ELTS (t2);
|
||
|
||
if (vec_safe_length (v1) != vec_safe_length (v2))
|
||
return false;
|
||
|
||
for (idx = 0; idx < vec_safe_length (v1); ++idx)
|
||
/* ??? Should we handle also fields here? */
|
||
if (!simple_cst_equal ((*v1)[idx].value, (*v2)[idx].value))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
case SAVE_EXPR:
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
case CALL_EXPR:
|
||
cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
if (call_expr_nargs (t1) != call_expr_nargs (t2))
|
||
return 0;
|
||
{
|
||
const_tree arg1, arg2;
|
||
const_call_expr_arg_iterator iter1, iter2;
|
||
for (arg1 = first_const_call_expr_arg (t1, &iter1),
|
||
arg2 = first_const_call_expr_arg (t2, &iter2);
|
||
arg1 && arg2;
|
||
arg1 = next_const_call_expr_arg (&iter1),
|
||
arg2 = next_const_call_expr_arg (&iter2))
|
||
{
|
||
cmp = simple_cst_equal (arg1, arg2);
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
}
|
||
return arg1 == arg2;
|
||
}
|
||
|
||
case TARGET_EXPR:
|
||
/* Special case: if either target is an unallocated VAR_DECL,
|
||
it means that it's going to be unified with whatever the
|
||
TARGET_EXPR is really supposed to initialize, so treat it
|
||
as being equivalent to anything. */
|
||
if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
|
||
&& DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
|
||
|| (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
|
||
&& DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
|
||
&& !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
|
||
cmp = 1;
|
||
else
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
|
||
|
||
case WITH_CLEANUP_EXPR:
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
|
||
return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
|
||
return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
|
||
|
||
return 0;
|
||
|
||
case VAR_DECL:
|
||
case PARM_DECL:
|
||
case CONST_DECL:
|
||
case FUNCTION_DECL:
|
||
return 0;
|
||
|
||
default:
|
||
if (POLY_INT_CST_P (t1))
|
||
/* A false return means maybe_ne rather than known_ne. */
|
||
return known_eq (poly_widest_int::from (poly_int_cst_value (t1),
|
||
TYPE_SIGN (TREE_TYPE (t1))),
|
||
poly_widest_int::from (poly_int_cst_value (t2),
|
||
TYPE_SIGN (TREE_TYPE (t2))));
|
||
break;
|
||
}
|
||
|
||
/* This general rule works for most tree codes. All exceptions should be
|
||
handled above. If this is a language-specific tree code, we can't
|
||
trust what might be in the operand, so say we don't know
|
||
the situation. */
|
||
if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
|
||
return -1;
|
||
|
||
switch (TREE_CODE_CLASS (code1))
|
||
{
|
||
case tcc_unary:
|
||
case tcc_binary:
|
||
case tcc_comparison:
|
||
case tcc_expression:
|
||
case tcc_reference:
|
||
case tcc_statement:
|
||
cmp = 1;
|
||
for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
|
||
{
|
||
cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
|
||
if (cmp <= 0)
|
||
return cmp;
|
||
}
|
||
|
||
return cmp;
|
||
|
||
default:
|
||
return -1;
|
||
}
|
||
}
|
||
|
||
/* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
|
||
Return -1, 0, or 1 if the value of T is less than, equal to, or greater
|
||
than U, respectively. */
|
||
|
||
int
|
||
compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
|
||
{
|
||
if (tree_int_cst_sgn (t) < 0)
|
||
return -1;
|
||
else if (!tree_fits_uhwi_p (t))
|
||
return 1;
|
||
else if (TREE_INT_CST_LOW (t) == u)
|
||
return 0;
|
||
else if (TREE_INT_CST_LOW (t) < u)
|
||
return -1;
|
||
else
|
||
return 1;
|
||
}
|
||
|
||
/* Return true if SIZE represents a constant size that is in bounds of
|
||
what the middle-end and the backend accepts (covering not more than
|
||
half of the address-space). */
|
||
|
||
bool
|
||
valid_constant_size_p (const_tree size)
|
||
{
|
||
if (POLY_INT_CST_P (size))
|
||
{
|
||
if (TREE_OVERFLOW (size))
|
||
return false;
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
if (!valid_constant_size_p (POLY_INT_CST_COEFF (size, i)))
|
||
return false;
|
||
return true;
|
||
}
|
||
if (! tree_fits_uhwi_p (size)
|
||
|| TREE_OVERFLOW (size)
|
||
|| tree_int_cst_sign_bit (size) != 0)
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* Return the precision of the type, or for a complex or vector type the
|
||
precision of the type of its elements. */
|
||
|
||
unsigned int
|
||
element_precision (const_tree type)
|
||
{
|
||
if (!TYPE_P (type))
|
||
type = TREE_TYPE (type);
|
||
enum tree_code code = TREE_CODE (type);
|
||
if (code == COMPLEX_TYPE || code == VECTOR_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
return TYPE_PRECISION (type);
|
||
}
|
||
|
||
/* Return true if CODE represents an associative tree code. Otherwise
|
||
return false. */
|
||
bool
|
||
associative_tree_code (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case BIT_IOR_EXPR:
|
||
case BIT_AND_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CODE represents a commutative tree code. Otherwise
|
||
return false. */
|
||
bool
|
||
commutative_tree_code (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MULT_EXPR:
|
||
case MULT_HIGHPART_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case BIT_AND_EXPR:
|
||
case NE_EXPR:
|
||
case EQ_EXPR:
|
||
case UNORDERED_EXPR:
|
||
case ORDERED_EXPR:
|
||
case UNEQ_EXPR:
|
||
case LTGT_EXPR:
|
||
case TRUTH_AND_EXPR:
|
||
case TRUTH_XOR_EXPR:
|
||
case TRUTH_OR_EXPR:
|
||
case WIDEN_MULT_EXPR:
|
||
case VEC_WIDEN_MULT_HI_EXPR:
|
||
case VEC_WIDEN_MULT_LO_EXPR:
|
||
case VEC_WIDEN_MULT_EVEN_EXPR:
|
||
case VEC_WIDEN_MULT_ODD_EXPR:
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Return true if CODE represents a ternary tree code for which the
|
||
first two operands are commutative. Otherwise return false. */
|
||
bool
|
||
commutative_ternary_tree_code (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case WIDEN_MULT_PLUS_EXPR:
|
||
case WIDEN_MULT_MINUS_EXPR:
|
||
case DOT_PROD_EXPR:
|
||
return true;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
/* Returns true if CODE can overflow. */
|
||
|
||
bool
|
||
operation_can_overflow (enum tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case LSHIFT_EXPR:
|
||
/* Can overflow in various ways. */
|
||
return true;
|
||
case TRUNC_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
/* For INT_MIN / -1. */
|
||
return true;
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
/* For -INT_MIN. */
|
||
return true;
|
||
default:
|
||
/* These operators cannot overflow. */
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Returns true if CODE operating on operands of type TYPE doesn't overflow, or
|
||
ftrapv doesn't generate trapping insns for CODE. */
|
||
|
||
bool
|
||
operation_no_trapping_overflow (tree type, enum tree_code code)
|
||
{
|
||
gcc_checking_assert (ANY_INTEGRAL_TYPE_P (type));
|
||
|
||
/* We don't generate instructions that trap on overflow for complex or vector
|
||
types. */
|
||
if (!INTEGRAL_TYPE_P (type))
|
||
return true;
|
||
|
||
if (!TYPE_OVERFLOW_TRAPS (type))
|
||
return true;
|
||
|
||
switch (code)
|
||
{
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
/* These operators can overflow, and -ftrapv generates trapping code for
|
||
these. */
|
||
return false;
|
||
case TRUNC_DIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case LSHIFT_EXPR:
|
||
/* These operators can overflow, but -ftrapv does not generate trapping
|
||
code for these. */
|
||
return true;
|
||
default:
|
||
/* These operators cannot overflow. */
|
||
return true;
|
||
}
|
||
}
|
||
|
||
namespace inchash
|
||
{
|
||
|
||
/* Generate a hash value for an expression. This can be used iteratively
|
||
by passing a previous result as the HSTATE argument.
|
||
|
||
This function is intended to produce the same hash for expressions which
|
||
would compare equal using operand_equal_p. */
|
||
void
|
||
add_expr (const_tree t, inchash::hash &hstate, unsigned int flags)
|
||
{
|
||
int i;
|
||
enum tree_code code;
|
||
enum tree_code_class tclass;
|
||
|
||
if (t == NULL_TREE || t == error_mark_node)
|
||
{
|
||
hstate.merge_hash (0);
|
||
return;
|
||
}
|
||
|
||
if (!(flags & OEP_ADDRESS_OF))
|
||
STRIP_NOPS (t);
|
||
|
||
code = TREE_CODE (t);
|
||
|
||
switch (code)
|
||
{
|
||
/* Alas, constants aren't shared, so we can't rely on pointer
|
||
identity. */
|
||
case VOID_CST:
|
||
hstate.merge_hash (0);
|
||
return;
|
||
case INTEGER_CST:
|
||
gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
|
||
for (i = 0; i < TREE_INT_CST_EXT_NUNITS (t); i++)
|
||
hstate.add_hwi (TREE_INT_CST_ELT (t, i));
|
||
return;
|
||
case REAL_CST:
|
||
{
|
||
unsigned int val2;
|
||
if (!HONOR_SIGNED_ZEROS (t) && real_zerop (t))
|
||
val2 = rvc_zero;
|
||
else
|
||
val2 = real_hash (TREE_REAL_CST_PTR (t));
|
||
hstate.merge_hash (val2);
|
||
return;
|
||
}
|
||
case FIXED_CST:
|
||
{
|
||
unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
|
||
hstate.merge_hash (val2);
|
||
return;
|
||
}
|
||
case STRING_CST:
|
||
hstate.add ((const void *) TREE_STRING_POINTER (t),
|
||
TREE_STRING_LENGTH (t));
|
||
return;
|
||
case COMPLEX_CST:
|
||
inchash::add_expr (TREE_REALPART (t), hstate, flags);
|
||
inchash::add_expr (TREE_IMAGPART (t), hstate, flags);
|
||
return;
|
||
case VECTOR_CST:
|
||
{
|
||
hstate.add_int (VECTOR_CST_NPATTERNS (t));
|
||
hstate.add_int (VECTOR_CST_NELTS_PER_PATTERN (t));
|
||
unsigned int count = vector_cst_encoded_nelts (t);
|
||
for (unsigned int i = 0; i < count; ++i)
|
||
inchash::add_expr (VECTOR_CST_ENCODED_ELT (t, i), hstate, flags);
|
||
return;
|
||
}
|
||
case SSA_NAME:
|
||
/* We can just compare by pointer. */
|
||
hstate.add_hwi (SSA_NAME_VERSION (t));
|
||
return;
|
||
case PLACEHOLDER_EXPR:
|
||
/* The node itself doesn't matter. */
|
||
return;
|
||
case BLOCK:
|
||
case OMP_CLAUSE:
|
||
/* Ignore. */
|
||
return;
|
||
case TREE_LIST:
|
||
/* A list of expressions, for a CALL_EXPR or as the elements of a
|
||
VECTOR_CST. */
|
||
for (; t; t = TREE_CHAIN (t))
|
||
inchash::add_expr (TREE_VALUE (t), hstate, flags);
|
||
return;
|
||
case CONSTRUCTOR:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree field, value;
|
||
flags &= ~OEP_ADDRESS_OF;
|
||
FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
|
||
{
|
||
inchash::add_expr (field, hstate, flags);
|
||
inchash::add_expr (value, hstate, flags);
|
||
}
|
||
return;
|
||
}
|
||
case STATEMENT_LIST:
|
||
{
|
||
tree_stmt_iterator i;
|
||
for (i = tsi_start (CONST_CAST_TREE (t));
|
||
!tsi_end_p (i); tsi_next (&i))
|
||
inchash::add_expr (tsi_stmt (i), hstate, flags);
|
||
return;
|
||
}
|
||
case TREE_VEC:
|
||
for (i = 0; i < TREE_VEC_LENGTH (t); ++i)
|
||
inchash::add_expr (TREE_VEC_ELT (t, i), hstate, flags);
|
||
return;
|
||
case IDENTIFIER_NODE:
|
||
hstate.add_object (IDENTIFIER_HASH_VALUE (t));
|
||
return;
|
||
case FUNCTION_DECL:
|
||
/* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
|
||
Otherwise nodes that compare equal according to operand_equal_p might
|
||
get different hash codes. However, don't do this for machine specific
|
||
or front end builtins, since the function code is overloaded in those
|
||
cases. */
|
||
if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
|
||
&& builtin_decl_explicit_p (DECL_FUNCTION_CODE (t)))
|
||
{
|
||
t = builtin_decl_explicit (DECL_FUNCTION_CODE (t));
|
||
code = TREE_CODE (t);
|
||
}
|
||
/* FALL THROUGH */
|
||
default:
|
||
if (POLY_INT_CST_P (t))
|
||
{
|
||
for (unsigned int i = 0; i < NUM_POLY_INT_COEFFS; ++i)
|
||
hstate.add_wide_int (wi::to_wide (POLY_INT_CST_COEFF (t, i)));
|
||
return;
|
||
}
|
||
tclass = TREE_CODE_CLASS (code);
|
||
|
||
if (tclass == tcc_declaration)
|
||
{
|
||
/* DECL's have a unique ID */
|
||
hstate.add_hwi (DECL_UID (t));
|
||
}
|
||
else if (tclass == tcc_comparison && !commutative_tree_code (code))
|
||
{
|
||
/* For comparisons that can be swapped, use the lower
|
||
tree code. */
|
||
enum tree_code ccode = swap_tree_comparison (code);
|
||
if (code < ccode)
|
||
ccode = code;
|
||
hstate.add_object (ccode);
|
||
inchash::add_expr (TREE_OPERAND (t, ccode != code), hstate, flags);
|
||
inchash::add_expr (TREE_OPERAND (t, ccode == code), hstate, flags);
|
||
}
|
||
else if (CONVERT_EXPR_CODE_P (code))
|
||
{
|
||
/* NOP_EXPR and CONVERT_EXPR are considered equal by
|
||
operand_equal_p. */
|
||
enum tree_code ccode = NOP_EXPR;
|
||
hstate.add_object (ccode);
|
||
|
||
/* Don't hash the type, that can lead to having nodes which
|
||
compare equal according to operand_equal_p, but which
|
||
have different hash codes. Make sure to include signedness
|
||
in the hash computation. */
|
||
hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
|
||
inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
|
||
}
|
||
/* For OEP_ADDRESS_OF, hash MEM_EXPR[&decl, 0] the same as decl. */
|
||
else if (code == MEM_REF
|
||
&& (flags & OEP_ADDRESS_OF) != 0
|
||
&& TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
|
||
&& DECL_P (TREE_OPERAND (TREE_OPERAND (t, 0), 0))
|
||
&& integer_zerop (TREE_OPERAND (t, 1)))
|
||
inchash::add_expr (TREE_OPERAND (TREE_OPERAND (t, 0), 0),
|
||
hstate, flags);
|
||
/* Don't ICE on FE specific trees, or their arguments etc.
|
||
during operand_equal_p hash verification. */
|
||
else if (!IS_EXPR_CODE_CLASS (tclass))
|
||
gcc_assert (flags & OEP_HASH_CHECK);
|
||
else
|
||
{
|
||
unsigned int sflags = flags;
|
||
|
||
hstate.add_object (code);
|
||
|
||
switch (code)
|
||
{
|
||
case ADDR_EXPR:
|
||
gcc_checking_assert (!(flags & OEP_ADDRESS_OF));
|
||
flags |= OEP_ADDRESS_OF;
|
||
sflags = flags;
|
||
break;
|
||
|
||
case INDIRECT_REF:
|
||
case MEM_REF:
|
||
case TARGET_MEM_REF:
|
||
flags &= ~OEP_ADDRESS_OF;
|
||
sflags = flags;
|
||
break;
|
||
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
case COMPONENT_REF:
|
||
case BIT_FIELD_REF:
|
||
sflags &= ~OEP_ADDRESS_OF;
|
||
break;
|
||
|
||
case COND_EXPR:
|
||
flags &= ~OEP_ADDRESS_OF;
|
||
break;
|
||
|
||
case WIDEN_MULT_PLUS_EXPR:
|
||
case WIDEN_MULT_MINUS_EXPR:
|
||
{
|
||
/* The multiplication operands are commutative. */
|
||
inchash::hash one, two;
|
||
inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
|
||
inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
|
||
hstate.add_commutative (one, two);
|
||
inchash::add_expr (TREE_OPERAND (t, 2), two, flags);
|
||
return;
|
||
}
|
||
|
||
case CALL_EXPR:
|
||
if (CALL_EXPR_FN (t) == NULL_TREE)
|
||
hstate.add_int (CALL_EXPR_IFN (t));
|
||
break;
|
||
|
||
case TARGET_EXPR:
|
||
/* For TARGET_EXPR, just hash on the TARGET_EXPR_SLOT.
|
||
Usually different TARGET_EXPRs just should use
|
||
different temporaries in their slots. */
|
||
inchash::add_expr (TARGET_EXPR_SLOT (t), hstate, flags);
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Don't hash the type, that can lead to having nodes which
|
||
compare equal according to operand_equal_p, but which
|
||
have different hash codes. */
|
||
if (code == NON_LVALUE_EXPR)
|
||
{
|
||
/* Make sure to include signness in the hash computation. */
|
||
hstate.add_int (TYPE_UNSIGNED (TREE_TYPE (t)));
|
||
inchash::add_expr (TREE_OPERAND (t, 0), hstate, flags);
|
||
}
|
||
|
||
else if (commutative_tree_code (code))
|
||
{
|
||
/* It's a commutative expression. We want to hash it the same
|
||
however it appears. We do this by first hashing both operands
|
||
and then rehashing based on the order of their independent
|
||
hashes. */
|
||
inchash::hash one, two;
|
||
inchash::add_expr (TREE_OPERAND (t, 0), one, flags);
|
||
inchash::add_expr (TREE_OPERAND (t, 1), two, flags);
|
||
hstate.add_commutative (one, two);
|
||
}
|
||
else
|
||
for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
|
||
inchash::add_expr (TREE_OPERAND (t, i), hstate,
|
||
i == 0 ? flags : sflags);
|
||
}
|
||
return;
|
||
}
|
||
}
|
||
|
||
}
|
||
|
||
/* Constructors for pointer, array and function types.
|
||
(RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
|
||
constructed by language-dependent code, not here.) */
|
||
|
||
/* Construct, lay out and return the type of pointers to TO_TYPE with
|
||
mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
|
||
reference all of memory. If such a type has already been
|
||
constructed, reuse it. */
|
||
|
||
tree
|
||
build_pointer_type_for_mode (tree to_type, machine_mode mode,
|
||
bool can_alias_all)
|
||
{
|
||
tree t;
|
||
bool could_alias = can_alias_all;
|
||
|
||
if (to_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If the pointed-to type has the may_alias attribute set, force
|
||
a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
|
||
if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
|
||
can_alias_all = true;
|
||
|
||
/* In some cases, languages will have things that aren't a POINTER_TYPE
|
||
(such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
|
||
In that case, return that type without regard to the rest of our
|
||
operands.
|
||
|
||
??? This is a kludge, but consistent with the way this function has
|
||
always operated and there doesn't seem to be a good way to avoid this
|
||
at the moment. */
|
||
if (TYPE_POINTER_TO (to_type) != 0
|
||
&& TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
|
||
return TYPE_POINTER_TO (to_type);
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE and it's
|
||
the proper mode, use it. */
|
||
for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
|
||
if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
|
||
return t;
|
||
|
||
t = make_node (POINTER_TYPE);
|
||
|
||
TREE_TYPE (t) = to_type;
|
||
SET_TYPE_MODE (t, mode);
|
||
TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
|
||
TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
|
||
TYPE_POINTER_TO (to_type) = t;
|
||
|
||
/* During LTO we do not set TYPE_CANONICAL of pointers and references. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
|
||
TYPE_CANONICAL (t)
|
||
= build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
|
||
mode, false);
|
||
|
||
/* Lay out the type. This function has many callers that are concerned
|
||
with expression-construction, and this simplifies them all. */
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* By default build pointers in ptr_mode. */
|
||
|
||
tree
|
||
build_pointer_type (tree to_type)
|
||
{
|
||
addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
|
||
: TYPE_ADDR_SPACE (to_type);
|
||
machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
|
||
return build_pointer_type_for_mode (to_type, pointer_mode, false);
|
||
}
|
||
|
||
/* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
|
||
|
||
tree
|
||
build_reference_type_for_mode (tree to_type, machine_mode mode,
|
||
bool can_alias_all)
|
||
{
|
||
tree t;
|
||
bool could_alias = can_alias_all;
|
||
|
||
if (to_type == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* If the pointed-to type has the may_alias attribute set, force
|
||
a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
|
||
if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
|
||
can_alias_all = true;
|
||
|
||
/* In some cases, languages will have things that aren't a REFERENCE_TYPE
|
||
(such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
|
||
In that case, return that type without regard to the rest of our
|
||
operands.
|
||
|
||
??? This is a kludge, but consistent with the way this function has
|
||
always operated and there doesn't seem to be a good way to avoid this
|
||
at the moment. */
|
||
if (TYPE_REFERENCE_TO (to_type) != 0
|
||
&& TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
|
||
return TYPE_REFERENCE_TO (to_type);
|
||
|
||
/* First, if we already have a type for pointers to TO_TYPE and it's
|
||
the proper mode, use it. */
|
||
for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
|
||
if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
|
||
return t;
|
||
|
||
t = make_node (REFERENCE_TYPE);
|
||
|
||
TREE_TYPE (t) = to_type;
|
||
SET_TYPE_MODE (t, mode);
|
||
TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
|
||
TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
|
||
TYPE_REFERENCE_TO (to_type) = t;
|
||
|
||
/* During LTO we do not set TYPE_CANONICAL of pointers and references. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (to_type) || in_lto_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (to_type) != to_type || could_alias)
|
||
TYPE_CANONICAL (t)
|
||
= build_reference_type_for_mode (TYPE_CANONICAL (to_type),
|
||
mode, false);
|
||
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Build the node for the type of references-to-TO_TYPE by default
|
||
in ptr_mode. */
|
||
|
||
tree
|
||
build_reference_type (tree to_type)
|
||
{
|
||
addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
|
||
: TYPE_ADDR_SPACE (to_type);
|
||
machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
|
||
return build_reference_type_for_mode (to_type, pointer_mode, false);
|
||
}
|
||
|
||
#define MAX_INT_CACHED_PREC \
|
||
(HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
|
||
static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
|
||
|
||
/* Builds a signed or unsigned integer type of precision PRECISION.
|
||
Used for C bitfields whose precision does not match that of
|
||
built-in target types. */
|
||
tree
|
||
build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
|
||
int unsignedp)
|
||
{
|
||
tree itype, ret;
|
||
|
||
if (unsignedp)
|
||
unsignedp = MAX_INT_CACHED_PREC + 1;
|
||
|
||
if (precision <= MAX_INT_CACHED_PREC)
|
||
{
|
||
itype = nonstandard_integer_type_cache[precision + unsignedp];
|
||
if (itype)
|
||
return itype;
|
||
}
|
||
|
||
itype = make_node (INTEGER_TYPE);
|
||
TYPE_PRECISION (itype) = precision;
|
||
|
||
if (unsignedp)
|
||
fixup_unsigned_type (itype);
|
||
else
|
||
fixup_signed_type (itype);
|
||
|
||
ret = itype;
|
||
|
||
inchash::hash hstate;
|
||
inchash::add_expr (TYPE_MAX_VALUE (itype), hstate);
|
||
ret = type_hash_canon (hstate.end (), itype);
|
||
if (precision <= MAX_INT_CACHED_PREC)
|
||
nonstandard_integer_type_cache[precision + unsignedp] = ret;
|
||
|
||
return ret;
|
||
}
|
||
|
||
#define MAX_BOOL_CACHED_PREC \
|
||
(HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
|
||
static GTY(()) tree nonstandard_boolean_type_cache[MAX_BOOL_CACHED_PREC + 1];
|
||
|
||
/* Builds a boolean type of precision PRECISION.
|
||
Used for boolean vectors to choose proper vector element size. */
|
||
tree
|
||
build_nonstandard_boolean_type (unsigned HOST_WIDE_INT precision)
|
||
{
|
||
tree type;
|
||
|
||
if (precision <= MAX_BOOL_CACHED_PREC)
|
||
{
|
||
type = nonstandard_boolean_type_cache[precision];
|
||
if (type)
|
||
return type;
|
||
}
|
||
|
||
type = make_node (BOOLEAN_TYPE);
|
||
TYPE_PRECISION (type) = precision;
|
||
fixup_signed_type (type);
|
||
|
||
if (precision <= MAX_INT_CACHED_PREC)
|
||
nonstandard_boolean_type_cache[precision] = type;
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
|
||
or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
|
||
is true, reuse such a type that has already been constructed. */
|
||
|
||
static tree
|
||
build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
|
||
{
|
||
tree itype = make_node (INTEGER_TYPE);
|
||
|
||
TREE_TYPE (itype) = type;
|
||
|
||
TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
|
||
TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
|
||
|
||
TYPE_PRECISION (itype) = TYPE_PRECISION (type);
|
||
SET_TYPE_MODE (itype, TYPE_MODE (type));
|
||
TYPE_SIZE (itype) = TYPE_SIZE (type);
|
||
TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
|
||
SET_TYPE_ALIGN (itype, TYPE_ALIGN (type));
|
||
TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
|
||
SET_TYPE_WARN_IF_NOT_ALIGN (itype, TYPE_WARN_IF_NOT_ALIGN (type));
|
||
|
||
if (!shared)
|
||
return itype;
|
||
|
||
if ((TYPE_MIN_VALUE (itype)
|
||
&& TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
|
||
|| (TYPE_MAX_VALUE (itype)
|
||
&& TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
|
||
{
|
||
/* Since we cannot reliably merge this type, we need to compare it using
|
||
structural equality checks. */
|
||
SET_TYPE_STRUCTURAL_EQUALITY (itype);
|
||
return itype;
|
||
}
|
||
|
||
hashval_t hash = type_hash_canon_hash (itype);
|
||
itype = type_hash_canon (hash, itype);
|
||
|
||
return itype;
|
||
}
|
||
|
||
/* Wrapper around build_range_type_1 with SHARED set to true. */
|
||
|
||
tree
|
||
build_range_type (tree type, tree lowval, tree highval)
|
||
{
|
||
return build_range_type_1 (type, lowval, highval, true);
|
||
}
|
||
|
||
/* Wrapper around build_range_type_1 with SHARED set to false. */
|
||
|
||
tree
|
||
build_nonshared_range_type (tree type, tree lowval, tree highval)
|
||
{
|
||
return build_range_type_1 (type, lowval, highval, false);
|
||
}
|
||
|
||
/* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
|
||
MAXVAL should be the maximum value in the domain
|
||
(one less than the length of the array).
|
||
|
||
The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
|
||
We don't enforce this limit, that is up to caller (e.g. language front end).
|
||
The limit exists because the result is a signed type and we don't handle
|
||
sizes that use more than one HOST_WIDE_INT. */
|
||
|
||
tree
|
||
build_index_type (tree maxval)
|
||
{
|
||
return build_range_type (sizetype, size_zero_node, maxval);
|
||
}
|
||
|
||
/* Return true if the debug information for TYPE, a subtype, should be emitted
|
||
as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
|
||
high bound, respectively. Sometimes doing so unnecessarily obfuscates the
|
||
debug info and doesn't reflect the source code. */
|
||
|
||
bool
|
||
subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
|
||
{
|
||
tree base_type = TREE_TYPE (type), low, high;
|
||
|
||
/* Subrange types have a base type which is an integral type. */
|
||
if (!INTEGRAL_TYPE_P (base_type))
|
||
return false;
|
||
|
||
/* Get the real bounds of the subtype. */
|
||
if (lang_hooks.types.get_subrange_bounds)
|
||
lang_hooks.types.get_subrange_bounds (type, &low, &high);
|
||
else
|
||
{
|
||
low = TYPE_MIN_VALUE (type);
|
||
high = TYPE_MAX_VALUE (type);
|
||
}
|
||
|
||
/* If the type and its base type have the same representation and the same
|
||
name, then the type is not a subrange but a copy of the base type. */
|
||
if ((TREE_CODE (base_type) == INTEGER_TYPE
|
||
|| TREE_CODE (base_type) == BOOLEAN_TYPE)
|
||
&& int_size_in_bytes (type) == int_size_in_bytes (base_type)
|
||
&& tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
|
||
&& tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type))
|
||
&& TYPE_IDENTIFIER (type) == TYPE_IDENTIFIER (base_type))
|
||
return false;
|
||
|
||
if (lowval)
|
||
*lowval = low;
|
||
if (highval)
|
||
*highval = high;
|
||
return true;
|
||
}
|
||
|
||
/* Construct, lay out and return the type of arrays of elements with ELT_TYPE
|
||
and number of elements specified by the range of values of INDEX_TYPE.
|
||
If TYPELESS_STORAGE is true, TYPE_TYPELESS_STORAGE flag is set on the type.
|
||
If SHARED is true, reuse such a type that has already been constructed. */
|
||
|
||
static tree
|
||
build_array_type_1 (tree elt_type, tree index_type, bool typeless_storage,
|
||
bool shared)
|
||
{
|
||
tree t;
|
||
|
||
if (TREE_CODE (elt_type) == FUNCTION_TYPE)
|
||
{
|
||
error ("arrays of functions are not meaningful");
|
||
elt_type = integer_type_node;
|
||
}
|
||
|
||
t = make_node (ARRAY_TYPE);
|
||
TREE_TYPE (t) = elt_type;
|
||
TYPE_DOMAIN (t) = index_type;
|
||
TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
|
||
TYPE_TYPELESS_STORAGE (t) = typeless_storage;
|
||
layout_type (t);
|
||
|
||
/* If the element type is incomplete at this point we get marked for
|
||
structural equality. Do not record these types in the canonical
|
||
type hashtable. */
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (t))
|
||
return t;
|
||
|
||
if (shared)
|
||
{
|
||
hashval_t hash = type_hash_canon_hash (t);
|
||
t = type_hash_canon (hash, t);
|
||
}
|
||
|
||
if (TYPE_CANONICAL (t) == t)
|
||
{
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
|
||
|| (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type))
|
||
|| in_lto_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (elt_type) != elt_type
|
||
|| (index_type && TYPE_CANONICAL (index_type) != index_type))
|
||
TYPE_CANONICAL (t)
|
||
= build_array_type_1 (TYPE_CANONICAL (elt_type),
|
||
index_type
|
||
? TYPE_CANONICAL (index_type) : NULL_TREE,
|
||
typeless_storage, shared);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Wrapper around build_array_type_1 with SHARED set to true. */
|
||
|
||
tree
|
||
build_array_type (tree elt_type, tree index_type, bool typeless_storage)
|
||
{
|
||
return build_array_type_1 (elt_type, index_type, typeless_storage, true);
|
||
}
|
||
|
||
/* Wrapper around build_array_type_1 with SHARED set to false. */
|
||
|
||
tree
|
||
build_nonshared_array_type (tree elt_type, tree index_type)
|
||
{
|
||
return build_array_type_1 (elt_type, index_type, false, false);
|
||
}
|
||
|
||
/* Return a representation of ELT_TYPE[NELTS], using indices of type
|
||
sizetype. */
|
||
|
||
tree
|
||
build_array_type_nelts (tree elt_type, poly_uint64 nelts)
|
||
{
|
||
return build_array_type (elt_type, build_index_type (size_int (nelts - 1)));
|
||
}
|
||
|
||
/* Recursively examines the array elements of TYPE, until a non-array
|
||
element type is found. */
|
||
|
||
tree
|
||
strip_array_types (tree type)
|
||
{
|
||
while (TREE_CODE (type) == ARRAY_TYPE)
|
||
type = TREE_TYPE (type);
|
||
|
||
return type;
|
||
}
|
||
|
||
/* Computes the canonical argument types from the argument type list
|
||
ARGTYPES.
|
||
|
||
Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
|
||
on entry to this function, or if any of the ARGTYPES are
|
||
structural.
|
||
|
||
Upon return, *ANY_NONCANONICAL_P will be true iff either it was
|
||
true on entry to this function, or if any of the ARGTYPES are
|
||
non-canonical.
|
||
|
||
Returns a canonical argument list, which may be ARGTYPES when the
|
||
canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
|
||
true) or would not differ from ARGTYPES. */
|
||
|
||
static tree
|
||
maybe_canonicalize_argtypes (tree argtypes,
|
||
bool *any_structural_p,
|
||
bool *any_noncanonical_p)
|
||
{
|
||
tree arg;
|
||
bool any_noncanonical_argtypes_p = false;
|
||
|
||
for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
|
||
{
|
||
if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
|
||
/* Fail gracefully by stating that the type is structural. */
|
||
*any_structural_p = true;
|
||
else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
|
||
*any_structural_p = true;
|
||
else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
|
||
|| TREE_PURPOSE (arg))
|
||
/* If the argument has a default argument, we consider it
|
||
non-canonical even though the type itself is canonical.
|
||
That way, different variants of function and method types
|
||
with default arguments will all point to the variant with
|
||
no defaults as their canonical type. */
|
||
any_noncanonical_argtypes_p = true;
|
||
}
|
||
|
||
if (*any_structural_p)
|
||
return argtypes;
|
||
|
||
if (any_noncanonical_argtypes_p)
|
||
{
|
||
/* Build the canonical list of argument types. */
|
||
tree canon_argtypes = NULL_TREE;
|
||
bool is_void = false;
|
||
|
||
for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
|
||
{
|
||
if (arg == void_list_node)
|
||
is_void = true;
|
||
else
|
||
canon_argtypes = tree_cons (NULL_TREE,
|
||
TYPE_CANONICAL (TREE_VALUE (arg)),
|
||
canon_argtypes);
|
||
}
|
||
|
||
canon_argtypes = nreverse (canon_argtypes);
|
||
if (is_void)
|
||
canon_argtypes = chainon (canon_argtypes, void_list_node);
|
||
|
||
/* There is a non-canonical type. */
|
||
*any_noncanonical_p = true;
|
||
return canon_argtypes;
|
||
}
|
||
|
||
/* The canonical argument types are the same as ARGTYPES. */
|
||
return argtypes;
|
||
}
|
||
|
||
/* Construct, lay out and return
|
||
the type of functions returning type VALUE_TYPE
|
||
given arguments of types ARG_TYPES.
|
||
ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
|
||
are data type nodes for the arguments of the function.
|
||
If such a type has already been constructed, reuse it. */
|
||
|
||
tree
|
||
build_function_type (tree value_type, tree arg_types)
|
||
{
|
||
tree t;
|
||
inchash::hash hstate;
|
||
bool any_structural_p, any_noncanonical_p;
|
||
tree canon_argtypes;
|
||
|
||
if (TREE_CODE (value_type) == FUNCTION_TYPE)
|
||
{
|
||
error ("function return type cannot be function");
|
||
value_type = integer_type_node;
|
||
}
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (FUNCTION_TYPE);
|
||
TREE_TYPE (t) = value_type;
|
||
TYPE_ARG_TYPES (t) = arg_types;
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashval_t hash = type_hash_canon_hash (t);
|
||
t = type_hash_canon (hash, t);
|
||
|
||
/* Set up the canonical type. */
|
||
any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
|
||
any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
|
||
canon_argtypes = maybe_canonicalize_argtypes (arg_types,
|
||
&any_structural_p,
|
||
&any_noncanonical_p);
|
||
if (any_structural_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (any_noncanonical_p)
|
||
TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
|
||
canon_argtypes);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
return t;
|
||
}
|
||
|
||
/* Build a function type. The RETURN_TYPE is the type returned by the
|
||
function. If VAARGS is set, no void_type_node is appended to the
|
||
list. ARGP must be always be terminated be a NULL_TREE. */
|
||
|
||
static tree
|
||
build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
|
||
{
|
||
tree t, args, last;
|
||
|
||
t = va_arg (argp, tree);
|
||
for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
|
||
args = tree_cons (NULL_TREE, t, args);
|
||
|
||
if (vaargs)
|
||
{
|
||
last = args;
|
||
if (args != NULL_TREE)
|
||
args = nreverse (args);
|
||
gcc_assert (last != void_list_node);
|
||
}
|
||
else if (args == NULL_TREE)
|
||
args = void_list_node;
|
||
else
|
||
{
|
||
last = args;
|
||
args = nreverse (args);
|
||
TREE_CHAIN (last) = void_list_node;
|
||
}
|
||
args = build_function_type (return_type, args);
|
||
|
||
return args;
|
||
}
|
||
|
||
/* Build a function type. The RETURN_TYPE is the type returned by the
|
||
function. If additional arguments are provided, they are
|
||
additional argument types. The list of argument types must always
|
||
be terminated by NULL_TREE. */
|
||
|
||
tree
|
||
build_function_type_list (tree return_type, ...)
