![]() This implemens fully masked vectorization or a masked epilog for AVX512 style masks which single themselves out by representing each lane with a single bit and by using integer modes for the mask (both is much like GCN). AVX512 is also special in that it doesn't have any instruction to compute the mask from a scalar IV like SVE has with while_ult. Instead the masks are produced by vector compares and the loop control retains the scalar IV (mainly to avoid dependences on mask generation, a suitable mask test instruction is available). Like RVV code generation prefers a decrementing IV though IVOPTs messes things up in some cases removing that IV to eliminate it with an incrementing one used for address generation. One of the motivating testcases is from PR108410 which in turn is extracted from x264 where large size vectorization shows issues with small trip loops. Execution time there improves compared to classic AVX512 with AVX2 epilogues for the cases of less than 32 iterations. size scalar 128 256 512 512e 512f 1 9.42 11.32 9.35 11.17 15.13 16.89 2 5.72 6.53 6.66 6.66 7.62 8.56 3 4.49 5.10 5.10 5.74 5.08 5.73 4 4.10 4.33 4.29 5.21 3.79 4.25 6 3.78 3.85 3.86 4.76 2.54 2.85 8 3.64 1.89 3.76 4.50 1.92 2.16 12 3.56 2.21 3.75 4.26 1.26 1.42 16 3.36 0.83 1.06 4.16 0.95 1.07 20 3.39 1.42 1.33 4.07 0.75 0.85 24 3.23 0.66 1.72 4.22 0.62 0.70 28 3.18 1.09 2.04 4.20 0.54 0.61 32 3.16 0.47 0.41 0.41 0.47 0.53 34 3.16 0.67 0.61 0.56 0.44 0.50 38 3.19 0.95 0.95 0.82 0.40 0.45 42 3.09 0.58 1.21 1.13 0.36 0.40 'size' specifies the number of actual iterations, 512e is for a masked epilog and 512f for the fully masked loop. From 4 scalar iterations on the AVX512 masked epilog code is clearly the winner, the fully masked variant is clearly worse and it's size benefit is also tiny. This patch does not enable using fully masked loops or masked epilogues by default. More work on cost modeling and vectorization kind selection on x86_64 is necessary for this. Implementation wise this introduces LOOP_VINFO_PARTIAL_VECTORS_STYLE which could be exploited further to unify some of the flags we have right now but there didn't seem to be many easy things to merge, so I'm leaving this for followups. Mask requirements as registered by vect_record_loop_mask are kept in their original form and recorded in a hash_set now instead of being processed to a vector of rgroup_controls. Instead that's now left to the final analysis phase which tries forming the rgroup_controls vector using while_ult and if that fails now tries AVX512 style which needs a different organization and instead fills a hash_map with the relevant info. vect_get_loop_mask now has two implementations, one for the two mask styles we then have. I have decided against interweaving vect_set_loop_condition_partial_vectors with conditions to do AVX512 style masking and instead opted to "duplicate" this to vect_set_loop_condition_partial_vectors_avx512. Likewise for vect_verify_full_masking vs vect_verify_full_masking_avx512. The vect_prepare_for_masked_peels hunk might run into issues with SVE, I didn't check yet but using LOOP_VINFO_RGROUP_COMPARE_TYPE looked odd. Bootstrapped and tested on x86_64-unknown-linux-gnu. I've run the testsuite with --param vect-partial-vector-usage=2 with and without -fno-vect-cost-model and filed two bugs, one ICE (PR110221) and one latent wrong-code (PR110237). * tree-vectorizer.h (enum vect_partial_vector_style): New. (_loop_vec_info::partial_vector_style): Likewise. (LOOP_VINFO_PARTIAL_VECTORS_STYLE): Likewise. (rgroup_controls::compare_type): Add. (vec_loop_masks): Change