
* c-common.c, c-pch.c, defaults.h, lambda-code.c, passes.c, tree-data-ref.c, tree-flow.h, tree-ssa-operands.c, tree-ssa-threadupdate.c, tree-vectorizer.c, tree-vectorizer.h, value-prof.c: Fix comment typos. Follow spelling conventions. From-SVN: r87288
1996 lines
56 KiB
C
1996 lines
56 KiB
C
/* Data references and dependences detectors.
|
||
Copyright (C) 2003, 2004 Free Software Foundation, Inc.
|
||
Contributed by Sebastian Pop <s.pop@laposte.net>
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 2, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING. If not, write to the Free
|
||
Software Foundation, 59 Temple Place - Suite 330, Boston, MA
|
||
02111-1307, USA. */
|
||
|
||
/* This pass walks a given loop structure searching for array
|
||
references. The information about the array accesses is recorded
|
||
in DATA_REFERENCE structures.
|
||
|
||
The basic test for determining the dependences is:
|
||
given two access functions chrec1 and chrec2 to a same array, and
|
||
x and y two vectors from the iteration domain, the same element of
|
||
the array is accessed twice at iterations x and y if and only if:
|
||
| chrec1 (x) == chrec2 (y).
|
||
|
||
The goals of this analysis are:
|
||
|
||
- to determine the independence: the relation between two
|
||
independent accesses is qualified with the chrec_known (this
|
||
information allows a loop parallelization),
|
||
|
||
- when two data references access the same data, to qualify the
|
||
dependence relation with classic dependence representations:
|
||
|
||
- distance vectors
|
||
- direction vectors
|
||
- loop carried level dependence
|
||
- polyhedron dependence
|
||
or with the chains of recurrences based representation,
|
||
|
||
- to define a knowledge base for storing the data dependences
|
||
information,
|
||
|
||
- to define an interface to access this data.
|
||
|
||
|
||
Definitions:
|
||
|
||
- subscript: given two array accesses a subscript is the tuple
|
||
composed of the access functions for a given dimension. Example:
|
||
Given A[f1][f2][f3] and B[g1][g2][g3], there are three subscripts:
|
||
(f1, g1), (f2, g2), (f3, g3).
|
||
|
||
- Diophantine equation: an equation whose coefficients and
|
||
solutions are integer constants, for example the equation
|
||
| 3*x + 2*y = 1
|
||
has an integer solution x = 1 and y = -1.
|
||
|
||
References:
|
||
|
||
- "Advanced Compilation for High Performance Computing" by Randy
|
||
Allen and Ken Kennedy.
|
||
http://citeseer.ist.psu.edu/goff91practical.html
|
||
|
||
- "Loop Transformations for Restructuring Compilers - The Foundations"
|
||
by Utpal Banerjee.
|
||
|
||
|
||
*/
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "errors.h"
|
||
#include "ggc.h"
|
||
#include "tree.h"
|
||
|
||
/* These RTL headers are needed for basic-block.h. */
|
||
#include "rtl.h"
|
||
#include "basic-block.h"
|
||
#include "diagnostic.h"
|
||
#include "tree-flow.h"
|
||
#include "tree-dump.h"
|
||
#include "timevar.h"
|
||
#include "cfgloop.h"
|
||
#include "tree-chrec.h"
|
||
#include "tree-data-ref.h"
|
||
#include "tree-scalar-evolution.h"
|
||
#include "tree-pass.h"
|
||
#include "lambda.h"
|
||
|
||
|
||
/* This is the simplest data dependence test: determines whether the
|
||
data references A and B access the same array/region. If can't determine -
|
||
return false; Otherwise, return true, and DIFFER_P will record
|
||
the result. This utility will not be necessary when alias_sets_conflict_p
|
||
will be less conservative. */
|
||
|
||
bool
|
||
array_base_name_differ_p (struct data_reference *a,
|
||
struct data_reference *b,
|
||
bool *differ_p)
|
||
{
|
||
tree base_a = DR_BASE_NAME (a);
|
||
tree base_b = DR_BASE_NAME (b);
|
||
tree ta = TREE_TYPE (base_a);
|
||
tree tb = TREE_TYPE (base_b);
|
||
|
||
|
||
/** Determine if same base **/
|
||
|
||
/* array accesses: a[i],b[i] or pointer accesses: *a,*b. bases are a,b. */
|
||
if (base_a == base_b)
|
||
{
|
||
*differ_p = false;
|
||
return true;
|
||
}
|
||
|
||
/* pointer based accesses - (*p)[i],(*q)[j]. bases are (*p),(*q) */
|
||
if (TREE_CODE (base_a) == INDIRECT_REF && TREE_CODE (base_b) == INDIRECT_REF
|
||
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0))
|
||
{
|
||
*differ_p = false;
|
||
return true;
|
||
}
|
||
|
||
/* record/union based accesses - s.a[i], t.b[j]. bases are s.a,t.b. */
|
||
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
|
||
&& TREE_OPERAND (base_a, 0) == TREE_OPERAND (base_b, 0)
|
||
&& TREE_OPERAND (base_a, 1) == TREE_OPERAND (base_b, 1))
|
||
{
|
||
*differ_p = false;
|
||
return true;
|
||
}
|
||
|
||
|
||
/** Determine if different bases **/
|
||
|
||
/* at this point we know that base_a != base_b. However, pointer accesses
|
||
of the form x=(*p) and y=(*q), which bases are p and q, may still by pointing
|
||
to the same base. In SSAed GIMPLE p and q will be SSA_NAMES in this case.
|
||
Therefore, here we check if it's really two different declarations. */
|
||
if (TREE_CODE (base_a) == VAR_DECL && TREE_CODE (base_b) == VAR_DECL)
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
/* compare two record/union bases s.a and t.b:
|
||
s != t or (a != b and s and t are not unions) */
|
||
if (TREE_CODE (base_a) == COMPONENT_REF && TREE_CODE (base_b) == COMPONENT_REF
|
||
&& ((TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL
|
||
&& TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL
|
||
&& TREE_OPERAND (base_a, 0) != TREE_OPERAND (base_b, 0))
|
||
|| (TREE_CODE (TREE_TYPE (TREE_OPERAND (base_a, 0))) == RECORD_TYPE
|
||
&& TREE_CODE (TREE_TYPE (TREE_OPERAND (base_b, 0))) == RECORD_TYPE
|
||
&& TREE_OPERAND (base_a, 1) != TREE_OPERAND (base_b, 1))))
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
/* compare a record/union access and an array access. */
|
||
if ((TREE_CODE (base_a) == VAR_DECL
|
||
&& (TREE_CODE (base_b) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (base_b, 0)) == VAR_DECL))
|
||
|| (TREE_CODE (base_b) == VAR_DECL
|
||
&& (TREE_CODE (base_a) == COMPONENT_REF
|
||
&& TREE_CODE (TREE_OPERAND (base_a, 0)) == VAR_DECL)))
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
if (!alias_sets_conflict_p (get_alias_set (base_a), get_alias_set (base_b)))
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
/* An insn writing through a restricted pointer is "independent" of any
|
||
insn reading or writing through a different pointer, in the same
|
||
block/scope.