|
||
{
|
||
tree args;
|
||
va_list p;
|
||
|
||
va_start (p, return_type);
|
||
args = build_function_type_list_1 (false, return_type, p);
|
||
va_end (p);
|
||
return args;
|
||
}
|
||
|
||
/* Build a variable argument function type. The RETURN_TYPE is the
|
||
type returned by the function. If additional arguments are provided,
|
||
they are additional argument types. The list of argument types must
|
||
always be terminated by NULL_TREE. */
|
||
|
||
tree
|
||
build_varargs_function_type_list (tree return_type, ...)
|
||
{
|
||
tree args;
|
||
va_list p;
|
||
|
||
va_start (p, return_type);
|
||
args = build_function_type_list_1 (true, return_type, p);
|
||
va_end (p);
|
||
|
||
return args;
|
||
}
|
||
|
||
/* Build a function type. RETURN_TYPE is the type returned by the
|
||
function; VAARGS indicates whether the function takes varargs. The
|
||
function takes N named arguments, the types of which are provided in
|
||
ARG_TYPES. */
|
||
|
||
static tree
|
||
build_function_type_array_1 (bool vaargs, tree return_type, int n,
|
||
tree *arg_types)
|
||
{
|
||
int i;
|
||
tree t = vaargs ? NULL_TREE : void_list_node;
|
||
|
||
for (i = n - 1; i >= 0; i--)
|
||
t = tree_cons (NULL_TREE, arg_types[i], t);
|
||
|
||
return build_function_type (return_type, t);
|
||
}
|
||
|
||
/* Build a function type. RETURN_TYPE is the type returned by the
|
||
function. The function takes N named arguments, the types of which
|
||
are provided in ARG_TYPES. */
|
||
|
||
tree
|
||
build_function_type_array (tree return_type, int n, tree *arg_types)
|
||
{
|
||
return build_function_type_array_1 (false, return_type, n, arg_types);
|
||
}
|
||
|
||
/* Build a variable argument function type. RETURN_TYPE is the type
|
||
returned by the function. The function takes N named arguments, the
|
||
types of which are provided in ARG_TYPES. */
|
||
|
||
tree
|
||
build_varargs_function_type_array (tree return_type, int n, tree *arg_types)
|
||
{
|
||
return build_function_type_array_1 (true, return_type, n, arg_types);
|
||
}
|
||
|
||
/* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
|
||
and ARGTYPES (a TREE_LIST) are the return type and arguments types
|
||
for the method. An implicit additional parameter (of type
|
||
pointer-to-BASETYPE) is added to the ARGTYPES. */
|
||
|
||
tree
|
||
build_method_type_directly (tree basetype,
|
||
tree rettype,
|
||
tree argtypes)
|
||
{
|
||
tree t;
|
||
tree ptype;
|
||
bool any_structural_p, any_noncanonical_p;
|
||
tree canon_argtypes;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (METHOD_TYPE);
|
||
|
||
TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = rettype;
|
||
ptype = build_pointer_type (basetype);
|
||
|
||
/* The actual arglist for this function includes a "hidden" argument
|
||
which is "this". Put it into the list of argument types. */
|
||
argtypes = tree_cons (NULL_TREE, ptype, argtypes);
|
||
TYPE_ARG_TYPES (t) = argtypes;
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashval_t hash = type_hash_canon_hash (t);
|
||
t = type_hash_canon (hash, t);
|
||
|
||
/* Set up the canonical type. */
|
||
any_structural_p
|
||
= (TYPE_STRUCTURAL_EQUALITY_P (basetype)
|
||
|| TYPE_STRUCTURAL_EQUALITY_P (rettype));
|
||
any_noncanonical_p
|
||
= (TYPE_CANONICAL (basetype) != basetype
|
||
|| TYPE_CANONICAL (rettype) != rettype);
|
||
canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
|
||
&any_structural_p,
|
||
&any_noncanonical_p);
|
||
if (any_structural_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (any_noncanonical_p)
|
||
TYPE_CANONICAL (t)
|
||
= build_method_type_directly (TYPE_CANONICAL (basetype),
|
||
TYPE_CANONICAL (rettype),
|
||
canon_argtypes);
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Construct, lay out and return the type of methods belonging to class
|
||
BASETYPE and whose arguments and values are described by TYPE.
|
||
If that type exists already, reuse it.
|
||
TYPE must be a FUNCTION_TYPE node. */
|
||
|
||
tree
|
||
build_method_type (tree basetype, tree type)
|
||
{
|
||
gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
|
||
|
||
return build_method_type_directly (basetype,
|
||
TREE_TYPE (type),
|
||
TYPE_ARG_TYPES (type));
|
||
}
|
||
|
||
/* Construct, lay out and return the type of offsets to a value
|
||
of type TYPE, within an object of type BASETYPE.
|
||
If a suitable offset type exists already, reuse it. */
|
||
|
||
tree
|
||
build_offset_type (tree basetype, tree type)
|
||
{
|
||
tree t;
|
||
|
||
/* Make a node of the sort we want. */
|
||
t = make_node (OFFSET_TYPE);
|
||
|
||
TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
|
||
TREE_TYPE (t) = type;
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashval_t hash = type_hash_canon_hash (t);
|
||
t = type_hash_canon (hash, t);
|
||
|
||
if (!COMPLETE_TYPE_P (t))
|
||
layout_type (t);
|
||
|
||
if (TYPE_CANONICAL (t) == t)
|
||
{
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
|
||
|| TYPE_STRUCTURAL_EQUALITY_P (type))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
|
||
|| TYPE_CANONICAL (type) != type)
|
||
TYPE_CANONICAL (t)
|
||
= build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
|
||
TYPE_CANONICAL (type));
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Create a complex type whose components are COMPONENT_TYPE.
|
||
|
||
If NAMED is true, the type is given a TYPE_NAME. We do not always
|
||
do so because this creates a DECL node and thus make the DECL_UIDs
|
||
dependent on the type canonicalization hashtable, which is GC-ed,
|
||
so the DECL_UIDs would not be stable wrt garbage collection. */
|
||
|
||
tree
|
||
build_complex_type (tree component_type, bool named)
|
||
{
|
||
gcc_assert (INTEGRAL_TYPE_P (component_type)
|
||
|| SCALAR_FLOAT_TYPE_P (component_type)
|
||
|| FIXED_POINT_TYPE_P (component_type));
|
||
|
||
/* Make a node of the sort we want. */
|
||
tree probe = make_node (COMPLEX_TYPE);
|
||
|
||
TREE_TYPE (probe) = TYPE_MAIN_VARIANT (component_type);
|
||
|
||
/* If we already have such a type, use the old one. */
|
||
hashval_t hash = type_hash_canon_hash (probe);
|
||
tree t = type_hash_canon (hash, probe);
|
||
|
||
if (t == probe)
|
||
{
|
||
/* We created a new type. The hash insertion will have laid
|
||
out the type. We need to check the canonicalization and
|
||
maybe set the name. */
|
||
gcc_checking_assert (COMPLETE_TYPE_P (t)
|
||
&& !TYPE_NAME (t)
|
||
&& TYPE_CANONICAL (t) == t);
|
||
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (TREE_TYPE (t)))
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if (TYPE_CANONICAL (TREE_TYPE (t)) != TREE_TYPE (t))
|
||
TYPE_CANONICAL (t)
|
||
= build_complex_type (TYPE_CANONICAL (TREE_TYPE (t)), named);
|
||
|
||
/* We need to create a name, since complex is a fundamental type. */
|
||
if (named)
|
||
{
|
||
const char *name = NULL;
|
||
|
||
if (TREE_TYPE (t) == char_type_node)
|
||
name = "complex char";
|
||
else if (TREE_TYPE (t) == signed_char_type_node)
|
||
name = "complex signed char";
|
||
else if (TREE_TYPE (t) == unsigned_char_type_node)
|
||
name = "complex unsigned char";
|
||
else if (TREE_TYPE (t) == short_integer_type_node)
|
||
name = "complex short int";
|
||
else if (TREE_TYPE (t) == short_unsigned_type_node)
|
||
name = "complex short unsigned int";
|
||
else if (TREE_TYPE (t) == integer_type_node)
|
||
name = "complex int";
|
||
else if (TREE_TYPE (t) == unsigned_type_node)
|
||
name = "complex unsigned int";
|
||
else if (TREE_TYPE (t) == long_integer_type_node)
|
||
name = "complex long int";
|
||
else if (TREE_TYPE (t) == long_unsigned_type_node)
|
||
name = "complex long unsigned int";
|
||
else if (TREE_TYPE (t) == long_long_integer_type_node)
|
||
name = "complex long long int";
|
||
else if (TREE_TYPE (t) == long_long_unsigned_type_node)
|
||
name = "complex long long unsigned int";
|
||
|
||
if (name != NULL)
|
||
TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
|
||
get_identifier (name), t);
|
||
}
|
||
}
|
||
|
||
return build_qualified_type (t, TYPE_QUALS (component_type));
|
||
}
|
||
|
||
/* If TYPE is a real or complex floating-point type and the target
|
||
does not directly support arithmetic on TYPE then return the wider
|
||
type to be used for arithmetic on TYPE. Otherwise, return
|
||
NULL_TREE. */
|
||
|
||
tree
|
||
excess_precision_type (tree type)
|
||
{
|
||
/* The target can give two different responses to the question of
|
||
which excess precision mode it would like depending on whether we
|
||
are in -fexcess-precision=standard or -fexcess-precision=fast. */
|
||
|
||
enum excess_precision_type requested_type
|
||
= (flag_excess_precision == EXCESS_PRECISION_FAST
|
||
? EXCESS_PRECISION_TYPE_FAST
|
||
: EXCESS_PRECISION_TYPE_STANDARD);
|
||
|
||
enum flt_eval_method target_flt_eval_method
|
||
= targetm.c.excess_precision (requested_type);
|
||
|
||
/* The target should not ask for unpredictable float evaluation (though
|
||
it might advertise that implicitly the evaluation is unpredictable,
|
||
but we don't care about that here, it will have been reported
|
||
elsewhere). If it does ask for unpredictable evaluation, we have
|
||
nothing to do here. */
|
||
gcc_assert (target_flt_eval_method != FLT_EVAL_METHOD_UNPREDICTABLE);
|
||
|
||
/* Nothing to do. The target has asked for all types we know about
|
||
to be computed with their native precision and range. */
|
||
if (target_flt_eval_method == FLT_EVAL_METHOD_PROMOTE_TO_FLOAT16)
|
||
return NULL_TREE;
|
||
|
||
/* The target will promote this type in a target-dependent way, so excess
|
||
precision ought to leave it alone. */
|
||
if (targetm.promoted_type (type) != NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
machine_mode float16_type_mode = (float16_type_node
|
||
? TYPE_MODE (float16_type_node)
|
||
: VOIDmode);
|
||
machine_mode float_type_mode = TYPE_MODE (float_type_node);
|
||
machine_mode double_type_mode = TYPE_MODE (double_type_node);
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case REAL_TYPE:
|
||
{
|
||
machine_mode type_mode = TYPE_MODE (type);
|
||
switch (target_flt_eval_method)
|
||
{
|
||
case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
|
||
if (type_mode == float16_type_mode)
|
||
return float_type_node;
|
||
break;
|
||
case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
|
||
if (type_mode == float16_type_mode
|
||
|| type_mode == float_type_mode)
|
||
return double_type_node;
|
||
break;
|
||
case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
|
||
if (type_mode == float16_type_mode
|
||
|| type_mode == float_type_mode
|
||
|| type_mode == double_type_mode)
|
||
return long_double_type_node;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
}
|
||
case COMPLEX_TYPE:
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
|
||
return NULL_TREE;
|
||
machine_mode type_mode = TYPE_MODE (TREE_TYPE (type));
|
||
switch (target_flt_eval_method)
|
||
{
|
||
case FLT_EVAL_METHOD_PROMOTE_TO_FLOAT:
|
||
if (type_mode == float16_type_mode)
|
||
return complex_float_type_node;
|
||
break;
|
||
case FLT_EVAL_METHOD_PROMOTE_TO_DOUBLE:
|
||
if (type_mode == float16_type_mode
|
||
|| type_mode == float_type_mode)
|
||
return complex_double_type_node;
|
||
break;
|
||
case FLT_EVAL_METHOD_PROMOTE_TO_LONG_DOUBLE:
|
||
if (type_mode == float16_type_mode
|
||
|| type_mode == float_type_mode
|
||
|| type_mode == double_type_mode)
|
||
return complex_long_double_type_node;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
}
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Return OP, stripped of any conversions to wider types as much as is safe.
|
||
Converting the value back to OP's type makes a value equivalent to OP.
|
||
|
||
If FOR_TYPE is nonzero, we return a value which, if converted to
|
||
type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
|
||
|
||
OP must have integer, real or enumeral type. Pointers are not allowed!
|
||
|
||
There are some cases where the obvious value we could return
|
||
would regenerate to OP if converted to OP's type,
|
||
but would not extend like OP to wider types.
|
||
If FOR_TYPE indicates such extension is contemplated, we eschew such values.
|
||
For example, if OP is (unsigned short)(signed char)-1,
|
||
we avoid returning (signed char)-1 if FOR_TYPE is int,
|
||
even though extending that to an unsigned short would regenerate OP,
|
||
since the result of extending (signed char)-1 to (int)
|
||
is different from (int) OP. */
|
||
|
||
tree
|
||
get_unwidened (tree op, tree for_type)
|
||
{
|
||
/* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
|
||
tree type = TREE_TYPE (op);
|
||
unsigned final_prec
|
||
= TYPE_PRECISION (for_type != 0 ? for_type : type);
|
||
int uns
|
||
= (for_type != 0 && for_type != type
|
||
&& final_prec > TYPE_PRECISION (type)
|
||
&& TYPE_UNSIGNED (type));
|
||
tree win = op;
|
||
|
||
while (CONVERT_EXPR_P (op))
|
||
{
|
||
int bitschange;
|
||
|
||
/* TYPE_PRECISION on vector types has different meaning
|
||
(TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
|
||
so avoid them here. */
|
||
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
|
||
break;
|
||
|
||
bitschange = TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
|
||
|
||
/* Truncations are many-one so cannot be removed.
|
||
Unless we are later going to truncate down even farther. */
|
||
if (bitschange < 0
|
||
&& final_prec > TYPE_PRECISION (TREE_TYPE (op)))
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
op = TREE_OPERAND (op, 0);
|
||
|
||
/* If we have not stripped any zero-extensions (uns is 0),
|
||
we can strip any kind of extension.
|
||
If we have previously stripped a zero-extension,
|
||
only zero-extensions can safely be stripped.
|
||
Any extension can be stripped if the bits it would produce
|
||
are all going to be discarded later by truncating to FOR_TYPE. */
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
|
||
win = op;
|
||
/* TYPE_UNSIGNED says whether this is a zero-extension.
|
||
Let's avoid computing it if it does not affect WIN
|
||
and if UNS will not be needed again. */
|
||
if ((uns
|
||
|| CONVERT_EXPR_P (op))
|
||
&& TYPE_UNSIGNED (TREE_TYPE (op)))
|
||
{
|
||
uns = 1;
|
||
win = op;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we finally reach a constant see if it fits in sth smaller and
|
||
in that case convert it. */
|
||
if (TREE_CODE (win) == INTEGER_CST)
|
||
{
|
||
tree wtype = TREE_TYPE (win);
|
||
unsigned prec = wi::min_precision (wi::to_wide (win), TYPE_SIGN (wtype));
|
||
if (for_type)
|
||
prec = MAX (prec, final_prec);
|
||
if (prec < TYPE_PRECISION (wtype))
|
||
{
|
||
tree t = lang_hooks.types.type_for_size (prec, TYPE_UNSIGNED (wtype));
|
||
if (t && TYPE_PRECISION (t) < TYPE_PRECISION (wtype))
|
||
win = fold_convert (t, win);
|
||
}
|
||
}
|
||
|
||
return win;
|
||
}
|
||
|
||
/* Return OP or a simpler expression for a narrower value
|
||
which can be sign-extended or zero-extended to give back OP.
|
||
Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
|
||
or 0 if the value should be sign-extended. */
|
||
|
||
tree
|
||
get_narrower (tree op, int *unsignedp_ptr)
|
||
{
|
||
int uns = 0;
|
||
int first = 1;
|
||
tree win = op;
|
||
bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
|
||
|
||
while (TREE_CODE (op) == NOP_EXPR)
|
||
{
|
||
int bitschange
|
||
= (TYPE_PRECISION (TREE_TYPE (op))
|
||
- TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
|
||
|
||
/* Truncations are many-one so cannot be removed. */
|
||
if (bitschange < 0)
|
||
break;
|
||
|
||
/* See what's inside this conversion. If we decide to strip it,
|
||
we will set WIN. */
|
||
|
||
if (bitschange > 0)
|
||
{
|
||
op = TREE_OPERAND (op, 0);
|
||
/* An extension: the outermost one can be stripped,
|
||
but remember whether it is zero or sign extension. */
|
||
if (first)
|
||
uns = TYPE_UNSIGNED (TREE_TYPE (op));
|
||
/* Otherwise, if a sign extension has been stripped,
|
||
only sign extensions can now be stripped;
|
||
if a zero extension has been stripped, only zero-extensions. */
|
||
else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
|
||
break;
|
||
first = 0;
|
||
}
|
||
else /* bitschange == 0 */
|
||
{
|
||
/* A change in nominal type can always be stripped, but we must
|
||
preserve the unsignedness. */
|
||
if (first)
|
||
uns = TYPE_UNSIGNED (TREE_TYPE (op));
|
||
first = 0;
|
||
op = TREE_OPERAND (op, 0);
|
||
/* Keep trying to narrow, but don't assign op to win if it
|
||
would turn an integral type into something else. */
|
||
if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
|
||
continue;
|
||
}
|
||
|
||
win = op;
|
||
}
|
||
|
||
if (TREE_CODE (op) == COMPONENT_REF
|
||
/* Since type_for_size always gives an integer type. */
|
||
&& TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
|
||
&& TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
|
||
/* Ensure field is laid out already. */
|
||
&& DECL_SIZE (TREE_OPERAND (op, 1)) != 0
|
||
&& tree_fits_uhwi_p (DECL_SIZE (TREE_OPERAND (op, 1))))
|
||
{
|
||
unsigned HOST_WIDE_INT innerprec
|
||
= tree_to_uhwi (DECL_SIZE (TREE_OPERAND (op, 1)));
|
||
int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
|
||
|| TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
|
||
tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
|
||
|
||
/* We can get this structure field in a narrower type that fits it,
|
||
but the resulting extension to its nominal type (a fullword type)
|
||
must satisfy the same conditions as for other extensions.
|
||
|
||
Do this only for fields that are aligned (not bit-fields),
|
||
because when bit-field insns will be used there is no
|
||
advantage in doing this. */
|
||
|
||
if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
|
||
&& ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
|
||
&& (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
|
||
&& type != 0)
|
||
{
|
||
if (first)
|
||
uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
|
||
win = fold_convert (type, op);
|
||
}
|
||
}
|
||
|
||
*unsignedp_ptr = uns;
|
||
return win;
|
||
}
|
||
|
||
/* Return true if integer constant C has a value that is permissible
|
||
for TYPE, an integral type. */
|
||
|
||
bool
|
||
int_fits_type_p (const_tree c, const_tree type)
|
||
{
|
||
tree type_low_bound, type_high_bound;
|
||
bool ok_for_low_bound, ok_for_high_bound;
|
||
signop sgn_c = TYPE_SIGN (TREE_TYPE (c));
|
||
|
||
/* Non-standard boolean types can have arbitrary precision but various
|
||
transformations assume that they can only take values 0 and +/-1. */
|
||
if (TREE_CODE (type) == BOOLEAN_TYPE)
|
||
return wi::fits_to_boolean_p (wi::to_wide (c), type);
|
||
|
||
retry:
|
||
type_low_bound = TYPE_MIN_VALUE (type);
|
||
type_high_bound = TYPE_MAX_VALUE (type);
|
||
|
||
/* If at least one bound of the type is a constant integer, we can check
|
||
ourselves and maybe make a decision. If no such decision is possible, but
|
||
this type is a subtype, try checking against that. Otherwise, use
|
||
fits_to_tree_p, which checks against the precision.
|
||
|
||
Compute the status for each possibly constant bound, and return if we see
|
||
one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
|
||
for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
|
||
for "constant known to fit". */
|
||
|
||
/* Check if c >= type_low_bound. */
|
||
if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
|
||
{
|
||
if (tree_int_cst_lt (c, type_low_bound))
|
||
return false;
|
||
ok_for_low_bound = true;
|
||
}
|
||
else
|
||
ok_for_low_bound = false;
|
||
|
||
/* Check if c <= type_high_bound. */
|
||
if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
|
||
{
|
||
if (tree_int_cst_lt (type_high_bound, c))
|
||
return false;
|
||
ok_for_high_bound = true;
|
||
}
|
||
else
|
||
ok_for_high_bound = false;
|
||
|
||
/* If the constant fits both bounds, the result is known. */
|
||
if (ok_for_low_bound && ok_for_high_bound)
|
||
return true;
|
||
|
||
/* Perform some generic filtering which may allow making a decision
|
||
even if the bounds are not constant. First, negative integers
|
||
never fit in unsigned types, */
|
||
if (TYPE_UNSIGNED (type) && sgn_c == SIGNED && wi::neg_p (wi::to_wide (c)))
|
||
return false;
|
||
|
||
/* Second, narrower types always fit in wider ones. */
|
||
if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
|
||
return true;
|
||
|
||
/* Third, unsigned integers with top bit set never fit signed types. */
|
||
if (!TYPE_UNSIGNED (type) && sgn_c == UNSIGNED)
|
||
{
|
||
int prec = GET_MODE_PRECISION (SCALAR_INT_TYPE_MODE (TREE_TYPE (c))) - 1;
|
||
if (prec < TYPE_PRECISION (TREE_TYPE (c)))
|
||
{
|
||
/* When a tree_cst is converted to a wide-int, the precision
|
||
is taken from the type. However, if the precision of the
|
||
mode underneath the type is smaller than that, it is
|
||
possible that the value will not fit. The test below
|
||
fails if any bit is set between the sign bit of the
|
||
underlying mode and the top bit of the type. */
|
||
if (wi::zext (wi::to_wide (c), prec - 1) != wi::to_wide (c))
|
||
return false;
|
||
}
|
||
else if (wi::neg_p (wi::to_wide (c)))
|
||
return false;
|
||
}
|
||
|
||
/* If we haven't been able to decide at this point, there nothing more we
|
||
can check ourselves here. Look at the base type if we have one and it
|
||
has the same precision. */
|
||
if (TREE_CODE (type) == INTEGER_TYPE
|
||
&& TREE_TYPE (type) != 0
|
||
&& TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
|
||
{
|
||
type = TREE_TYPE (type);
|
||
goto retry;
|
||
}
|
||
|
||
/* Or to fits_to_tree_p, if nothing else. */
|
||
return wi::fits_to_tree_p (wi::to_wide (c), type);
|
||
}
|
||
|
||
/* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
|
||
bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
|
||
represented (assuming two's-complement arithmetic) within the bit
|
||
precision of the type are returned instead. */
|
||
|
||
void
|
||
get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
|
||
{
|
||
if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
|
||
&& TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
|
||
wi::to_mpz (wi::to_wide (TYPE_MIN_VALUE (type)), min, TYPE_SIGN (type));
|
||
else
|
||
{
|
||
if (TYPE_UNSIGNED (type))
|
||
mpz_set_ui (min, 0);
|
||
else
|
||
{
|
||
wide_int mn = wi::min_value (TYPE_PRECISION (type), SIGNED);
|
||
wi::to_mpz (mn, min, SIGNED);
|
||
}
|
||
}
|
||
|
||
if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
|
||
&& TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
|
||
wi::to_mpz (wi::to_wide (TYPE_MAX_VALUE (type)), max, TYPE_SIGN (type));
|
||
else
|
||
{
|
||
wide_int mn = wi::max_value (TYPE_PRECISION (type), TYPE_SIGN (type));
|
||
wi::to_mpz (mn, max, TYPE_SIGN (type));
|
||
}
|
||
}
|
||
|
||
/* Return true if VAR is an automatic variable defined in function FN. */
|
||
|
||
bool
|
||
auto_var_in_fn_p (const_tree var, const_tree fn)
|
||
{
|
||
return (DECL_P (var) && DECL_CONTEXT (var) == fn
|
||
&& ((((VAR_P (var) && ! DECL_EXTERNAL (var))
|
||
|| TREE_CODE (var) == PARM_DECL)
|
||
&& ! TREE_STATIC (var))
|
||
|| TREE_CODE (var) == LABEL_DECL
|
||
|| TREE_CODE (var) == RESULT_DECL));
|
||
}
|
||
|
||
/* Subprogram of following function. Called by walk_tree.
|
||
|
||
Return *TP if it is an automatic variable or parameter of the
|
||
function passed in as DATA. */
|
||
|
||
static tree
|
||
find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
|
||
{
|
||
tree fn = (tree) data;
|
||
|
||
if (TYPE_P (*tp))
|
||
*walk_subtrees = 0;
|
||
|
||
else if (DECL_P (*tp)
|
||
&& auto_var_in_fn_p (*tp, fn))
|
||
return *tp;
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns true if T is, contains, or refers to a type with variable
|
||
size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
|
||
arguments, but not the return type. If FN is nonzero, only return
|
||
true if a modifier of the type or position of FN is a variable or
|
||
parameter inside FN.
|
||
|
||
This concept is more general than that of C99 'variably modified types':
|
||
in C99, a struct type is never variably modified because a VLA may not
|
||
appear as a structure member. However, in GNU C code like:
|
||
|
||
struct S { int i[f()]; };
|
||
|
||
is valid, and other languages may define similar constructs. */
|
||
|
||
bool
|
||
variably_modified_type_p (tree type, tree fn)
|
||
{
|
||
tree t;
|
||
|
||
/* Test if T is either variable (if FN is zero) or an expression containing
|
||
a variable in FN. If TYPE isn't gimplified, return true also if
|
||
gimplify_one_sizepos would gimplify the expression into a local
|
||
variable. */
|
||
#define RETURN_TRUE_IF_VAR(T) \
|
||
do { tree _t = (T); \
|
||
if (_t != NULL_TREE \
|
||
&& _t != error_mark_node \
|
||
&& !CONSTANT_CLASS_P (_t) \
|
||
&& TREE_CODE (_t) != PLACEHOLDER_EXPR \
|
||
&& (!fn \
|
||
|| (!TYPE_SIZES_GIMPLIFIED (type) \
|
||
&& (TREE_CODE (_t) != VAR_DECL \
|
||
&& !CONTAINS_PLACEHOLDER_P (_t))) \
|
||
|| walk_tree (&_t, find_var_from_fn, fn, NULL))) \
|
||
return true; } while (0)
|
||
|
||
if (type == error_mark_node)
|
||
return false;
|
||
|
||
/* If TYPE itself has variable size, it is variably modified. */
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case VECTOR_TYPE:
|
||
/* Ada can have pointer types refering to themselves indirectly. */
|
||
if (TREE_VISITED (type))
|
||
return false;
|
||
TREE_VISITED (type) = true;
|
||
if (variably_modified_type_p (TREE_TYPE (type), fn))
|
||
{
|
||
TREE_VISITED (type) = false;
|
||
return true;
|
||
}
|
||
TREE_VISITED (type) = false;
|
||
break;
|
||
|
||
case FUNCTION_TYPE:
|
||
case METHOD_TYPE:
|
||
/* If TYPE is a function type, it is variably modified if the
|
||
return type is variably modified. */
|
||
if (variably_modified_type_p (TREE_TYPE (type), fn))
|
||
return true;
|
||
break;
|
||
|
||
case INTEGER_TYPE:
|
||
case REAL_TYPE:
|
||
case FIXED_POINT_TYPE:
|
||
case ENUMERAL_TYPE:
|
||
case BOOLEAN_TYPE:
|
||
/* Scalar types are variably modified if their end points
|
||
aren't constant. */
|
||
RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
|
||
RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
|
||
break;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
/* We can't see if any of the fields are variably-modified by the
|
||
definition we normally use, since that would produce infinite
|
||
recursion via pointers. */
|
||
/* This is variably modified if some field's type is. */
|
||
for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
|
||
if (TREE_CODE (t) == FIELD_DECL)
|
||
{
|
||
RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
|
||
RETURN_TRUE_IF_VAR (DECL_SIZE (t));
|
||
RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
|
||
|
||
if (TREE_CODE (type) == QUAL_UNION_TYPE)
|
||
RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
|
||
}
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
/* Do not call ourselves to avoid infinite recursion. This is
|
||
variably modified if the element type is. */
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
|
||
RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* The current language may have other cases to check, but in general,
|
||
all other types are not variably modified. */
|
||
return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
|
||
|
||
#undef RETURN_TRUE_IF_VAR
|
||
}
|
||
|
||
/* Given a DECL or TYPE, return the scope in which it was declared, or
|
||
NULL_TREE if there is no containing scope. */
|
||
|
||
tree
|
||
get_containing_scope (const_tree t)
|
||
{
|
||
return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
|
||
}
|
||
|
||
/* Returns the ultimate TRANSLATION_UNIT_DECL context of DECL or NULL. */
|
||
|
||
const_tree
|
||
get_ultimate_context (const_tree decl)
|
||
{
|
||
while (decl && TREE_CODE (decl) != TRANSLATION_UNIT_DECL)
|
||
{
|
||
if (TREE_CODE (decl) == BLOCK)
|
||
decl = BLOCK_SUPERCONTEXT (decl);
|
||
else
|
||
decl = get_containing_scope (decl);
|
||
}
|
||
return decl;
|
||
}
|
||
|
||
/* Return the innermost context enclosing DECL that is
|
||
a FUNCTION_DECL, or zero if none. */
|
||
|
||
tree
|
||
decl_function_context (const_tree decl)
|
||
{
|
||
tree context;
|
||
|
||
if (TREE_CODE (decl) == ERROR_MARK)
|
||
return 0;
|
||
|
||
/* C++ virtual functions use DECL_CONTEXT for the class of the vtable
|
||
where we look up the function at runtime. Such functions always take
|
||
a first argument of type 'pointer to real context'.
|
||
|
||
C++ should really be fixed to use DECL_CONTEXT for the real context,
|
||
and use something else for the "virtual context". */
|
||
else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
|
||
context
|
||
= TYPE_MAIN_VARIANT
|
||
(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
|
||
else
|
||
context = DECL_CONTEXT (decl);
|
||
|
||
while (context && TREE_CODE (context) != FUNCTION_DECL)
|
||
{
|
||
if (TREE_CODE (context) == BLOCK)
|
||
context = BLOCK_SUPERCONTEXT (context);
|
||
else
|
||
context = get_containing_scope (context);
|
||
}
|
||
|
||
return context;
|
||
}
|
||
|
||
/* Return the innermost context enclosing DECL that is
|
||
a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
|
||
TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
|
||
|
||
tree
|
||
decl_type_context (const_tree decl)
|
||
{
|
||
tree context = DECL_CONTEXT (decl);
|
||
|
||
while (context)
|
||
switch (TREE_CODE (context))
|
||
{
|
||
case NAMESPACE_DECL:
|
||
case TRANSLATION_UNIT_DECL:
|
||
return NULL_TREE;
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
return context;
|
||
|
||
case TYPE_DECL:
|
||
case FUNCTION_DECL:
|
||
context = DECL_CONTEXT (context);
|
||
break;
|
||
|
||
case BLOCK:
|
||
context = BLOCK_SUPERCONTEXT (context);
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* CALL is a CALL_EXPR. Return the declaration for the function
|
||
called, or NULL_TREE if the called function cannot be
|
||
determined. */
|
||
|
||
tree
|
||
get_callee_fndecl (const_tree call)
|
||
{
|
||
tree addr;
|
||
|
||
if (call == error_mark_node)
|
||
return error_mark_node;
|
||
|
||
/* It's invalid to call this function with anything but a
|
||
CALL_EXPR. */
|
||
gcc_assert (TREE_CODE (call) == CALL_EXPR);
|
||
|
||
/* The first operand to the CALL is the address of the function
|
||
called. */
|
||
addr = CALL_EXPR_FN (call);
|
||
|
||
/* If there is no function, return early. */
|
||
if (addr == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
STRIP_NOPS (addr);
|
||
|
||
/* If this is a readonly function pointer, extract its initial value. */
|
||
if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
|
||
&& TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
|
||
&& DECL_INITIAL (addr))
|
||
addr = DECL_INITIAL (addr);
|
||
|
||
/* If the address is just `&f' for some function `f', then we know
|
||
that `f' is being called. */
|
||
if (TREE_CODE (addr) == ADDR_EXPR
|
||
&& TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
|
||
return TREE_OPERAND (addr, 0);
|
||
|
||
/* We couldn't figure out what was being called. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* If CALL_EXPR CALL calls a normal built-in function or an internal function,
|
||
return the associated function code, otherwise return CFN_LAST. */
|
||
|
||
combined_fn
|
||
get_call_combined_fn (const_tree call)
|
||
{
|
||
/* It's invalid to call this function with anything but a CALL_EXPR. */
|
||
gcc_assert (TREE_CODE (call) == CALL_EXPR);
|
||
|
||
if (!CALL_EXPR_FN (call))
|
||
return as_combined_fn (CALL_EXPR_IFN (call));
|
||
|
||
tree fndecl = get_callee_fndecl (call);
|
||
if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
|
||
return as_combined_fn (DECL_FUNCTION_CODE (fndecl));
|
||
|
||
return CFN_LAST;
|
||
}
|
||
|
||
#define TREE_MEM_USAGE_SPACES 40
|
||
|
||
/* Print debugging information about tree nodes generated during the compile,
|
||
and any language-specific information. */
|
||
|
||
void
|
||
dump_tree_statistics (void)
|
||
{
|
||
if (GATHER_STATISTICS)
|
||
{
|
||
int i;
|
||
uint64_t total_nodes, total_bytes;
|
||
fprintf (stderr, "\nKind Nodes Bytes\n");
|
||
mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
|
||
total_nodes = total_bytes = 0;
|
||
for (i = 0; i < (int) all_kinds; i++)
|
||
{
|
||
fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n",
|
||
tree_node_kind_names[i], tree_node_counts[i],
|
||
tree_node_sizes[i]);
|
||
total_nodes += tree_node_counts[i];
|
||
total_bytes += tree_node_sizes[i];
|
||
}
|
||
mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
|
||
fprintf (stderr, "%-20s %7" PRIu64 " %10" PRIu64 "\n", "Total",
|
||
total_nodes, total_bytes);
|
||
mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
|
||
fprintf (stderr, "Code Nodes\n");
|
||
mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
|
||
for (i = 0; i < (int) MAX_TREE_CODES; i++)
|
||
fprintf (stderr, "%-32s %7" PRIu64 "\n",
|
||
get_tree_code_name ((enum tree_code) i), tree_code_counts[i]);
|
||
mem_usage::print_dash_line (TREE_MEM_USAGE_SPACES);
|
||
fprintf (stderr, "\n");
|
||
ssanames_print_statistics ();
|
||
fprintf (stderr, "\n");
|
||
phinodes_print_statistics ();
|
||
fprintf (stderr, "\n");
|
||
}
|
||
else
|
||
fprintf (stderr, "(No per-node statistics)\n");
|
||
|
||
print_type_hash_statistics ();
|
||
print_debug_expr_statistics ();
|
||
print_value_expr_statistics ();
|
||
lang_hooks.print_statistics ();
|
||
}
|
||
|
||
#define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
|
||
|
||
/* Generate a crc32 of the low BYTES bytes of VALUE. */
|
||
|
||
unsigned
|
||
crc32_unsigned_n (unsigned chksum, unsigned value, unsigned bytes)
|
||
{
|
||
/* This relies on the raw feedback's top 4 bits being zero. */
|
||
#define FEEDBACK(X) ((X) * 0x04c11db7)
|
||
#define SYNDROME(X) (FEEDBACK ((X) & 1) ^ FEEDBACK ((X) & 2) \
|
||
^ FEEDBACK ((X) & 4) ^ FEEDBACK ((X) & 8))
|
||
static const unsigned syndromes[16] =
|
||
{
|
||
SYNDROME(0x0), SYNDROME(0x1), SYNDROME(0x2), SYNDROME(0x3),
|
||
SYNDROME(0x4), SYNDROME(0x5), SYNDROME(0x6), SYNDROME(0x7),
|
||
SYNDROME(0x8), SYNDROME(0x9), SYNDROME(0xa), SYNDROME(0xb),
|
||
SYNDROME(0xc), SYNDROME(0xd), SYNDROME(0xe), SYNDROME(0xf),
|
||
};
|
||
#undef FEEDBACK
|
||
#undef SYNDROME
|
||
|
||
value <<= (32 - bytes * 8);
|
||
for (unsigned ix = bytes * 2; ix--; value <<= 4)
|
||
{
|
||
unsigned feedback = syndromes[((value ^ chksum) >> 28) & 0xf];
|
||
|
||
chksum = (chksum << 4) ^ feedback;
|
||
}
|
||
|
||
return chksum;
|
||
}
|
||
|
||
/* Generate a crc32 of a string. */
|
||
|
||
unsigned
|
||
crc32_string (unsigned chksum, const char *string)
|
||
{
|
||
do
|
||
chksum = crc32_byte (chksum, *string);
|
||
while (*string++);
|
||
return chksum;
|
||
}
|
||
|
||
/* P is a string that will be used in a symbol. Mask out any characters
|
||
that are not valid in that context. */
|
||
|
||
void
|
||
clean_symbol_name (char *p)
|
||
{
|
||
for (; *p; p++)
|
||
if (! (ISALNUM (*p)
|
||
#ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
|
||
|| *p == '$'
|
||
#endif
|
||
#ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
|
||
|| *p == '.'