from a typedef to auto_vec<> to a structure. * tree-vect-loop-manip.cc (vect_set_loop_condition_partial_vectors): Adjust. Convert niters_skip to compare_type. (vect_set_loop_condition_partial_vectors_avx512): New function implementing the AVX512 partial vector codegen. (vect_set_loop_condition): Dispatch to the correct vect_set_loop_condition_partial_vectors_* function based on LOOP_VINFO_PARTIAL_VECTORS_STYLE. (vect_prepare_for_masked_peels): Compute LOOP_VINFO_MASK_SKIP_NITERS in the original niter type. * tree-vect-loop.cc (_loop_vec_info::_loop_vec_info): Initialize partial_vector_style. (can_produce_all_loop_masks_p): Adjust. (vect_verify_full_masking): Produce the rgroup_controls vector here. Set LOOP_VINFO_PARTIAL_VECTORS_STYLE on success. (vect_verify_full_masking_avx512): New function implementing verification of AVX512 style masking. (vect_verify_loop_lens): Set LOOP_VINFO_PARTIAL_VECTORS_STYLE. (vect_analyze_loop_2): Also try AVX512 style masking. Adjust condition. (vect_estimate_min_profitable_iters): Implement AVX512 style mask producing cost. (vect_record_loop_mask): Do not build the rgroup_controls vector here but record masks in a hash-set. (vect_get_loop_mask): Implement AVX512 style mask query, complementing the existing while_ult style. |
||
---|---|---|
c++tools | ||
config | ||
contrib | ||
fixincludes | ||
gcc | ||
gnattools | ||
gotools | ||
include | ||
INSTALL | ||
intl | ||
libada | ||
libatomic | ||
libbacktrace | ||
libcc1 | ||
libcody | ||
libcpp | ||
libdecnumber | ||
libffi | ||
libgcc | ||
libgfortran | ||
libgm2 | ||
libgo | ||
libgomp | ||
libiberty | ||
libitm | ||
libobjc | ||
libphobos | ||
libquadmath | ||
libsanitizer | ||
libssp | ||
libstdc++-v3 | ||
libvtv | ||
lto-plugin | ||
maintainer-scripts | ||
zlib | ||
.dir-locals.el | ||
.gitattributes | ||
.gitignore | ||
ABOUT-NLS | ||
ar-lib | ||
ChangeLog | ||
ChangeLog.jit | ||
ChangeLog.tree-ssa | ||
compile | ||
config-ml.in | ||
config.guess | ||
config.rpath | ||
config.sub | ||
configure | ||
configure.ac | ||
COPYING | ||
COPYING.LIB | ||
COPYING.RUNTIME | ||
COPYING3 | ||
COPYING3.LIB | ||
depcomp | ||
install-sh | ||
libtool-ldflags | ||
libtool.m4 | ||
ltgcc.m4 | ||
ltmain.sh | ||
ltoptions.m4 | ||
ltsugar.m4 | ||
ltversion.m4 | ||
lt~obsolete.m4 | ||
MAINTAINERS | ||
Makefile.def | ||
Makefile.in | ||
Makefile.tpl | ||
missing | ||
mkdep | ||
mkinstalldirs | ||
move-if-change | ||
multilib.am | ||
README | ||
symlink-tree | ||
test-driver | ||
ylwrap |
This directory contains the GNU Compiler Collection (GCC). The GNU Compiler Collection is free software. See the files whose names start with COPYING for copying permission. The manuals, and some of the runtime libraries, are under different terms; see the individual source files for details. The directory INSTALL contains copies of the installation information as HTML and plain text. The source of this information is gcc/doc/install.texi. The installation information includes details of what is included in the GCC sources and what files GCC installs. See the file gcc/doc/gcc.texi (together with other files that it includes) for usage and porting information. An online readable version of the manual is in the files gcc/doc/gcc.info*. See http://gcc.gnu.org/bugs/ for how to report bugs usefully. Copyright years on GCC source files may be listed using range notation, e.g., 1987-2012, indicating that every year in the range, inclusive, is a copyrightable year that could otherwise be listed individually.