|
||
*/
|
||
if ((TREE_CODE (ta) == POINTER_TYPE && TYPE_RESTRICT (ta)
|
||
&& !DR_IS_READ(a))
|
||
|| (TREE_CODE (tb) == POINTER_TYPE && TYPE_RESTRICT (tb)
|
||
&& !DR_IS_READ(b)))
|
||
{
|
||
*differ_p = true;
|
||
return true;
|
||
}
|
||
|
||
*differ_p = false; /* Don't know, but be conservative. */
|
||
return false;
|
||
}
|
||
|
||
/* Returns true iff A divides B. */
|
||
|
||
static inline bool
|
||
tree_fold_divides_p (tree type,
|
||
tree a,
|
||
tree b)
|
||
{
|
||
if (integer_onep (a))
|
||
return true;
|
||
|
||
/* Determines whether (A == gcd (A, B)). */
|
||
return integer_zerop
|
||
(fold (build (MINUS_EXPR, type, a, tree_fold_gcd (a, b))));
|
||
}
|
||
|
||
/* Bezout: Let A1 and A2 be two integers; there exist two integers U11
|
||
and U12 such that,
|
||
|
||
| U11 * A1 + U12 * A2 = gcd (A1, A2).
|
||
|
||
This function computes the greatest common divisor using the
|
||
Blankinship algorithm. The gcd is returned, and the coefficients
|
||
of the unimodular matrix U are (U11, U12, U21, U22) such that,
|
||
|
||
| U.A = S
|
||
|
||
| (U11 U12) (A1) = (gcd)
|
||
| (U21 U22) (A2) (0)
|
||
|
||
FIXME: Use lambda_..._hermite for implementing this function.
|
||
*/
|
||
|
||
static tree
|
||
tree_fold_bezout (tree a1,
|
||
tree a2,
|
||
tree *u11, tree *u12,
|
||
tree *u21, tree *u22)
|
||
{
|
||
tree s1, s2;
|
||
|
||
/* Initialize S with the coefficients of A. */
|
||
s1 = a1;
|
||
s2 = a2;
|
||
|
||
/* Initialize the U matrix */
|
||
*u11 = integer_one_node;
|
||
*u12 = integer_zero_node;
|
||
*u21 = integer_zero_node;
|
||
*u22 = integer_one_node;
|
||
|
||
if (integer_zerop (a1)
|
||
|| integer_zerop (a2))
|
||
return integer_zero_node;
|
||
|
||
while (!integer_zerop (s2))
|
||
{
|
||
int sign;
|
||
tree z, zu21, zu22, zs2;
|
||
|
||
sign = tree_int_cst_sgn (s1) * tree_int_cst_sgn (s2);
|
||
z = fold (build (FLOOR_DIV_EXPR, integer_type_node,
|
||
fold (build1 (ABS_EXPR, integer_type_node, s1)),
|
||
fold (build1 (ABS_EXPR, integer_type_node, s2))));
|
||
zu21 = fold (build (MULT_EXPR, integer_type_node, z, *u21));
|
||
zu22 = fold (build (MULT_EXPR, integer_type_node, z, *u22));
|
||
zs2 = fold (build (MULT_EXPR, integer_type_node, z, s2));
|
||
|
||
/* row1 -= z * row2. */
|
||
gcc_assert (sign != 0);
|
||
if (sign < 0)
|
||
{
|
||
*u11 = fold (build (PLUS_EXPR, integer_type_node, *u11, zu21));
|
||
*u12 = fold (build (PLUS_EXPR, integer_type_node, *u12, zu22));
|
||
s1 = fold (build (PLUS_EXPR, integer_type_node, s1, zs2));
|
||
}
|
||
else
|
||
{
|
||
*u11 = fold (build (MINUS_EXPR, integer_type_node, *u11, zu21));
|
||
*u12 = fold (build (MINUS_EXPR, integer_type_node, *u12, zu22));
|
||
s1 = fold (build (MINUS_EXPR, integer_type_node, s1, zs2));
|
||
}
|
||
|
||
/* Interchange row1 and row2. */
|
||
{
|
||
tree flip;
|
||
|
||
flip = *u11;
|
||
*u11 = *u21;
|
||
*u21 = flip;
|
||
|
||
flip = *u12;
|
||
*u12 = *u22;
|
||
*u22 = flip;
|
||
|
||
flip = s1;
|
||
s1 = s2;
|
||
s2 = flip;
|
||
}
|
||
}
|
||
|
||
if (tree_int_cst_sgn (s1) < 0)
|
||
{
|
||
*u11 = fold (build (MULT_EXPR, integer_type_node, *u11,
|
||
integer_minus_one_node));
|
||
*u12 = fold (build (MULT_EXPR, integer_type_node, *u12,
|
||
integer_minus_one_node));
|
||
s1 = fold (build (MULT_EXPR, integer_type_node, s1, integer_minus_one_node));
|
||
}
|
||
|
||
return s1;
|
||
}
|
||
|
||
|
||
|
||
/* Dump into FILE all the data references from DATAREFS. */
|
||
|
||
void
|
||
dump_data_references (FILE *file,
|
||
varray_type datarefs)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
|
||
dump_data_reference (file, VARRAY_GENERIC_PTR (datarefs, i));
|
||
}
|
||
|
||
/* Dump into FILE all the dependence relations from DDR. */
|
||
|
||
void
|
||
dump_data_dependence_relations (FILE *file,
|
||
varray_type ddr)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (ddr); i++)
|
||
dump_data_dependence_relation (file, VARRAY_GENERIC_PTR (ddr, i));
|
||
}
|
||
|
||
/* Dump function for a DATA_REFERENCE structure. */
|
||
|
||
void
|
||
dump_data_reference (FILE *outf,
|
||
struct data_reference *dr)
|
||
{
|
||
unsigned int i;
|
||
|
||
fprintf (outf, "(Data Ref: \n stmt: ");
|
||
print_generic_stmt (outf, DR_STMT (dr), 0);
|
||
fprintf (outf, " ref: ");
|
||
print_generic_stmt (outf, DR_REF (dr), 0);
|
||
fprintf (outf, " base_name: ");
|
||
print_generic_stmt (outf, DR_BASE_NAME (dr), 0);
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (dr); i++)
|
||
{
|
||
fprintf (outf, " Access function %d: ", i);
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dr, i), 0);
|
||
}
|
||
fprintf (outf, ")\n");
|
||
}
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_RELATION structure. */
|
||
|
||
void
|
||
dump_data_dependence_relation (FILE *outf,
|
||
struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dra, *drb;
|
||
|
||
dra = DDR_A (ddr);
|
||
drb = DDR_B (ddr);
|
||
|
||
if (dra && drb)
|
||
fprintf (outf, "(Data Dep:");
|
||
else
|
||
fprintf (outf, "(Data Dep:");
|
||
|
||
if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
|
||
fprintf (outf, " (don't know)\n");
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
|
||
else
|
||
{
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree chrec;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
fprintf (outf, "\n (subscript %d:\n", i);
|
||
fprintf (outf, " access_fn_A: ");
|
||
print_generic_stmt (outf, DR_ACCESS_FN (dra, i), 0);
|
||
fprintf (outf, " access_fn_B: ");
|
||
print_generic_stmt (outf, DR_ACCESS_FN (drb, i), 0);
|
||
|
||
chrec = SUB_CONFLICTS_IN_A (subscript);
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_A: ");
|
||
print_generic_stmt (outf, chrec, 0);
|
||
if (chrec == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
else if (chrec_contains_undetermined (chrec))
|
||
fprintf (outf, " (don't know)\n");
|
||
else
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT_IN_A (subscript);
|
||
fprintf (outf, " last_iteration_that_access_an_element_twice_in_A: ");
|
||
print_generic_stmt (outf, last_iteration, 0);
|
||
}
|
||
|
||
chrec = SUB_CONFLICTS_IN_B (subscript);
|
||
fprintf (outf, " iterations_that_access_an_element_twice_in_B: ");
|
||
print_generic_stmt (outf, chrec, 0);
|
||
if (chrec == chrec_known)
|
||
fprintf (outf, " (no dependence)\n");