|
||
#endif
|
||
))
|
||
*p = '_';
|
||
}
|
||
|
||
/* For anonymous aggregate types, we need some sort of name to
|
||
hold on to. In practice, this should not appear, but it should
|
||
not be harmful if it does. */
|
||
bool
|
||
anon_aggrname_p(const_tree id_node)
|
||
{
|
||
#ifndef NO_DOT_IN_LABEL
|
||
return (IDENTIFIER_POINTER (id_node)[0] == '.'
|
||
&& IDENTIFIER_POINTER (id_node)[1] == '_');
|
||
#else /* NO_DOT_IN_LABEL */
|
||
#ifndef NO_DOLLAR_IN_LABEL
|
||
return (IDENTIFIER_POINTER (id_node)[0] == '$' \
|
||
&& IDENTIFIER_POINTER (id_node)[1] == '_');
|
||
#else /* NO_DOLLAR_IN_LABEL */
|
||
#define ANON_AGGRNAME_PREFIX "__anon_"
|
||
return (!strncmp (IDENTIFIER_POINTER (id_node), ANON_AGGRNAME_PREFIX,
|
||
sizeof (ANON_AGGRNAME_PREFIX) - 1));
|
||
#endif /* NO_DOLLAR_IN_LABEL */
|
||
#endif /* NO_DOT_IN_LABEL */
|
||
}
|
||
|
||
/* Return a format for an anonymous aggregate name. */
|
||
const char *
|
||
anon_aggrname_format()
|
||
{
|
||
#ifndef NO_DOT_IN_LABEL
|
||
return "._%d";
|
||
#else /* NO_DOT_IN_LABEL */
|
||
#ifndef NO_DOLLAR_IN_LABEL
|
||
return "$_%d";
|
||
#else /* NO_DOLLAR_IN_LABEL */
|
||
return "__anon_%d";
|
||
#endif /* NO_DOLLAR_IN_LABEL */
|
||
#endif /* NO_DOT_IN_LABEL */
|
||
}
|
||
|
||
/* Generate a name for a special-purpose function.
|
||
The generated name may need to be unique across the whole link.
|
||
Changes to this function may also require corresponding changes to
|
||
xstrdup_mask_random.
|
||
TYPE is some string to identify the purpose of this function to the
|
||
linker or collect2; it must start with an uppercase letter,
|
||
one of:
|
||
I - for constructors
|
||
D - for destructors
|
||
N - for C++ anonymous namespaces
|
||
F - for DWARF unwind frame information. */
|
||
|
||
tree
|
||
get_file_function_name (const char *type)
|
||
{
|
||
char *buf;
|
||
const char *p;
|
||
char *q;
|
||
|
||
/* If we already have a name we know to be unique, just use that. */
|
||
if (first_global_object_name)
|
||
p = q = ASTRDUP (first_global_object_name);
|
||
/* If the target is handling the constructors/destructors, they
|
||
will be local to this file and the name is only necessary for
|
||
debugging purposes.
|
||
We also assign sub_I and sub_D sufixes to constructors called from
|
||
the global static constructors. These are always local. */
|
||
else if (((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
|
||
|| (strncmp (type, "sub_", 4) == 0
|
||
&& (type[4] == 'I' || type[4] == 'D')))
|
||
{
|
||
const char *file = main_input_filename;
|
||
if (! file)
|
||
file = LOCATION_FILE (input_location);
|
||
/* Just use the file's basename, because the full pathname
|
||
might be quite long. */
|
||
p = q = ASTRDUP (lbasename (file));
|
||
}
|
||
else
|
||
{
|
||
/* Otherwise, the name must be unique across the entire link.
|
||
We don't have anything that we know to be unique to this translation
|
||
unit, so use what we do have and throw in some randomness. */
|
||
unsigned len;
|
||
const char *name = weak_global_object_name;
|
||
const char *file = main_input_filename;
|
||
|
||
if (! name)
|
||
name = "";
|
||
if (! file)
|
||
file = LOCATION_FILE (input_location);
|
||
|
||
len = strlen (file);
|
||
q = (char *) alloca (9 + 19 + len + 1);
|
||
memcpy (q, file, len + 1);
|
||
|
||
snprintf (q + len, 9 + 19 + 1, "_%08X_" HOST_WIDE_INT_PRINT_HEX,
|
||
crc32_string (0, name), get_random_seed (false));
|
||
|
||
p = q;
|
||
}
|
||
|
||
clean_symbol_name (q);
|
||
buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
|
||
+ strlen (type));
|
||
|
||
/* Set up the name of the file-level functions we may need.
|
||
Use a global object (which is already required to be unique over
|
||
the program) rather than the file name (which imposes extra
|
||
constraints). */
|
||
sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
|
||
|
||
return get_identifier (buf);
|
||
}
|
||
|
||
#if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
|
||
|
||
/* Complain that the tree code of NODE does not match the expected 0
|
||
terminated list of trailing codes. The trailing code list can be
|
||
empty, for a more vague error message. FILE, LINE, and FUNCTION
|
||
are of the caller. */
|
||
|
||
void
|
||
tree_check_failed (const_tree node, const char *file,
|
||
int line, const char *function, ...)
|
||
{
|
||
va_list args;
|
||
const char *buffer;
|
||
unsigned length = 0;
|
||
enum tree_code code;
|
||
|
||
va_start (args, function);
|
||
while ((code = (enum tree_code) va_arg (args, int)))
|
||
length += 4 + strlen (get_tree_code_name (code));
|
||
va_end (args);
|
||
if (length)
|
||
{
|
||
char *tmp;
|
||
va_start (args, function);
|
||
length += strlen ("expected ");
|
||
buffer = tmp = (char *) alloca (length);
|
||
length = 0;
|
||
while ((code = (enum tree_code) va_arg (args, int)))
|
||
{
|
||
const char *prefix = length ? " or " : "expected ";
|
||
|
||
strcpy (tmp + length, prefix);
|
||
length += strlen (prefix);
|
||
strcpy (tmp + length, get_tree_code_name (code));
|
||
length += strlen (get_tree_code_name (code));
|
||
}
|
||
va_end (args);
|
||
}
|
||
else
|
||
buffer = "unexpected node";
|
||
|
||
internal_error ("tree check: %s, have %s in %s, at %s:%d",
|
||
buffer, get_tree_code_name (TREE_CODE (node)),
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Complain that the tree code of NODE does match the expected 0
|
||
terminated list of trailing codes. FILE, LINE, and FUNCTION are of
|
||
the caller. */
|
||
|
||
void
|
||
tree_not_check_failed (const_tree node, const char *file,
|
||
int line, const char *function, ...)
|
||
{
|
||
va_list args;
|
||
char *buffer;
|
||
unsigned length = 0;
|
||
enum tree_code code;
|
||
|
||
va_start (args, function);
|
||
while ((code = (enum tree_code) va_arg (args, int)))
|
||
length += 4 + strlen (get_tree_code_name (code));
|
||
va_end (args);
|
||
va_start (args, function);
|
||
buffer = (char *) alloca (length);
|
||
length = 0;
|
||
while ((code = (enum tree_code) va_arg (args, int)))
|
||
{
|
||
if (length)
|
||
{
|
||
strcpy (buffer + length, " or ");
|
||
length += 4;
|
||
}
|
||
strcpy (buffer + length, get_tree_code_name (code));
|
||
length += strlen (get_tree_code_name (code));
|
||
}
|
||
va_end (args);
|
||
|
||
internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
|
||
buffer, get_tree_code_name (TREE_CODE (node)),
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to tree_check_failed, except that we check for a class of tree
|
||
code, given in CL. */
|
||
|
||
void
|
||
tree_class_check_failed (const_tree node, const enum tree_code_class cl,
|
||
const char *file, int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
|
||
TREE_CODE_CLASS_STRING (cl),
|
||
TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
|
||
get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to tree_check_failed, except that instead of specifying a
|
||
dozen codes, use the knowledge that they're all sequential. */
|
||
|
||
void
|
||
tree_range_check_failed (const_tree node, const char *file, int line,
|
||
const char *function, enum tree_code c1,
|
||
enum tree_code c2)
|
||
{
|
||
char *buffer;
|
||
unsigned length = 0;
|
||
unsigned int c;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
length += 4 + strlen (get_tree_code_name ((enum tree_code) c));
|
||
|
||
length += strlen ("expected ");
|
||
buffer = (char *) alloca (length);
|
||
length = 0;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
{
|
||
const char *prefix = length ? " or " : "expected ";
|
||
|
||
strcpy (buffer + length, prefix);
|
||
length += strlen (prefix);
|
||
strcpy (buffer + length, get_tree_code_name ((enum tree_code) c));
|
||
length += strlen (get_tree_code_name ((enum tree_code) c));
|
||
}
|
||
|
||
internal_error ("tree check: %s, have %s in %s, at %s:%d",
|
||
buffer, get_tree_code_name (TREE_CODE (node)),
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to tree_check_failed, except that we check that a tree does
|
||
not have the specified code, given in CL. */
|
||
|
||
void
|
||
tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
|
||
const char *file, int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
|
||
TREE_CODE_CLASS_STRING (cl),
|
||
TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
|
||
get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
|
||
|
||
void
|
||
omp_clause_check_failed (const_tree node, const char *file, int line,
|
||
const char *function, enum omp_clause_code code)
|
||
{
|
||
internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
|
||
omp_clause_code_name[code], get_tree_code_name (TREE_CODE (node)),
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
|
||
|
||
void
|
||
omp_clause_range_check_failed (const_tree node, const char *file, int line,
|
||
const char *function, enum omp_clause_code c1,
|
||
enum omp_clause_code c2)
|
||
{
|
||
char *buffer;
|
||
unsigned length = 0;
|
||
unsigned int c;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
length += 4 + strlen (omp_clause_code_name[c]);
|
||
|
||
length += strlen ("expected ");
|
||
buffer = (char *) alloca (length);
|
||
length = 0;
|
||
|
||
for (c = c1; c <= c2; ++c)
|
||
{
|
||
const char *prefix = length ? " or " : "expected ";
|
||
|
||
strcpy (buffer + length, prefix);
|
||
length += strlen (prefix);
|
||
strcpy (buffer + length, omp_clause_code_name[c]);
|
||
length += strlen (omp_clause_code_name[c]);
|
||
}
|
||
|
||
internal_error ("tree check: %s, have %s in %s, at %s:%d",
|
||
buffer, omp_clause_code_name[TREE_CODE (node)],
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
#undef DEFTREESTRUCT
|
||
#define DEFTREESTRUCT(VAL, NAME) NAME,
|
||
|
||
static const char *ts_enum_names[] = {
|
||
#include "treestruct.def"
|
||
};
|
||
#undef DEFTREESTRUCT
|
||
|
||
#define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
|
||
|
||
/* Similar to tree_class_check_failed, except that we check for
|
||
whether CODE contains the tree structure identified by EN. */
|
||
|
||
void
|
||
tree_contains_struct_check_failed (const_tree node,
|
||
const enum tree_node_structure_enum en,
|
||
const char *file, int line,
|
||
const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
|
||
TS_ENUM_NAME (en),
|
||
get_tree_code_name (TREE_CODE (node)), function, trim_filename (file), line);
|
||
}
|
||
|
||
|
||
/* Similar to above, except that the check is for the bounds of a TREE_VEC's
|
||
(dynamically sized) vector. */
|
||
|
||
void
|
||
tree_int_cst_elt_check_failed (int idx, int len, const char *file, int line,
|
||
const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: accessed elt %d of tree_int_cst with %d elts in %s, at %s:%d",
|
||
idx + 1, len, function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that the check is for the bounds of a TREE_VEC's
|
||
(dynamically sized) vector. */
|
||
|
||
void
|
||
tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
|
||
const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
|
||
idx + 1, len, function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that the check is for the bounds of the operand
|
||
vector of an expression node EXP. */
|
||
|
||
void
|
||
tree_operand_check_failed (int idx, const_tree exp, const char *file,
|
||
int line, const char *function)
|
||
{
|
||
enum tree_code code = TREE_CODE (exp);
|
||
internal_error
|
||
("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
|
||
idx + 1, get_tree_code_name (code), TREE_OPERAND_LENGTH (exp),
|
||
function, trim_filename (file), line);
|
||
}
|
||
|
||
/* Similar to above, except that the check is for the number of
|
||
operands of an OMP_CLAUSE node. */
|
||
|
||
void
|
||
omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
|
||
int line, const char *function)
|
||
{
|
||
internal_error
|
||
("tree check: accessed operand %d of omp_clause %s with %d operands "
|
||
"in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
|
||
omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
|
||
trim_filename (file), line);
|
||
}
|
||
#endif /* ENABLE_TREE_CHECKING */
|
||
|
||
/* Create a new vector type node holding NUNITS units of type INNERTYPE,
|
||
and mapped to the machine mode MODE. Initialize its fields and build
|
||
the information necessary for debugging output. */
|
||
|
||
static tree
|
||
make_vector_type (tree innertype, poly_int64 nunits, machine_mode mode)
|
||
{
|
||
tree t;
|
||
tree mv_innertype = TYPE_MAIN_VARIANT (innertype);
|
||
|
||
t = make_node (VECTOR_TYPE);
|
||
TREE_TYPE (t) = mv_innertype;
|
||
SET_TYPE_VECTOR_SUBPARTS (t, nunits);
|
||
SET_TYPE_MODE (t, mode);
|
||
|
||
if (TYPE_STRUCTURAL_EQUALITY_P (mv_innertype) || in_lto_p)
|
||
SET_TYPE_STRUCTURAL_EQUALITY (t);
|
||
else if ((TYPE_CANONICAL (mv_innertype) != innertype
|
||
|| mode != VOIDmode)
|
||
&& !VECTOR_BOOLEAN_TYPE_P (t))
|
||
TYPE_CANONICAL (t)
|
||
= make_vector_type (TYPE_CANONICAL (mv_innertype), nunits, VOIDmode);
|
||
|
||
layout_type (t);
|
||
|
||
hashval_t hash = type_hash_canon_hash (t);
|
||
t = type_hash_canon (hash, t);
|
||
|
||
/* We have built a main variant, based on the main variant of the
|
||
inner type. Use it to build the variant we return. */
|
||
if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
|
||
&& TREE_TYPE (t) != innertype)
|
||
return build_type_attribute_qual_variant (t,
|
||
TYPE_ATTRIBUTES (innertype),
|
||
TYPE_QUALS (innertype));
|
||
|
||
return t;
|
||
}
|
||
|
||
static tree
|
||
make_or_reuse_type (unsigned size, int unsignedp)
|
||
{
|
||
int i;
|
||
|
||
if (size == INT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_type_node : integer_type_node;
|
||
if (size == CHAR_TYPE_SIZE)
|
||
return unsignedp ? unsigned_char_type_node : signed_char_type_node;
|
||
if (size == SHORT_TYPE_SIZE)
|
||
return unsignedp ? short_unsigned_type_node : short_integer_type_node;
|
||
if (size == LONG_TYPE_SIZE)
|
||
return unsignedp ? long_unsigned_type_node : long_integer_type_node;
|
||
if (size == LONG_LONG_TYPE_SIZE)
|
||
return (unsignedp ? long_long_unsigned_type_node
|
||
: long_long_integer_type_node);
|
||
|
||
for (i = 0; i < NUM_INT_N_ENTS; i ++)
|
||
if (size == int_n_data[i].bitsize
|
||
&& int_n_enabled_p[i])
|
||
return (unsignedp ? int_n_trees[i].unsigned_type
|
||
: int_n_trees[i].signed_type);
|
||
|
||
if (unsignedp)
|
||
return make_unsigned_type (size);
|
||
else
|
||
return make_signed_type (size);
|
||
}
|
||
|
||
/* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
|
||
|
||
static tree
|
||
make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
|
||
{
|
||
if (satp)
|
||
{
|
||
if (size == SHORT_FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_short_fract_type_node
|
||
: sat_short_fract_type_node;
|
||
if (size == FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
|
||
if (size == LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_fract_type_node
|
||
: sat_long_fract_type_node;
|
||
if (size == LONG_LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_long_fract_type_node
|
||
: sat_long_long_fract_type_node;
|
||
}
|
||
else
|
||
{
|
||
if (size == SHORT_FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_short_fract_type_node
|
||
: short_fract_type_node;
|
||
if (size == FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_fract_type_node : fract_type_node;
|
||
if (size == LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_fract_type_node
|
||
: long_fract_type_node;
|
||
if (size == LONG_LONG_FRACT_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_long_fract_type_node
|
||
: long_long_fract_type_node;
|
||
}
|
||
|
||
return make_fract_type (size, unsignedp, satp);
|
||
}
|
||
|
||
/* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
|
||
|
||
static tree
|
||
make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
|
||
{
|
||
if (satp)
|
||
{
|
||
if (size == SHORT_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_short_accum_type_node
|
||
: sat_short_accum_type_node;
|
||
if (size == ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
|
||
if (size == LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_accum_type_node
|
||
: sat_long_accum_type_node;
|
||
if (size == LONG_LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? sat_unsigned_long_long_accum_type_node
|
||
: sat_long_long_accum_type_node;
|
||
}
|
||
else
|
||
{
|
||
if (size == SHORT_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_short_accum_type_node
|
||
: short_accum_type_node;
|
||
if (size == ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_accum_type_node : accum_type_node;
|
||
if (size == LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_accum_type_node
|
||
: long_accum_type_node;
|
||
if (size == LONG_LONG_ACCUM_TYPE_SIZE)
|
||
return unsignedp ? unsigned_long_long_accum_type_node
|
||
: long_long_accum_type_node;
|
||
}
|
||
|
||
return make_accum_type (size, unsignedp, satp);
|
||
}
|
||
|
||
|
||
/* Create an atomic variant node for TYPE. This routine is called
|
||
during initialization of data types to create the 5 basic atomic
|
||
types. The generic build_variant_type function requires these to
|
||
already be set up in order to function properly, so cannot be
|
||
called from there. If ALIGN is non-zero, then ensure alignment is
|
||
overridden to this value. */
|
||
|
||
static tree
|
||
build_atomic_base (tree type, unsigned int align)
|
||
{
|
||
tree t;
|
||
|
||
/* Make sure its not already registered. */
|
||
if ((t = get_qualified_type (type, TYPE_QUAL_ATOMIC)))
|
||
return t;
|
||
|
||
t = build_variant_type_copy (type);
|
||
set_type_quals (t, TYPE_QUAL_ATOMIC);
|
||
|
||
if (align)
|
||
SET_TYPE_ALIGN (t, align);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Information about the _FloatN and _FloatNx types. This must be in
|
||
the same order as the corresponding TI_* enum values. */
|
||
const floatn_type_info floatn_nx_types[NUM_FLOATN_NX_TYPES] =
|
||
{
|
||
{ 16, false },
|
||
{ 32, false },
|
||
{ 64, false },
|
||
{ 128, false },
|
||
{ 32, true },
|
||
{ 64, true },
|
||
{ 128, true },
|
||
};
|
||
|
||
|
||
/* Create nodes for all integer types (and error_mark_node) using the sizes
|
||
of C datatypes. SIGNED_CHAR specifies whether char is signed. */
|
||
|
||
void
|
||
build_common_tree_nodes (bool signed_char)
|
||
{
|
||
int i;
|
||
|
||
error_mark_node = make_node (ERROR_MARK);
|
||
TREE_TYPE (error_mark_node) = error_mark_node;
|
||
|
||
initialize_sizetypes ();
|
||
|
||
/* Define both `signed char' and `unsigned char'. */
|
||
signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
|
||
TYPE_STRING_FLAG (signed_char_type_node) = 1;
|
||
unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
|
||
TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
|
||
|
||
/* Define `char', which is like either `signed char' or `unsigned char'
|
||
but not the same as either. */
|
||
char_type_node
|
||
= (signed_char
|
||
? make_signed_type (CHAR_TYPE_SIZE)
|
||
: make_unsigned_type (CHAR_TYPE_SIZE));
|
||
TYPE_STRING_FLAG (char_type_node) = 1;
|
||
|
||
short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
|
||
short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
|
||
integer_type_node = make_signed_type (INT_TYPE_SIZE);
|
||
unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
|
||
long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
|
||
long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
|
||
long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
|
||
long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
|
||
|
||
for (i = 0; i < NUM_INT_N_ENTS; i ++)
|
||
{
|
||
int_n_trees[i].signed_type = make_signed_type (int_n_data[i].bitsize);
|
||
int_n_trees[i].unsigned_type = make_unsigned_type (int_n_data[i].bitsize);
|
||
|
||
if (int_n_data[i].bitsize > LONG_LONG_TYPE_SIZE
|
||
&& int_n_enabled_p[i])
|
||
{
|
||
integer_types[itk_intN_0 + i * 2] = int_n_trees[i].signed_type;
|
||
integer_types[itk_unsigned_intN_0 + i * 2] = int_n_trees[i].unsigned_type;
|
||
}
|
||
}
|
||
|
||
/* Define a boolean type. This type only represents boolean values but
|
||
may be larger than char depending on the value of BOOL_TYPE_SIZE. */
|
||
boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
|
||
TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
|
||
TYPE_PRECISION (boolean_type_node) = 1;
|
||
TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
|
||
|
||
/* Define what type to use for size_t. */
|
||
if (strcmp (SIZE_TYPE, "unsigned int") == 0)
|
||
size_type_node = unsigned_type_node;
|
||
else if (strcmp (SIZE_TYPE, "long unsigned int") == 0)
|
||
size_type_node = long_unsigned_type_node;
|
||
else if (strcmp (SIZE_TYPE, "long long unsigned int") == 0)
|
||
size_type_node = long_long_unsigned_type_node;
|
||
else if (strcmp (SIZE_TYPE, "short unsigned int") == 0)
|
||
size_type_node = short_unsigned_type_node;
|
||
else
|
||
{
|
||
int i;
|
||
|
||
size_type_node = NULL_TREE;
|
||
for (i = 0; i < NUM_INT_N_ENTS; i++)
|
||
if (int_n_enabled_p[i])
|
||
{
|
||
char name[50];
|
||
sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
|
||
|
||
if (strcmp (name, SIZE_TYPE) == 0)
|
||
{
|
||
size_type_node = int_n_trees[i].unsigned_type;
|
||
}
|
||
}
|
||
if (size_type_node == NULL_TREE)
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Define what type to use for ptrdiff_t. */
|
||
if (strcmp (PTRDIFF_TYPE, "int") == 0)
|
||
ptrdiff_type_node = integer_type_node;
|
||
else if (strcmp (PTRDIFF_TYPE, "long int") == 0)
|
||
ptrdiff_type_node = long_integer_type_node;
|
||
else if (strcmp (PTRDIFF_TYPE, "long long int") == 0)
|
||
ptrdiff_type_node = long_long_integer_type_node;
|
||
else if (strcmp (PTRDIFF_TYPE, "short int") == 0)
|
||
ptrdiff_type_node = short_integer_type_node;
|
||
else
|
||
{
|
||
ptrdiff_type_node = NULL_TREE;
|
||
for (int i = 0; i < NUM_INT_N_ENTS; i++)
|
||
if (int_n_enabled_p[i])
|
||
{
|
||
char name[50];
|
||
sprintf (name, "__int%d", int_n_data[i].bitsize);
|
||
if (strcmp (name, PTRDIFF_TYPE) == 0)
|
||
ptrdiff_type_node = int_n_trees[i].signed_type;
|
||
}
|
||
if (ptrdiff_type_node == NULL_TREE)
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Fill in the rest of the sized types. Reuse existing type nodes
|
||
when possible. */
|
||
intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
|
||
intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
|
||
intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
|
||
intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
|
||
intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
|
||
|
||
unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
|
||
unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
|
||
unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
|
||
unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
|
||
unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
|
||
|
||
/* Don't call build_qualified type for atomics. That routine does
|
||
special processing for atomics, and until they are initialized
|
||
it's better not to make that call.
|
||
|
||
Check to see if there is a target override for atomic types. */
|
||
|
||
atomicQI_type_node = build_atomic_base (unsigned_intQI_type_node,
|
||
targetm.atomic_align_for_mode (QImode));
|
||
atomicHI_type_node = build_atomic_base (unsigned_intHI_type_node,
|
||
targetm.atomic_align_for_mode (HImode));
|
||
atomicSI_type_node = build_atomic_base (unsigned_intSI_type_node,
|
||
targetm.atomic_align_for_mode (SImode));
|
||
atomicDI_type_node = build_atomic_base (unsigned_intDI_type_node,
|
||
targetm.atomic_align_for_mode (DImode));
|
||
atomicTI_type_node = build_atomic_base (unsigned_intTI_type_node,
|
||
targetm.atomic_align_for_mode (TImode));
|
||
|
||
access_public_node = get_identifier ("public");
|
||
access_protected_node = get_identifier ("protected");
|
||
access_private_node = get_identifier ("private");
|
||
|
||
/* Define these next since types below may used them. */
|
||
integer_zero_node = build_int_cst (integer_type_node, 0);
|
||
integer_one_node = build_int_cst (integer_type_node, 1);
|
||
integer_three_node = build_int_cst (integer_type_node, 3);
|
||
integer_minus_one_node = build_int_cst (integer_type_node, -1);
|
||
|
||
size_zero_node = size_int (0);
|
||
size_one_node = size_int (1);
|
||
bitsize_zero_node = bitsize_int (0);
|
||
bitsize_one_node = bitsize_int (1);
|
||
bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
|
||
|
||
boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
|
||
boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
|
||
|
||
void_type_node = make_node (VOID_TYPE);
|
||
layout_type (void_type_node);
|
||
|
||
/* We are not going to have real types in C with less than byte alignment,
|
||
so we might as well not have any types that claim to have it. */
|
||
SET_TYPE_ALIGN (void_type_node, BITS_PER_UNIT);
|
||
TYPE_USER_ALIGN (void_type_node) = 0;
|
||
|
||
void_node = make_node (VOID_CST);
|
||
TREE_TYPE (void_node) = void_type_node;
|
||
|
||
null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
|
||
layout_type (TREE_TYPE (null_pointer_node));
|
||
|
||
ptr_type_node = build_pointer_type (void_type_node);
|
||
const_ptr_type_node
|
||
= build_pointer_type (build_type_variant (void_type_node, 1, 0));
|
||
for (unsigned i = 0;
|
||
i < sizeof (builtin_structptr_types) / sizeof (builtin_structptr_type);
|
||
++i)
|
||
builtin_structptr_types[i].node = builtin_structptr_types[i].base;
|
||
|
||
pointer_sized_int_node = build_nonstandard_integer_type (POINTER_SIZE, 1);
|
||
|
||
float_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
|
||
layout_type (float_type_node);
|
||
|
||
double_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
|
||
layout_type (double_type_node);
|
||
|
||
long_double_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
|
||
layout_type (long_double_type_node);
|
||
|
||
for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
|
||
{
|
||
int n = floatn_nx_types[i].n;
|
||
bool extended = floatn_nx_types[i].extended;
|
||
scalar_float_mode mode;
|
||
if (!targetm.floatn_mode (n, extended).exists (&mode))
|
||
continue;
|
||
int precision = GET_MODE_PRECISION (mode);
|
||
/* Work around the rs6000 KFmode having precision 113 not
|
||
128. */
|
||
const struct real_format *fmt = REAL_MODE_FORMAT (mode);
|
||
gcc_assert (fmt->b == 2 && fmt->emin + fmt->emax == 3);
|
||
int min_precision = fmt->p + ceil_log2 (fmt->emax - fmt->emin);
|
||
if (!extended)
|
||
gcc_assert (min_precision == n);
|
||
if (precision < min_precision)
|
||
precision = min_precision;
|
||
FLOATN_NX_TYPE_NODE (i) = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (FLOATN_NX_TYPE_NODE (i)) = precision;
|
||
layout_type (FLOATN_NX_TYPE_NODE (i));
|
||
SET_TYPE_MODE (FLOATN_NX_TYPE_NODE (i), mode);
|
||
}
|
||
|
||
float_ptr_type_node = build_pointer_type (float_type_node);
|
||
double_ptr_type_node = build_pointer_type (double_type_node);
|
||
long_double_ptr_type_node = build_pointer_type (long_double_type_node);
|
||
integer_ptr_type_node = build_pointer_type (integer_type_node);
|
||
|
||
/* Fixed size integer types. */
|
||
uint16_type_node = make_or_reuse_type (16, 1);
|
||
uint32_type_node = make_or_reuse_type (32, 1);
|
||
uint64_type_node = make_or_reuse_type (64, 1);
|
||
|
||
/* Decimal float types. */
|
||
dfloat32_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
|
||
SET_TYPE_MODE (dfloat32_type_node, SDmode);
|
||
layout_type (dfloat32_type_node);
|
||
dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
|
||
|
||
dfloat64_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
|
||
SET_TYPE_MODE (dfloat64_type_node, DDmode);
|
||
layout_type (dfloat64_type_node);
|
||
dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
|
||
|
||
dfloat128_type_node = make_node (REAL_TYPE);
|
||
TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
|
||
SET_TYPE_MODE (dfloat128_type_node, TDmode);
|
||
layout_type (dfloat128_type_node);
|
||
dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
|
||
|
||
complex_integer_type_node = build_complex_type (integer_type_node, true);
|
||
complex_float_type_node = build_complex_type (float_type_node, true);
|
||
complex_double_type_node = build_complex_type (double_type_node, true);
|
||
complex_long_double_type_node = build_complex_type (long_double_type_node,
|
||
true);
|
||
|
||
for (i = 0; i < NUM_FLOATN_NX_TYPES; i++)
|
||
{
|
||
if (FLOATN_NX_TYPE_NODE (i) != NULL_TREE)
|
||
COMPLEX_FLOATN_NX_TYPE_NODE (i)
|
||
= build_complex_type (FLOATN_NX_TYPE_NODE (i));
|
||
}
|
||
|
||
/* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
|
||
#define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
|
||
sat_ ## KIND ## _type_node = \
|
||
make_sat_signed_ ## KIND ## _type (SIZE); \
|
||
sat_unsigned_ ## KIND ## _type_node = \
|
||
make_sat_unsigned_ ## KIND ## _type (SIZE); \
|
||
KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
|
||
unsigned_ ## KIND ## _type_node = \
|
||
make_unsigned_ ## KIND ## _type (SIZE);
|
||
|
||
#define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
|
||
sat_ ## WIDTH ## KIND ## _type_node = \
|
||
make_sat_signed_ ## KIND ## _type (SIZE); \
|
||
sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
|
||
make_sat_unsigned_ ## KIND ## _type (SIZE); \
|
||
WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
|
||
unsigned_ ## WIDTH ## KIND ## _type_node = \
|
||
make_unsigned_ ## KIND ## _type (SIZE);
|
||
|
||
/* Make fixed-point type nodes based on four different widths. */
|
||
#define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
|
||
MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
|
||
MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
|
||
MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
|
||
MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
|
||
|
||
/* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
|
||
#define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
|
||
NAME ## _type_node = \
|
||
make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
|
||
u ## NAME ## _type_node = \
|
||
make_or_reuse_unsigned_ ## KIND ## _type \
|
||
(GET_MODE_BITSIZE (U ## MODE ## mode)); \
|
||
sat_ ## NAME ## _type_node = \
|
||
make_or_reuse_sat_signed_ ## KIND ## _type \
|
||
(GET_MODE_BITSIZE (MODE ## mode)); \
|
||
sat_u ## NAME ## _type_node = \
|
||
make_or_reuse_sat_unsigned_ ## KIND ## _type \
|
||
(GET_MODE_BITSIZE (U ## MODE ## mode));
|
||
|
||
/* Fixed-point type and mode nodes. */
|
||
MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
|
||
MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
|
||
MAKE_FIXED_MODE_NODE (fract, qq, QQ)
|
||
MAKE_FIXED_MODE_NODE (fract, hq, HQ)
|
||
MAKE_FIXED_MODE_NODE (fract, sq, SQ)
|
||
MAKE_FIXED_MODE_NODE (fract, dq, DQ)
|
||
MAKE_FIXED_MODE_NODE (fract, tq, TQ)
|
||
MAKE_FIXED_MODE_NODE (accum, ha, HA)
|
||
MAKE_FIXED_MODE_NODE (accum, sa, SA)
|
||
MAKE_FIXED_MODE_NODE (accum, da, DA)
|
||
MAKE_FIXED_MODE_NODE (accum, ta, TA)
|
||
|
||
{
|
||
tree t = targetm.build_builtin_va_list ();
|
||
|
||
/* Many back-ends define record types without setting TYPE_NAME.
|
||
If we copied the record type here, we'd keep the original
|
||
record type without a name. This breaks name mangling. So,
|
||
don't copy record types and let c_common_nodes_and_builtins()
|
||
declare the type to be __builtin_va_list. */
|
||
if (TREE_CODE (t) != RECORD_TYPE)
|
||
t = build_variant_type_copy (t);
|
||
|
||
va_list_type_node = t;
|
||
}
|
||
}
|
||
|
||
/* Modify DECL for given flags.
|
||
TM_PURE attribute is set only on types, so the function will modify
|
||
DECL's type when ECF_TM_PURE is used. */
|
||
|
||
void
|
||
set_call_expr_flags (tree decl, int flags)
|
||
{
|
||
if (flags & ECF_NOTHROW)
|
||
TREE_NOTHROW (decl) = 1;
|
||
if (flags & ECF_CONST)
|
||
TREE_READONLY (decl) = 1;
|
||
if (flags & ECF_PURE)
|
||
DECL_PURE_P (decl) = 1;
|
||
if (flags & ECF_LOOPING_CONST_OR_PURE)
|
||
DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
|
||
if (flags & ECF_NOVOPS)
|
||
DECL_IS_NOVOPS (decl) = 1;
|
||
if (flags & ECF_NORETURN)
|
||
TREE_THIS_VOLATILE (decl) = 1;
|
||
if (flags & ECF_MALLOC)
|
||
DECL_IS_MALLOC (decl) = 1;
|
||
if (flags & ECF_RETURNS_TWICE)
|
||
DECL_IS_RETURNS_TWICE (decl) = 1;
|
||
if (flags & ECF_LEAF)
|
||
DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
|
||
NULL, DECL_ATTRIBUTES (decl));
|
||
if (flags & ECF_COLD)
|
||
DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("cold"),
|
||
NULL, DECL_ATTRIBUTES (decl));
|
||
if (flags & ECF_RET1)
|
||
DECL_ATTRIBUTES (decl)
|
||
= tree_cons (get_identifier ("fn spec"),
|
||
build_tree_list (NULL_TREE, build_string (1, "1")),
|
||
DECL_ATTRIBUTES (decl));
|
||
if ((flags & ECF_TM_PURE) && flag_tm)
|
||
apply_tm_attr (decl, get_identifier ("transaction_pure"));
|
||
/* Looping const or pure is implied by noreturn.