|
||
else if (chrec_contains_undetermined (chrec))
|
||
fprintf (outf, " (don't know)\n");
|
||
else
|
||
{
|
||
tree last_iteration = SUB_LAST_CONFLICT_IN_B (subscript);
|
||
fprintf (outf, " last_iteration_that_access_an_element_twice_in_B: ");
|
||
print_generic_stmt (outf, last_iteration, 0);
|
||
}
|
||
|
||
fprintf (outf, " )\n");
|
||
}
|
||
|
||
fprintf (outf, " (Distance Vector: \n");
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
fprintf (outf, "(");
|
||
print_generic_stmt (outf, SUB_DISTANCE (subscript), 0);
|
||
fprintf (outf, ")\n");
|
||
}
|
||
fprintf (outf, " )\n");
|
||
}
|
||
|
||
fprintf (outf, ")\n");
|
||
}
|
||
|
||
|
||
|
||
/* Dump function for a DATA_DEPENDENCE_DIRECTION structure. */
|
||
|
||
void
|
||
dump_data_dependence_direction (FILE *file,
|
||
enum data_dependence_direction dir)
|
||
{
|
||
switch (dir)
|
||
{
|
||
case dir_positive:
|
||
fprintf (file, "+");
|
||
break;
|
||
|
||
case dir_negative:
|
||
fprintf (file, "-");
|
||
break;
|
||
|
||
case dir_equal:
|
||
fprintf (file, "=");
|
||
break;
|
||
|
||
case dir_positive_or_negative:
|
||
fprintf (file, "+-");
|
||
break;
|
||
|
||
case dir_positive_or_equal:
|
||
fprintf (file, "+=");
|
||
break;
|
||
|
||
case dir_negative_or_equal:
|
||
fprintf (file, "-=");
|
||
break;
|
||
|
||
case dir_star:
|
||
fprintf (file, "*");
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* Given an ARRAY_REF node REF, records its access functions.
|
||
Example: given A[i][3], record in ACCESS_FNS the opnd1 function,
|
||
ie. the constant "3", then recursively call the function on opnd0,
|
||
ie. the ARRAY_REF "A[i]". The function returns the base name:
|
||
"A". */
|
||
|
||
static tree
|
||
analyze_array_indexes (struct loop *loop,
|
||
varray_type access_fns,
|
||
tree ref)
|
||
{
|
||
tree opnd0, opnd1;
|
||
tree access_fn;
|
||
|
||
opnd0 = TREE_OPERAND (ref, 0);
|
||
opnd1 = TREE_OPERAND (ref, 1);
|
||
|
||
/* The detection of the evolution function for this data access is
|
||
postponed until the dependence test. This lazy strategy avoids
|
||
the computation of access functions that are of no interest for
|
||
the optimizers. */
|
||
access_fn = instantiate_parameters
|
||
(loop, analyze_scalar_evolution (loop, opnd1));
|
||
|
||
VARRAY_PUSH_TREE (access_fns, access_fn);
|
||
|
||
/* Recursively record other array access functions. */
|
||
if (TREE_CODE (opnd0) == ARRAY_REF)
|
||
return analyze_array_indexes (loop, access_fns, opnd0);
|
||
|
||
/* Return the base name of the data access. */
|
||
else
|
||
return opnd0;
|
||
}
|
||
|
||
/* For a data reference REF contained in the statement STMT, initialize
|
||
a DATA_REFERENCE structure, and return it. IS_READ flag has to be
|
||
set to true when REF is in the right hand side of an
|
||
assignment. */
|
||
|
||
struct data_reference *
|
||
analyze_array (tree stmt, tree ref, bool is_read)
|
||
{
|
||
struct data_reference *res;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(analyze_array \n");
|
||
fprintf (dump_file, " (ref = ");
|
||
print_generic_stmt (dump_file, ref, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
res = xmalloc (sizeof (struct data_reference));
|
||
|
||
DR_STMT (res) = stmt;
|
||
DR_REF (res) = ref;
|
||
VARRAY_TREE_INIT (DR_ACCESS_FNS (res), 3, "access_fns");
|
||
DR_BASE_NAME (res) = analyze_array_indexes
|
||
(loop_containing_stmt (stmt), DR_ACCESS_FNS (res), ref);
|
||
DR_IS_READ (res) = is_read;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
|
||
return res;
|
||
}
|
||
|
||
/* For a data reference REF contained in the statement STMT, initialize
|
||
a DATA_REFERENCE structure, and return it. */
|
||
|
||
struct data_reference *
|
||
init_data_ref (tree stmt,
|
||
tree ref,
|
||
tree base,
|
||
tree access_fn,
|
||
bool is_read)
|
||
{
|
||
struct data_reference *res;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(init_data_ref \n");
|
||
fprintf (dump_file, " (ref = ");
|
||
print_generic_stmt (dump_file, ref, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
res = xmalloc (sizeof (struct data_reference));
|
||
|
||
DR_STMT (res) = stmt;
|
||
DR_REF (res) = ref;
|
||
VARRAY_TREE_INIT (DR_ACCESS_FNS (res), 5, "access_fns");
|
||
DR_BASE_NAME (res) = base;
|
||
VARRAY_PUSH_TREE (DR_ACCESS_FNS (res), access_fn);
|
||
DR_IS_READ (res) = is_read;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
|
||
return res;
|
||
}
|
||
|
||
|
||
|
||
/* When there exists a dependence relation, determine its distance
|
||
vector. */
|
||
|
||
static void
|
||
compute_distance_vector (struct data_dependence_relation *ddr)
|
||
{
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
unsigned int i;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree conflicts_a, conflicts_b, difference;
|
||
struct subscript *subscript;
|
||
|
||
subscript = DDR_SUBSCRIPT (ddr, i);
|
||
conflicts_a = SUB_CONFLICTS_IN_A (subscript);
|
||
conflicts_b = SUB_CONFLICTS_IN_B (subscript);
|
||
difference = chrec_fold_minus
|
||
(integer_type_node, conflicts_b, conflicts_a);
|
||
|
||
if (evolution_function_is_constant_p (difference))
|
||
SUB_DISTANCE (subscript) = difference;
|
||
|
||
else
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Initialize a ddr. */
|
||
|
||
struct data_dependence_relation *
|
||
initialize_data_dependence_relation (struct data_reference *a,
|
||
struct data_reference *b)
|
||
{
|
||
struct data_dependence_relation *res;
|
||
bool differ_p;
|
||
|
||
res = xmalloc (sizeof (struct data_dependence_relation));
|
||
DDR_A (res) = a;
|
||
DDR_B (res) = b;
|
||
|
||
if (a == NULL || b == NULL
|
||
|| DR_BASE_NAME (a) == NULL_TREE
|
||
|| DR_BASE_NAME (b) == NULL_TREE)
|
||
DDR_ARE_DEPENDENT (res) = chrec_dont_know;
|
||
|
||
/* When the dimensions of A and B differ, we directly initialize
|
||
the relation to "there is no dependence": chrec_known. */
|
||
else if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)
|
||
|| (array_base_name_differ_p (a, b, &differ_p) && differ_p))
|
||
DDR_ARE_DEPENDENT (res) = chrec_known;
|
||
|
||
else
|
||
{
|
||
unsigned int i;
|
||
DDR_ARE_DEPENDENT (res) = NULL_TREE;
|
||
DDR_SUBSCRIPTS_VECTOR_INIT (res, DR_NUM_DIMENSIONS (a));
|
||
|
||
for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