|
||
There is currently no way to declare looping const or looping pure alone. */
|
||
gcc_assert (!(flags & ECF_LOOPING_CONST_OR_PURE)
|
||
|| ((flags & ECF_NORETURN) && (flags & (ECF_CONST | ECF_PURE))));
|
||
}
|
||
|
||
|
||
/* A subroutine of build_common_builtin_nodes. Define a builtin function. */
|
||
|
||
static void
|
||
local_define_builtin (const char *name, tree type, enum built_in_function code,
|
||
const char *library_name, int ecf_flags)
|
||
{
|
||
tree decl;
|
||
|
||
decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
|
||
library_name, NULL_TREE);
|
||
set_call_expr_flags (decl, ecf_flags);
|
||
|
||
set_builtin_decl (code, decl, true);
|
||
}
|
||
|
||
/* Call this function after instantiating all builtins that the language
|
||
front end cares about. This will build the rest of the builtins
|
||
and internal functions that are relied upon by the tree optimizers and
|
||
the middle-end. */
|
||
|
||
void
|
||
build_common_builtin_nodes (void)
|
||
{
|
||
tree tmp, ftype;
|
||
int ecf_flags;
|
||
|
||
if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE)
|
||
|| !builtin_decl_explicit_p (BUILT_IN_ABORT))
|
||
{
|
||
ftype = build_function_type (void_type_node, void_list_node);
|
||
if (!builtin_decl_explicit_p (BUILT_IN_UNREACHABLE))
|
||
local_define_builtin ("__builtin_unreachable", ftype,
|
||
BUILT_IN_UNREACHABLE,
|
||
"__builtin_unreachable",
|
||
ECF_NOTHROW | ECF_LEAF | ECF_NORETURN
|
||
| ECF_CONST | ECF_COLD);
|
||
if (!builtin_decl_explicit_p (BUILT_IN_ABORT))
|
||
local_define_builtin ("__builtin_abort", ftype, BUILT_IN_ABORT,
|
||
"abort",
|
||
ECF_LEAF | ECF_NORETURN | ECF_CONST | ECF_COLD);
|
||
}
|
||
|
||
if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY)
|
||
|| !builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
|
||
{
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
ptr_type_node, const_ptr_type_node,
|
||
size_type_node, NULL_TREE);
|
||
|
||
if (!builtin_decl_explicit_p (BUILT_IN_MEMCPY))
|
||
local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
|
||
"memcpy", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
|
||
if (!builtin_decl_explicit_p (BUILT_IN_MEMMOVE))
|
||
local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
|
||
"memmove", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
|
||
}
|
||
|
||
if (!builtin_decl_explicit_p (BUILT_IN_MEMCMP))
|
||
{
|
||
ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
|
||
const_ptr_type_node, size_type_node,
|
||
NULL_TREE);
|
||
local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
|
||
"memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
}
|
||
|
||
if (!builtin_decl_explicit_p (BUILT_IN_MEMSET))
|
||
{
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
ptr_type_node, integer_type_node,
|
||
size_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
|
||
"memset", ECF_NOTHROW | ECF_LEAF | ECF_RET1);
|
||
}
|
||
|
||
/* If we're checking the stack, `alloca' can throw. */
|
||
const int alloca_flags
|
||
= ECF_MALLOC | ECF_LEAF | (flag_stack_check ? 0 : ECF_NOTHROW);
|
||
|
||
if (!builtin_decl_explicit_p (BUILT_IN_ALLOCA))
|
||
{
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
size_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
|
||
"alloca", alloca_flags);
|
||
}
|
||
|
||
ftype = build_function_type_list (ptr_type_node, size_type_node,
|
||
size_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_alloca_with_align", ftype,
|
||
BUILT_IN_ALLOCA_WITH_ALIGN,
|
||
"__builtin_alloca_with_align",
|
||
alloca_flags);
|
||
|
||
ftype = build_function_type_list (ptr_type_node, size_type_node,
|
||
size_type_node, size_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_alloca_with_align_and_max", ftype,
|
||
BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX,
|
||
"__builtin_alloca_with_align_and_max",
|
||
alloca_flags);
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
ptr_type_node, ptr_type_node,
|
||
ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_init_trampoline", ftype,
|
||
BUILT_IN_INIT_TRAMPOLINE,
|
||
"__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
|
||
local_define_builtin ("__builtin_init_heap_trampoline", ftype,
|
||
BUILT_IN_INIT_HEAP_TRAMPOLINE,
|
||
"__builtin_init_heap_trampoline",
|
||
ECF_NOTHROW | ECF_LEAF);
|
||
local_define_builtin ("__builtin_init_descriptor", ftype,
|
||
BUILT_IN_INIT_DESCRIPTOR,
|
||
"__builtin_init_descriptor", ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_adjust_trampoline", ftype,
|
||
BUILT_IN_ADJUST_TRAMPOLINE,
|
||
"__builtin_adjust_trampoline",
|
||
ECF_CONST | ECF_NOTHROW);
|
||
local_define_builtin ("__builtin_adjust_descriptor", ftype,
|
||
BUILT_IN_ADJUST_DESCRIPTOR,
|
||
"__builtin_adjust_descriptor",
|
||
ECF_CONST | ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
ptr_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_nonlocal_goto", ftype,
|
||
BUILT_IN_NONLOCAL_GOTO,
|
||
"__builtin_nonlocal_goto",
|
||
ECF_NORETURN | ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
ptr_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_setjmp_setup", ftype,
|
||
BUILT_IN_SETJMP_SETUP,
|
||
"__builtin_setjmp_setup", ECF_NOTHROW);
|
||
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_setjmp_receiver", ftype,
|
||
BUILT_IN_SETJMP_RECEIVER,
|
||
"__builtin_setjmp_receiver", ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
|
||
"__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_stack_restore", ftype,
|
||
BUILT_IN_STACK_RESTORE,
|
||
"__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
|
||
const_ptr_type_node, size_type_node,
|
||
NULL_TREE);
|
||
local_define_builtin ("__builtin_memcmp_eq", ftype, BUILT_IN_MEMCMP_EQ,
|
||
"__builtin_memcmp_eq",
|
||
ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
|
||
local_define_builtin ("__builtin_strncmp_eq", ftype, BUILT_IN_STRNCMP_EQ,
|
||
"__builtin_strncmp_eq",
|
||
ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
|
||
local_define_builtin ("__builtin_strcmp_eq", ftype, BUILT_IN_STRCMP_EQ,
|
||
"__builtin_strcmp_eq",
|
||
ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
|
||
/* If there's a possibility that we might use the ARM EABI, build the
|
||
alternate __cxa_end_cleanup node used to resume from C++. */
|
||
if (targetm.arm_eabi_unwinder)
|
||
{
|
||
ftype = build_function_type_list (void_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
|
||
BUILT_IN_CXA_END_CLEANUP,
|
||
"__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
|
||
}
|
||
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_unwind_resume", ftype,
|
||
BUILT_IN_UNWIND_RESUME,
|
||
((targetm_common.except_unwind_info (&global_options)
|
||
== UI_SJLJ)
|
||
? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
|
||
ECF_NORETURN);
|
||
|
||
if (builtin_decl_explicit (BUILT_IN_RETURN_ADDRESS) == NULL_TREE)
|
||
{
|
||
ftype = build_function_type_list (ptr_type_node, integer_type_node,
|
||
NULL_TREE);
|
||
local_define_builtin ("__builtin_return_address", ftype,
|
||
BUILT_IN_RETURN_ADDRESS,
|
||
"__builtin_return_address",
|
||
ECF_NOTHROW);
|
||
}
|
||
|
||
if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER)
|
||
|| !builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
|
||
{
|
||
ftype = build_function_type_list (void_type_node, ptr_type_node,
|
||
ptr_type_node, NULL_TREE);
|
||
if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_ENTER))
|
||
local_define_builtin ("__cyg_profile_func_enter", ftype,
|
||
BUILT_IN_PROFILE_FUNC_ENTER,
|
||
"__cyg_profile_func_enter", 0);
|
||
if (!builtin_decl_explicit_p (BUILT_IN_PROFILE_FUNC_EXIT))
|
||
local_define_builtin ("__cyg_profile_func_exit", ftype,
|
||
BUILT_IN_PROFILE_FUNC_EXIT,
|
||
"__cyg_profile_func_exit", 0);
|
||
}
|
||
|
||
/* The exception object and filter values from the runtime. The argument
|
||
must be zero before exception lowering, i.e. from the front end. After
|
||
exception lowering, it will be the region number for the exception
|
||
landing pad. These functions are PURE instead of CONST to prevent
|
||
them from being hoisted past the exception edge that will initialize
|
||
its value in the landing pad. */
|
||
ftype = build_function_type_list (ptr_type_node,
|
||
integer_type_node, NULL_TREE);
|
||
ecf_flags = ECF_PURE | ECF_NOTHROW | ECF_LEAF;
|
||
/* Only use TM_PURE if we have TM language support. */
|
||
if (builtin_decl_explicit_p (BUILT_IN_TM_LOAD_1))
|
||
ecf_flags |= ECF_TM_PURE;
|
||
local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
|
||
"__builtin_eh_pointer", ecf_flags);
|
||
|
||
tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
|
||
ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
|
||
local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
|
||
"__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
|
||
|
||
ftype = build_function_type_list (void_type_node,
|
||
integer_type_node, integer_type_node,
|
||
NULL_TREE);
|
||
local_define_builtin ("__builtin_eh_copy_values", ftype,
|
||
BUILT_IN_EH_COPY_VALUES,
|
||
"__builtin_eh_copy_values", ECF_NOTHROW);
|
||
|
||
/* Complex multiplication and division. These are handled as builtins
|
||
rather than optabs because emit_library_call_value doesn't support
|
||
complex. Further, we can do slightly better with folding these
|
||
beasties if the real and complex parts of the arguments are separate. */
|
||
{
|
||
int mode;
|
||
|
||
for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
|
||
{
|
||
char mode_name_buf[4], *q;
|
||
const char *p;
|
||
enum built_in_function mcode, dcode;
|
||
tree type, inner_type;
|
||
const char *prefix = "__";
|
||
|
||
if (targetm.libfunc_gnu_prefix)
|
||
prefix = "__gnu_";
|
||
|
||
type = lang_hooks.types.type_for_mode ((machine_mode) mode, 0);
|
||
if (type == NULL)
|
||
continue;
|
||
inner_type = TREE_TYPE (type);
|
||
|
||
ftype = build_function_type_list (type, inner_type, inner_type,
|
||
inner_type, inner_type, NULL_TREE);
|
||
|
||
mcode = ((enum built_in_function)
|
||
(BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
||
dcode = ((enum built_in_function)
|
||
(BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
|
||
|
||
for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
|
||
*q = TOLOWER (*p);
|
||
*q = '\0';
|
||
|
||
/* For -ftrapping-math these should throw from a former
|
||
-fnon-call-exception stmt. */
|
||
built_in_names[mcode] = concat (prefix, "mul", mode_name_buf, "3",
|
||
NULL);
|
||
local_define_builtin (built_in_names[mcode], ftype, mcode,
|
||
built_in_names[mcode],
|
||
ECF_CONST | ECF_LEAF);
|
||
|
||
built_in_names[dcode] = concat (prefix, "div", mode_name_buf, "3",
|
||
NULL);
|
||
local_define_builtin (built_in_names[dcode], ftype, dcode,
|
||
built_in_names[dcode],
|
||
ECF_CONST | ECF_LEAF);
|
||
}
|
||
}
|
||
|
||
init_internal_fns ();
|
||
}
|
||
|
||
/* HACK. GROSS. This is absolutely disgusting. I wish there was a
|
||
better way.
|
||
|
||
If we requested a pointer to a vector, build up the pointers that
|
||
we stripped off while looking for the inner type. Similarly for
|
||
return values from functions.
|
||
|
||
The argument TYPE is the top of the chain, and BOTTOM is the
|
||
new type which we will point to. */
|
||
|
||
tree
|
||
reconstruct_complex_type (tree type, tree bottom)
|
||
{
|
||
tree inner, outer;
|
||
|
||
if (TREE_CODE (type) == POINTER_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
|
||
TYPE_REF_CAN_ALIAS_ALL (type));
|
||
}
|
||
else if (TREE_CODE (type) == REFERENCE_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
|
||
TYPE_REF_CAN_ALIAS_ALL (type));
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_array_type (inner, TYPE_DOMAIN (type));
|
||
}
|
||
else if (TREE_CODE (type) == FUNCTION_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_function_type (inner, TYPE_ARG_TYPES (type));
|
||
}
|
||
else if (TREE_CODE (type) == METHOD_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
/* The build_method_type_directly() routine prepends 'this' to argument list,
|
||
so we must compensate by getting rid of it. */
|
||
outer
|
||
= build_method_type_directly
|
||
(TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
|
||
inner,
|
||
TREE_CHAIN (TYPE_ARG_TYPES (type)));
|
||
}
|
||
else if (TREE_CODE (type) == OFFSET_TYPE)
|
||
{
|
||
inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
|
||
outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
|
||
}
|
||
else
|
||
return bottom;
|
||
|
||
return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
|
||
TYPE_QUALS (type));
|
||
}
|
||
|
||
/* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
|
||
the inner type. */
|
||
tree
|
||
build_vector_type_for_mode (tree innertype, machine_mode mode)
|
||
{
|
||
poly_int64 nunits;
|
||
unsigned int bitsize;
|
||
|
||
switch (GET_MODE_CLASS (mode))
|
||
{
|
||
case MODE_VECTOR_BOOL:
|
||
case MODE_VECTOR_INT:
|
||
case MODE_VECTOR_FLOAT:
|
||
case MODE_VECTOR_FRACT:
|
||
case MODE_VECTOR_UFRACT:
|
||
case MODE_VECTOR_ACCUM:
|
||
case MODE_VECTOR_UACCUM:
|
||
nunits = GET_MODE_NUNITS (mode);
|
||
break;
|
||
|
||
case MODE_INT:
|
||
/* Check that there are no leftover bits. */
|
||
bitsize = GET_MODE_BITSIZE (as_a <scalar_int_mode> (mode));
|
||
gcc_assert (bitsize % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
|
||
nunits = bitsize / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return make_vector_type (innertype, nunits, mode);
|
||
}
|
||
|
||
/* Similarly, but takes the inner type and number of units, which must be
|
||
a power of two. */
|
||
|
||
tree
|
||
build_vector_type (tree innertype, poly_int64 nunits)
|
||
{
|
||
return make_vector_type (innertype, nunits, VOIDmode);
|
||
}
|
||
|
||
/* Build truth vector with specified length and number of units. */
|
||
|
||
tree
|
||
build_truth_vector_type (poly_uint64 nunits, poly_uint64 vector_size)
|
||
{
|
||
machine_mode mask_mode
|
||
= targetm.vectorize.get_mask_mode (nunits, vector_size).else_blk ();
|
||
|
||
poly_uint64 vsize;
|
||
if (mask_mode == BLKmode)
|
||
vsize = vector_size * BITS_PER_UNIT;
|
||
else
|
||
vsize = GET_MODE_BITSIZE (mask_mode);
|
||
|
||
unsigned HOST_WIDE_INT esize = vector_element_size (vsize, nunits);
|
||
|
||
tree bool_type = build_nonstandard_boolean_type (esize);
|
||
|
||
return make_vector_type (bool_type, nunits, mask_mode);
|
||
}
|
||
|
||
/* Returns a vector type corresponding to a comparison of VECTYPE. */
|
||
|
||
tree
|
||
build_same_sized_truth_vector_type (tree vectype)
|
||
{
|
||
if (VECTOR_BOOLEAN_TYPE_P (vectype))
|
||
return vectype;
|
||
|
||
poly_uint64 size = GET_MODE_SIZE (TYPE_MODE (vectype));
|
||
|
||
if (known_eq (size, 0U))
|
||
size = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
|
||
|
||
return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype), size);
|
||
}
|
||
|
||
/* Similarly, but builds a variant type with TYPE_VECTOR_OPAQUE set. */
|
||
|
||
tree
|
||
build_opaque_vector_type (tree innertype, poly_int64 nunits)
|
||
{
|
||
tree t = make_vector_type (innertype, nunits, VOIDmode);
|
||
tree cand;
|
||
/* We always build the non-opaque variant before the opaque one,
|
||
so if it already exists, it is TYPE_NEXT_VARIANT of this one. */
|
||
cand = TYPE_NEXT_VARIANT (t);
|
||
if (cand
|
||
&& TYPE_VECTOR_OPAQUE (cand)
|
||
&& check_qualified_type (cand, t, TYPE_QUALS (t)))
|
||
return cand;
|
||
/* Othewise build a variant type and make sure to queue it after
|
||
the non-opaque type. */
|
||
cand = build_distinct_type_copy (t);
|
||
TYPE_VECTOR_OPAQUE (cand) = true;
|
||
TYPE_CANONICAL (cand) = TYPE_CANONICAL (t);
|
||
TYPE_NEXT_VARIANT (cand) = TYPE_NEXT_VARIANT (t);
|
||
TYPE_NEXT_VARIANT (t) = cand;
|
||
TYPE_MAIN_VARIANT (cand) = TYPE_MAIN_VARIANT (t);
|
||
return cand;
|
||
}
|
||
|
||
/* Return the value of element I of VECTOR_CST T as a wide_int. */
|
||
|
||
wide_int
|
||
vector_cst_int_elt (const_tree t, unsigned int i)
|
||
{
|
||
/* First handle elements that are directly encoded. */
|
||
unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
|
||
if (i < encoded_nelts)
|
||
return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, i));
|
||
|
||
/* Identify the pattern that contains element I and work out the index of
|
||
the last encoded element for that pattern. */
|
||
unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
|
||
unsigned int pattern = i % npatterns;
|
||
unsigned int count = i / npatterns;
|
||
unsigned int final_i = encoded_nelts - npatterns + pattern;
|
||
|
||
/* If there are no steps, the final encoded value is the right one. */
|
||
if (!VECTOR_CST_STEPPED_P (t))
|
||
return wi::to_wide (VECTOR_CST_ENCODED_ELT (t, final_i));
|
||
|
||
/* Otherwise work out the value from the last two encoded elements. */
|
||
tree v1 = VECTOR_CST_ENCODED_ELT (t, final_i - npatterns);
|
||
tree v2 = VECTOR_CST_ENCODED_ELT (t, final_i);
|
||
wide_int diff = wi::to_wide (v2) - wi::to_wide (v1);
|
||
return wi::to_wide (v2) + (count - 2) * diff;
|
||
}
|
||
|
||
/* Return the value of element I of VECTOR_CST T. */
|
||
|
||
tree
|
||
vector_cst_elt (const_tree t, unsigned int i)
|
||
{
|
||
/* First handle elements that are directly encoded. */
|
||
unsigned int encoded_nelts = vector_cst_encoded_nelts (t);
|
||
if (i < encoded_nelts)
|
||
return VECTOR_CST_ENCODED_ELT (t, i);
|
||
|
||
/* If there are no steps, the final encoded value is the right one. */
|
||
if (!VECTOR_CST_STEPPED_P (t))
|
||
{
|
||
/* Identify the pattern that contains element I and work out the index of
|
||
the last encoded element for that pattern. */
|
||
unsigned int npatterns = VECTOR_CST_NPATTERNS (t);
|
||
unsigned int pattern = i % npatterns;
|
||
unsigned int final_i = encoded_nelts - npatterns + pattern;
|
||
return VECTOR_CST_ENCODED_ELT (t, final_i);
|
||
}
|
||
|
||
/* Otherwise work out the value from the last two encoded elements. */
|
||
return wide_int_to_tree (TREE_TYPE (TREE_TYPE (t)),
|
||
vector_cst_int_elt (t, i));
|
||
}
|
||
|
||
/* Given an initializer INIT, return TRUE if INIT is zero or some
|
||
aggregate of zeros. Otherwise return FALSE. If NONZERO is not
|
||
null, set *NONZERO if and only if INIT is known not to be all
|
||
zeros. The combination of return value of false and *NONZERO
|
||
false implies that INIT may but need not be all zeros. Other
|
||
combinations indicate definitive answers. */
|
||
|
||
bool
|
||
initializer_zerop (const_tree init, bool *nonzero /* = NULL */)
|
||
{
|
||
bool dummy;
|
||
if (!nonzero)
|
||
nonzero = &dummy;
|
||
|
||
/* Conservatively clear NONZERO and set it only if INIT is definitely
|
||
not all zero. */
|
||
*nonzero = false;
|
||
|
||
STRIP_NOPS (init);
|
||
|
||
unsigned HOST_WIDE_INT off = 0;
|
||
|
||
switch (TREE_CODE (init))
|
||
{
|
||
case INTEGER_CST:
|
||
if (integer_zerop (init))
|
||
return true;
|
||
|
||
*nonzero = true;
|
||
return false;
|
||
|
||
case REAL_CST:
|
||
/* ??? Note that this is not correct for C4X float formats. There,
|
||
a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
|
||
negative exponent. */
|
||
if (real_zerop (init)
|
||
&& !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init)))
|
||
return true;
|
||
|
||
*nonzero = true;
|
||
return false;
|
||
|
||
case FIXED_CST:
|
||
if (fixed_zerop (init))
|
||
return true;
|
||
|
||
*nonzero = true;
|
||
return false;
|
||
|
||
case COMPLEX_CST:
|
||
if (integer_zerop (init)
|
||
|| (real_zerop (init)
|
||
&& !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
|
||
&& !REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init)))))
|
||
return true;
|
||
|
||
*nonzero = true;
|
||
return false;
|
||
|
||
case VECTOR_CST:
|
||
if (VECTOR_CST_NPATTERNS (init) == 1
|
||
&& VECTOR_CST_DUPLICATE_P (init)
|
||
&& initializer_zerop (VECTOR_CST_ENCODED_ELT (init, 0)))
|
||
return true;
|
||
|
||
*nonzero = true;
|
||
return false;
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
if (TREE_CLOBBER_P (init))
|
||
return false;
|
||
|
||
unsigned HOST_WIDE_INT idx;
|
||
tree elt;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
|
||
if (!initializer_zerop (elt, nonzero))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
case MEM_REF:
|
||
{
|
||
tree arg = TREE_OPERAND (init, 0);
|
||
if (TREE_CODE (arg) != ADDR_EXPR)
|
||
return false;
|
||
tree offset = TREE_OPERAND (init, 1);
|
||
if (TREE_CODE (offset) != INTEGER_CST
|
||
|| !tree_fits_uhwi_p (offset))
|
||
return false;
|
||
off = tree_to_uhwi (offset);
|
||
if (INT_MAX < off)
|
||
return false;
|
||
arg = TREE_OPERAND (arg, 0);
|
||
if (TREE_CODE (arg) != STRING_CST)
|
||
return false;
|
||
init = arg;
|
||
}
|
||
/* Fall through. */
|
||
|
||
case STRING_CST:
|
||
{
|
||
gcc_assert (off <= INT_MAX);
|
||
|
||
int i = off;
|
||
int n = TREE_STRING_LENGTH (init);
|
||
if (n <= i)
|
||
return false;
|
||
|
||
/* We need to loop through all elements to handle cases like
|
||
"\0" and "\0foobar". */
|
||
for (i = 0; i < n; ++i)
|
||
if (TREE_STRING_POINTER (init)[i] != '\0')
|
||
{
|
||
*nonzero = true;
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Check if vector VEC consists of all the equal elements and
|
||
that the number of elements corresponds to the type of VEC.
|
||
The function returns first element of the vector
|
||
or NULL_TREE if the vector is not uniform. */
|
||
tree
|
||
uniform_vector_p (const_tree vec)
|
||
{
|
||
tree first, t;
|
||
unsigned HOST_WIDE_INT i, nelts;
|
||
|
||
if (vec == NULL_TREE)
|
||
return NULL_TREE;
|
||
|
||
gcc_assert (VECTOR_TYPE_P (TREE_TYPE (vec)));
|
||
|
||
if (TREE_CODE (vec) == VEC_DUPLICATE_EXPR)
|
||
return TREE_OPERAND (vec, 0);
|
||
|
||
else if (TREE_CODE (vec) == VECTOR_CST)
|
||
{
|
||
if (VECTOR_CST_NPATTERNS (vec) == 1 && VECTOR_CST_DUPLICATE_P (vec))
|
||
return VECTOR_CST_ENCODED_ELT (vec, 0);
|
||
return NULL_TREE;
|
||
}
|
||
|
||
else if (TREE_CODE (vec) == CONSTRUCTOR
|
||
&& TYPE_VECTOR_SUBPARTS (TREE_TYPE (vec)).is_constant (&nelts))
|
||
{
|
||
first = error_mark_node;
|
||
|
||
FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (vec), i, t)
|
||
{
|
||
if (i == 0)
|
||
{
|
||
first = t;
|
||
continue;
|
||
}
|
||
if (!operand_equal_p (first, t, 0))
|
||
return NULL_TREE;
|
||
}
|
||
if (i != nelts)
|
||
return NULL_TREE;
|
||
|
||
return first;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Build an empty statement at location LOC. */
|
||
|
||
tree
|
||
build_empty_stmt (location_t loc)
|
||
{
|
||
tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
|
||
SET_EXPR_LOCATION (t, loc);
|
||
return t;
|
||
}
|
||
|
||
|
||
/* Build an OpenMP clause with code CODE. LOC is the location of the
|
||
clause. */
|
||
|
||
tree
|
||
build_omp_clause (location_t loc, enum omp_clause_code code)
|
||
{
|
||
tree t;
|
||
int size, length;
|
||
|
||
length = omp_clause_num_ops[code];
|
||
size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
|
||
|
||
record_node_allocation_statistics (OMP_CLAUSE, size);
|
||
|
||
t = (tree) ggc_internal_alloc (size);
|
||
memset (t, 0, size);
|
||
TREE_SET_CODE (t, OMP_CLAUSE);
|
||
OMP_CLAUSE_SET_CODE (t, code);
|
||
OMP_CLAUSE_LOCATION (t) = loc;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
|
||
includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
|
||
Except for the CODE and operand count field, other storage for the
|
||
object is initialized to zeros. */
|
||
|
||
tree
|
||
build_vl_exp (enum tree_code code, int len MEM_STAT_DECL)
|
||
{
|
||
tree t;
|
||
int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
|
||
|
||
gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
|
||
gcc_assert (len >= 1);
|
||
|
||
record_node_allocation_statistics (code, length);
|
||
|
||
t = ggc_alloc_cleared_tree_node_stat (length PASS_MEM_STAT);
|
||
|
||
TREE_SET_CODE (t, code);
|
||
|
||
/* Can't use TREE_OPERAND to store the length because if checking is
|
||
enabled, it will try to check the length before we store it. :-P */
|
||
t->exp.operands[0] = build_int_cst (sizetype, len);
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Helper function for build_call_* functions; build a CALL_EXPR with
|
||
indicated RETURN_TYPE, FN, and NARGS, but do not initialize any of
|
||
the argument slots. */
|
||
|
||
static tree
|
||
build_call_1 (tree return_type, tree fn, int nargs)
|
||
{
|
||
tree t;
|
||
|
||
t = build_vl_exp (CALL_EXPR, nargs + 3);
|
||
TREE_TYPE (t) = return_type;
|
||
CALL_EXPR_FN (t) = fn;
|
||
CALL_EXPR_STATIC_CHAIN (t) = NULL;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
|
||
FN and a null static chain slot. NARGS is the number of call arguments
|
||
which are specified as "..." arguments. */
|
||
|
||
tree
|
||
build_call_nary (tree return_type, tree fn, int nargs, ...)
|
||
{
|
||
tree ret;
|
||
va_list args;
|
||
va_start (args, nargs);
|
||
ret = build_call_valist (return_type, fn, nargs, args);
|
||
va_end (args);
|
||
return ret;
|
||
}
|
||
|
||
/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
|
||
FN and a null static chain slot. NARGS is the number of call arguments
|
||
which are specified as a va_list ARGS. */
|
||
|
||
tree
|
||
build_call_valist (tree return_type, tree fn, int nargs, va_list args)
|
||
{
|
||
tree t;
|
||
int i;
|
||
|
||
t = build_call_1 (return_type, fn, nargs);
|
||
for (i = 0; i < nargs; i++)
|
||
CALL_EXPR_ARG (t, i) = va_arg (args, tree);
|
||
process_call_operands (t);
|
||
return t;
|
||
}
|
||
|
||
/* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
|
||
FN and a null static chain slot. NARGS is the number of call arguments
|
||
which are specified as a tree array ARGS. */
|
||
|
||
tree
|
||
build_call_array_loc (location_t loc, tree return_type, tree fn,
|
||
int nargs, const tree *args)
|
||
{
|
||
tree t;
|
||
int i;
|
||
|
||
t = build_call_1 (return_type, fn, nargs);
|
||
for (i = 0; i < nargs; i++)
|
||
CALL_EXPR_ARG (t, i) = args[i];
|
||
process_call_operands (t);
|
||
SET_EXPR_LOCATION (t, loc);
|
||
return t;
|
||
}
|
||
|
||
/* Like build_call_array, but takes a vec. */
|
||
|
||
tree
|
||
build_call_vec (tree return_type, tree fn, vec<tree, va_gc> *args)
|
||
{
|
||
tree ret, t;
|
||
unsigned int ix;
|
||
|
||
ret = build_call_1 (return_type, fn, vec_safe_length (args));
|
||
FOR_EACH_VEC_SAFE_ELT (args, ix, t)
|
||
CALL_EXPR_ARG (ret, ix) = t;
|
||
process_call_operands (ret);
|
||
return ret;
|
||
}
|
||
|
||
/* Conveniently construct a function call expression. FNDECL names the
|
||
function to be called and N arguments are passed in the array
|
||
ARGARRAY. */
|
||
|
||
tree
|
||
build_call_expr_loc_array (location_t loc, tree fndecl, int n, tree *argarray)
|
||
{
|
||
tree fntype = TREE_TYPE (fndecl);
|
||
tree fn = build1 (ADDR_EXPR, build_pointer_type (fntype), fndecl);
|
||
|
||
return fold_build_call_array_loc (loc, TREE_TYPE (fntype), fn, n, argarray);
|
||
}
|
||
|
||
/* Conveniently construct a function call expression. FNDECL names the
|
||
function to be called and the arguments are passed in the vector
|
||
VEC. */
|
||
|
||
tree
|
||
build_call_expr_loc_vec (location_t loc, tree fndecl, vec<tree, va_gc> *vec)
|
||
{
|
||
return build_call_expr_loc_array (loc, fndecl, vec_safe_length (vec),
|
||
vec_safe_address (vec));
|
||
}
|
||
|
||
|
||
/* Conveniently construct a function call expression. FNDECL names the
|
||
function to be called, N is the number of arguments, and the "..."
|
||
parameters are the argument expressions. */
|
||
|
||
tree
|
||
build_call_expr_loc (location_t loc, tree fndecl, int n, ...)
|
||
{
|
||
va_list ap;
|
||
tree *argarray = XALLOCAVEC (tree, n);
|
||
int i;
|
||
|
||
va_start (ap, n);
|
||
for (i = 0; i < n; i++)
|
||
argarray[i] = va_arg (ap, tree);
|
||
va_end (ap);
|
||
return build_call_expr_loc_array (loc, fndecl, n, argarray);
|
||
}
|
||
|
||
/* Like build_call_expr_loc (UNKNOWN_LOCATION, ...). Duplicated because
|
||
varargs macros aren't supported by all bootstrap compilers. */
|
||
|
||
tree
|
||
build_call_expr (tree fndecl, int n, ...)
|
||
{
|
||
va_list ap;
|
||
tree *argarray = XALLOCAVEC (tree, n);
|
||
int i;
|
||
|
||
va_start (ap, n);
|
||
for (i = 0; i < n; i++)
|
||
argarray[i] = va_arg (ap, tree);
|
||
va_end (ap);
|
||
return build_call_expr_loc_array (UNKNOWN_LOCATION, fndecl, n, argarray);
|
||
}
|
||
|
||
/* Build an internal call to IFN, with arguments ARGS[0:N-1] and with return
|
||
type TYPE. This is just like CALL_EXPR, except its CALL_EXPR_FN is NULL.
|
||
It will get gimplified later into an ordinary internal function. */
|
||
|
||
tree
|
||
build_call_expr_internal_loc_array (location_t loc, internal_fn ifn,
|
||
tree type, int n, const tree *args)
|
||
{
|
||
tree t = build_call_1 (type, NULL_TREE, n);
|
||
for (int i = 0; i < n; ++i)
|
||
CALL_EXPR_ARG (t, i) = args[i];
|
||
SET_EXPR_LOCATION (t, loc);
|
||
CALL_EXPR_IFN (t) = ifn;
|
||
return t;
|
||
}
|
||
|
||
/* Build internal call expression. This is just like CALL_EXPR, except
|
||
its CALL_EXPR_FN is NULL. It will get gimplified later into ordinary
|
||
internal function. */
|
||
|
||
tree
|
||
build_call_expr_internal_loc (location_t loc, enum internal_fn ifn,
|
||
tree type, int n, ...)
|
||
{
|
||
va_list ap;
|
||
tree *argarray = XALLOCAVEC (tree, n);
|
||
int i;
|
||
|
||
va_start (ap, n);
|
||
for (i = 0; i < n; i++)
|
||
argarray[i] = va_arg (ap, tree);
|
||
va_end (ap);
|
||
return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
|
||
}
|
||
|
||
/* Return a function call to FN, if the target is guaranteed to support it,
|
||
or null otherwise.
|
||
|
||
N is the number of arguments, passed in the "...", and TYPE is the
|
||
type of the return value. */
|
||
|
||
tree
|
||
maybe_build_call_expr_loc (location_t loc, combined_fn fn, tree type,
|
||
int n, ...)
|
||
{
|
||
va_list ap;
|
||
tree *argarray = XALLOCAVEC (tree, n);
|
||
int i;
|
||
|
||
va_start (ap, n);
|
||
for (i = 0; i < n; i++)
|
||
argarray[i] = va_arg (ap, tree);
|
||
va_end (ap);
|
||
if (internal_fn_p (fn))
|
||
{
|
||
internal_fn ifn = as_internal_fn (fn);
|
||
if (direct_internal_fn_p (ifn))
|
||
{
|
||
tree_pair types = direct_internal_fn_types (ifn, type, argarray);
|
||
if (!direct_internal_fn_supported_p (ifn, types,
|
||
OPTIMIZE_FOR_BOTH))
|
||
return NULL_TREE;
|
||
}
|
||
return build_call_expr_internal_loc_array (loc, ifn, type, n, argarray);
|
||
}
|
||
else
|
||
{
|
||
tree fndecl = builtin_decl_implicit (as_builtin_fn (fn));
|
||
if (!fndecl)
|
||
return NULL_TREE;
|
||
return build_call_expr_loc_array (loc, fndecl, n, argarray);
|
||
}
|
||
}
|
||
|
||
/* Return a function call to the appropriate builtin alloca variant.
|
||
|
||
SIZE is the size to be allocated. ALIGN, if non-zero, is the requested
|
||
alignment of the allocated area. MAX_SIZE, if non-negative, is an upper
|
||
bound for SIZE in case it is not a fixed value. */
|
||
|
||
tree
|
||
build_alloca_call_expr (tree size, unsigned int align, HOST_WIDE_INT max_size)
|
||
{
|
||
if (max_size >= 0)
|
||
{
|
||
tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN_AND_MAX);
|
||
return
|
||
build_call_expr (t, 3, size, size_int (align), size_int (max_size));
|
||
}
|
||
else if (align > 0)
|
||
{
|
||
tree t = builtin_decl_explicit (BUILT_IN_ALLOCA_WITH_ALIGN);
|
||
return build_call_expr (t, 2, size, size_int (align));
|
||
}
|
||
else
|
||
{
|
||
tree t = builtin_decl_explicit (BUILT_IN_ALLOCA);
|
||
return build_call_expr (t, 1, size);
|
||
}
|
||
}
|
||
|
||
/* Create a new constant string literal and return a char* pointer to it.