|
||
{
|
||
struct subscript *subscript;
|
||
|
||
subscript = xmalloc (sizeof (struct subscript));
|
||
SUB_CONFLICTS_IN_A (subscript) = chrec_dont_know;
|
||
SUB_CONFLICTS_IN_B (subscript) = chrec_dont_know;
|
||
SUB_LAST_CONFLICT_IN_A (subscript) = chrec_dont_know;
|
||
SUB_LAST_CONFLICT_IN_B (subscript) = chrec_dont_know;
|
||
SUB_DISTANCE (subscript) = chrec_dont_know;
|
||
VARRAY_PUSH_GENERIC_PTR (DDR_SUBSCRIPTS (res), subscript);
|
||
}
|
||
}
|
||
|
||
return res;
|
||
}
|
||
|
||
/* Set DDR_ARE_DEPENDENT to CHREC and finalize the subscript overlap
|
||
description. */
|
||
|
||
static inline void
|
||
finalize_ddr_dependent (struct data_dependence_relation *ddr,
|
||
tree chrec)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(dependence classified: ");
|
||
print_generic_expr (dump_file, chrec, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
DDR_ARE_DEPENDENT (ddr) = chrec;
|
||
varray_clear (DDR_SUBSCRIPTS (ddr));
|
||
}
|
||
|
||
|
||
|
||
/* This section contains the classic Banerjee tests. */
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are not dependent on any index
|
||
variables, i.e., if the ZIV (Zero Index Variable) test is true. */
|
||
|
||
static inline bool
|
||
ziv_subscript_p (tree chrec_a,
|
||
tree chrec_b)
|
||
{
|
||
return (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_constant_p (chrec_b));
|
||
}
|
||
|
||
/* Returns true iff CHREC_A and CHREC_B are dependent on an index
|
||
variable, i.e., if the SIV (Single Index Variable) test is true. */
|
||
|
||
static bool
|
||
siv_subscript_p (tree chrec_a,
|
||
tree chrec_b)
|
||
{
|
||
if ((evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
|| (evolution_function_is_constant_p (chrec_b)
|
||
&& evolution_function_is_univariate_p (chrec_a)))
|
||
return true;
|
||
|
||
if (evolution_function_is_univariate_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
{
|
||
switch (TREE_CODE (chrec_a))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
switch (TREE_CODE (chrec_b))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
if (CHREC_VARIABLE (chrec_a) != CHREC_VARIABLE (chrec_b))
|
||
return false;
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
|
||
default:
|
||
return true;
|
||
}
|
||
}
|
||
|
||
return false;
|
||
}
|
||
|
||
/* Analyze a ZIV (Zero Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_ziv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b)
|
||
{
|
||
tree difference;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_ziv_subscript \n");
|
||
|
||
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
|
||
|
||
switch (TREE_CODE (difference))
|
||
{
|
||
case INTEGER_CST:
|
||
if (integer_zerop (difference))
|
||
{
|
||
/* The difference is equal to zero: the accessed index
|
||
overlaps for each iteration in the loop. */
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = integer_zero_node;
|
||
}
|
||
else
|
||
{
|
||
/* The accesses do not overlap. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* We're not sure whether the indexes overlap. For the moment,
|
||
conservatively answer "don't know". */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
break;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is a
|
||
constant, and CHREC_B is an affine function. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript_cst_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b)
|
||
{
|
||
bool value0, value1, value2;
|
||
tree difference = chrec_fold_minus
|
||
(integer_type_node, CHREC_LEFT (chrec_b), chrec_a);
|
||
|
||
if (!chrec_is_positive (initial_condition (difference), &value0))
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value0 == false)
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value1))
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value1 == true)
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, 1}
|
||
*/
|
||
|
||
if (tree_fold_divides_p
|
||
(integer_type_node, CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = fold
|
||
(build (EXACT_DIV_EXPR, integer_type_node,
|
||
fold (build1 (ABS_EXPR, integer_type_node, difference)),
|
||
CHREC_RIGHT (chrec_b)));
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divides the difference, there are
|
||
no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
return;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 12
|
||
chrec_b = {10, +, -1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (!chrec_is_positive (CHREC_RIGHT (chrec_b), &value2))
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
return;
|
||
}
|
||
else
|
||
{
|
||
if (value2 == false)
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {10, +, -1}
|
||
*/
|
||
if (tree_fold_divides_p
|
||
(integer_type_node, CHREC_RIGHT (chrec_b), difference))
|
||
{
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = fold
|
||
(build (EXACT_DIV_EXPR, integer_type_node, difference,
|
||
CHREC_RIGHT (chrec_b)));
|
||
return;
|
||
}
|
||
|
||
/* When the step does not divides the difference, there
|
||
are no overlaps. */
|
||
else
|
||
{
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
return;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Example:
|
||
chrec_a = 3
|
||
chrec_b = {4, +, 1}
|
||
|
||
In this case, chrec_a will not overlap with chrec_b. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
return;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript where CHREC_A is an
|
||
affine function, and CHREC_B is a constant. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript_affine_cst (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b)
|
||
{
|
||
analyze_siv_subscript_cst_affine (chrec_b, chrec_a, overlaps_b, overlaps_a);
|
||
}
|
||
|
||
/* Determines the overlapping elements due to accesses CHREC_A and
|
||
CHREC_B, that are affine functions. This is a part of the
|
||
subscript analyzer. */
|
||
|
||
static void
|
||
analyze_subscript_affine_affine (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b)
|
||
{
|
||
tree left_a, left_b, right_a, right_b;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_subscript_affine_affine \n");
|
||
|
||
/* For determining the initial intersection, we have to solve a
|
||
Diophantine equation. This is the most time consuming part.