|
||
The STRING_CST value is the LEN characters at STR. */
|
||
tree
|
||
build_string_literal (int len, const char *str)
|
||
{
|
||
tree t, elem, index, type;
|
||
|
||
t = build_string (len, str);
|
||
elem = build_type_variant (char_type_node, 1, 0);
|
||
index = build_index_type (size_int (len - 1));
|
||
type = build_array_type (elem, index);
|
||
TREE_TYPE (t) = type;
|
||
TREE_CONSTANT (t) = 1;
|
||
TREE_READONLY (t) = 1;
|
||
TREE_STATIC (t) = 1;
|
||
|
||
type = build_pointer_type (elem);
|
||
t = build1 (ADDR_EXPR, type,
|
||
build4 (ARRAY_REF, elem,
|
||
t, integer_zero_node, NULL_TREE, NULL_TREE));
|
||
return t;
|
||
}
|
||
|
||
|
||
|
||
/* Return true if T (assumed to be a DECL) must be assigned a memory
|
||
location. */
|
||
|
||
bool
|
||
needs_to_live_in_memory (const_tree t)
|
||
{
|
||
return (TREE_ADDRESSABLE (t)
|
||
|| is_global_var (t)
|
||
|| (TREE_CODE (t) == RESULT_DECL
|
||
&& !DECL_BY_REFERENCE (t)
|
||
&& aggregate_value_p (t, current_function_decl)));
|
||
}
|
||
|
||
/* Return value of a constant X and sign-extend it. */
|
||
|
||
HOST_WIDE_INT
|
||
int_cst_value (const_tree x)
|
||
{
|
||
unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
|
||
unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
|
||
|
||
/* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
|
||
gcc_assert (cst_and_fits_in_hwi (x));
|
||
|
||
if (bits < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
bool negative = ((val >> (bits - 1)) & 1) != 0;
|
||
if (negative)
|
||
val |= HOST_WIDE_INT_M1U << (bits - 1) << 1;
|
||
else
|
||
val &= ~(HOST_WIDE_INT_M1U << (bits - 1) << 1);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* If TYPE is an integral or pointer type, return an integer type with
|
||
the same precision which is unsigned iff UNSIGNEDP is true, or itself
|
||
if TYPE is already an integer type of signedness UNSIGNEDP. */
|
||
|
||
tree
|
||
signed_or_unsigned_type_for (int unsignedp, tree type)
|
||
{
|
||
if (TREE_CODE (type) == INTEGER_TYPE && TYPE_UNSIGNED (type) == unsignedp)
|
||
return type;
|
||
|
||
if (TREE_CODE (type) == VECTOR_TYPE)
|
||
{
|
||
tree inner = TREE_TYPE (type);
|
||
tree inner2 = signed_or_unsigned_type_for (unsignedp, inner);
|
||
if (!inner2)
|
||
return NULL_TREE;
|
||
if (inner == inner2)
|
||
return type;
|
||
return build_vector_type (inner2, TYPE_VECTOR_SUBPARTS (type));
|
||
}
|
||
|
||
if (!INTEGRAL_TYPE_P (type)
|
||
&& !POINTER_TYPE_P (type)
|
||
&& TREE_CODE (type) != OFFSET_TYPE)
|
||
return NULL_TREE;
|
||
|
||
return build_nonstandard_integer_type (TYPE_PRECISION (type), unsignedp);
|
||
}
|
||
|
||
/* If TYPE is an integral or pointer type, return an integer type with
|
||
the same precision which is unsigned, or itself if TYPE is already an
|
||
unsigned integer type. */
|
||
|
||
tree
|
||
unsigned_type_for (tree type)
|
||
{
|
||
return signed_or_unsigned_type_for (1, type);
|
||
}
|
||
|
||
/* If TYPE is an integral or pointer type, return an integer type with
|
||
the same precision which is signed, or itself if TYPE is already a
|
||
signed integer type. */
|
||
|
||
tree
|
||
signed_type_for (tree type)
|
||
{
|
||
return signed_or_unsigned_type_for (0, type);
|
||
}
|
||
|
||
/* If TYPE is a vector type, return a signed integer vector type with the
|
||
same width and number of subparts. Otherwise return boolean_type_node. */
|
||
|
||
tree
|
||
truth_type_for (tree type)
|
||
{
|
||
if (TREE_CODE (type) == VECTOR_TYPE)
|
||
{
|
||
if (VECTOR_BOOLEAN_TYPE_P (type))
|
||
return type;
|
||
return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (type),
|
||
GET_MODE_SIZE (TYPE_MODE (type)));
|
||
}
|
||
else
|
||
return boolean_type_node;
|
||
}
|
||
|
||
/* Returns the largest value obtainable by casting something in INNER type to
|
||
OUTER type. */
|
||
|
||
tree
|
||
upper_bound_in_type (tree outer, tree inner)
|
||
{
|
||
unsigned int det = 0;
|
||
unsigned oprec = TYPE_PRECISION (outer);
|
||
unsigned iprec = TYPE_PRECISION (inner);
|
||
unsigned prec;
|
||
|
||
/* Compute a unique number for every combination. */
|
||
det |= (oprec > iprec) ? 4 : 0;
|
||
det |= TYPE_UNSIGNED (outer) ? 2 : 0;
|
||
det |= TYPE_UNSIGNED (inner) ? 1 : 0;
|
||
|
||
/* Determine the exponent to use. */
|
||
switch (det)
|
||
{
|
||
case 0:
|
||
case 1:
|
||
/* oprec <= iprec, outer: signed, inner: don't care. */
|
||
prec = oprec - 1;
|
||
break;
|
||
case 2:
|
||
case 3:
|
||
/* oprec <= iprec, outer: unsigned, inner: don't care. */
|
||
prec = oprec;
|
||
break;
|
||
case 4:
|
||
/* oprec > iprec, outer: signed, inner: signed. */
|
||
prec = iprec - 1;
|
||
break;
|
||
case 5:
|
||
/* oprec > iprec, outer: signed, inner: unsigned. */
|
||
prec = iprec;
|
||
break;
|
||
case 6:
|
||
/* oprec > iprec, outer: unsigned, inner: signed. */
|
||
prec = oprec;
|
||
break;
|
||
case 7:
|
||
/* oprec > iprec, outer: unsigned, inner: unsigned. */
|
||
prec = iprec;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return wide_int_to_tree (outer,
|
||
wi::mask (prec, false, TYPE_PRECISION (outer)));
|
||
}
|
||
|
||
/* Returns the smallest value obtainable by casting something in INNER type to
|
||
OUTER type. */
|
||
|
||
tree
|
||
lower_bound_in_type (tree outer, tree inner)
|
||
{
|
||
unsigned oprec = TYPE_PRECISION (outer);
|
||
unsigned iprec = TYPE_PRECISION (inner);
|
||
|
||
/* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
|
||
and obtain 0. */
|
||
if (TYPE_UNSIGNED (outer)
|
||
/* If we are widening something of an unsigned type, OUTER type
|
||
contains all values of INNER type. In particular, both INNER
|
||
and OUTER types have zero in common. */
|
||
|| (oprec > iprec && TYPE_UNSIGNED (inner)))
|
||
return build_int_cst (outer, 0);
|
||
else
|
||
{
|
||
/* If we are widening a signed type to another signed type, we
|
||
want to obtain -2^^(iprec-1). If we are keeping the
|
||
precision or narrowing to a signed type, we want to obtain
|
||
-2^(oprec-1). */
|
||
unsigned prec = oprec > iprec ? iprec : oprec;
|
||
return wide_int_to_tree (outer,
|
||
wi::mask (prec - 1, true,
|
||
TYPE_PRECISION (outer)));
|
||
}
|
||
}
|
||
|
||
/* Return nonzero if two operands that are suitable for PHI nodes are
|
||
necessarily equal. Specifically, both ARG0 and ARG1 must be either
|
||
SSA_NAME or invariant. Note that this is strictly an optimization.
|
||
That is, callers of this function can directly call operand_equal_p
|
||
and get the same result, only slower. */
|
||
|
||
int
|
||
operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
|
||
{
|
||
if (arg0 == arg1)
|
||
return 1;
|
||
if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
|
||
return 0;
|
||
return operand_equal_p (arg0, arg1, 0);
|
||
}
|
||
|
||
/* Returns number of zeros at the end of binary representation of X. */
|
||
|
||
tree
|
||
num_ending_zeros (const_tree x)
|
||
{
|
||
return build_int_cst (TREE_TYPE (x), wi::ctz (wi::to_wide (x)));
|
||
}
|
||
|
||
|
||
#define WALK_SUBTREE(NODE) \
|
||
do \
|
||
{ \
|
||
result = walk_tree_1 (&(NODE), func, data, pset, lh); \
|
||
if (result) \
|
||
return result; \
|
||
} \
|
||
while (0)
|
||
|
||
/* This is a subroutine of walk_tree that walks field of TYPE that are to
|
||
be walked whenever a type is seen in the tree. Rest of operands and return
|
||
value are as for walk_tree. */
|
||
|
||
static tree
|
||
walk_type_fields (tree type, walk_tree_fn func, void *data,
|
||
hash_set<tree> *pset, walk_tree_lh lh)
|
||
{
|
||
tree result = NULL_TREE;
|
||
|
||
switch (TREE_CODE (type))
|
||
{
|
||
case POINTER_TYPE:
|
||
case REFERENCE_TYPE:
|
||
case VECTOR_TYPE:
|
||
/* We have to worry about mutually recursive pointers. These can't
|
||
be written in C. They can in Ada. It's pathological, but
|
||
there's an ACATS test (c38102a) that checks it. Deal with this
|
||
by checking if we're pointing to another pointer, that one
|
||
points to another pointer, that one does too, and we have no htab.
|
||
If so, get a hash table. We check three levels deep to avoid
|
||
the cost of the hash table if we don't need one. */
|
||
if (POINTER_TYPE_P (TREE_TYPE (type))
|
||
&& POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
|
||
&& POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
|
||
&& !pset)
|
||
{
|
||
result = walk_tree_without_duplicates (&TREE_TYPE (type),
|
||
func, data);
|
||
if (result)
|
||
return result;
|
||
|
||
break;
|
||
}
|
||
|
||
/* fall through */
|
||
|
||
case COMPLEX_TYPE:
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
break;
|
||
|
||
case METHOD_TYPE:
|
||
WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
|
||
|
||
/* Fall through. */
|
||
|
||
case FUNCTION_TYPE:
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
{
|
||
tree arg;
|
||
|
||
/* We never want to walk into default arguments. */
|
||
for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
|
||
WALK_SUBTREE (TREE_VALUE (arg));
|
||
}
|
||
break;
|
||
|
||
case ARRAY_TYPE:
|
||
/* Don't follow this nodes's type if a pointer for fear that
|
||
we'll have infinite recursion. If we have a PSET, then we
|
||
need not fear. */
|
||
if (pset
|
||
|| (!POINTER_TYPE_P (TREE_TYPE (type))
|
||
&& TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
WALK_SUBTREE (TYPE_DOMAIN (type));
|
||
break;
|
||
|
||
case OFFSET_TYPE:
|
||
WALK_SUBTREE (TREE_TYPE (type));
|
||
WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
|
||
called with the DATA and the address of each sub-tree. If FUNC returns a
|
||
non-NULL value, the traversal is stopped, and the value returned by FUNC
|
||
is returned. If PSET is non-NULL it is used to record the nodes visited,
|
||
and to avoid visiting a node more than once. */
|
||
|
||
tree
|
||
walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
|
||
hash_set<tree> *pset, walk_tree_lh lh)
|
||
{
|
||
enum tree_code code;
|
||
int walk_subtrees;
|
||
tree result;
|
||
|
||
#define WALK_SUBTREE_TAIL(NODE) \
|
||
do \
|
||
{ \
|
||
tp = & (NODE); \
|
||
goto tail_recurse; \
|
||
} \
|
||
while (0)
|
||
|
||
tail_recurse:
|
||
/* Skip empty subtrees. */
|
||
if (!*tp)
|
||
return NULL_TREE;
|
||
|
||
/* Don't walk the same tree twice, if the user has requested
|
||
that we avoid doing so. */
|
||
if (pset && pset->add (*tp))
|
||
return NULL_TREE;
|
||
|
||
/* Call the function. */
|
||
walk_subtrees = 1;
|
||
result = (*func) (tp, &walk_subtrees, data);
|
||
|
||
/* If we found something, return it. */
|
||
if (result)
|
||
return result;
|
||
|
||
code = TREE_CODE (*tp);
|
||
|
||
/* Even if we didn't, FUNC may have decided that there was nothing
|
||
interesting below this point in the tree. */
|
||
if (!walk_subtrees)
|
||
{
|
||
/* But we still need to check our siblings. */
|
||
if (code == TREE_LIST)
|
||
WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
|
||
else if (code == OMP_CLAUSE)
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
else
|
||
return NULL_TREE;
|
||
}
|
||
|
||
if (lh)
|
||
{
|
||
result = (*lh) (tp, &walk_subtrees, func, data, pset);
|
||
if (result || !walk_subtrees)
|
||
return result;
|
||
}
|
||
|
||
switch (code)
|
||
{
|
||
case ERROR_MARK:
|
||
case IDENTIFIER_NODE:
|
||
case INTEGER_CST:
|
||
case REAL_CST:
|
||
case FIXED_CST:
|
||
case VECTOR_CST:
|
||
case STRING_CST:
|
||
case BLOCK:
|
||
case PLACEHOLDER_EXPR:
|
||
case SSA_NAME:
|
||
case FIELD_DECL:
|
||
case RESULT_DECL:
|
||
/* None of these have subtrees other than those already walked
|
||
above. */
|
||
break;
|
||
|
||
case TREE_LIST:
|
||
WALK_SUBTREE (TREE_VALUE (*tp));
|
||
WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
|
||
break;
|
||
|
||
case TREE_VEC:
|
||
{
|
||
int len = TREE_VEC_LENGTH (*tp);
|
||
|
||
if (len == 0)
|
||
break;
|
||
|
||
/* Walk all elements but the first. */
|
||
while (--len)
|
||
WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
|
||
|
||
/* Now walk the first one as a tail call. */
|
||
WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
|
||
}
|
||
|
||
case COMPLEX_CST:
|
||
WALK_SUBTREE (TREE_REALPART (*tp));
|
||
WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
|
||
|
||
case CONSTRUCTOR:
|
||
{
|
||
unsigned HOST_WIDE_INT idx;
|
||
constructor_elt *ce;
|
||
|
||
for (idx = 0; vec_safe_iterate (CONSTRUCTOR_ELTS (*tp), idx, &ce);
|
||
idx++)
|
||
WALK_SUBTREE (ce->value);
|
||
}
|
||
break;
|
||
|
||
case SAVE_EXPR:
|
||
WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
|
||
|
||
case BIND_EXPR:
|
||
{
|
||
tree decl;
|
||
for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
|
||
{
|
||
/* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
|
||
into declarations that are just mentioned, rather than
|
||
declared; they don't really belong to this part of the tree.
|
||
And, we can see cycles: the initializer for a declaration
|
||
can refer to the declaration itself. */
|
||
WALK_SUBTREE (DECL_INITIAL (decl));
|
||
WALK_SUBTREE (DECL_SIZE (decl));
|
||
WALK_SUBTREE (DECL_SIZE_UNIT (decl));
|
||
}
|
||
WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
|
||
}
|
||
|
||
case STATEMENT_LIST:
|
||
{
|
||
tree_stmt_iterator i;
|
||
for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
|
||
WALK_SUBTREE (*tsi_stmt_ptr (i));
|
||
}
|
||
break;
|
||
|
||
case OMP_CLAUSE:
|
||
switch (OMP_CLAUSE_CODE (*tp))
|
||
{
|
||
case OMP_CLAUSE_GANG:
|
||
case OMP_CLAUSE__GRIDDIM_:
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_ASYNC:
|
||
case OMP_CLAUSE_WAIT:
|
||
case OMP_CLAUSE_WORKER:
|
||
case OMP_CLAUSE_VECTOR:
|
||
case OMP_CLAUSE_NUM_GANGS:
|
||
case OMP_CLAUSE_NUM_WORKERS:
|
||
case OMP_CLAUSE_VECTOR_LENGTH:
|
||
case OMP_CLAUSE_PRIVATE:
|
||
case OMP_CLAUSE_SHARED:
|
||
case OMP_CLAUSE_FIRSTPRIVATE:
|
||
case OMP_CLAUSE_COPYIN:
|
||
case OMP_CLAUSE_COPYPRIVATE:
|
||
case OMP_CLAUSE_FINAL:
|
||
case OMP_CLAUSE_IF:
|
||
case OMP_CLAUSE_NUM_THREADS:
|
||
case OMP_CLAUSE_SCHEDULE:
|
||
case OMP_CLAUSE_UNIFORM:
|
||
case OMP_CLAUSE_DEPEND:
|
||
case OMP_CLAUSE_NUM_TEAMS:
|
||
case OMP_CLAUSE_THREAD_LIMIT:
|
||
case OMP_CLAUSE_DEVICE:
|
||
case OMP_CLAUSE_DIST_SCHEDULE:
|
||
case OMP_CLAUSE_SAFELEN:
|
||
case OMP_CLAUSE_SIMDLEN:
|
||
case OMP_CLAUSE_ORDERED:
|
||
case OMP_CLAUSE_PRIORITY:
|
||
case OMP_CLAUSE_GRAINSIZE:
|
||
case OMP_CLAUSE_NUM_TASKS:
|
||
case OMP_CLAUSE_HINT:
|
||
case OMP_CLAUSE_TO_DECLARE:
|
||
case OMP_CLAUSE_LINK:
|
||
case OMP_CLAUSE_USE_DEVICE_PTR:
|
||
case OMP_CLAUSE_IS_DEVICE_PTR:
|
||
case OMP_CLAUSE__LOOPTEMP_:
|
||
case OMP_CLAUSE__SIMDUID_:
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
|
||
/* FALLTHRU */
|
||
|
||
case OMP_CLAUSE_INDEPENDENT:
|
||
case OMP_CLAUSE_NOWAIT:
|
||
case OMP_CLAUSE_DEFAULT:
|
||
case OMP_CLAUSE_UNTIED:
|
||
case OMP_CLAUSE_MERGEABLE:
|
||
case OMP_CLAUSE_PROC_BIND:
|
||
case OMP_CLAUSE_INBRANCH:
|
||
case OMP_CLAUSE_NOTINBRANCH:
|
||
case OMP_CLAUSE_FOR:
|
||
case OMP_CLAUSE_PARALLEL:
|
||
case OMP_CLAUSE_SECTIONS:
|
||
case OMP_CLAUSE_TASKGROUP:
|
||
case OMP_CLAUSE_NOGROUP:
|
||
case OMP_CLAUSE_THREADS:
|
||
case OMP_CLAUSE_SIMD:
|
||
case OMP_CLAUSE_DEFAULTMAP:
|
||
case OMP_CLAUSE_AUTO:
|
||
case OMP_CLAUSE_SEQ:
|
||
case OMP_CLAUSE_TILE:
|
||
case OMP_CLAUSE__SIMT_:
|
||
case OMP_CLAUSE_IF_PRESENT:
|
||
case OMP_CLAUSE_FINALIZE:
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
|
||
case OMP_CLAUSE_LASTPRIVATE:
|
||
WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
|
||
WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
|
||
case OMP_CLAUSE_COLLAPSE:
|
||
{
|
||
int i;
|
||
for (i = 0; i < 3; i++)
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
}
|
||
|
||
case OMP_CLAUSE_LINEAR:
|
||
WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
|
||
WALK_SUBTREE (OMP_CLAUSE_LINEAR_STEP (*tp));
|
||
WALK_SUBTREE (OMP_CLAUSE_LINEAR_STMT (*tp));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
|
||
case OMP_CLAUSE_ALIGNED:
|
||
case OMP_CLAUSE_FROM:
|
||
case OMP_CLAUSE_TO:
|
||
case OMP_CLAUSE_MAP:
|
||
case OMP_CLAUSE__CACHE_:
|
||
WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 1));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
|
||
case OMP_CLAUSE_REDUCTION:
|
||
{
|
||
int i;
|
||
for (i = 0; i < 5; i++)
|
||
WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
|
||
}
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
break;
|
||
|
||
case TARGET_EXPR:
|
||
{
|
||
int i, len;
|
||
|
||
/* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
|
||
But, we only want to walk once. */
|
||
len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
|
||
for (i = 0; i < len; ++i)
|
||
WALK_SUBTREE (TREE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
|
||
}
|
||
|
||
case DECL_EXPR:
|
||
/* If this is a TYPE_DECL, walk into the fields of the type that it's
|
||
defining. We only want to walk into these fields of a type in this
|
||
case and not in the general case of a mere reference to the type.
|
||
|
||
The criterion is as follows: if the field can be an expression, it
|
||
must be walked only here. This should be in keeping with the fields
|
||
that are directly gimplified in gimplify_type_sizes in order for the
|
||
mark/copy-if-shared/unmark machinery of the gimplifier to work with
|
||
variable-sized types.
|
||
|
||
Note that DECLs get walked as part of processing the BIND_EXPR. */
|
||
if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
|
||
{
|
||
tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
|
||
if (TREE_CODE (*type_p) == ERROR_MARK)
|
||
return NULL_TREE;
|
||
|
||
/* Call the function for the type. See if it returns anything or
|
||
doesn't want us to continue. If we are to continue, walk both
|
||
the normal fields and those for the declaration case. */
|
||
result = (*func) (type_p, &walk_subtrees, data);
|
||
if (result || !walk_subtrees)
|
||
return result;
|
||
|
||
/* But do not walk a pointed-to type since it may itself need to
|
||
be walked in the declaration case if it isn't anonymous. */
|
||
if (!POINTER_TYPE_P (*type_p))
|
||
{
|
||
result = walk_type_fields (*type_p, func, data, pset, lh);
|
||
if (result)
|
||
return result;
|
||
}
|
||
|
||
/* If this is a record type, also walk the fields. */
|
||
if (RECORD_OR_UNION_TYPE_P (*type_p))
|
||
{
|
||
tree field;
|
||
|
||
for (field = TYPE_FIELDS (*type_p); field;
|
||
field = DECL_CHAIN (field))
|
||
{
|
||
/* We'd like to look at the type of the field, but we can
|
||
easily get infinite recursion. So assume it's pointed
|
||
to elsewhere in the tree. Also, ignore things that
|
||
aren't fields. */
|
||
if (TREE_CODE (field) != FIELD_DECL)
|
||
continue;
|
||
|
||
WALK_SUBTREE (DECL_FIELD_OFFSET (field));
|
||
WALK_SUBTREE (DECL_SIZE (field));
|
||
WALK_SUBTREE (DECL_SIZE_UNIT (field));
|
||
if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
|
||
WALK_SUBTREE (DECL_QUALIFIER (field));
|
||
}
|
||
}
|
||
|
||
/* Same for scalar types. */
|
||
else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
|
||
|| TREE_CODE (*type_p) == ENUMERAL_TYPE
|
||
|| TREE_CODE (*type_p) == INTEGER_TYPE
|
||
|| TREE_CODE (*type_p) == FIXED_POINT_TYPE
|
||
|| TREE_CODE (*type_p) == REAL_TYPE)
|
||
{
|
||
WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
|
||
WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
|
||
}
|
||
|
||
WALK_SUBTREE (TYPE_SIZE (*type_p));
|
||
WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
|
||
}
|
||
/* FALLTHRU */
|
||
|
||
default:
|
||
if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
|
||
{
|
||
int i, len;
|
||
|
||
/* Walk over all the sub-trees of this operand. */
|
||
len = TREE_OPERAND_LENGTH (*tp);
|
||
|
||
/* Go through the subtrees. We need to do this in forward order so
|
||
that the scope of a FOR_EXPR is handled properly. */
|
||
if (len)
|
||
{
|
||
for (i = 0; i < len - 1; ++i)
|
||
WALK_SUBTREE (TREE_OPERAND (*tp, i));
|
||
WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
|
||
}
|
||
}
|
||
/* If this is a type, walk the needed fields in the type. */
|
||
else if (TYPE_P (*tp))
|
||
return walk_type_fields (*tp, func, data, pset, lh);
|
||
break;
|
||
}
|
||
|
||
/* We didn't find what we were looking for. */
|
||
return NULL_TREE;
|
||
|
||
#undef WALK_SUBTREE_TAIL
|
||
}
|
||
#undef WALK_SUBTREE
|
||
|
||
/* Like walk_tree, but does not walk duplicate nodes more than once. */
|
||
|
||
tree
|
||
walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
|
||
walk_tree_lh lh)
|
||
{
|
||
tree result;
|
||
|
||
hash_set<tree> pset;
|
||
result = walk_tree_1 (tp, func, data, &pset, lh);
|
||
return result;
|
||
}
|
||
|
||
|
||
tree
|
||
tree_block (tree t)
|
||
{
|
||
const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
|
||
|
||
if (IS_EXPR_CODE_CLASS (c))
|
||
return LOCATION_BLOCK (t->exp.locus);
|
||
gcc_unreachable ();
|
||
return NULL;
|
||
}
|
||
|
||
void
|
||
tree_set_block (tree t, tree b)
|
||
{
|
||
const enum tree_code_class c = TREE_CODE_CLASS (TREE_CODE (t));
|
||
|
||
if (IS_EXPR_CODE_CLASS (c))
|
||
{
|
||
t->exp.locus = set_block (t->exp.locus, b);
|
||
}
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Create a nameless artificial label and put it in the current
|
||
function context. The label has a location of LOC. Returns the
|
||
newly created label. */
|
||
|
||
tree
|
||
create_artificial_label (location_t loc)
|
||
{
|
||
tree lab = build_decl (loc,
|
||
LABEL_DECL, NULL_TREE, void_type_node);
|
||
|
||
DECL_ARTIFICIAL (lab) = 1;
|
||
DECL_IGNORED_P (lab) = 1;
|
||
DECL_CONTEXT (lab) = current_function_decl;
|
||
return lab;
|
||
}
|
||
|
||
/* Given a tree, try to return a useful variable name that we can use
|
||
to prefix a temporary that is being assigned the value of the tree.
|
||
I.E. given <temp> = &A, return A. */
|
||
|
||
const char *
|
||
get_name (tree t)
|
||
{
|
||
tree stripped_decl;
|
||
|
||
stripped_decl = t;
|
||
STRIP_NOPS (stripped_decl);
|
||
if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
|
||
return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
|
||
else if (TREE_CODE (stripped_decl) == SSA_NAME)
|
||
{
|
||
tree name = SSA_NAME_IDENTIFIER (stripped_decl);
|
||
if (!name)
|
||
return NULL;
|
||
return IDENTIFIER_POINTER (name);
|
||
}
|
||
else
|
||
{
|
||
switch (TREE_CODE (stripped_decl))
|
||
{
|
||
case ADDR_EXPR:
|
||
return get_name (TREE_OPERAND (stripped_decl, 0));
|
||
default:
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Return true if TYPE has a variable argument list. */
|
||
|
||
bool
|
||
stdarg_p (const_tree fntype)
|
||
{
|
||
function_args_iterator args_iter;
|
||
tree n = NULL_TREE, t;
|
||
|
||
if (!fntype)
|
||
return false;
|
||
|
||
FOREACH_FUNCTION_ARGS (fntype, t, args_iter)
|
||
{
|
||
n = t;
|
||
}
|
||
|
||
return n != NULL_TREE && n != void_type_node;
|
||
}
|
||
|
||
/* Return true if TYPE has a prototype. */
|
||
|
||
bool
|
||
prototype_p (const_tree fntype)
|
||
{
|
||
tree t;
|
||
|
||
gcc_assert (fntype != NULL_TREE);
|
||
|
||
t = TYPE_ARG_TYPES (fntype);
|
||
return (t != NULL_TREE);
|
||
}
|
||
|
||
/* If BLOCK is inlined from an __attribute__((__artificial__))
|
||
routine, return pointer to location from where it has been
|
||
called. */
|
||
location_t *
|
||
block_nonartificial_location (tree block)
|
||
{
|
||
location_t *ret = NULL;
|
||
|
||
while (block && TREE_CODE (block) == BLOCK
|
||
&& BLOCK_ABSTRACT_ORIGIN (block))
|
||
{
|
||
tree ao = BLOCK_ABSTRACT_ORIGIN (block);
|
||
|
||
while (TREE_CODE (ao) == BLOCK
|
||
&& BLOCK_ABSTRACT_ORIGIN (ao)
|
||
&& BLOCK_ABSTRACT_ORIGIN (ao) != ao)
|
||
ao = BLOCK_ABSTRACT_ORIGIN (ao);
|
||
|
||
if (TREE_CODE (ao) == FUNCTION_DECL)
|
||
{
|
||
/* If AO is an artificial inline, point RET to the
|
||
call site locus at which it has been inlined and continue
|
||
the loop, in case AO's caller is also an artificial
|
||
inline. */
|
||
if (DECL_DECLARED_INLINE_P (ao)
|
||
&& lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
|
||
ret = &BLOCK_SOURCE_LOCATION (block);
|
||
else
|
||
break;
|
||
}
|
||
else if (TREE_CODE (ao) != BLOCK)
|
||
break;
|
||
|
||
block = BLOCK_SUPERCONTEXT (block);
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
|
||
/* If EXP is inlined from an __attribute__((__artificial__))
|
||
function, return the location of the original call expression. */
|
||
|
||
location_t
|
||
tree_nonartificial_location (tree exp)
|
||
{
|
||
location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
|
||
|
||
if (loc)
|
||
return *loc;
|
||
else
|
||
return EXPR_LOCATION (exp);
|
||
}
|
||
|
||
|
||
/* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
|
||
nodes. */
|
||
|
||
/* Return the hash code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
|
||
|
||
hashval_t
|
||
cl_option_hasher::hash (tree x)
|
||
{
|
||
const_tree const t = x;
|
||
const char *p;
|
||
size_t i;
|
||
size_t len = 0;
|
||
hashval_t hash = 0;
|
||
|
||
if (TREE_CODE (t) == OPTIMIZATION_NODE)
|
||
{
|
||
p = (const char *)TREE_OPTIMIZATION (t);
|
||
len = sizeof (struct cl_optimization);
|
||
}
|
||
|
||
else if (TREE_CODE (t) == TARGET_OPTION_NODE)
|
||
return cl_target_option_hash (TREE_TARGET_OPTION (t));
|
||
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
/* assume most opt flags are just 0/1, some are 2-3, and a few might be
|
||
something else. */
|
||
for (i = 0; i < len; i++)
|
||
if (p[i])
|
||
hash = (hash << 4) ^ ((i << 2) | p[i]);
|
||
|
||
return hash;
|
||
}
|
||
|
||
/* Return nonzero if the value represented by *X (an OPTIMIZATION or
|
||
TARGET_OPTION tree node) is the same as that given by *Y, which is the
|
||
same. */
|
||
|
||
bool
|
||
cl_option_hasher::equal (tree x, tree y)
|
||
{
|
||
const_tree const xt = x;
|
||
const_tree const yt = y;
|
||
|
||
if (TREE_CODE (xt) != TREE_CODE (yt))
|
||
return 0;
|
||
|
||
if (TREE_CODE (xt) == OPTIMIZATION_NODE)
|
||
return cl_optimization_option_eq (TREE_OPTIMIZATION (xt),
|
||
TREE_OPTIMIZATION (yt));
|
||
else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
|
||
return cl_target_option_eq (TREE_TARGET_OPTION (xt),
|
||
TREE_TARGET_OPTION (yt));
|
||
else
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
/* Build an OPTIMIZATION_NODE based on the options in OPTS. */
|
||
|
||
tree
|
||
build_optimization_node (struct gcc_options *opts)
|
||
{
|
||
tree t;
|
||
|
||
/* Use the cache of optimization nodes. */
|
||
|
||
cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
|
||
opts);
|
||
|
||
tree *slot = cl_option_hash_table->find_slot (cl_optimization_node, INSERT);
|
||
t = *slot;
|
||
if (!t)
|
||
{
|
||
/* Insert this one into the hash table. */
|
||
t = cl_optimization_node;
|
||
*slot = t;
|
||
|
||
/* Make a new node for next time round. */
|
||
cl_optimization_node = make_node (OPTIMIZATION_NODE);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Build a TARGET_OPTION_NODE based on the options in OPTS. */
|
||
|
||
tree
|
||
build_target_option_node (struct gcc_options *opts)
|
||
{
|
||
tree t;
|
||
|
||
/* Use the cache of optimization nodes. */
|
||
|
||
cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
|
||
opts);
|
||
|
||
tree *slot = cl_option_hash_table->find_slot (cl_target_option_node, INSERT);
|
||
t = *slot;
|
||
if (!t)
|
||
{
|
||
/* Insert this one into the hash table. */
|
||
t = cl_target_option_node;
|
||
*slot = t;
|
||
|
||
/* Make a new node for next time round. */
|
||
cl_target_option_node = make_node (TARGET_OPTION_NODE);
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Clear TREE_TARGET_GLOBALS of all TARGET_OPTION_NODE trees,
|
||
so that they aren't saved during PCH writing. */
|
||
|
||
void
|
||
prepare_target_option_nodes_for_pch (void)
|
||
{
|
||
hash_table<cl_option_hasher>::iterator iter = cl_option_hash_table->begin ();
|
||
for (; iter != cl_option_hash_table->end (); ++iter)
|
||
if (TREE_CODE (*iter) == TARGET_OPTION_NODE)
|
||
TREE_TARGET_GLOBALS (*iter) = NULL;
|
||
}
|
||
|
||
/* Determine the "ultimate origin" of a block. The block may be an inlined
|
||
instance of an inlined instance of a block which is local to an inline
|
||
function, so we have to trace all of the way back through the origin chain
|
||
to find out what sort of node actually served as the original seed for the
|
||
given block. */
|
||
|
||
tree
|
||
block_ultimate_origin (const_tree block)
|
||
{
|
||
tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
|
||
|
||
/* BLOCK_ABSTRACT_ORIGIN can point to itself; ignore that if
|
||
we're trying to output the abstract instance of this function. */
|
||
if (BLOCK_ABSTRACT (block) && immediate_origin == block)
|
||
return NULL_TREE;
|
||
|
||
if (immediate_origin == NULL_TREE)
|
||
return NULL_TREE;
|
||
else
|
||
{
|
||
tree ret_val;
|
||
tree lookahead = immediate_origin;
|
||
|
||
do
|
||
{
|
||
ret_val = lookahead;
|
||
lookahead = (TREE_CODE (ret_val) == BLOCK
|
||
? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
|
||
}
|
||
while (lookahead != NULL && lookahead != ret_val);
|
||
|
||
/* The block's abstract origin chain may not be the *ultimate* origin of
|
||
the block. It could lead to a DECL that has an abstract origin set.