|
||
|
||
For answering to the question: "Is there a dependence?" we have
|
||
to prove that there exists a solution to the Diophantine
|
||
equation, and that the solution is in the iteration domain,
|
||
ie. the solution is positive or zero, and that the solution
|
||
happens before the upper bound loop.nb_iterations. Otherwise
|
||
there is no dependence. This function outputs a description of
|
||
the iterations that hold the intersections. */
|
||
|
||
left_a = CHREC_LEFT (chrec_a);
|
||
left_b = CHREC_LEFT (chrec_b);
|
||
right_a = CHREC_RIGHT (chrec_a);
|
||
right_b = CHREC_RIGHT (chrec_b);
|
||
|
||
if (chrec_zerop (chrec_fold_minus (integer_type_node, left_a, left_b)))
|
||
{
|
||
/* The first element accessed twice is on the first
|
||
iteration. */
|
||
*overlaps_a = build_polynomial_chrec
|
||
(CHREC_VARIABLE (chrec_b), integer_zero_node, integer_one_node);
|
||
*overlaps_b = build_polynomial_chrec
|
||
(CHREC_VARIABLE (chrec_a), integer_zero_node, integer_one_node);
|
||
}
|
||
|
||
else if (TREE_CODE (left_a) == INTEGER_CST
|
||
&& TREE_CODE (left_b) == INTEGER_CST
|
||
&& TREE_CODE (right_a) == INTEGER_CST
|
||
&& TREE_CODE (right_b) == INTEGER_CST
|
||
|
||
/* Both functions should have the same evolution sign. */
|
||
&& ((tree_int_cst_sgn (right_a) > 0
|
||
&& tree_int_cst_sgn (right_b) > 0)
|
||
|| (tree_int_cst_sgn (right_a) < 0
|
||
&& tree_int_cst_sgn (right_b) < 0)))
|
||
{
|
||
/* Here we have to solve the Diophantine equation. Reference
|
||
book: "Loop Transformations for Restructuring Compilers - The
|
||
Foundations" by Utpal Banerjee, pages 59-80.
|
||
|
||
ALPHA * X0 = BETA * Y0 + GAMMA.
|
||
|
||
with:
|
||
ALPHA = RIGHT_A
|
||
BETA = RIGHT_B
|
||
GAMMA = LEFT_B - LEFT_A
|
||
CHREC_A = {LEFT_A, +, RIGHT_A}
|
||
CHREC_B = {LEFT_B, +, RIGHT_B}
|
||
|
||
The Diophantine equation has a solution if and only if gcd
|
||
(ALPHA, BETA) divides GAMMA. This is commonly known under
|
||
the name of the "gcd-test".
|
||
*/
|
||
tree alpha, beta, gamma;
|
||
tree la, lb;
|
||
tree gcd_alpha_beta;
|
||
tree u11, u12, u21, u22;
|
||
|
||
/* Both alpha and beta have to be integer_type_node. The gcd
|
||
function does not work correctly otherwise. */
|
||
alpha = copy_node (right_a);
|
||
beta = copy_node (right_b);
|
||
la = copy_node (left_a);
|
||
lb = copy_node (left_b);
|
||
TREE_TYPE (alpha) = integer_type_node;
|
||
TREE_TYPE (beta) = integer_type_node;
|
||
TREE_TYPE (la) = integer_type_node;
|
||
TREE_TYPE (lb) = integer_type_node;
|
||
|
||
gamma = fold (build (MINUS_EXPR, integer_type_node, lb, la));
|
||
|
||
/* FIXME: Use lambda_*_Hermite for implementing Bezout. */
|
||
gcd_alpha_beta = tree_fold_bezout
|
||
(alpha,
|
||
fold (build (MULT_EXPR, integer_type_node, beta,
|
||
integer_minus_one_node)),
|
||
&u11, &u12,
|
||
&u21, &u22);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (alpha = ");
|
||
print_generic_expr (dump_file, alpha, 0);
|
||
fprintf (dump_file, ")\n (beta = ");
|
||
print_generic_expr (dump_file, beta, 0);
|
||
fprintf (dump_file, ")\n (gamma = ");
|
||
print_generic_expr (dump_file, gamma, 0);
|
||
fprintf (dump_file, ")\n (gcd_alpha_beta = ");
|
||
print_generic_expr (dump_file, gcd_alpha_beta, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* The classic "gcd-test". */
|
||
if (!tree_fold_divides_p (integer_type_node, gcd_alpha_beta, gamma))
|
||
{
|
||
/* The "gcd-test" has determined that there is no integer
|
||
solution, ie. there is no dependence. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
}
|
||
|
||
else
|
||
{
|
||
/* The solutions are given by:
|
||
|
|
||
| [GAMMA/GCD_ALPHA_BETA t].[u11 u12] = [X]
|
||
| [u21 u22] [Y]
|
||
|
||
For a given integer t. Using the following variables,
|
||
|
||
| i0 = u11 * gamma / gcd_alpha_beta
|
||
| j0 = u12 * gamma / gcd_alpha_beta
|
||
| i1 = u21
|
||
| j1 = u22
|
||
|
||
the solutions are:
|
||
|
||
| x = i0 + i1 * t,
|
||
| y = j0 + j1 * t. */
|
||
|
||
tree i0, j0, i1, j1, t;
|
||
tree gamma_gcd;
|
||
|
||
/* X0 and Y0 are the first iterations for which there is a
|
||
dependence. X0, Y0 are two solutions of the Diophantine
|
||
equation: chrec_a (X0) = chrec_b (Y0). */
|
||
tree x0, y0;
|
||
|
||
/* Exact div because in this case gcd_alpha_beta divides
|
||
gamma. */
|
||
gamma_gcd = fold (build (EXACT_DIV_EXPR, integer_type_node, gamma,
|
||
gcd_alpha_beta));
|
||
i0 = fold (build (MULT_EXPR, integer_type_node, u11, gamma_gcd));
|
||
j0 = fold (build (MULT_EXPR, integer_type_node, u12, gamma_gcd));
|
||
i1 = u21;
|
||
j1 = u22;
|
||
|
||
if ((tree_int_cst_sgn (i1) == 0
|
||
&& tree_int_cst_sgn (i0) < 0)
|
||
|| (tree_int_cst_sgn (j1) == 0
|
||
&& tree_int_cst_sgn (j0) < 0))
|
||
{
|
||
/* There is no solution.
|
||
FIXME: The case "i0 > nb_iterations, j0 > nb_iterations"
|
||
falls in here, but for the moment we don't look at the
|
||
upper bound of the iteration domain. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
}
|
||
|
||
else
|
||
{
|
||
if (tree_int_cst_sgn (i1) > 0)
|
||
{
|
||
t = fold
|
||
(build (CEIL_DIV_EXPR, integer_type_node,
|
||
fold (build (MULT_EXPR, integer_type_node, i0,
|
||
integer_minus_one_node)),
|
||
i1));
|
||
|
||
if (tree_int_cst_sgn (j1) > 0)
|
||
{
|
||
t = fold
|
||
(build (MAX_EXPR, integer_type_node, t,
|
||
fold (build (CEIL_DIV_EXPR, integer_type_node,
|
||
fold (build
|
||
(MULT_EXPR,
|
||
integer_type_node, j0,
|
||
integer_minus_one_node)),
|
||
j1))));
|
||
|
||
x0 = fold
|
||
(build (PLUS_EXPR, integer_type_node, i0,
|
||
fold (build
|
||
(MULT_EXPR, integer_type_node, i1, t))));
|
||
y0 = fold
|
||
(build (PLUS_EXPR, integer_type_node, j0,
|
||
fold (build
|
||
(MULT_EXPR, integer_type_node, j1, t))));
|
||
|
||
*overlaps_a = build_polynomial_chrec
|
||
(CHREC_VARIABLE (chrec_b), x0, u21);
|
||
*overlaps_b = build_polynomial_chrec
|
||
(CHREC_VARIABLE (chrec_a), y0, u22);
|
||
}
|
||
else
|
||
{
|
||
/* FIXME: For the moment, the upper bound of the
|
||
iteration domain for j is not checked. */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* FIXME: For the moment, the upper bound of the
|
||
iteration domain for i is not checked. */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* For the moment, "don't know". */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlaps_a = ");
|
||
print_generic_expr (dump_file, *overlaps_a, 0);
|
||
fprintf (dump_file, ")\n (overlaps_b = ");
|
||
print_generic_expr (dump_file, *overlaps_b, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Analyze a SIV (Single Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_siv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_siv_subscript \n");
|
||
|
||
if (evolution_function_is_constant_p (chrec_a)
|
||
&& evolution_function_is_affine_p (chrec_b))
|
||
analyze_siv_subscript_cst_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b);
|
||
|
||
else if (evolution_function_is_affine_p (chrec_a)
|
||
&& evolution_function_is_constant_p (chrec_b))
|
||
analyze_siv_subscript_affine_cst (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b);
|
||
|
||
else if (evolution_function_is_affine_p (chrec_a)
|
||
&& evolution_function_is_affine_p (chrec_b)
|
||
&& (CHREC_VARIABLE (chrec_a) == CHREC_VARIABLE (chrec_b)))
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b);
|
||
else
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Return true when the evolution steps of an affine CHREC divide the
|
||
constant CST. */
|
||
|
||
static bool
|
||
chrec_steps_divide_constant_p (tree chrec,
|
||
tree cst)
|
||
{
|
||
switch (TREE_CODE (chrec))
|
||
{
|
||
case POLYNOMIAL_CHREC:
|
||
return (tree_fold_divides_p (integer_type_node, CHREC_RIGHT (chrec), cst)
|
||
&& chrec_steps_divide_constant_p (CHREC_LEFT (chrec), cst));
|
||
|
||
default:
|
||
/* On the initial condition, return true. */
|
||
return true;
|
||
}
|
||
}
|
||
|
||
/* Analyze a MIV (Multiple Index Variable) subscript. *OVERLAPS_A and
|
||
*OVERLAPS_B are initialized to the functions that describe the
|
||
relation between the elements accessed twice by CHREC_A and
|
||
CHREC_B. For k >= 0, the following property is verified:
|
||
|
||
CHREC_A (*OVERLAPS_A (k)) = CHREC_B (*OVERLAPS_B (k)). */
|
||
|
||
static void
|
||
analyze_miv_subscript (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlaps_a,
|
||
tree *overlaps_b)
|
||
{
|
||
/* FIXME: This is a MIV subscript, not yet handled.
|
||
Example: (A[{1, +, 1}_1] vs. A[{1, +, 1}_2]) that comes from
|
||
(A[i] vs. A[j]).
|
||
|
||
In the SIV test we had to solve a Diophantine equation with two
|
||
variables. In the MIV case we have to solve a Diophantine
|
||
equation with 2*n variables (if the subscript uses n IVs).
|
||
*/
|
||
tree difference;
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(analyze_miv_subscript \n");
|
||
|
||
difference = chrec_fold_minus (integer_type_node, chrec_a, chrec_b);
|
||
|
||
if (chrec_zerop (difference))
|
||
{
|
||
/* Access functions are the same: all the elements are accessed
|
||
in the same order. */
|
||
*overlaps_a = integer_zero_node;
|
||
*overlaps_b = integer_zero_node;
|
||
}
|
||
|
||
else if (evolution_function_is_constant_p (difference)
|
||
/* For the moment, the following is verified:
|
||
evolution_function_is_affine_multivariate_p (chrec_a) */
|
||
&& !chrec_steps_divide_constant_p (chrec_a, difference))
|
||
{
|
||
/* testsuite/.../ssa-chrec-33.c
|
||
{{21, +, 2}_1, +, -2}_2 vs. {{20, +, 2}_1, +, -2}_2
|
||
|
||
The difference is 1, and the evolution steps are equal to 2,
|
||
consequently there are no overlapping elements. */
|
||
*overlaps_a = chrec_known;
|
||
*overlaps_b = chrec_known;
|
||
}
|
||
|
||
else if (evolution_function_is_univariate_p (chrec_a)
|
||
&& evolution_function_is_univariate_p (chrec_b))
|
||
{
|
||
/* testsuite/.../ssa-chrec-35.c
|
||
{0, +, 1}_2 vs. {0, +, 1}_3
|
||
the overlapping elements are respectively located at iterations:
|
||
{0, +, 1}_3 and {0, +, 1}_2.
|
||
*/
|
||
if (evolution_function_is_affine_p (chrec_a)
|
||
&& evolution_function_is_affine_p (chrec_b))
|
||
analyze_subscript_affine_affine (chrec_a, chrec_b,
|
||
overlaps_a, overlaps_b);
|
||
else
|
||
{
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
else
|
||
{
|
||
/* When the analysis is too difficult, answer "don't know". */
|
||
*overlaps_a = chrec_dont_know;
|
||
*overlaps_b = chrec_dont_know;
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Determines the iterations for which CHREC_A is equal to CHREC_B.
|
||
OVERLAP_ITERATIONS_A and OVERLAP_ITERATIONS_B are initialized with
|
||
two functions that describe the iterations that contain conflicting
|
||
elements.
|
||
|
||
Remark: For an integer k >= 0, the following equality is true:
|
||
|
||
CHREC_A (OVERLAP_ITERATIONS_A (k)) == CHREC_B (OVERLAP_ITERATIONS_B (k)).