|
||
If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
|
||
will give us if it has one). Note that DECL's abstract origins are
|
||
supposed to be the most distant ancestor (or so decl_ultimate_origin
|
||
claims), so we don't need to loop following the DECL origins. */
|
||
if (DECL_P (ret_val))
|
||
return DECL_ORIGIN (ret_val);
|
||
|
||
return ret_val;
|
||
}
|
||
}
|
||
|
||
/* Return true iff conversion from INNER_TYPE to OUTER_TYPE generates
|
||
no instruction. */
|
||
|
||
bool
|
||
tree_nop_conversion_p (const_tree outer_type, const_tree inner_type)
|
||
{
|
||
/* Do not strip casts into or out of differing address spaces. */
|
||
if (POINTER_TYPE_P (outer_type)
|
||
&& TYPE_ADDR_SPACE (TREE_TYPE (outer_type)) != ADDR_SPACE_GENERIC)
|
||
{
|
||
if (!POINTER_TYPE_P (inner_type)
|
||
|| (TYPE_ADDR_SPACE (TREE_TYPE (outer_type))
|
||
!= TYPE_ADDR_SPACE (TREE_TYPE (inner_type))))
|
||
return false;
|
||
}
|
||
else if (POINTER_TYPE_P (inner_type)
|
||
&& TYPE_ADDR_SPACE (TREE_TYPE (inner_type)) != ADDR_SPACE_GENERIC)
|
||
{
|
||
/* We already know that outer_type is not a pointer with
|
||
a non-generic address space. */
|
||
return false;
|
||
}
|
||
|
||
/* Use precision rather then machine mode when we can, which gives
|
||
the correct answer even for submode (bit-field) types. */
|
||
if ((INTEGRAL_TYPE_P (outer_type)
|
||
|| POINTER_TYPE_P (outer_type)
|
||
|| TREE_CODE (outer_type) == OFFSET_TYPE)
|
||
&& (INTEGRAL_TYPE_P (inner_type)
|
||
|| POINTER_TYPE_P (inner_type)
|
||
|| TREE_CODE (inner_type) == OFFSET_TYPE))
|
||
return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
|
||
|
||
/* Otherwise fall back on comparing machine modes (e.g. for
|
||
aggregate types, floats). */
|
||
return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
|
||
}
|
||
|
||
/* Return true iff conversion in EXP generates no instruction. Mark
|
||
it inline so that we fully inline into the stripping functions even
|
||
though we have two uses of this function. */
|
||
|
||
static inline bool
|
||
tree_nop_conversion (const_tree exp)
|
||
{
|
||
tree outer_type, inner_type;
|
||
|
||
if (location_wrapper_p (exp))
|
||
return true;
|
||
if (!CONVERT_EXPR_P (exp)
|
||
&& TREE_CODE (exp) != NON_LVALUE_EXPR)
|
||
return false;
|
||
if (TREE_OPERAND (exp, 0) == error_mark_node)
|
||
return false;
|
||
|
||
outer_type = TREE_TYPE (exp);
|
||
inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
if (!inner_type)
|
||
return false;
|
||
|
||
return tree_nop_conversion_p (outer_type, inner_type);
|
||
}
|
||
|
||
/* Return true iff conversion in EXP generates no instruction. Don't
|
||
consider conversions changing the signedness. */
|
||
|
||
static bool
|
||
tree_sign_nop_conversion (const_tree exp)
|
||
{
|
||
tree outer_type, inner_type;
|
||
|
||
if (!tree_nop_conversion (exp))
|
||
return false;
|
||
|
||
outer_type = TREE_TYPE (exp);
|
||
inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
|
||
|
||
return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
|
||
&& POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
|
||
}
|
||
|
||
/* Strip conversions from EXP according to tree_nop_conversion and
|
||
return the resulting expression. */
|
||
|
||
tree
|
||
tree_strip_nop_conversions (tree exp)
|
||
{
|
||
while (tree_nop_conversion (exp))
|
||
exp = TREE_OPERAND (exp, 0);
|
||
return exp;
|
||
}
|
||
|
||
/* Strip conversions from EXP according to tree_sign_nop_conversion
|
||
and return the resulting expression. */
|
||
|
||
tree
|
||
tree_strip_sign_nop_conversions (tree exp)
|
||
{
|
||
while (tree_sign_nop_conversion (exp))
|
||
exp = TREE_OPERAND (exp, 0);
|
||
return exp;
|
||
}
|
||
|
||
/* Avoid any floating point extensions from EXP. */
|
||
tree
|
||
strip_float_extensions (tree exp)
|
||
{
|
||
tree sub, expt, subt;
|
||
|
||
/* For floating point constant look up the narrowest type that can hold
|
||
it properly and handle it like (type)(narrowest_type)constant.
|
||
This way we can optimize for instance a=a*2.0 where "a" is float
|
||
but 2.0 is double constant. */
|
||
if (TREE_CODE (exp) == REAL_CST && !DECIMAL_FLOAT_TYPE_P (TREE_TYPE (exp)))
|
||
{
|
||
REAL_VALUE_TYPE orig;
|
||
tree type = NULL;
|
||
|
||
orig = TREE_REAL_CST (exp);
|
||
if (TYPE_PRECISION (TREE_TYPE (exp)) > TYPE_PRECISION (float_type_node)
|
||
&& exact_real_truncate (TYPE_MODE (float_type_node), &orig))
|
||
type = float_type_node;
|
||
else if (TYPE_PRECISION (TREE_TYPE (exp))
|
||
> TYPE_PRECISION (double_type_node)
|
||
&& exact_real_truncate (TYPE_MODE (double_type_node), &orig))
|
||
type = double_type_node;
|
||
if (type)
|
||
return build_real_truncate (type, orig);
|
||
}
|
||
|
||
if (!CONVERT_EXPR_P (exp))
|
||
return exp;
|
||
|
||
sub = TREE_OPERAND (exp, 0);
|
||
subt = TREE_TYPE (sub);
|
||
expt = TREE_TYPE (exp);
|
||
|
||
if (!FLOAT_TYPE_P (subt))
|
||
return exp;
|
||
|
||
if (DECIMAL_FLOAT_TYPE_P (expt) != DECIMAL_FLOAT_TYPE_P (subt))
|
||
return exp;
|
||
|
||
if (TYPE_PRECISION (subt) > TYPE_PRECISION (expt))
|
||
return exp;
|
||
|
||
return strip_float_extensions (sub);
|
||
}
|
||
|
||
/* Strip out all handled components that produce invariant
|
||
offsets. */
|
||
|
||
const_tree
|
||
strip_invariant_refs (const_tree op)
|
||
{
|
||
while (handled_component_p (op))
|
||
{
|
||
switch (TREE_CODE (op))
|
||
{
|
||
case ARRAY_REF:
|
||
case ARRAY_RANGE_REF:
|
||
if (!is_gimple_constant (TREE_OPERAND (op, 1))
|
||
|| TREE_OPERAND (op, 2) != NULL_TREE
|
||
|| TREE_OPERAND (op, 3) != NULL_TREE)
|
||
return NULL;
|
||
break;
|
||
|
||
case COMPONENT_REF:
|
||
if (TREE_OPERAND (op, 2) != NULL_TREE)
|
||
return NULL;
|
||
break;
|
||
|
||
default:;
|
||
}
|
||
op = TREE_OPERAND (op, 0);
|
||
}
|
||
|
||
return op;
|
||
}
|
||
|
||
static GTY(()) tree gcc_eh_personality_decl;
|
||
|
||
/* Return the GCC personality function decl. */
|
||
|
||
tree
|
||
lhd_gcc_personality (void)
|
||
{
|
||
if (!gcc_eh_personality_decl)
|
||
gcc_eh_personality_decl = build_personality_function ("gcc");
|
||
return gcc_eh_personality_decl;
|
||
}
|
||
|
||
/* TARGET is a call target of GIMPLE call statement
|
||
(obtained by gimple_call_fn). Return true if it is
|
||
OBJ_TYPE_REF representing an virtual call of C++ method.
|
||
(As opposed to OBJ_TYPE_REF representing objc calls
|
||
through a cast where middle-end devirtualization machinery
|
||
can't apply.) */
|
||
|
||
bool
|
||
virtual_method_call_p (const_tree target)
|
||
{
|
||
if (TREE_CODE (target) != OBJ_TYPE_REF)
|
||
return false;
|
||
tree t = TREE_TYPE (target);
|
||
gcc_checking_assert (TREE_CODE (t) == POINTER_TYPE);
|
||
t = TREE_TYPE (t);
|
||
if (TREE_CODE (t) == FUNCTION_TYPE)
|
||
return false;
|
||
gcc_checking_assert (TREE_CODE (t) == METHOD_TYPE);
|
||
/* If we do not have BINFO associated, it means that type was built
|
||
without devirtualization enabled. Do not consider this a virtual
|
||
call. */
|
||
if (!TYPE_BINFO (obj_type_ref_class (target)))
|
||
return false;
|
||
return true;
|
||
}
|
||
|
||
/* REF is OBJ_TYPE_REF, return the class the ref corresponds to. */
|
||
|
||
tree
|
||
obj_type_ref_class (const_tree ref)
|
||
{
|
||
gcc_checking_assert (TREE_CODE (ref) == OBJ_TYPE_REF);
|
||
ref = TREE_TYPE (ref);
|
||
gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
|
||
ref = TREE_TYPE (ref);
|
||
/* We look for type THIS points to. ObjC also builds
|
||
OBJ_TYPE_REF with non-method calls, Their first parameter
|
||
ID however also corresponds to class type. */
|
||
gcc_checking_assert (TREE_CODE (ref) == METHOD_TYPE
|
||
|| TREE_CODE (ref) == FUNCTION_TYPE);
|
||
ref = TREE_VALUE (TYPE_ARG_TYPES (ref));
|
||
gcc_checking_assert (TREE_CODE (ref) == POINTER_TYPE);
|
||
return TREE_TYPE (ref);
|
||
}
|
||
|
||
/* Lookup sub-BINFO of BINFO of TYPE at offset POS. */
|
||
|
||
static tree
|
||
lookup_binfo_at_offset (tree binfo, tree type, HOST_WIDE_INT pos)
|
||
{
|
||
unsigned int i;
|
||
tree base_binfo, b;
|
||
|
||
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
||
if (pos == tree_to_shwi (BINFO_OFFSET (base_binfo))
|
||
&& types_same_for_odr (TREE_TYPE (base_binfo), type))
|
||
return base_binfo;
|
||
else if ((b = lookup_binfo_at_offset (base_binfo, type, pos)) != NULL)
|
||
return b;
|
||
return NULL;
|
||
}
|
||
|
||
/* Try to find a base info of BINFO that would have its field decl at offset
|
||
OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
|
||
found, return, otherwise return NULL_TREE. */
|
||
|
||
tree
|
||
get_binfo_at_offset (tree binfo, poly_int64 offset, tree expected_type)
|
||
{
|
||
tree type = BINFO_TYPE (binfo);
|
||
|
||
while (true)
|
||
{
|
||
HOST_WIDE_INT pos, size;
|
||
tree fld;
|
||
int i;
|
||
|
||
if (types_same_for_odr (type, expected_type))
|
||
return binfo;
|
||
if (maybe_lt (offset, 0))
|
||
return NULL_TREE;
|
||
|
||
for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
|
||
{
|
||
if (TREE_CODE (fld) != FIELD_DECL || !DECL_ARTIFICIAL (fld))
|
||
continue;
|
||
|
||
pos = int_bit_position (fld);
|
||
size = tree_to_uhwi (DECL_SIZE (fld));
|
||
if (known_in_range_p (offset, pos, size))
|
||
break;
|
||
}
|
||
if (!fld || TREE_CODE (TREE_TYPE (fld)) != RECORD_TYPE)
|
||
return NULL_TREE;
|
||
|
||
/* Offset 0 indicates the primary base, whose vtable contents are
|
||
represented in the binfo for the derived class. */
|
||
else if (maybe_ne (offset, 0))
|
||
{
|
||
tree found_binfo = NULL, base_binfo;
|
||
/* Offsets in BINFO are in bytes relative to the whole structure
|
||
while POS is in bits relative to the containing field. */
|
||
int binfo_offset = (tree_to_shwi (BINFO_OFFSET (binfo)) + pos
|
||
/ BITS_PER_UNIT);
|
||
|
||
for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
|
||
if (tree_to_shwi (BINFO_OFFSET (base_binfo)) == binfo_offset
|
||
&& types_same_for_odr (TREE_TYPE (base_binfo), TREE_TYPE (fld)))
|
||
{
|
||
found_binfo = base_binfo;
|
||
break;
|
||
}
|
||
if (found_binfo)
|
||
binfo = found_binfo;
|
||
else
|
||
binfo = lookup_binfo_at_offset (binfo, TREE_TYPE (fld),
|
||
binfo_offset);
|
||
}
|
||
|
||
type = TREE_TYPE (fld);
|
||
offset -= pos;
|
||
}
|
||
}
|
||
|
||
/* Returns true if X is a typedef decl. */
|
||
|
||
bool
|
||
is_typedef_decl (const_tree x)
|
||
{
|
||
return (x && TREE_CODE (x) == TYPE_DECL
|
||
&& DECL_ORIGINAL_TYPE (x) != NULL_TREE);
|
||
}
|
||
|
||
/* Returns true iff TYPE is a type variant created for a typedef. */
|
||
|
||
bool
|
||
typedef_variant_p (const_tree type)
|
||
{
|
||
return is_typedef_decl (TYPE_NAME (type));
|
||
}
|
||
|
||
/* A class to handle converting a string that might contain
|
||
control characters, (eg newline, form-feed, etc), into one
|
||
in which contains escape sequences instead. */
|
||
|
||
class escaped_string
|
||
{
|
||
public:
|
||
escaped_string () { m_owned = false; m_str = NULL; };
|
||
~escaped_string () { if (m_owned) free (m_str); }
|
||
operator const char *() const { return (const char *) m_str; }
|
||
void escape (const char *);
|
||
private:
|
||
char *m_str;
|
||
bool m_owned;
|
||
};
|
||
|
||
/* PR 84195: Replace control characters in "unescaped" with their
|
||
escaped equivalents. Allow newlines if -fmessage-length has
|
||
been set to a non-zero value. This is done here, rather than
|
||
where the attribute is recorded as the message length can
|
||
change between these two locations. */
|
||
|
||
void
|
||
escaped_string::escape (const char *unescaped)
|
||
{
|
||
char *escaped;
|
||
size_t i, new_i, len;
|
||
|
||
if (m_owned)
|
||
free (m_str);
|
||
|
||
m_str = const_cast<char *> (unescaped);
|
||
m_owned = false;
|
||
|
||
if (unescaped == NULL || *unescaped == 0)
|
||
return;
|
||
|
||
len = strlen (unescaped);
|
||
escaped = NULL;
|
||
new_i = 0;
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
char c = unescaped[i];
|
||
|
||
if (!ISCNTRL (c))
|
||
{
|
||
if (escaped)
|
||
escaped[new_i++] = c;
|
||
continue;
|
||
}
|
||
|
||
if (c != '\n' || !pp_is_wrapping_line (global_dc->printer))
|
||
{
|
||
if (escaped == NULL)
|
||
{
|
||
/* We only allocate space for a new string if we
|
||
actually encounter a control character that
|
||
needs replacing. */
|
||
escaped = (char *) xmalloc (len * 2 + 1);
|
||
strncpy (escaped, unescaped, i);
|
||
new_i = i;
|
||
}
|
||
|
||
escaped[new_i++] = '\\';
|
||
|
||
switch (c)
|
||
{
|
||
case '\a': escaped[new_i++] = 'a'; break;
|
||
case '\b': escaped[new_i++] = 'b'; break;
|
||
case '\f': escaped[new_i++] = 'f'; break;
|
||
case '\n': escaped[new_i++] = 'n'; break;
|
||
case '\r': escaped[new_i++] = 'r'; break;
|
||
case '\t': escaped[new_i++] = 't'; break;
|
||
case '\v': escaped[new_i++] = 'v'; break;
|
||
default: escaped[new_i++] = '?'; break;
|
||
}
|
||
}
|
||
else if (escaped)
|
||
escaped[new_i++] = c;
|
||
}
|
||
|
||
if (escaped)
|
||
{
|
||
escaped[new_i] = 0;
|
||
m_str = escaped;
|
||
m_owned = true;
|
||
}
|
||
}
|
||
|
||
/* Warn about a use of an identifier which was marked deprecated. Returns
|
||
whether a warning was given. */
|
||
|
||
bool
|
||
warn_deprecated_use (tree node, tree attr)
|
||
{
|
||
escaped_string msg;
|
||
|
||
if (node == 0 || !warn_deprecated_decl)
|
||
return false;
|
||
|
||
if (!attr)
|
||
{
|
||
if (DECL_P (node))
|
||
attr = DECL_ATTRIBUTES (node);
|
||
else if (TYPE_P (node))
|
||
{
|
||
tree decl = TYPE_STUB_DECL (node);
|
||
if (decl)
|
||
attr = lookup_attribute ("deprecated",
|
||
TYPE_ATTRIBUTES (TREE_TYPE (decl)));
|
||
}
|
||
}
|
||
|
||
if (attr)
|
||
attr = lookup_attribute ("deprecated", attr);
|
||
|
||
if (attr)
|
||
msg.escape (TREE_STRING_POINTER (TREE_VALUE (TREE_VALUE (attr))));
|
||
|
||
bool w = false;
|
||
if (DECL_P (node))
|
||
{
|
||
if (msg)
|
||
w = warning (OPT_Wdeprecated_declarations,
|
||
"%qD is deprecated: %s", node, (const char *) msg);
|
||
else
|
||
w = warning (OPT_Wdeprecated_declarations,
|
||
"%qD is deprecated", node);
|
||
if (w)
|
||
inform (DECL_SOURCE_LOCATION (node), "declared here");
|
||
}
|
||
else if (TYPE_P (node))
|
||
{
|
||
tree what = NULL_TREE;
|
||
tree decl = TYPE_STUB_DECL (node);
|
||
|
||
if (TYPE_NAME (node))
|
||
{
|
||
if (TREE_CODE (TYPE_NAME (node)) == IDENTIFIER_NODE)
|
||
what = TYPE_NAME (node);
|
||
else if (TREE_CODE (TYPE_NAME (node)) == TYPE_DECL
|
||
&& DECL_NAME (TYPE_NAME (node)))
|
||
what = DECL_NAME (TYPE_NAME (node));
|
||
}
|
||
|
||
if (what)
|
||
{
|
||
if (msg)
|
||
w = warning (OPT_Wdeprecated_declarations,
|
||
"%qE is deprecated: %s", what, (const char *) msg);
|
||
else
|
||
w = warning (OPT_Wdeprecated_declarations,
|
||
"%qE is deprecated", what);
|
||
}
|
||
else
|
||
{
|
||
if (msg)
|
||
w = warning (OPT_Wdeprecated_declarations,
|
||
"type is deprecated: %s", (const char *) msg);
|
||
else
|
||
w = warning (OPT_Wdeprecated_declarations,
|
||
"type is deprecated");
|
||
}
|
||
|
||
if (w && decl)
|
||
inform (DECL_SOURCE_LOCATION (decl), "declared here");
|
||
}
|
||
|
||
return w;
|
||
}
|
||
|
||
/* Return true if REF has a COMPONENT_REF with a bit-field field declaration
|
||
somewhere in it. */
|
||
|
||
bool
|
||
contains_bitfld_component_ref_p (const_tree ref)
|
||
{
|
||
while (handled_component_p (ref))
|
||
{
|
||
if (TREE_CODE (ref) == COMPONENT_REF
|
||
&& DECL_BIT_FIELD (TREE_OPERAND (ref, 1)))
|
||
return true;
|
||
ref = TREE_OPERAND (ref, 0);
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Try to determine whether a TRY_CATCH expression can fall through.
|
||
This is a subroutine of block_may_fallthru. */
|
||
|
||
static bool
|
||
try_catch_may_fallthru (const_tree stmt)
|
||
{
|
||
tree_stmt_iterator i;
|
||
|
||
/* If the TRY block can fall through, the whole TRY_CATCH can
|
||
fall through. */
|
||
if (block_may_fallthru (TREE_OPERAND (stmt, 0)))
|
||
return true;
|
||
|
||
i = tsi_start (TREE_OPERAND (stmt, 1));
|
||
switch (TREE_CODE (tsi_stmt (i)))
|
||
{
|
||
case CATCH_EXPR:
|
||
/* We expect to see a sequence of CATCH_EXPR trees, each with a
|
||
catch expression and a body. The whole TRY_CATCH may fall
|
||
through iff any of the catch bodies falls through. */
|
||
for (; !tsi_end_p (i); tsi_next (&i))
|
||
{
|
||
if (block_may_fallthru (CATCH_BODY (tsi_stmt (i))))
|
||
return true;
|
||
}
|
||
return false;
|
||
|
||
case EH_FILTER_EXPR:
|
||
/* The exception filter expression only matters if there is an
|
||
exception. If the exception does not match EH_FILTER_TYPES,
|
||
we will execute EH_FILTER_FAILURE, and we will fall through
|
||
if that falls through. If the exception does match
|
||
EH_FILTER_TYPES, the stack unwinder will continue up the
|
||
stack, so we will not fall through. We don't know whether we
|
||
will throw an exception which matches EH_FILTER_TYPES or not,
|
||
so we just ignore EH_FILTER_TYPES and assume that we might
|
||
throw an exception which doesn't match. */
|
||
return block_may_fallthru (EH_FILTER_FAILURE (tsi_stmt (i)));
|
||
|
||
default:
|
||
/* This case represents statements to be executed when an
|
||
exception occurs. Those statements are implicitly followed
|
||
by a RESX statement to resume execution after the exception.
|
||
So in this case the TRY_CATCH never falls through. */
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* Try to determine if we can fall out of the bottom of BLOCK. This guess
|
||
need not be 100% accurate; simply be conservative and return true if we
|
||
don't know. This is used only to avoid stupidly generating extra code.
|
||
If we're wrong, we'll just delete the extra code later. */
|
||
|
||
bool
|
||
block_may_fallthru (const_tree block)
|
||
{
|
||
/* This CONST_CAST is okay because expr_last returns its argument
|
||
unmodified and we assign it to a const_tree. */
|
||
const_tree stmt = expr_last (CONST_CAST_TREE (block));
|
||
|
||
switch (stmt ? TREE_CODE (stmt) : ERROR_MARK)
|
||
{
|
||
case GOTO_EXPR:
|
||
case RETURN_EXPR:
|
||
/* Easy cases. If the last statement of the block implies
|
||
control transfer, then we can't fall through. */
|
||
return false;
|
||
|
||
case SWITCH_EXPR:
|
||
/* If there is a default: label or case labels cover all possible
|
||
SWITCH_COND values, then the SWITCH_EXPR will transfer control
|
||
to some case label in all cases and all we care is whether the
|
||
SWITCH_BODY falls through. */
|
||
if (SWITCH_ALL_CASES_P (stmt))
|
||
return block_may_fallthru (SWITCH_BODY (stmt));
|
||
return true;
|
||
|
||
case COND_EXPR:
|
||
if (block_may_fallthru (COND_EXPR_THEN (stmt)))
|
||
return true;
|
||
return block_may_fallthru (COND_EXPR_ELSE (stmt));
|
||
|
||
case BIND_EXPR:
|
||
return block_may_fallthru (BIND_EXPR_BODY (stmt));
|
||
|
||
case TRY_CATCH_EXPR:
|
||
return try_catch_may_fallthru (stmt);
|
||
|
||
case TRY_FINALLY_EXPR:
|
||
/* The finally clause is always executed after the try clause,
|
||
so if it does not fall through, then the try-finally will not
|
||
fall through. Otherwise, if the try clause does not fall
|
||
through, then when the finally clause falls through it will
|
||
resume execution wherever the try clause was going. So the
|
||
whole try-finally will only fall through if both the try
|
||
clause and the finally clause fall through. */
|
||
return (block_may_fallthru (TREE_OPERAND (stmt, 0))
|
||
&& block_may_fallthru (TREE_OPERAND (stmt, 1)));
|
||
|
||
case MODIFY_EXPR:
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 1)) == CALL_EXPR)
|
||
stmt = TREE_OPERAND (stmt, 1);
|
||
else
|
||
return true;
|
||
/* FALLTHRU */
|
||
|
||
case CALL_EXPR:
|
||
/* Functions that do not return do not fall through. */
|
||
return (call_expr_flags (stmt) & ECF_NORETURN) == 0;
|
||
|
||
case CLEANUP_POINT_EXPR:
|
||
return block_may_fallthru (TREE_OPERAND (stmt, 0));
|
||
|
||
case TARGET_EXPR:
|
||
return block_may_fallthru (TREE_OPERAND (stmt, 1));
|
||
|
||
case ERROR_MARK:
|
||
return true;
|
||
|
||
default:
|
||
return lang_hooks.block_may_fallthru (stmt);
|
||
}
|
||
}
|
||
|
||
/* True if we are using EH to handle cleanups. */
|
||
static bool using_eh_for_cleanups_flag = false;
|
||
|
||
/* This routine is called from front ends to indicate eh should be used for
|
||
cleanups. */
|
||
void
|
||
using_eh_for_cleanups (void)
|
||
{
|
||
using_eh_for_cleanups_flag = true;
|
||
}
|
||
|
||
/* Query whether EH is used for cleanups. */
|
||
bool
|
||
using_eh_for_cleanups_p (void)
|
||
{
|
||
return using_eh_for_cleanups_flag;
|
||
}
|
||
|
||
/* Wrapper for tree_code_name to ensure that tree code is valid */
|
||
const char *
|
||
get_tree_code_name (enum tree_code code)
|
||
{
|
||
const char *invalid = "<invalid tree code>";
|
||
|
||
if (code >= MAX_TREE_CODES)
|
||
return invalid;
|
||
|
||
return tree_code_name[code];
|
||
}
|
||
|
||
/* Drops the TREE_OVERFLOW flag from T. */
|
||
|
||
tree
|
||
drop_tree_overflow (tree t)
|
||
{
|
||
gcc_checking_assert (TREE_OVERFLOW (t));
|
||
|
||
/* For tree codes with a sharing machinery re-build the result. */
|
||
if (poly_int_tree_p (t))
|
||
return wide_int_to_tree (TREE_TYPE (t), wi::to_poly_wide (t));
|
||
|
||
/* For VECTOR_CST, remove the overflow bits from the encoded elements
|
||
and canonicalize the result. */
|
||
if (TREE_CODE (t) == VECTOR_CST)
|
||
{
|
||
tree_vector_builder builder;
|
||
builder.new_unary_operation (TREE_TYPE (t), t, true);
|
||
unsigned int count = builder.encoded_nelts ();
|
||
for (unsigned int i = 0; i < count; ++i)
|
||
{
|
||
tree elt = VECTOR_CST_ELT (t, i);
|
||
if (TREE_OVERFLOW (elt))
|
||
elt = drop_tree_overflow (elt);
|
||
builder.quick_push (elt);
|
||
}
|
||
return builder.build ();
|
||
}
|
||
|
||
/* Otherwise, as all tcc_constants are possibly shared, copy the node
|
||
and drop the flag. */
|
||
t = copy_node (t);
|
||
TREE_OVERFLOW (t) = 0;
|
||
|
||
/* For constants that contain nested constants, drop the flag
|
||
from those as well. */
|
||
if (TREE_CODE (t) == COMPLEX_CST)
|
||
{
|
||
if (TREE_OVERFLOW (TREE_REALPART (t)))
|
||
TREE_REALPART (t) = drop_tree_overflow (TREE_REALPART (t));
|
||
if (TREE_OVERFLOW (TREE_IMAGPART (t)))
|
||
TREE_IMAGPART (t) = drop_tree_overflow (TREE_IMAGPART (t));
|
||
}
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Given a memory reference expression T, return its base address.
|
||
The base address of a memory reference expression is the main
|
||
object being referenced. For instance, the base address for
|
||
'array[i].fld[j]' is 'array'. You can think of this as stripping
|
||
away the offset part from a memory address.
|
||
|
||
This function calls handled_component_p to strip away all the inner
|
||
parts of the memory reference until it reaches the base object. */
|
||
|
||
tree
|
||
get_base_address (tree t)
|
||
{
|
||
while (handled_component_p (t))
|
||
t = TREE_OPERAND (t, 0);
|
||
|
||
if ((TREE_CODE (t) == MEM_REF
|
||
|| TREE_CODE (t) == TARGET_MEM_REF)
|
||
&& TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR)
|
||
t = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
|
||
|
||
/* ??? Either the alias oracle or all callers need to properly deal
|
||
with WITH_SIZE_EXPRs before we can look through those. */
|
||
if (TREE_CODE (t) == WITH_SIZE_EXPR)
|
||
return NULL_TREE;
|
||
|
||
return t;
|
||
}
|
||
|
||
/* Return a tree of sizetype representing the size, in bytes, of the element
|
||
of EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
|
||
|
||
tree
|
||
array_ref_element_size (tree exp)
|
||
{
|
||
tree aligned_size = TREE_OPERAND (exp, 3);
|
||
tree elmt_type = TREE_TYPE (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
/* If a size was specified in the ARRAY_REF, it's the size measured
|
||
in alignment units of the element type. So multiply by that value. */
|
||
if (aligned_size)
|
||
{
|
||
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
|
||
sizetype from another type of the same width and signedness. */
|
||
if (TREE_TYPE (aligned_size) != sizetype)
|
||
aligned_size = fold_convert_loc (loc, sizetype, aligned_size);
|
||
return size_binop_loc (loc, MULT_EXPR, aligned_size,
|
||
size_int (TYPE_ALIGN_UNIT (elmt_type)));
|
||
}
|
||
|
||
/* Otherwise, take the size from that of the element type. Substitute
|
||
any PLACEHOLDER_EXPR that we have. */
|
||
else
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_SIZE_UNIT (elmt_type), exp);
|
||
}
|
||
|
||
/* Return a tree representing the lower bound of the array mentioned in
|
||
EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
|
||
|
||
tree
|
||
array_ref_low_bound (tree exp)
|
||
{
|
||
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
|
||
/* If a lower bound is specified in EXP, use it. */
|
||
if (TREE_OPERAND (exp, 2))
|
||
return TREE_OPERAND (exp, 2);
|
||
|
||
/* Otherwise, if there is a domain type and it has a lower bound, use it,
|
||
substituting for a PLACEHOLDER_EXPR as needed. */
|
||
if (domain_type && TYPE_MIN_VALUE (domain_type))
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MIN_VALUE (domain_type), exp);
|
||
|
||
/* Otherwise, return a zero of the appropriate type. */
|
||
return build_int_cst (TREE_TYPE (TREE_OPERAND (exp, 1)), 0);
|
||
}
|
||
|
||
/* Return a tree representing the upper bound of the array mentioned in
|
||
EXP, an ARRAY_REF or an ARRAY_RANGE_REF. */
|
||
|
||
tree
|
||
array_ref_up_bound (tree exp)
|
||
{
|
||
tree domain_type = TYPE_DOMAIN (TREE_TYPE (TREE_OPERAND (exp, 0)));
|
||
|
||
/* If there is a domain type and it has an upper bound, use it, substituting
|
||
for a PLACEHOLDER_EXPR as needed. */
|
||
if (domain_type && TYPE_MAX_VALUE (domain_type))
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (TYPE_MAX_VALUE (domain_type), exp);
|
||
|
||
/* Otherwise fail. */
|
||
return NULL_TREE;
|
||
}
|
||
|
||
/* Returns true if REF is an array reference or a component reference
|
||
to an array at the end of a structure.
|
||
If this is the case, the array may be allocated larger
|
||
than its upper bound implies. */
|
||
|
||
bool
|
||
array_at_struct_end_p (tree ref)
|
||
{
|
||
tree atype;
|
||
|
||
if (TREE_CODE (ref) == ARRAY_REF
|
||
|| TREE_CODE (ref) == ARRAY_RANGE_REF)
|
||
{
|
||
atype = TREE_TYPE (TREE_OPERAND (ref, 0));
|
||
ref = TREE_OPERAND (ref, 0);
|
||
}
|
||
else if (TREE_CODE (ref) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 1))) == ARRAY_TYPE)
|
||
atype = TREE_TYPE (TREE_OPERAND (ref, 1));
|
||
else
|
||
return false;
|
||
|
||
if (TREE_CODE (ref) == STRING_CST)
|
||
return false;
|
||
|
||
tree ref_to_array = ref;
|
||
while (handled_component_p (ref))
|
||
{
|
||
/* If the reference chain contains a component reference to a
|
||
non-union type and there follows another field the reference
|
||
is not at the end of a structure. */
|
||
if (TREE_CODE (ref) == COMPONENT_REF)
|
||
{
|
||
if (TREE_CODE (TREE_TYPE (TREE_OPERAND (ref, 0))) == RECORD_TYPE)
|
||
{
|
||
tree nextf = DECL_CHAIN (TREE_OPERAND (ref, 1));
|
||
while (nextf && TREE_CODE (nextf) != FIELD_DECL)
|
||
nextf = DECL_CHAIN (nextf);
|
||
if (nextf)
|
||
return false;
|
||
}
|
||
}
|
||
/* If we have a multi-dimensional array we do not consider
|
||
a non-innermost dimension as flex array if the whole
|
||
multi-dimensional array is at struct end.
|
||
Same for an array of aggregates with a trailing array
|
||
member. */
|
||
else if (TREE_CODE (ref) == ARRAY_REF)
|
||
return false;
|
||
else if (TREE_CODE (ref) == ARRAY_RANGE_REF)
|
||
;
|
||
/* If we view an underlying object as sth else then what we
|
||
gathered up to now is what we have to rely on. */
|
||
else if (TREE_CODE (ref) == VIEW_CONVERT_EXPR)
|
||
break;
|
||
else
|
||
gcc_unreachable ();
|
||
|
||
ref = TREE_OPERAND (ref, 0);
|
||
}
|
||
|
||
/* The array now is at struct end. Treat flexible arrays as
|
||
always subject to extend, even into just padding constrained by
|
||
an underlying decl. */
|
||
if (! TYPE_SIZE (atype)
|
||
|| ! TYPE_DOMAIN (atype)
|
||
|| ! TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
|
||
return true;
|
||
|
||
if (TREE_CODE (ref) == MEM_REF
|
||
&& TREE_CODE (TREE_OPERAND (ref, 0)) == ADDR_EXPR)
|
||
ref = TREE_OPERAND (TREE_OPERAND (ref, 0), 0);
|
||
|
||
/* If the reference is based on a declared entity, the size of the array
|
||
is constrained by its given domain. (Do not trust commons PR/69368). */
|
||
if (DECL_P (ref)
|
||
&& !(flag_unconstrained_commons
|
||
&& VAR_P (ref) && DECL_COMMON (ref))
|
||
&& DECL_SIZE_UNIT (ref)
|
||
&& TREE_CODE (DECL_SIZE_UNIT (ref)) == INTEGER_CST)
|
||
{
|
||
/* Check whether the array domain covers all of the available
|
||
padding. */
|
||
poly_int64 offset;
|
||
if (TREE_CODE (TYPE_SIZE_UNIT (TREE_TYPE (atype))) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MAX_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST
|
||
|| TREE_CODE (TYPE_MIN_VALUE (TYPE_DOMAIN (atype))) != INTEGER_CST)
|
||
return true;
|
||
if (! get_addr_base_and_unit_offset (ref_to_array, &offset))
|
||
return true;
|
||
|
||
/* If at least one extra element fits it is a flexarray. */
|
||
if (known_le ((wi::to_offset (TYPE_MAX_VALUE (TYPE_DOMAIN (atype)))
|
||
- wi::to_offset (TYPE_MIN_VALUE (TYPE_DOMAIN (atype)))
|
||
+ 2)
|
||
* wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (atype))),
|
||
wi::to_offset (DECL_SIZE_UNIT (ref)) - offset))
|
||
return true;
|
||
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return a tree representing the offset, in bytes, of the field referenced
|
||
by EXP. This does not include any offset in DECL_FIELD_BIT_OFFSET. */
|
||
|
||
tree
|
||
component_ref_field_offset (tree exp)
|
||
{
|
||
tree aligned_offset = TREE_OPERAND (exp, 2);
|
||
tree field = TREE_OPERAND (exp, 1);
|
||
location_t loc = EXPR_LOCATION (exp);
|
||
|
||
/* If an offset was specified in the COMPONENT_REF, it's the offset measured
|
||
in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. So multiply by that
|
||
value. */
|
||
if (aligned_offset)
|
||
{
|
||
/* ??? tree_ssa_useless_type_conversion will eliminate casts to
|
||
sizetype from another type of the same width and signedness. */
|
||
if (TREE_TYPE (aligned_offset) != sizetype)
|
||
aligned_offset = fold_convert_loc (loc, sizetype, aligned_offset);
|
||
return size_binop_loc (loc, MULT_EXPR, aligned_offset,
|
||
size_int (DECL_OFFSET_ALIGN (field)
|
||
/ BITS_PER_UNIT));
|
||
}
|
||
|
||
/* Otherwise, take the offset from that of the field. Substitute
|
||
any PLACEHOLDER_EXPR that we have. */
|
||
else
|
||
return SUBSTITUTE_PLACEHOLDER_IN_EXPR (DECL_FIELD_OFFSET (field), exp);
|
||
}
|
||
|
||
/* Return the machine mode of T. For vectors, returns the mode of the
|
||
inner type. The main use case is to feed the result to HONOR_NANS,
|
||
avoiding the BLKmode that a direct TYPE_MODE (T) might return. */
|
||
|
||
machine_mode
|
||
element_mode (const_tree t)
|
||
{
|
||
if (!TYPE_P (t))
|
||
t = TREE_TYPE (t);
|
||
if (VECTOR_TYPE_P (t) || TREE_CODE (t) == COMPLEX_TYPE)
|
||
t = TREE_TYPE (t);
|
||
return TYPE_MODE (t);
|
||
}
|
||
|
||
/* Vector types need to re-check the target flags each time we report
|
||
the machine mode. We need to do this because attribute target can
|
||
change the result of vector_mode_supported_p and have_regs_of_mode
|
||
on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
|
||
change on a per-function basis. */
|
||
/* ??? Possibly a better solution is to run through all the types
|
||
referenced by a function and re-compute the TYPE_MODE once, rather
|
||
than make the TYPE_MODE macro call a function. */
|
||
|
||
machine_mode
|
||
vector_type_mode (const_tree t)
|
||
{
|
||
machine_mode mode;
|
||
|
||
gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
|
||
|
||
mode = t->type_common.mode;
|
||
if (VECTOR_MODE_P (mode)
|
||
&& (!targetm.vector_mode_supported_p (mode)
|
||
|| !have_regs_of_mode[mode]))
|
||
{
|
||
scalar_int_mode innermode;
|
||
|
||
/* For integers, try mapping it to a same-sized scalar mode. */
|
||
if (is_int_mode (TREE_TYPE (t)->type_common.mode, &innermode))
|
||
{
|
||
poly_int64 size = (TYPE_VECTOR_SUBPARTS (t)
|
||
* GET_MODE_BITSIZE (innermode));
|
||
scalar_int_mode mode;
|
||
if (int_mode_for_size (size, 0).exists (&mode)
|
||
&& have_regs_of_mode[mode])
|
||
return mode;
|
||
}
|
||
|
||
return BLKmode;
|
||
}
|
||
|
||
return mode;
|
||
}
|
||
|
||
/* Verify that basic properties of T match TV and thus T can be a variant of
|
||
TV. TV should be the more specified variant (i.e. the main variant). */
|
||
|
||
static bool
|
||
verify_type_variant (const_tree t, tree tv)
|
||
{
|
||
/* Type variant can differ by:
|
||
|
||
- TYPE_QUALS: TYPE_READONLY, TYPE_VOLATILE, TYPE_ATOMIC, TYPE_RESTRICT,
|
||
ENCODE_QUAL_ADDR_SPACE.
|
||
- main variant may be TYPE_COMPLETE_P and variant types !TYPE_COMPLETE_P
|
||
in this case some values may not be set in the variant types
|
||
(see TYPE_COMPLETE_P checks).
|
||
- it is possible to have TYPE_ARTIFICIAL variant of non-artifical type
|
||
- by TYPE_NAME and attributes (i.e. when variant originate by typedef)
|
||
- TYPE_CANONICAL (TYPE_ALIAS_SET is the same among variants)
|
||
- by the alignment: TYPE_ALIGN and TYPE_USER_ALIGN
|
||
- during LTO by TYPE_CONTEXT if type is TYPE_FILE_SCOPE_P
|
||
this is necessary to make it possible to merge types form different TUs
|
||
- arrays, pointers and references may have TREE_TYPE that is a variant
|
||
of TREE_TYPE of their main variants.
|
||
- aggregates may have new TYPE_FIELDS list that list variants of
|
||
the main variant TYPE_FIELDS.
|
||
- vector types may differ by TYPE_VECTOR_OPAQUE
|
||
*/
|
||
|
||
/* Convenience macro for matching individual fields. */
|
||
#define verify_variant_match(flag) \
|
||
do { \
|
||
if (flag (tv) != flag (t)) \
|
||
{ \
|
||
error ("type variant differs by %s", #flag); \
|
||
debug_tree (tv); \
|
||
return false; \
|
||
} \
|
||
} while (false)
|
||
|
||
/* tree_base checks. */
|
||
|
||
verify_variant_match (TREE_CODE);
|
||
/* FIXME: Ada builds non-artificial variants of artificial types. */
|
||
if (TYPE_ARTIFICIAL (tv) && 0)
|
||
verify_variant_match (TYPE_ARTIFICIAL);
|
||
if (POINTER_TYPE_P (tv))
|
||
verify_variant_match (TYPE_REF_CAN_ALIAS_ALL);
|
||
/* FIXME: TYPE_SIZES_GIMPLIFIED may differs for Ada build. */
|
||
verify_variant_match (TYPE_UNSIGNED);
|
||
verify_variant_match (TYPE_PACKED);
|
||
if (TREE_CODE (t) == REFERENCE_TYPE)
|
||
verify_variant_match (TYPE_REF_IS_RVALUE);
|
||
if (AGGREGATE_TYPE_P (t))
|
||
verify_variant_match (TYPE_REVERSE_STORAGE_ORDER);
|
||
else
|
||
verify_variant_match (TYPE_SATURATING);
|
||
/* FIXME: This check trigger during libstdc++ build. */
|
||
if (RECORD_OR_UNION_TYPE_P (t) && COMPLETE_TYPE_P (t) && 0)
|
||
verify_variant_match (TYPE_FINAL_P);
|
||
|
||
/* tree_type_common checks. */
|
||
|
||
if (COMPLETE_TYPE_P (t))
|
||
{
|
||
verify_variant_match (TYPE_MODE);
|
||
if (TREE_CODE (TYPE_SIZE (t)) != PLACEHOLDER_EXPR
|
||
&& TREE_CODE (TYPE_SIZE (tv)) != PLACEHOLDER_EXPR)
|
||
verify_variant_match (TYPE_SIZE);
|
||
if (TREE_CODE (TYPE_SIZE_UNIT (t)) != PLACEHOLDER_EXPR
|
||
&& TREE_CODE (TYPE_SIZE_UNIT (tv)) != PLACEHOLDER_EXPR
|
||
&& TYPE_SIZE_UNIT (t) != TYPE_SIZE_UNIT (tv))
|
||
{
|
||
gcc_assert (!operand_equal_p (TYPE_SIZE_UNIT (t),
|
||
TYPE_SIZE_UNIT (tv), 0));
|
||
error ("type variant has different TYPE_SIZE_UNIT");
|
||
debug_tree (tv);
|
||
error ("type variant's TYPE_SIZE_UNIT");
|
||
debug_tree (TYPE_SIZE_UNIT (tv));
|
||
error ("type's TYPE_SIZE_UNIT");
|
||
debug_tree (TYPE_SIZE_UNIT (t));
|
||
return false;
|
||
}
|
||
}
|
||
verify_variant_match (TYPE_PRECISION);
|
||
verify_variant_match (TYPE_NEEDS_CONSTRUCTING);
|
||
if (RECORD_OR_UNION_TYPE_P (t))
|
||
verify_variant_match (TYPE_TRANSPARENT_AGGR);
|
||
else if (TREE_CODE (t) == ARRAY_TYPE)
|
||
verify_variant_match (TYPE_NONALIASED_COMPONENT);
|
||
/* During LTO we merge variant lists from diferent translation units
|
||
that may differ BY TYPE_CONTEXT that in turn may point
|
||
to TRANSLATION_UNIT_DECL.
|
||
Ada also builds variants of types with different TYPE_CONTEXT. */
|
||
if ((!in_lto_p || !TYPE_FILE_SCOPE_P (t)) && 0)
|
||
verify_variant_match (TYPE_CONTEXT);
|
||
verify_variant_match (TYPE_STRING_FLAG);
|
||
if (TYPE_ALIAS_SET_KNOWN_P (t))
|
||
{
|
||
error ("type variant with TYPE_ALIAS_SET_KNOWN_P");
|
||
debug_tree (tv);
|
||
return false;
|
||
}
|
||
|
||
/* tree_type_non_common checks. */
|
||
|
||
/* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
|
||
and dangle the pointer from time to time. */
|
||
if (RECORD_OR_UNION_TYPE_P (t) && TYPE_VFIELD (t) != TYPE_VFIELD (tv)
|
||
&& (in_lto_p || !TYPE_VFIELD (tv)
|
||
|| TREE_CODE (TYPE_VFIELD (tv)) != TREE_LIST))
|
||
{
|
||
error ("type variant has different TYPE_VFIELD");
|
||
debug_tree (tv);
|
||
return false;
|
||
}
|
||
if ((TREE_CODE (t) == ENUMERAL_TYPE && COMPLETE_TYPE_P (t))
|
||
|| TREE_CODE (t) == INTEGER_TYPE
|
||
|| TREE_CODE (t) == BOOLEAN_TYPE
|
||
|| TREE_CODE (t) == REAL_TYPE
|
||
|| TREE_CODE (t) == FIXED_POINT_TYPE)
|
||
{
|
||
verify_variant_match (TYPE_MAX_VALUE);
|
||
verify_variant_match (TYPE_MIN_VALUE);
|
||
}
|
||
if (TREE_CODE (t) == METHOD_TYPE)
|
||
verify_variant_match (TYPE_METHOD_BASETYPE);
|
||
if (TREE_CODE (t) == OFFSET_TYPE)
|
||
verify_variant_match (TYPE_OFFSET_BASETYPE);
|
||
if (TREE_CODE (t) == ARRAY_TYPE)
|
||
verify_variant_match (TYPE_ARRAY_MAX_SIZE);
|
||
/* FIXME: Be lax and allow TYPE_BINFO to be missing in variant types
|
||
or even type's main variant. This is needed to make bootstrap pass
|
||
and the bug seems new in GCC 5.
|
||
C++ FE should be updated to make this consistent and we should check
|
||
that TYPE_BINFO is always NULL for !COMPLETE_TYPE_P and otherwise there
|
||
is a match with main variant.
|
||
|
||
Also disable the check for Java for now because of parser hack that builds
|
||
first an dummy BINFO and then sometimes replace it by real BINFO in some
|
||
of the copies. */
|
||
if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t) && TYPE_BINFO (tv)
|
||
&& TYPE_BINFO (t) != TYPE_BINFO (tv)
|
||
/* FIXME: Java sometimes keep dump TYPE_BINFOs on variant types.
|
||
Since there is no cheap way to tell C++/Java type w/o LTO, do checking
|
||
at LTO time only. */
|
||
&& (in_lto_p && odr_type_p (t)))
|
||
{
|
||
error ("type variant has different TYPE_BINFO");
|
||
debug_tree (tv);
|
||
error ("type variant's TYPE_BINFO");
|
||
debug_tree (TYPE_BINFO (tv));
|
||
error ("type's TYPE_BINFO");
|
||
debug_tree (TYPE_BINFO (t));
|
||
return false;
|
||
}
|
||
|
||
/* Check various uses of TYPE_VALUES_RAW. */
|
||
if (TREE_CODE (t) == ENUMERAL_TYPE)
|
||
verify_variant_match (TYPE_VALUES);
|
||
else if (TREE_CODE (t) == ARRAY_TYPE)
|
||
verify_variant_match (TYPE_DOMAIN);
|
||
/* Permit incomplete variants of complete type. While FEs may complete
|
||
all variants, this does not happen for C++ templates in all cases. */
|
||
else if (RECORD_OR_UNION_TYPE_P (t)
|
||
&& COMPLETE_TYPE_P (t)
|
||
&& TYPE_FIELDS (t) != TYPE_FIELDS (tv))
|
||
{
|
||
tree f1, f2;
|
||
|
||
/* Fortran builds qualified variants as new records with items of
|
||
qualified type. Verify that they looks same. */
|
||
for (f1 = TYPE_FIELDS (t), f2 = TYPE_FIELDS (tv);
|
||
f1 && f2;
|
||
f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
|
||
if (TREE_CODE (f1) != FIELD_DECL || TREE_CODE (f2) != FIELD_DECL
|
||
|| (TYPE_MAIN_VARIANT (TREE_TYPE (f1))
|
||
!= TYPE_MAIN_VARIANT (TREE_TYPE (f2))
|
||
/* FIXME: gfc_nonrestricted_type builds all types as variants
|
||
with exception of pointer types. It deeply copies the type
|
||
which means that we may end up with a variant type
|
||
referring non-variant pointer. We may change it to
|
||
produce types as variants, too, like
|
||
objc_get_protocol_qualified_type does. */
|
||
&& !POINTER_TYPE_P (TREE_TYPE (f1)))
|
||
|| DECL_FIELD_OFFSET (f1) != DECL_FIELD_OFFSET (f2)
|
||
|| DECL_FIELD_BIT_OFFSET (f1) != DECL_FIELD_BIT_OFFSET (f2))
|
||
break;
|
||
if (f1 || f2)
|
||
{
|
||
error ("type variant has different TYPE_FIELDS");
|
||
debug_tree (tv);
|
||
error ("first mismatch is field");
|
||
debug_tree (f1);
|
||
error ("and field");
|
||
debug_tree (f2);
|
||
return false;
|
||
}
|
||
}
|
||
else if ((TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE))
|
||
verify_variant_match (TYPE_ARG_TYPES);
|
||
/* For C++ the qualified variant of array type is really an array type
|
||
of qualified TREE_TYPE.
|
||
objc builds variants of pointer where pointer to type is a variant, too
|
||
in objc_get_protocol_qualified_type. */
|
||
if (TREE_TYPE (t) != TREE_TYPE (tv)
|
||
&& ((TREE_CODE (t) != ARRAY_TYPE
|
||
&& !POINTER_TYPE_P (t))
|
||
|| TYPE_MAIN_VARIANT (TREE_TYPE (t))
|
||
!= TYPE_MAIN_VARIANT (TREE_TYPE (tv))))
|
||
{
|
||
error ("type variant has different TREE_TYPE");
|
||
debug_tree (tv);
|
||
error ("type variant's TREE_TYPE");
|
||
debug_tree (TREE_TYPE (tv));
|
||
error ("type's TREE_TYPE");
|
||
debug_tree (TREE_TYPE (t));
|
||
return false;
|
||
}
|
||
if (type_with_alias_set_p (t)
|
||
&& !gimple_canonical_types_compatible_p (t, tv, false))
|
||
{
|
||
error ("type is not compatible with its variant");
|
||
debug_tree (tv);
|
||
error ("type variant's TREE_TYPE");
|
||
debug_tree (TREE_TYPE (tv));
|
||
error ("type's TREE_TYPE");
|
||
debug_tree (TREE_TYPE (t));
|
||
return false;
|
||
}
|
||
return true;
|
||
#undef verify_variant_match
|
||
}
|
||
|
||
|
||
/* The TYPE_CANONICAL merging machinery. It should closely resemble
|
||
the middle-end types_compatible_p function. It needs to avoid
|
||
claiming types are different for types that should be treated
|
||
the same with respect to TBAA. Canonical types are also used
|
||
for IL consistency checks via the useless_type_conversion_p
|
||
predicate which does not handle all type kinds itself but falls
|
||
back to pointer-comparison of TYPE_CANONICAL for aggregates
|
||
for example. */
|
||
|
||
/* Return true if TYPE_UNSIGNED of TYPE should be ignored for canonical
|
||
type calculation because we need to allow inter-operability between signed
|
||
and unsigned variants. */
|
||
|
||
bool
|
||
type_with_interoperable_signedness (const_tree type)
|
||
{
|
||
/* Fortran standard require C_SIGNED_CHAR to be interoperable with both
|
||
signed char and unsigned char. Similarly fortran FE builds
|
||
C_SIZE_T as signed type, while C defines it unsigned. */
|
||
|
||
return tree_code_for_canonical_type_merging (TREE_CODE (type))
|
||
== INTEGER_TYPE
|
||
&& (TYPE_PRECISION (type) == TYPE_PRECISION (signed_char_type_node)
|
||
|| TYPE_PRECISION (type) == TYPE_PRECISION (size_type_node));
|
||
}
|
||
|
||
/* Return true iff T1 and T2 are structurally identical for what
|
||
TBAA is concerned.
|
||
This function is used both by lto.c canonical type merging and by the
|
||
verifier. If TRUST_TYPE_CANONICAL we do not look into structure of types
|
||
that have TYPE_CANONICAL defined and assume them equivalent. This is useful
|
||
only for LTO because only in these cases TYPE_CANONICAL equivalence
|
||
correspond to one defined by gimple_canonical_types_compatible_p. */
|
||
|
||
bool
|
||
gimple_canonical_types_compatible_p (const_tree t1, const_tree t2,
|
||
bool trust_type_canonical)
|
||
{
|
||
/* Type variants should be same as the main variant. When not doing sanity
|
||
checking to verify this fact, go to main variants and save some work. */
|
||
if (trust_type_canonical)
|
||
{
|
||
t1 = TYPE_MAIN_VARIANT (t1);
|
||
t2 = TYPE_MAIN_VARIANT (t2);
|
||
}
|
||
|
||
/* Check first for the obvious case of pointer identity. */
|
||
if (t1 == t2)
|
||
return true;
|
||
|
||
/* Check that we have two types to compare. */
|
||
if (t1 == NULL_TREE || t2 == NULL_TREE)
|
||
return false;
|
||
|
||
/* We consider complete types always compatible with incomplete type.
|
||
This does not make sense for canonical type calculation and thus we
|
||
need to ensure that we are never called on it.
|
||
|
||
FIXME: For more correctness the function probably should have three modes
|
||
1) mode assuming that types are complete mathcing their structure
|
||
2) mode allowing incomplete types but producing equivalence classes
|
||
and thus ignoring all info from complete types
|
||
3) mode allowing incomplete types to match complete but checking
|
||
compatibility between complete types.
|
||
|
||
1 and 2 can be used for canonical type calculation. 3 is the real
|
||
definition of type compatibility that can be used i.e. for warnings during
|
||
declaration merging. */
|
||
|
||
gcc_assert (!trust_type_canonical
|
||
|| (type_with_alias_set_p (t1) && type_with_alias_set_p (t2)));
|
||
/* If the types have been previously registered and found equal
|
||
they still are. */
|
||
|
||
if (TYPE_CANONICAL (t1) && TYPE_CANONICAL (t2)
|
||
&& trust_type_canonical)
|
||
{
|
||
/* Do not use TYPE_CANONICAL of pointer types. For LTO streamed types
|
||
they are always NULL, but they are set to non-NULL for types
|
||
constructed by build_pointer_type and variants. In this case the
|
||
TYPE_CANONICAL is more fine grained than the equivalnce we test (where
|
||
all pointers are considered equal. Be sure to not return false
|
||
negatives. */
|
||
gcc_checking_assert (canonical_type_used_p (t1)
|
||
&& canonical_type_used_p (t2));
|
||
return TYPE_CANONICAL (t1) == TYPE_CANONICAL (t2);
|
||
}
|
||
|
||
/* Can't be the same type if the types don't have the same code. */
|
||
enum tree_code code = tree_code_for_canonical_type_merging (TREE_CODE (t1));
|
||
if (code != tree_code_for_canonical_type_merging (TREE_CODE (t2)))
|
||
return false;
|
||
|
||
/* Qualifiers do not matter for canonical type comparison purposes. */
|
||
|
||
/* Void types and nullptr types are always the same. */
|
||
if (TREE_CODE (t1) == VOID_TYPE
|
||
|| TREE_CODE (t1) == NULLPTR_TYPE)
|
||
return true;
|
||
|
||
/* Can't be the same type if they have different mode. */
|
||
if (TYPE_MODE (t1) != TYPE_MODE (t2))
|
||
return false;
|
||
|
||
/* Non-aggregate types can be handled cheaply. */
|
||
if (INTEGRAL_TYPE_P (t1)
|
||
|| SCALAR_FLOAT_TYPE_P (t1)
|
||
|| FIXED_POINT_TYPE_P (t1)
|
||
|| TREE_CODE (t1) == VECTOR_TYPE
|
||
|| TREE_CODE (t1) == COMPLEX_TYPE
|
||
|| TREE_CODE (t1) == OFFSET_TYPE
|
||
|| POINTER_TYPE_P (t1))
|
||
{
|
||
/* Can't be the same type if they have different recision. */
|
||
if (TYPE_PRECISION (t1) != TYPE_PRECISION (t2))
|
||
return false;
|
||
|
||
/* In some cases the signed and unsigned types are required to be
|
||
inter-operable. */
|
||
if (TYPE_UNSIGNED (t1) != TYPE_UNSIGNED (t2)
|
||
&& !type_with_interoperable_signedness (t1))
|
||
return false;
|
||
|
||
/* Fortran's C_SIGNED_CHAR is !TYPE_STRING_FLAG but needs to be
|
||
interoperable with "signed char". Unless all frontends are revisited
|
||
to agree on these types, we must ignore the flag completely. */
|
||
|
||
/* Fortran standard define C_PTR type that is compatible with every
|
||
C pointer. For this reason we need to glob all pointers into one.
|
||
Still pointers in different address spaces are not compatible. */
|
||
if (POINTER_TYPE_P (t1))
|
||
{
|
||
if (TYPE_ADDR_SPACE (TREE_TYPE (t1))
|
||
!= TYPE_ADDR_SPACE (TREE_TYPE (t2)))
|
||
return false;
|
||
}
|
||
|
||
/* Tail-recurse to components. */
|
||
if (TREE_CODE (t1) == VECTOR_TYPE
|
||
|| TREE_CODE (t1) == COMPLEX_TYPE)
|
||
return gimple_canonical_types_compatible_p (TREE_TYPE (t1),
|
||
TREE_TYPE (t2),
|
||
trust_type_canonical);
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Do type-specific comparisons. */
|
||
switch (TREE_CODE (t1))
|
||
{
|
||
case ARRAY_TYPE:
|
||
/* Array types are the same if the element types are the same and
|
||
the number of elements are the same. */
|
||
if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
|
||
trust_type_canonical)
|
||
|| TYPE_STRING_FLAG (t1) != TYPE_STRING_FLAG (t2)
|
||
|| TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2)
|
||
|| TYPE_NONALIASED_COMPONENT (t1) != TYPE_NONALIASED_COMPONENT (t2))
|
||
return false;
|
||
else
|
||
{
|
||
tree i1 = TYPE_DOMAIN (t1);
|
||
tree i2 = TYPE_DOMAIN (t2);
|
||
|
||
/* For an incomplete external array, the type domain can be
|
||
NULL_TREE. Check this condition also. */
|
||
if (i1 == NULL_TREE && i2 == NULL_TREE)
|
||
return true;
|
||
else if (i1 == NULL_TREE || i2 == NULL_TREE)
|
||
return false;
|
||
else
|
||
{
|
||
tree min1 = TYPE_MIN_VALUE (i1);
|
||
tree min2 = TYPE_MIN_VALUE (i2);
|
||
tree max1 = TYPE_MAX_VALUE (i1);
|
||
tree max2 = TYPE_MAX_VALUE (i2);
|
||
|
||
/* The minimum/maximum values have to be the same. */
|
||
if ((min1 == min2
|
||
|| (min1 && min2
|
||
&& ((TREE_CODE (min1) == PLACEHOLDER_EXPR
|
||
&& TREE_CODE (min2) == PLACEHOLDER_EXPR)
|
||
|| operand_equal_p (min1, min2, 0))))
|
||
&& (max1 == max2
|
||
|| (max1 && max2
|
||
&& ((TREE_CODE (max1) == PLACEHOLDER_EXPR
|
||
&& TREE_CODE (max2) == PLACEHOLDER_EXPR)
|
||
|| operand_equal_p (max1, max2, 0)))))
|
||
return true;
|
||
else
|
||
return false;
|
||
}
|
||
}
|
||
|
||
case METHOD_TYPE:
|
||
case FUNCTION_TYPE:
|
||
/* Function types are the same if the return type and arguments types
|
||
are the same. */
|
||
if (!gimple_canonical_types_compatible_p (TREE_TYPE (t1), TREE_TYPE (t2),
|
||
trust_type_canonical))
|
||
return false;
|
||
|
||
if (TYPE_ARG_TYPES (t1) == TYPE_ARG_TYPES (t2))
|
||
return true;
|
||
else
|
||
{
|
||
tree parms1, parms2;
|
||
|
||
for (parms1 = TYPE_ARG_TYPES (t1), parms2 = TYPE_ARG_TYPES (t2);
|
||
parms1 && parms2;
|
||
parms1 = TREE_CHAIN (parms1), parms2 = TREE_CHAIN (parms2))
|
||
{
|
||
if (!gimple_canonical_types_compatible_p
|
||
(TREE_VALUE (parms1), TREE_VALUE (parms2),
|
||
trust_type_canonical))
|
||
return false;
|
||
}
|
||
|
||
if (parms1 || parms2)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
case RECORD_TYPE:
|
||
case UNION_TYPE:
|
||
case QUAL_UNION_TYPE:
|
||
{
|
||
tree f1, f2;
|
||
|
||
/* Don't try to compare variants of an incomplete type, before
|
||
TYPE_FIELDS has been copied around. */
|
||
if (!COMPLETE_TYPE_P (t1) && !COMPLETE_TYPE_P (t2))
|
||
return true;
|
||
|
||
|
||
if (TYPE_REVERSE_STORAGE_ORDER (t1) != TYPE_REVERSE_STORAGE_ORDER (t2))
|
||
return false;
|
||
|
||
/* For aggregate types, all the fields must be the same. */
|
||
for (f1 = TYPE_FIELDS (t1), f2 = TYPE_FIELDS (t2);
|
||
f1 || f2;
|
||
f1 = TREE_CHAIN (f1), f2 = TREE_CHAIN (f2))
|
||
{
|
||
/* Skip non-fields and zero-sized fields. */
|
||
while (f1 && (TREE_CODE (f1) != FIELD_DECL
|
||
|| (DECL_SIZE (f1)
|
||
&& integer_zerop (DECL_SIZE (f1)))))
|
||
f1 = TREE_CHAIN (f1);
|
||
while (f2 && (TREE_CODE (f2) != FIELD_DECL
|
||
|| (DECL_SIZE (f2)
|
||
&& integer_zerop (DECL_SIZE (f2)))))
|
||
f2 = TREE_CHAIN (f2);
|
||
if (!f1 || !f2)
|
||
break;
|
||
/* The fields must have the same name, offset and type. */
|
||
if (DECL_NONADDRESSABLE_P (f1) != DECL_NONADDRESSABLE_P (f2)
|
||
|| !gimple_compare_field_offset (f1, f2)
|
||
|| !gimple_canonical_types_compatible_p
|
||
(TREE_TYPE (f1), TREE_TYPE (f2),
|
||
trust_type_canonical))
|
||
return false;
|
||
}
|
||
|
||
/* If one aggregate has more fields than the other, they
|
||
are not the same. */
|
||
if (f1 || f2)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
/* Consider all types with language specific trees in them mutually
|
||
compatible. This is executed only from verify_type and false
|
||
positives can be tolerated. */
|
||
gcc_assert (!in_lto_p);
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Verify type T. */
|
||
|
||
void
|
||
verify_type (const_tree t)
|
||
{
|
||
bool error_found = false;
|
||
tree mv = TYPE_MAIN_VARIANT (t);
|
||
if (!mv)
|
||
{
|
||
error ("Main variant is not defined");
|
||
error_found = true;
|
||
}
|
||
else if (mv != TYPE_MAIN_VARIANT (mv))
|
||
{
|
||
error ("TYPE_MAIN_VARIANT has different TYPE_MAIN_VARIANT");
|
||
debug_tree (mv);
|
||
error_found = true;
|
||
}
|
||
else if (t != mv && !verify_type_variant (t, mv))
|
||
error_found = true;
|
||
|
||
tree ct = TYPE_CANONICAL (t);
|
||
if (!ct)
|
||
;
|
||
else if (TYPE_CANONICAL (t) != ct)
|
||
{
|
||
error ("TYPE_CANONICAL has different TYPE_CANONICAL");
|
||
debug_tree (ct);
|
||
error_found = true;
|
||
}
|
||
/* Method and function types can not be used to address memory and thus
|
||
TYPE_CANONICAL really matters only for determining useless conversions.
|
||
|
||
FIXME: C++ FE produce declarations of builtin functions that are not
|
||
compatible with main variants. */
|
||
else if (TREE_CODE (t) == FUNCTION_TYPE)
|
||
;
|
||
else if (t != ct
|
||
/* FIXME: gimple_canonical_types_compatible_p can not compare types
|
||
with variably sized arrays because their sizes possibly
|
||
gimplified to different variables. */
|
||
&& !variably_modified_type_p (ct, NULL)
|
||
&& !gimple_canonical_types_compatible_p (t, ct, false))
|
||
{
|
||
error ("TYPE_CANONICAL is not compatible");
|
||
debug_tree (ct);
|
||
error_found = true;
|
||
}
|
||
|
||
if (COMPLETE_TYPE_P (t) && TYPE_CANONICAL (t)
|
||
&& TYPE_MODE (t) != TYPE_MODE (TYPE_CANONICAL (t)))
|
||
{
|
||
error ("TYPE_MODE of TYPE_CANONICAL is not compatible");
|
||
debug_tree (ct);
|
||
error_found = true;
|
||
}
|
||
if (TYPE_MAIN_VARIANT (t) == t && ct && TYPE_MAIN_VARIANT (ct) != ct)
|
||
{
|
||
error ("TYPE_CANONICAL of main variant is not main variant");
|
||
debug_tree (ct);
|
||
debug_tree (TYPE_MAIN_VARIANT (ct));
|
||
error_found = true;
|
||
}
|
||
|
||
|
||
/* Check various uses of TYPE_MIN_VALUE_RAW. */
|
||
if (RECORD_OR_UNION_TYPE_P (t))
|
||
{
|
||
/* FIXME: C FE uses TYPE_VFIELD to record C_TYPE_INCOMPLETE_VARS
|
||
and danagle the pointer from time to time. */
|
||
if (TYPE_VFIELD (t)
|
||
&& TREE_CODE (TYPE_VFIELD (t)) != FIELD_DECL
|
||
&& TREE_CODE (TYPE_VFIELD (t)) != TREE_LIST)
|
||
{
|
||
error ("TYPE_VFIELD is not FIELD_DECL nor TREE_LIST");
|
||
debug_tree (TYPE_VFIELD (t));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == POINTER_TYPE)
|
||
{
|
||
if (TYPE_NEXT_PTR_TO (t)
|
||
&& TREE_CODE (TYPE_NEXT_PTR_TO (t)) != POINTER_TYPE)
|
||
{
|
||
error ("TYPE_NEXT_PTR_TO is not POINTER_TYPE");
|
||
debug_tree (TYPE_NEXT_PTR_TO (t));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == REFERENCE_TYPE)
|
||
{
|
||
if (TYPE_NEXT_REF_TO (t)
|
||
&& TREE_CODE (TYPE_NEXT_REF_TO (t)) != REFERENCE_TYPE)
|
||
{
|
||
error ("TYPE_NEXT_REF_TO is not REFERENCE_TYPE");
|
||
debug_tree (TYPE_NEXT_REF_TO (t));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
|
||
|| TREE_CODE (t) == FIXED_POINT_TYPE)
|
||
{
|
||
/* FIXME: The following check should pass:
|
||
useless_type_conversion_p (const_cast <tree> (t),
|
||
TREE_TYPE (TYPE_MIN_VALUE (t))
|
||
but does not for C sizetypes in LTO. */
|
||
}
|
||
|
||
/* Check various uses of TYPE_MAXVAL_RAW. */
|
||
if (RECORD_OR_UNION_TYPE_P (t))
|
||
{
|
||
if (!TYPE_BINFO (t))
|
||
;
|
||
else if (TREE_CODE (TYPE_BINFO (t)) != TREE_BINFO)
|
||
{
|
||
error ("TYPE_BINFO is not TREE_BINFO");
|
||
debug_tree (TYPE_BINFO (t));
|
||
error_found = true;
|
||
}
|
||
else if (TREE_TYPE (TYPE_BINFO (t)) != TYPE_MAIN_VARIANT (t))
|
||
{
|
||
error ("TYPE_BINFO type is not TYPE_MAIN_VARIANT");
|
||
debug_tree (TREE_TYPE (TYPE_BINFO (t)));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
|
||
{
|
||
if (TYPE_METHOD_BASETYPE (t)
|
||
&& TREE_CODE (TYPE_METHOD_BASETYPE (t)) != RECORD_TYPE
|
||
&& TREE_CODE (TYPE_METHOD_BASETYPE (t)) != UNION_TYPE)
|
||
{
|
||
error ("TYPE_METHOD_BASETYPE is not record nor union");
|
||
debug_tree (TYPE_METHOD_BASETYPE (t));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == OFFSET_TYPE)
|
||
{
|
||
if (TYPE_OFFSET_BASETYPE (t)
|
||
&& TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != RECORD_TYPE
|
||
&& TREE_CODE (TYPE_OFFSET_BASETYPE (t)) != UNION_TYPE)
|
||
{
|
||
error ("TYPE_OFFSET_BASETYPE is not record nor union");
|
||
debug_tree (TYPE_OFFSET_BASETYPE (t));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (INTEGRAL_TYPE_P (t) || TREE_CODE (t) == REAL_TYPE
|
||
|| TREE_CODE (t) == FIXED_POINT_TYPE)
|
||
{
|
||
/* FIXME: The following check should pass:
|
||
useless_type_conversion_p (const_cast <tree> (t),
|
||
TREE_TYPE (TYPE_MAX_VALUE (t))
|
||
but does not for C sizetypes in LTO. */
|
||
}
|
||
else if (TREE_CODE (t) == ARRAY_TYPE)
|
||
{
|
||
if (TYPE_ARRAY_MAX_SIZE (t)
|
||
&& TREE_CODE (TYPE_ARRAY_MAX_SIZE (t)) != INTEGER_CST)
|
||
{
|
||
error ("TYPE_ARRAY_MAX_SIZE not INTEGER_CST");
|
||
debug_tree (TYPE_ARRAY_MAX_SIZE (t));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (TYPE_MAX_VALUE_RAW (t))
|
||
{
|
||
error ("TYPE_MAX_VALUE_RAW non-NULL");
|
||
debug_tree (TYPE_MAX_VALUE_RAW (t));
|
||
error_found = true;
|
||
}
|
||
|
||
if (TYPE_LANG_SLOT_1 (t) && in_lto_p)
|
||
{
|
||
error ("TYPE_LANG_SLOT_1 (binfo) field is non-NULL");
|
||
debug_tree (TYPE_LANG_SLOT_1 (t));
|
||
error_found = true;
|
||
}
|
||
|
||
/* Check various uses of TYPE_VALUES_RAW. */
|
||
if (TREE_CODE (t) == ENUMERAL_TYPE)
|
||
for (tree l = TYPE_VALUES (t); l; l = TREE_CHAIN (l))
|
||
{
|
||
tree value = TREE_VALUE (l);
|
||
tree name = TREE_PURPOSE (l);
|
||
|
||
/* C FE porduce INTEGER_CST of INTEGER_TYPE, while C++ FE uses
|
||
CONST_DECL of ENUMERAL TYPE. */
|
||
if (TREE_CODE (value) != INTEGER_CST && TREE_CODE (value) != CONST_DECL)
|
||
{
|
||
error ("Enum value is not CONST_DECL or INTEGER_CST");
|
||
debug_tree (value);
|
||
debug_tree (name);
|
||
error_found = true;
|
||
}
|
||
if (TREE_CODE (TREE_TYPE (value)) != INTEGER_TYPE
|
||
&& !useless_type_conversion_p (const_cast <tree> (t), TREE_TYPE (value)))
|
||
{
|
||
error ("Enum value type is not INTEGER_TYPE nor convertible to the enum");
|
||
debug_tree (value);
|
||
debug_tree (name);
|
||
error_found = true;
|
||
}
|
||
if (TREE_CODE (name) != IDENTIFIER_NODE)
|
||
{
|
||
error ("Enum value name is not IDENTIFIER_NODE");
|
||
debug_tree (value);
|
||
debug_tree (name);
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == ARRAY_TYPE)
|
||
{
|
||
if (TYPE_DOMAIN (t) && TREE_CODE (TYPE_DOMAIN (t)) != INTEGER_TYPE)
|
||
{
|
||
error ("Array TYPE_DOMAIN is not integer type");
|
||
debug_tree (TYPE_DOMAIN (t));
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (RECORD_OR_UNION_TYPE_P (t))
|
||
{
|
||
if (TYPE_FIELDS (t) && !COMPLETE_TYPE_P (t) && in_lto_p)
|
||
{
|
||
error ("TYPE_FIELDS defined in incomplete type");
|
||
error_found = true;
|
||
}
|
||
for (tree fld = TYPE_FIELDS (t); fld; fld = TREE_CHAIN (fld))
|
||
{
|
||
/* TODO: verify properties of decls. */
|
||
if (TREE_CODE (fld) == FIELD_DECL)
|
||
;
|
||
else if (TREE_CODE (fld) == TYPE_DECL)
|
||
;
|
||
else if (TREE_CODE (fld) == CONST_DECL)
|
||
;
|
||
else if (VAR_P (fld))
|
||
;
|
||
else if (TREE_CODE (fld) == TEMPLATE_DECL)
|
||
;
|
||
else if (TREE_CODE (fld) == USING_DECL)
|
||
;
|
||
else if (TREE_CODE (fld) == FUNCTION_DECL)
|
||
;
|
||
else
|
||
{
|
||
error ("Wrong tree in TYPE_FIELDS list");
|
||
debug_tree (fld);
|
||
error_found = true;
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == INTEGER_TYPE
|
||
|| TREE_CODE (t) == BOOLEAN_TYPE
|
||
|| TREE_CODE (t) == OFFSET_TYPE
|
||
|| TREE_CODE (t) == REFERENCE_TYPE
|
||
|| TREE_CODE (t) == NULLPTR_TYPE
|
||
|| TREE_CODE (t) == POINTER_TYPE)
|
||
{
|
||
if (TYPE_CACHED_VALUES_P (t) != (TYPE_CACHED_VALUES (t) != NULL))
|
||
{
|
||
error ("TYPE_CACHED_VALUES_P is %i while TYPE_CACHED_VALUES is %p",
|
||
TYPE_CACHED_VALUES_P (t), (void *)TYPE_CACHED_VALUES (t));
|
||
error_found = true;
|
||
}
|
||
else if (TYPE_CACHED_VALUES_P (t) && TREE_CODE (TYPE_CACHED_VALUES (t)) != TREE_VEC)
|
||
{
|
||
error ("TYPE_CACHED_VALUES is not TREE_VEC");
|
||
debug_tree (TYPE_CACHED_VALUES (t));
|
||
error_found = true;
|
||
}
|
||
/* Verify just enough of cache to ensure that no one copied it to new type.