|
||
*/
|
||
|
||
static void
|
||
analyze_overlapping_iterations (tree chrec_a,
|
||
tree chrec_b,
|
||
tree *overlap_iterations_a,
|
||
tree *overlap_iterations_b)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(analyze_overlapping_iterations \n");
|
||
fprintf (dump_file, " (chrec_a = ");
|
||
print_generic_expr (dump_file, chrec_a, 0);
|
||
fprintf (dump_file, ")\n chrec_b = ");
|
||
print_generic_expr (dump_file, chrec_b, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
if (chrec_a == NULL_TREE
|
||
|| chrec_b == NULL_TREE
|
||
|| chrec_contains_undetermined (chrec_a)
|
||
|| chrec_contains_undetermined (chrec_b)
|
||
|| chrec_contains_symbols (chrec_a)
|
||
|| chrec_contains_symbols (chrec_b))
|
||
{
|
||
*overlap_iterations_a = chrec_dont_know;
|
||
*overlap_iterations_b = chrec_dont_know;
|
||
}
|
||
|
||
else if (ziv_subscript_p (chrec_a, chrec_b))
|
||
analyze_ziv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b);
|
||
|
||
else if (siv_subscript_p (chrec_a, chrec_b))
|
||
analyze_siv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b);
|
||
|
||
else
|
||
analyze_miv_subscript (chrec_a, chrec_b,
|
||
overlap_iterations_a, overlap_iterations_b);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, " (overlap_iterations_a = ");
|
||
print_generic_expr (dump_file, *overlap_iterations_a, 0);
|
||
fprintf (dump_file, ")\n (overlap_iterations_b = ");
|
||
print_generic_expr (dump_file, *overlap_iterations_b, 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/* This section contains the affine functions dependences detector. */
|
||
|
||
/* Computes the conflicting iterations, and initialize DDR. */
|
||
|
||
static void
|
||
subscript_dependence_tester (struct data_dependence_relation *ddr)
|
||
{
|
||
unsigned int i;
|
||
struct data_reference *dra = DDR_A (ddr);
|
||
struct data_reference *drb = DDR_B (ddr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "(subscript_dependence_tester \n");
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
tree overlaps_a, overlaps_b;
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
|
||
DR_ACCESS_FN (drb, i),
|
||
&overlaps_a, &overlaps_b);
|
||
|
||
if (chrec_contains_undetermined (overlaps_a)
|
||
|| chrec_contains_undetermined (overlaps_b))
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
break;
|
||
}
|
||
|
||
else if (overlaps_a == chrec_known
|
||
|| overlaps_b == chrec_known)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
break;
|
||
}
|
||
|
||
else
|
||
{
|
||
SUB_CONFLICTS_IN_A (subscript) = overlaps_a;
|
||
SUB_CONFLICTS_IN_B (subscript) = overlaps_b;
|
||
}
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Compute the classic per loop distance vector.
|
||
|
||
DDR is the data dependence relation to build a vector from.
|
||
NB_LOOPS is the total number of loops we are considering.
|
||
FIRST_LOOP is the loop->num of the first loop. */
|
||
|
||
static void
|
||
build_classic_dist_vector (struct data_dependence_relation *ddr,
|
||
int nb_loops, unsigned int first_loop)
|
||
{
|
||
unsigned i;
|
||
lambda_vector dist_v, init_v;
|
||
|
||
dist_v = lambda_vector_new (nb_loops);
|
||
init_v = lambda_vector_new (nb_loops);
|
||
lambda_vector_clear (dist_v, nb_loops);
|
||
lambda_vector_clear (init_v, nb_loops);
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
if (chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
return;
|
||
|
||
if (TREE_CODE (SUB_CONFLICTS_IN_A (subscript)) == POLYNOMIAL_CHREC)
|
||
{
|
||
int dist;
|
||
int loop_nb;
|
||
loop_nb = CHREC_VARIABLE (SUB_CONFLICTS_IN_A (subscript));
|
||
loop_nb -= first_loop;
|
||
/* If the loop number is still greater than the number of
|
||
loops we've been asked to analyze, or negative,
|
||
something is borked. */
|
||
gcc_assert (loop_nb >= 0);
|
||
gcc_assert (loop_nb < nb_loops);
|
||
dist = int_cst_value (SUB_DISTANCE (subscript));
|
||
|
||
/* This is the subscript coupling test.
|
||
| loop i = 0, N, 1
|
||
| T[i+1][i] = ...
|
||
| ... = T[i][i]
|
||
| endloop
|
||
There is no dependence. */
|
||
if (init_v[loop_nb] != 0
|
||
&& dist_v[loop_nb] != dist)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
return;
|
||
}
|
||
|
||
dist_v[loop_nb] = dist;
|
||
init_v[loop_nb] = 1;
|
||
}
|
||
}
|
||
|
||
/* There is a distance of 1 on all the outer loops:
|
||
|
||
Example: there is a dependence of distance 1 on loop_1 for the array A.
|
||
| loop_1
|
||
| A[5] = ...
|
||
| endloop
|
||
*/
|
||
{
|
||
struct loop *lca, *loop_a, *loop_b;
|
||
struct data_reference *a = DDR_A (ddr);
|
||
struct data_reference *b = DDR_B (ddr);
|
||
int lca_nb;
|
||
loop_a = loop_containing_stmt (DR_STMT (a));
|
||
loop_b = loop_containing_stmt (DR_STMT (b));
|
||
|
||
/* Get the common ancestor loop. */
|
||
lca = find_common_loop (loop_a, loop_b);
|
||
|
||
lca_nb = lca->num;
|
||
lca_nb -= first_loop;
|
||
gcc_assert (lca_nb >= 0);
|
||
gcc_assert (lca_nb < nb_loops);
|
||
/* For each outer loop where init_v is not set, the accesses are
|
||
in dependence of distance 1 in the loop. */
|
||
if (lca != loop_a
|
||
&& lca != loop_b
|
||
&& init_v[lca_nb] == 0)
|
||
dist_v[lca_nb] = 1;
|
||
|
||
lca = lca->outer;
|
||
|
||
if (lca)
|
||
{
|
||
lca_nb = lca->num - first_loop;
|
||
while (lca->depth != 0)
|
||
{
|
||
gcc_assert (lca_nb >= 0);
|
||
gcc_assert (lca_nb < nb_loops);
|
||
if (init_v[lca_nb] == 0)
|
||
dist_v[lca_nb] = 1;
|
||
lca = lca->outer;
|
||
lca_nb = lca->num - first_loop;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
DDR_DIST_VECT (ddr) = dist_v;
|
||
}
|
||
|
||
/* Compute the classic per loop direction vector.
|
||
|
||
DDR is the data dependence relation to build a vector from.
|
||
NB_LOOPS is the total number of loops we are considering.
|
||
FIRST_LOOP is the loop->num of the first loop. */
|
||
|
||
static void
|
||
build_classic_dir_vector (struct data_dependence_relation *ddr,
|
||
int nb_loops, unsigned int first_loop)
|
||
{
|
||
unsigned i;
|
||
lambda_vector dir_v, init_v;
|
||
|
||
dir_v = lambda_vector_new (nb_loops);
|
||
init_v = lambda_vector_new (nb_loops);
|
||
lambda_vector_clear (dir_v, nb_loops);
|
||
lambda_vector_clear (init_v, nb_loops);
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE)
|
||
return;
|
||
|
||
for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
|
||
{
|
||
struct subscript *subscript = DDR_SUBSCRIPT (ddr, i);
|
||
|
||
if (TREE_CODE (SUB_CONFLICTS_IN_A (subscript)) == POLYNOMIAL_CHREC
|
||
&& TREE_CODE (SUB_CONFLICTS_IN_B (subscript)) == POLYNOMIAL_CHREC)
|
||
{
|
||
int loop_nb;
|
||
|
||
enum data_dependence_direction dir = dir_star;
|
||
loop_nb = CHREC_VARIABLE (SUB_CONFLICTS_IN_A (subscript));
|
||
loop_nb -= first_loop;
|
||
|
||
/* If the loop number is still greater than the number of
|
||
loops we've been asked to analyze, or negative,
|
||
something is borked. */
|
||
gcc_assert (loop_nb >= 0);
|
||
gcc_assert (loop_nb < nb_loops);
|
||
if (!chrec_contains_undetermined (SUB_DISTANCE (subscript)))
|
||
{
|
||
int dist = int_cst_value (SUB_DISTANCE (subscript));
|
||
|
||
if (dist == 0)
|
||
dir = dir_equal;
|
||
else if (dist > 0)
|
||
dir = dir_positive;
|
||
else if (dist < 0)
|
||
dir = dir_negative;
|
||
}
|
||
|
||
/* This is the subscript coupling test.