|
||
All copying should go by copy_node that should clear it. */
|
||
else if (TYPE_CACHED_VALUES_P (t))
|
||
{
|
||
int i;
|
||
for (i = 0; i < TREE_VEC_LENGTH (TYPE_CACHED_VALUES (t)); i++)
|
||
if (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)
|
||
&& TREE_TYPE (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i)) != t)
|
||
{
|
||
error ("wrong TYPE_CACHED_VALUES entry");
|
||
debug_tree (TREE_VEC_ELT (TYPE_CACHED_VALUES (t), i));
|
||
error_found = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
else if (TREE_CODE (t) == FUNCTION_TYPE || TREE_CODE (t) == METHOD_TYPE)
|
||
for (tree l = TYPE_ARG_TYPES (t); l; l = TREE_CHAIN (l))
|
||
{
|
||
/* C++ FE uses TREE_PURPOSE to store initial values. */
|
||
if (TREE_PURPOSE (l) && in_lto_p)
|
||
{
|
||
error ("TREE_PURPOSE is non-NULL in TYPE_ARG_TYPES list");
|
||
debug_tree (l);
|
||
error_found = true;
|
||
}
|
||
if (!TYPE_P (TREE_VALUE (l)))
|
||
{
|
||
error ("Wrong entry in TYPE_ARG_TYPES list");
|
||
debug_tree (l);
|
||
error_found = true;
|
||
}
|
||
}
|
||
else if (!is_lang_specific (t) && TYPE_VALUES_RAW (t))
|
||
{
|
||
error ("TYPE_VALUES_RAW field is non-NULL");
|
||
debug_tree (TYPE_VALUES_RAW (t));
|
||
error_found = true;
|
||
}
|
||
if (TREE_CODE (t) != INTEGER_TYPE
|
||
&& TREE_CODE (t) != BOOLEAN_TYPE
|
||
&& TREE_CODE (t) != OFFSET_TYPE
|
||
&& TREE_CODE (t) != REFERENCE_TYPE
|
||
&& TREE_CODE (t) != NULLPTR_TYPE
|
||
&& TREE_CODE (t) != POINTER_TYPE
|
||
&& TYPE_CACHED_VALUES_P (t))
|
||
{
|
||
error ("TYPE_CACHED_VALUES_P is set while it should not");
|
||
error_found = true;
|
||
}
|
||
if (TYPE_STRING_FLAG (t)
|
||
&& TREE_CODE (t) != ARRAY_TYPE && TREE_CODE (t) != INTEGER_TYPE)
|
||
{
|
||
error ("TYPE_STRING_FLAG is set on wrong type code");
|
||
error_found = true;
|
||
}
|
||
|
||
/* ipa-devirt makes an assumption that TYPE_METHOD_BASETYPE is always
|
||
TYPE_MAIN_VARIANT and it would be odd to add methods only to variatns
|
||
of a type. */
|
||
if (TREE_CODE (t) == METHOD_TYPE
|
||
&& TYPE_MAIN_VARIANT (TYPE_METHOD_BASETYPE (t)) != TYPE_METHOD_BASETYPE (t))
|
||
{
|
||
error ("TYPE_METHOD_BASETYPE is not main variant");
|
||
error_found = true;
|
||
}
|
||
|
||
if (error_found)
|
||
{
|
||
debug_tree (const_cast <tree> (t));
|
||
internal_error ("verify_type failed");
|
||
}
|
||
}
|
||
|
||
|
||
/* Return 1 if ARG interpreted as signed in its precision is known to be
|
||
always positive or 2 if ARG is known to be always negative, or 3 if
|
||
ARG may be positive or negative. */
|
||
|
||
int
|
||
get_range_pos_neg (tree arg)
|
||
{
|
||
if (arg == error_mark_node)
|
||
return 3;
|
||
|
||
int prec = TYPE_PRECISION (TREE_TYPE (arg));
|
||
int cnt = 0;
|
||
if (TREE_CODE (arg) == INTEGER_CST)
|
||
{
|
||
wide_int w = wi::sext (wi::to_wide (arg), prec);
|
||
if (wi::neg_p (w))
|
||
return 2;
|
||
else
|
||
return 1;
|
||
}
|
||
while (CONVERT_EXPR_P (arg)
|
||
&& INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (arg, 0)))
|
||
&& TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (arg, 0))) <= prec)
|
||
{
|
||
arg = TREE_OPERAND (arg, 0);
|
||
/* Narrower value zero extended into wider type
|
||
will always result in positive values. */
|
||
if (TYPE_UNSIGNED (TREE_TYPE (arg))
|
||
&& TYPE_PRECISION (TREE_TYPE (arg)) < prec)
|
||
return 1;
|
||
prec = TYPE_PRECISION (TREE_TYPE (arg));
|
||
if (++cnt > 30)
|
||
return 3;
|
||
}
|
||
|
||
if (TREE_CODE (arg) != SSA_NAME)
|
||
return 3;
|
||
wide_int arg_min, arg_max;
|
||
while (get_range_info (arg, &arg_min, &arg_max) != VR_RANGE)
|
||
{
|
||
gimple *g = SSA_NAME_DEF_STMT (arg);
|
||
if (is_gimple_assign (g)
|
||
&& CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (g)))
|
||
{
|
||
tree t = gimple_assign_rhs1 (g);
|
||
if (INTEGRAL_TYPE_P (TREE_TYPE (t))
|
||
&& TYPE_PRECISION (TREE_TYPE (t)) <= prec)
|
||
{
|
||
if (TYPE_UNSIGNED (TREE_TYPE (t))
|
||
&& TYPE_PRECISION (TREE_TYPE (t)) < prec)
|
||
return 1;
|
||
prec = TYPE_PRECISION (TREE_TYPE (t));
|
||
arg = t;
|
||
if (++cnt > 30)
|
||
return 3;
|
||
continue;
|
||
}
|
||
}
|
||
return 3;
|
||
}
|
||
if (TYPE_UNSIGNED (TREE_TYPE (arg)))
|
||
{
|
||
/* For unsigned values, the "positive" range comes
|
||
below the "negative" range. */
|
||
if (!wi::neg_p (wi::sext (arg_max, prec), SIGNED))
|
||
return 1;
|
||
if (wi::neg_p (wi::sext (arg_min, prec), SIGNED))
|
||
return 2;
|
||
}
|
||
else
|
||
{
|
||
if (!wi::neg_p (wi::sext (arg_min, prec), SIGNED))
|
||
return 1;
|
||
if (wi::neg_p (wi::sext (arg_max, prec), SIGNED))
|
||
return 2;
|
||
}
|
||
return 3;
|
||
}
|
||
|
||
|
||
|
||
|
||
/* Return true if ARG is marked with the nonnull attribute in the
|
||
current function signature. */
|
||
|
||
bool
|
||
nonnull_arg_p (const_tree arg)
|
||
{
|
||
tree t, attrs, fntype;
|
||
unsigned HOST_WIDE_INT arg_num;
|
||
|
||
gcc_assert (TREE_CODE (arg) == PARM_DECL
|
||
&& (POINTER_TYPE_P (TREE_TYPE (arg))
|
||
|| TREE_CODE (TREE_TYPE (arg)) == OFFSET_TYPE));
|
||
|
||
/* The static chain decl is always non null. */
|
||
if (arg == cfun->static_chain_decl)
|
||
return true;
|
||
|
||
/* THIS argument of method is always non-NULL. */
|
||
if (TREE_CODE (TREE_TYPE (cfun->decl)) == METHOD_TYPE
|
||
&& arg == DECL_ARGUMENTS (cfun->decl)
|
||
&& flag_delete_null_pointer_checks)
|
||
return true;
|
||
|
||
/* Values passed by reference are always non-NULL. */
|
||
if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
|
||
&& flag_delete_null_pointer_checks)
|
||
return true;
|
||
|
||
fntype = TREE_TYPE (cfun->decl);
|
||
for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
|
||
{
|
||
attrs = lookup_attribute ("nonnull", attrs);
|
||
|
||
/* If "nonnull" wasn't specified, we know nothing about the argument. */
|
||
if (attrs == NULL_TREE)
|
||
return false;
|
||
|
||
/* If "nonnull" applies to all the arguments, then ARG is non-null. */
|
||
if (TREE_VALUE (attrs) == NULL_TREE)
|
||
return true;
|
||
|
||
/* Get the position number for ARG in the function signature. */
|
||
for (arg_num = 1, t = DECL_ARGUMENTS (cfun->decl);
|
||
t;
|
||
t = DECL_CHAIN (t), arg_num++)
|
||
{
|
||
if (t == arg)
|
||
break;
|
||
}
|
||
|
||
gcc_assert (t == arg);
|
||
|
||
/* Now see if ARG_NUM is mentioned in the nonnull list. */
|
||
for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
|
||
{
|
||
if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Combine LOC and BLOCK to a combined adhoc loc, retaining any range
|
||
information. */
|
||
|
||
location_t
|
||
set_block (location_t loc, tree block)
|
||
{
|
||
location_t pure_loc = get_pure_location (loc);
|
||
source_range src_range = get_range_from_loc (line_table, loc);
|
||
return COMBINE_LOCATION_DATA (line_table, pure_loc, src_range, block);
|
||
}
|
||
|
||
location_t
|
||
set_source_range (tree expr, location_t start, location_t finish)
|
||
{
|
||
source_range src_range;
|
||
src_range.m_start = start;
|
||
src_range.m_finish = finish;
|
||
return set_source_range (expr, src_range);
|
||
}
|
||
|
||
location_t
|
||
set_source_range (tree expr, source_range src_range)
|
||
{
|
||
if (!EXPR_P (expr))
|
||
return UNKNOWN_LOCATION;
|
||
|
||
location_t pure_loc = get_pure_location (EXPR_LOCATION (expr));
|
||
location_t adhoc = COMBINE_LOCATION_DATA (line_table,
|
||
pure_loc,
|
||
src_range,
|
||
NULL);
|
||
SET_EXPR_LOCATION (expr, adhoc);
|
||
return adhoc;
|
||
}
|
||
|
||
/* Return EXPR, potentially wrapped with a node expression LOC,
|
||
if !CAN_HAVE_LOCATION_P (expr).
|
||
|
||
NON_LVALUE_EXPR is used for wrapping constants, apart from STRING_CST.
|
||
VIEW_CONVERT_EXPR is used for wrapping non-constants and STRING_CST.
|
||
|
||
Wrapper nodes can be identified using location_wrapper_p. */
|
||
|
||
tree
|
||
maybe_wrap_with_location (tree expr, location_t loc)
|
||
{
|
||
if (expr == NULL)
|
||
return NULL;
|
||
if (loc == UNKNOWN_LOCATION)
|
||
return expr;
|
||
if (CAN_HAVE_LOCATION_P (expr))
|
||
return expr;
|
||
/* We should only be adding wrappers for constants and for decls,
|
||
or for some exceptional tree nodes (e.g. BASELINK in the C++ FE). */
|
||
gcc_assert (CONSTANT_CLASS_P (expr)
|
||
|| DECL_P (expr)
|
||
|| EXCEPTIONAL_CLASS_P (expr));
|
||
|
||
/* For now, don't add wrappers to exceptional tree nodes, to minimize
|
||
any impact of the wrapper nodes. */
|
||
if (EXCEPTIONAL_CLASS_P (expr))
|
||
return expr;
|
||
|
||
tree_code code
|
||
= (((CONSTANT_CLASS_P (expr) && TREE_CODE (expr) != STRING_CST)
|
||
|| (TREE_CODE (expr) == CONST_DECL && !TREE_STATIC (expr)))
|
||
? NON_LVALUE_EXPR : VIEW_CONVERT_EXPR);
|
||
tree wrapper = build1_loc (loc, code, TREE_TYPE (expr), expr);
|
||
/* Mark this node as being a wrapper. */
|
||
EXPR_LOCATION_WRAPPER_P (wrapper) = 1;
|
||
return wrapper;
|
||
}
|
||
|
||
/* Return the name of combined function FN, for debugging purposes. */
|
||
|
||
const char *
|
||
combined_fn_name (combined_fn fn)
|
||
{
|
||
if (builtin_fn_p (fn))
|
||
{
|
||
tree fndecl = builtin_decl_explicit (as_builtin_fn (fn));
|
||
return IDENTIFIER_POINTER (DECL_NAME (fndecl));
|
||
}
|
||
else
|
||
return internal_fn_name (as_internal_fn (fn));
|
||
}
|
||
|
||
/* Return a bitmap with a bit set corresponding to each argument in
|
||
a function call type FNTYPE declared with attribute nonnull,
|
||
or null if none of the function's argument are nonnull. The caller
|
||
must free the bitmap. */
|
||
|
||
bitmap
|
||
get_nonnull_args (const_tree fntype)
|
||
{
|
||
if (fntype == NULL_TREE)
|
||
return NULL;
|
||
|
||
tree attrs = TYPE_ATTRIBUTES (fntype);
|
||
if (!attrs)
|
||
return NULL;
|
||
|
||
bitmap argmap = NULL;
|
||
|
||
/* A function declaration can specify multiple attribute nonnull,
|
||
each with zero or more arguments. The loop below creates a bitmap
|
||
representing a union of all the arguments. An empty (but non-null)
|
||
bitmap means that all arguments have been declaraed nonnull. */
|
||
for ( ; attrs; attrs = TREE_CHAIN (attrs))
|
||
{
|
||
attrs = lookup_attribute ("nonnull", attrs);
|
||
if (!attrs)
|
||
break;
|
||
|
||
if (!argmap)
|
||
argmap = BITMAP_ALLOC (NULL);
|
||
|
||
if (!TREE_VALUE (attrs))
|
||
{
|
||
/* Clear the bitmap in case a previous attribute nonnull
|
||
set it and this one overrides it for all arguments. */
|
||
bitmap_clear (argmap);
|
||
return argmap;
|
||
}
|
||
|
||
/* Iterate over the indices of the format arguments declared nonnull
|
||
and set a bit for each. */
|
||
for (tree idx = TREE_VALUE (attrs); idx; idx = TREE_CHAIN (idx))
|
||
{
|
||
unsigned int val = TREE_INT_CST_LOW (TREE_VALUE (idx)) - 1;
|
||
bitmap_set_bit (argmap, val);
|
||
}
|
||
}
|
||
|
||
return argmap;
|
||
}
|
||
|
||
/* Returns true if TYPE is a type where it and all of its subobjects
|
||
(recursively) are of structure, union, or array type. */
|
||
|
||
static bool
|
||
default_is_empty_type (tree type)
|
||
{
|
||
if (RECORD_OR_UNION_TYPE_P (type))
|
||
{
|
||
for (tree field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
|
||
if (TREE_CODE (field) == FIELD_DECL
|
||
&& !DECL_PADDING_P (field)
|
||
&& !default_is_empty_type (TREE_TYPE (field)))
|
||
return false;
|
||
return true;
|
||
}
|
||
else if (TREE_CODE (type) == ARRAY_TYPE)
|
||
return (integer_minus_onep (array_type_nelts (type))
|
||
|| TYPE_DOMAIN (type) == NULL_TREE
|
||
|| default_is_empty_type (TREE_TYPE (type)));
|
||
return false;
|
||
}
|
||
|
||
/* Implement TARGET_EMPTY_RECORD_P. Return true if TYPE is an empty type
|
||
that shouldn't be passed via stack. */
|
||
|
||
bool
|
||
default_is_empty_record (const_tree type)
|
||
{
|
||
if (!abi_version_at_least (12))
|
||
return false;
|
||
|
||
if (type == error_mark_node)
|
||
return false;
|
||
|
||
if (TREE_ADDRESSABLE (type))
|
||
return false;
|
||
|
||
return default_is_empty_type (TYPE_MAIN_VARIANT (type));
|
||
}
|
||
|
||
/* Like int_size_in_bytes, but handle empty records specially. */
|
||
|
||
HOST_WIDE_INT
|
||
arg_int_size_in_bytes (const_tree type)
|
||
{
|
||
return TYPE_EMPTY_P (type) ? 0 : int_size_in_bytes (type);
|
||
}
|
||
|
||
/* Like size_in_bytes, but handle empty records specially. */
|
||
|
||
tree
|
||
arg_size_in_bytes (const_tree type)
|
||
{
|
||
return TYPE_EMPTY_P (type) ? size_zero_node : size_in_bytes (type);
|
||
}
|
||
|
||
/* Return true if an expression with CODE has to have the same result type as
|
||
its first operand. */
|
||
|
||
bool
|
||
expr_type_first_operand_type_p (tree_code code)
|
||
{
|
||
switch (code)
|
||
{
|
||
case NEGATE_EXPR:
|
||
case ABS_EXPR:
|
||
case BIT_NOT_EXPR:
|
||
case PAREN_EXPR:
|
||
case CONJ_EXPR:
|
||
|
||
case PLUS_EXPR:
|
||
case MINUS_EXPR:
|
||
case MULT_EXPR:
|
||
case TRUNC_DIV_EXPR:
|
||
case CEIL_DIV_EXPR:
|
||
case FLOOR_DIV_EXPR:
|
||
case ROUND_DIV_EXPR:
|
||
case TRUNC_MOD_EXPR:
|
||
case CEIL_MOD_EXPR:
|
||
case FLOOR_MOD_EXPR:
|
||
case ROUND_MOD_EXPR:
|
||
case RDIV_EXPR:
|
||
case EXACT_DIV_EXPR:
|
||
case MIN_EXPR:
|
||
case MAX_EXPR:
|
||
case BIT_IOR_EXPR:
|
||
case BIT_XOR_EXPR:
|
||
case BIT_AND_EXPR:
|
||
|
||
case LSHIFT_EXPR:
|
||
case RSHIFT_EXPR:
|
||
case LROTATE_EXPR:
|
||
case RROTATE_EXPR:
|
||
return true;
|
||
|
||
default:
|
||
return false;
|
||
}
|
||
}
|
||
|
||
/* List of pointer types used to declare builtins before we have seen their
|
||
real declaration.
|
||
|
||
Keep the size up to date in tree.h ! */
|
||
const builtin_structptr_type builtin_structptr_types[6] =
|
||
{
|
||
{ fileptr_type_node, ptr_type_node, "FILE" },
|
||
{ const_tm_ptr_type_node, const_ptr_type_node, "tm" },
|
||
{ fenv_t_ptr_type_node, ptr_type_node, "fenv_t" },
|
||
{ const_fenv_t_ptr_type_node, const_ptr_type_node, "fenv_t" },
|
||
{ fexcept_t_ptr_type_node, ptr_type_node, "fexcept_t" },
|
||
{ const_fexcept_t_ptr_type_node, const_ptr_type_node, "fexcept_t" }
|
||
};
|
||
|
||
#if CHECKING_P
|
||
|
||
namespace selftest {
|
||
|
||
/* Selftests for tree. */
|
||
|
||
/* Verify that integer constants are sane. */
|
||
|
||
static void
|
||
test_integer_constants ()
|
||
{
|
||
ASSERT_TRUE (integer_type_node != NULL);
|
||
ASSERT_TRUE (build_int_cst (integer_type_node, 0) != NULL);
|
||
|
||
tree type = integer_type_node;
|
||
|
||
tree zero = build_zero_cst (type);
|
||
ASSERT_EQ (INTEGER_CST, TREE_CODE (zero));
|
||
ASSERT_EQ (type, TREE_TYPE (zero));
|
||
|
||
tree one = build_int_cst (type, 1);
|
||
ASSERT_EQ (INTEGER_CST, TREE_CODE (one));
|
||
ASSERT_EQ (type, TREE_TYPE (zero));
|
||
}
|
||
|
||
/* Verify identifiers. */
|
||
|
||
static void
|
||
test_identifiers ()
|
||
{
|
||
tree identifier = get_identifier ("foo");
|
||
ASSERT_EQ (3, IDENTIFIER_LENGTH (identifier));
|
||
ASSERT_STREQ ("foo", IDENTIFIER_POINTER (identifier));
|
||
}
|
||
|
||
/* Verify LABEL_DECL. */
|
||
|
||
static void
|
||
test_labels ()
|
||
{
|
||
tree identifier = get_identifier ("err");
|
||
tree label_decl = build_decl (UNKNOWN_LOCATION, LABEL_DECL,
|
||
identifier, void_type_node);
|
||
ASSERT_EQ (-1, LABEL_DECL_UID (label_decl));
|
||
ASSERT_FALSE (FORCED_LABEL (label_decl));
|
||
}
|
||
|
||
/* Return a new VECTOR_CST node whose type is TYPE and whose values
|
||
are given by VALS. */
|
||
|
||
static tree
|
||
build_vector (tree type, vec<tree> vals MEM_STAT_DECL)
|
||
{
|
||
gcc_assert (known_eq (vals.length (), TYPE_VECTOR_SUBPARTS (type)));
|
||
tree_vector_builder builder (type, vals.length (), 1);
|
||
builder.splice (vals);
|
||
return builder.build ();
|
||
}
|
||
|
||
/* Check that VECTOR_CST ACTUAL contains the elements in EXPECTED. */
|
||
|
||
static void
|
||
check_vector_cst (vec<tree> expected, tree actual)
|
||
{
|
||
ASSERT_KNOWN_EQ (expected.length (),
|
||
TYPE_VECTOR_SUBPARTS (TREE_TYPE (actual)));
|
||
for (unsigned int i = 0; i < expected.length (); ++i)
|
||
ASSERT_EQ (wi::to_wide (expected[i]),
|
||
wi::to_wide (vector_cst_elt (actual, i)));
|
||
}
|
||
|
||
/* Check that VECTOR_CST ACTUAL contains NPATTERNS duplicated elements,
|
||
and that its elements match EXPECTED. */
|
||
|
||
static void
|
||
check_vector_cst_duplicate (vec<tree> expected, tree actual,
|
||
unsigned int npatterns)
|
||
{
|
||
ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
|
||
ASSERT_EQ (1, VECTOR_CST_NELTS_PER_PATTERN (actual));
|
||
ASSERT_EQ (npatterns, vector_cst_encoded_nelts (actual));
|
||
ASSERT_TRUE (VECTOR_CST_DUPLICATE_P (actual));
|
||
ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
|
||
check_vector_cst (expected, actual);
|
||
}
|
||
|
||
/* Check that VECTOR_CST ACTUAL contains NPATTERNS foreground elements
|
||
and NPATTERNS background elements, and that its elements match
|
||
EXPECTED. */
|
||
|
||
static void
|
||
check_vector_cst_fill (vec<tree> expected, tree actual,
|
||
unsigned int npatterns)
|
||
{
|
||
ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
|
||
ASSERT_EQ (2, VECTOR_CST_NELTS_PER_PATTERN (actual));
|
||
ASSERT_EQ (2 * npatterns, vector_cst_encoded_nelts (actual));
|
||
ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
|
||
ASSERT_FALSE (VECTOR_CST_STEPPED_P (actual));
|
||
check_vector_cst (expected, actual);
|
||
}
|
||
|
||
/* Check that VECTOR_CST ACTUAL contains NPATTERNS stepped patterns,
|
||
and that its elements match EXPECTED. */
|
||
|
||
static void
|
||
check_vector_cst_stepped (vec<tree> expected, tree actual,
|
||
unsigned int npatterns)
|
||
{
|
||
ASSERT_EQ (npatterns, VECTOR_CST_NPATTERNS (actual));
|
||
ASSERT_EQ (3, VECTOR_CST_NELTS_PER_PATTERN (actual));
|
||
ASSERT_EQ (3 * npatterns, vector_cst_encoded_nelts (actual));
|
||
ASSERT_FALSE (VECTOR_CST_DUPLICATE_P (actual));
|
||
ASSERT_TRUE (VECTOR_CST_STEPPED_P (actual));
|
||
check_vector_cst (expected, actual);
|
||
}
|
||
|
||
/* Test the creation of VECTOR_CSTs. */
|
||
|
||
static void
|
||
test_vector_cst_patterns (ALONE_CXX_MEM_STAT_INFO)
|
||
{
|
||
auto_vec<tree, 8> elements (8);
|
||
elements.quick_grow (8);
|
||
tree element_type = build_nonstandard_integer_type (16, true);
|
||
tree vector_type = build_vector_type (element_type, 8);
|
||
|
||
/* Test a simple linear series with a base of 0 and a step of 1:
|
||
{ 0, 1, 2, 3, 4, 5, 6, 7 }. */
|
||
for (unsigned int i = 0; i < 8; ++i)
|
||
elements[i] = build_int_cst (element_type, i);
|
||
tree vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_stepped (elements, vector, 1);
|
||
|
||
/* Try the same with the first element replaced by 100:
|
||
{ 100, 1, 2, 3, 4, 5, 6, 7 }. */
|
||
elements[0] = build_int_cst (element_type, 100);
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_stepped (elements, vector, 1);
|
||
|
||
/* Try a series that wraps around.
|
||
{ 100, 65531, 65532, 65533, 65534, 65535, 0, 1 }. */
|
||
for (unsigned int i = 1; i < 8; ++i)
|
||
elements[i] = build_int_cst (element_type, (65530 + i) & 0xffff);
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_stepped (elements, vector, 1);
|
||
|
||
/* Try a downward series:
|
||
{ 100, 79, 78, 77, 76, 75, 75, 73 }. */
|
||
for (unsigned int i = 1; i < 8; ++i)
|
||
elements[i] = build_int_cst (element_type, 80 - i);
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_stepped (elements, vector, 1);
|
||
|
||
/* Try two interleaved series with different bases and steps:
|
||
{ 100, 53, 66, 206, 62, 212, 58, 218 }. */
|
||
elements[1] = build_int_cst (element_type, 53);
|
||
for (unsigned int i = 2; i < 8; i += 2)
|
||
{
|
||
elements[i] = build_int_cst (element_type, 70 - i * 2);
|
||
elements[i + 1] = build_int_cst (element_type, 200 + i * 3);
|
||
}
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_stepped (elements, vector, 2);
|
||
|
||
/* Try a duplicated value:
|
||
{ 100, 100, 100, 100, 100, 100, 100, 100 }. */
|
||
for (unsigned int i = 1; i < 8; ++i)
|
||
elements[i] = elements[0];
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_duplicate (elements, vector, 1);
|
||
|
||
/* Try an interleaved duplicated value:
|
||
{ 100, 55, 100, 55, 100, 55, 100, 55 }. */
|
||
elements[1] = build_int_cst (element_type, 55);
|
||
for (unsigned int i = 2; i < 8; ++i)
|
||
elements[i] = elements[i - 2];
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_duplicate (elements, vector, 2);
|
||
|
||
/* Try a duplicated value with 2 exceptions
|
||
{ 41, 97, 100, 55, 100, 55, 100, 55 }. */
|
||
elements[0] = build_int_cst (element_type, 41);
|
||
elements[1] = build_int_cst (element_type, 97);
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_fill (elements, vector, 2);
|
||
|
||
/* Try with and without a step
|
||
{ 41, 97, 100, 21, 100, 35, 100, 49 }. */
|
||
for (unsigned int i = 3; i < 8; i += 2)
|
||
elements[i] = build_int_cst (element_type, i * 7);
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_stepped (elements, vector, 2);
|
||
|
||
/* Try a fully-general constant:
|
||
{ 41, 97, 100, 21, 100, 9990, 100, 49 }. */
|
||
elements[5] = build_int_cst (element_type, 9990);
|
||
vector = build_vector (vector_type, elements PASS_MEM_STAT);
|
||
check_vector_cst_fill (elements, vector, 4);
|
||
}
|
||
|
||
/* Verify that STRIP_NOPS (NODE) is EXPECTED.
|
||
Helper function for test_location_wrappers, to deal with STRIP_NOPS
|
||
modifying its argument in-place. */
|
||
|
||
static void
|
||
check_strip_nops (tree node, tree expected)
|
||
{
|
||
STRIP_NOPS (node);
|
||
ASSERT_EQ (expected, node);
|
||
}
|
||
|
||
/* Verify location wrappers. */
|
||
|
||
static void
|
||
test_location_wrappers ()
|
||
{
|
||
location_t loc = BUILTINS_LOCATION;
|
||
|
||
ASSERT_EQ (NULL_TREE, maybe_wrap_with_location (NULL_TREE, loc));
|
||
|
||
/* Wrapping a constant. */
|
||
tree int_cst = build_int_cst (integer_type_node, 42);
|
||
ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_cst));
|
||
ASSERT_FALSE (location_wrapper_p (int_cst));
|
||
|
||
tree wrapped_int_cst = maybe_wrap_with_location (int_cst, loc);
|
||
ASSERT_TRUE (location_wrapper_p (wrapped_int_cst));
|
||
ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_cst));
|
||
ASSERT_EQ (int_cst, tree_strip_any_location_wrapper (wrapped_int_cst));
|
||
|
||
/* We shouldn't add wrapper nodes for UNKNOWN_LOCATION. */
|
||
ASSERT_EQ (int_cst, maybe_wrap_with_location (int_cst, UNKNOWN_LOCATION));
|
||
|
||
/* We shouldn't add wrapper nodes for nodes that CAN_HAVE_LOCATION_P. */
|
||
tree cast = build1 (NOP_EXPR, char_type_node, int_cst);
|
||
ASSERT_TRUE (CAN_HAVE_LOCATION_P (cast));
|
||
ASSERT_EQ (cast, maybe_wrap_with_location (cast, loc));
|
||
|
||
/* Wrapping a STRING_CST. */
|
||
tree string_cst = build_string (4, "foo");
|
||
ASSERT_FALSE (CAN_HAVE_LOCATION_P (string_cst));
|
||
ASSERT_FALSE (location_wrapper_p (string_cst));
|
||
|
||
tree wrapped_string_cst = maybe_wrap_with_location (string_cst, loc);
|
||
ASSERT_TRUE (location_wrapper_p (wrapped_string_cst));
|
||
ASSERT_EQ (VIEW_CONVERT_EXPR, TREE_CODE (wrapped_string_cst));
|
||
ASSERT_EQ (loc, EXPR_LOCATION (wrapped_string_cst));
|
||
ASSERT_EQ (string_cst, tree_strip_any_location_wrapper (wrapped_string_cst));
|
||
|
||
|
||
/* Wrapping a variable. */
|
||
tree int_var = build_decl (UNKNOWN_LOCATION, VAR_DECL,
|
||
get_identifier ("some_int_var"),
|
||
integer_type_node);
|
||
ASSERT_FALSE (CAN_HAVE_LOCATION_P (int_var));
|
||
ASSERT_FALSE (location_wrapper_p (int_var));
|
||
|
||
tree wrapped_int_var = maybe_wrap_with_location (int_var, loc);
|
||
ASSERT_TRUE (location_wrapper_p (wrapped_int_var));
|
||
ASSERT_EQ (loc, EXPR_LOCATION (wrapped_int_var));
|
||
ASSERT_EQ (int_var, tree_strip_any_location_wrapper (wrapped_int_var));
|
||
|
||
/* Verify that "reinterpret_cast<int>(some_int_var)" is not a location
|
||
wrapper. */
|
||
tree r_cast = build1 (NON_LVALUE_EXPR, integer_type_node, int_var);
|
||
ASSERT_FALSE (location_wrapper_p (r_cast));
|
||
ASSERT_EQ (r_cast, tree_strip_any_location_wrapper (r_cast));
|
||
|
||
/* Verify that STRIP_NOPS removes wrappers. */
|
||
check_strip_nops (wrapped_int_cst, int_cst);
|
||
check_strip_nops (wrapped_string_cst, string_cst);
|
||
check_strip_nops (wrapped_int_var, int_var);
|
||
}
|
||
|
||
/* Check that string escaping works correctly. */
|
||
|
||
static void
|
||
test_escaped_strings (void)
|
||
{
|
||
int saved_cutoff;
|
||
escaped_string msg;
|
||
|
||
msg.escape (NULL);
|
||
/* ASSERT_STREQ does not accept NULL as a valid test
|
||
result, so we have to use ASSERT_EQ instead. */
|
||
ASSERT_EQ (NULL, (const char *) msg);
|
||
|
||
msg.escape ("");
|
||
ASSERT_STREQ ("", (const char *) msg);
|
||
|
||
msg.escape ("foobar");
|
||
ASSERT_STREQ ("foobar", (const char *) msg);
|
||
|
||
/* Ensure that we have -fmessage-length set to 0. */
|
||
saved_cutoff = pp_line_cutoff (global_dc->printer);
|
||
pp_line_cutoff (global_dc->printer) = 0;
|
||
|
||
msg.escape ("foo\nbar");
|
||
ASSERT_STREQ ("foo\\nbar", (const char *) msg);
|
||
|
||
msg.escape ("\a\b\f\n\r\t\v");
|
||
ASSERT_STREQ ("\\a\\b\\f\\n\\r\\t\\v", (const char *) msg);
|
||
|
||
/* Now repeat the tests with -fmessage-length set to 5. */
|
||
pp_line_cutoff (global_dc->printer) = 5;
|
||
|
||
/* Note that the newline is not translated into an escape. */
|
||
msg.escape ("foo\nbar");
|
||
ASSERT_STREQ ("foo\nbar", (const char *) msg);
|
||
|
||
msg.escape ("\a\b\f\n\r\t\v");
|
||
ASSERT_STREQ ("\\a\\b\\f\n\\r\\t\\v", (const char *) msg);
|
||
|
||
/* Restore the original message length setting. */
|
||
pp_line_cutoff (global_dc->printer) = saved_cutoff;
|
||
}
|
||
|
||
/* Run all of the selftests within this file. */
|
||
|
||
void
|
||
tree_c_tests ()
|
||
{
|
||
test_integer_constants ();
|
||
test_identifiers ();
|
||
test_labels ();
|
||
test_vector_cst_patterns ();
|
||
test_location_wrappers ();
|
||
test_escaped_strings ();
|
||
}
|
||
|
||
} // namespace selftest
|
||
|
||
#endif /* CHECKING_P */
|
||
|
||
#include "gt-tree.h"
|