|
||
| loop i = 0, N, 1
|
||
| T[i+1][i] = ...
|
||
| ... = T[i][i]
|
||
| endloop
|
||
There is no dependence. */
|
||
if (init_v[loop_nb] != 0
|
||
&& dir != dir_star
|
||
&& (enum data_dependence_direction) dir_v[loop_nb] != dir
|
||
&& (enum data_dependence_direction) dir_v[loop_nb] != dir_star)
|
||
{
|
||
finalize_ddr_dependent (ddr, chrec_known);
|
||
return;
|
||
}
|
||
|
||
dir_v[loop_nb] = dir;
|
||
init_v[loop_nb] = 1;
|
||
}
|
||
}
|
||
|
||
/* There is a distance of 1 on all the outer loops:
|
||
|
||
Example: there is a dependence of distance 1 on loop_1 for the array A.
|
||
| loop_1
|
||
| A[5] = ...
|
||
| endloop
|
||
*/
|
||
{
|
||
struct loop *lca, *loop_a, *loop_b;
|
||
struct data_reference *a = DDR_A (ddr);
|
||
struct data_reference *b = DDR_B (ddr);
|
||
int lca_nb;
|
||
loop_a = loop_containing_stmt (DR_STMT (a));
|
||
loop_b = loop_containing_stmt (DR_STMT (b));
|
||
|
||
/* Get the common ancestor loop. */
|
||
lca = find_common_loop (loop_a, loop_b);
|
||
lca_nb = lca->num - first_loop;
|
||
|
||
gcc_assert (lca_nb >= 0);
|
||
gcc_assert (lca_nb < nb_loops);
|
||
/* For each outer loop where init_v is not set, the accesses are
|
||
in dependence of distance 1 in the loop. */
|
||
if (lca != loop_a
|
||
&& lca != loop_b
|
||
&& init_v[lca_nb] == 0)
|
||
dir_v[lca_nb] = dir_positive;
|
||
|
||
lca = lca->outer;
|
||
if (lca)
|
||
{
|
||
lca_nb = lca->num - first_loop;
|
||
while (lca->depth != 0)
|
||
{
|
||
gcc_assert (lca_nb >= 0);
|
||
gcc_assert (lca_nb < nb_loops);
|
||
if (init_v[lca_nb] == 0)
|
||
dir_v[lca_nb] = dir_positive;
|
||
lca = lca->outer;
|
||
lca_nb = lca->num - first_loop;
|
||
|
||
}
|
||
}
|
||
}
|
||
|
||
DDR_DIR_VECT (ddr) = dir_v;
|
||
}
|
||
|
||
/* Returns true when all the access functions of A are affine or
|
||
constant. */
|
||
|
||
static bool
|
||
access_functions_are_affine_or_constant_p (struct data_reference *a)
|
||
{
|
||
unsigned int i;
|
||
varray_type fns = DR_ACCESS_FNS (a);
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (fns); i++)
|
||
if (!evolution_function_is_constant_p (VARRAY_TREE (fns, i))
|
||
&& !evolution_function_is_affine_multivariate_p (VARRAY_TREE (fns, i)))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* This computes the affine dependence relation between A and B.
|
||
CHREC_KNOWN is used for representing the independence between two
|
||
accesses, while CHREC_DONT_KNOW is used for representing the unknown
|
||
relation.
|
||
|
||
Note that it is possible to stop the computation of the dependence
|
||
relation the first time we detect a CHREC_KNOWN element for a given
|
||
subscript. */
|
||
|
||
void
|
||
compute_affine_dependence (struct data_dependence_relation *ddr)
|
||
{
|
||
struct data_reference *dra = DDR_A (ddr);
|
||
struct data_reference *drb = DDR_B (ddr);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
fprintf (dump_file, "(compute_affine_dependence\n");
|
||
fprintf (dump_file, " (stmt_a = \n");
|
||
print_generic_expr (dump_file, DR_STMT (dra), 0);
|
||
fprintf (dump_file, ")\n (stmt_b = \n");
|
||
print_generic_expr (dump_file, DR_STMT (drb), 0);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Analyze only when the dependence relation is not yet known. */
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
if (access_functions_are_affine_or_constant_p (dra)
|
||
&& access_functions_are_affine_or_constant_p (drb))
|
||
subscript_dependence_tester (ddr);
|
||
|
||
/* As a last case, if the dependence cannot be determined, or if
|
||
the dependence is considered too difficult to determine, answer
|
||
"don't know". */
|
||
else
|
||
finalize_ddr_dependent (ddr, chrec_dont_know);
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
|
||
/* Compute a subset of the data dependence relation graph. Don't
|
||
compute read-read relations, and avoid the computation of the
|
||
opposite relation, ie. when AB has been computed, don't compute BA.
|
||
DATAREFS contains a list of data references, and the result is set
|
||
in DEPENDENCE_RELATIONS. */
|
||
|
||
static void
|
||
compute_all_dependences (varray_type datarefs,
|
||
varray_type *dependence_relations)
|
||
{
|
||
unsigned int i, j, N;
|
||
|
||
N = VARRAY_ACTIVE_SIZE (datarefs);
|
||
|
||
for (i = 0; i < N; i++)
|
||
for (j = i; j < N; j++)
|
||
{
|
||
struct data_reference *a, *b;
|
||
struct data_dependence_relation *ddr;
|
||
|
||
a = VARRAY_GENERIC_PTR (datarefs, i);
|
||
b = VARRAY_GENERIC_PTR (datarefs, j);
|
||
|
||
ddr = initialize_data_dependence_relation (a, b);
|
||
|
||
VARRAY_PUSH_GENERIC_PTR (*dependence_relations, ddr);
|
||
compute_affine_dependence (ddr);
|
||
compute_distance_vector (ddr);
|
||
}
|
||
}
|
||
|
||
/* Search the data references in LOOP, and record the information into
|
||
DATAREFS. Returns chrec_dont_know when failing to analyze a
|
||
difficult case, returns NULL_TREE otherwise.
|
||
|
||
FIXME: This is a "dumb" walker over all the trees in the loop body.
|
||
Find another technique that avoids this costly walk. This is
|
||
acceptable for the moment, since this function is used only for
|
||
debugging purposes. */
|
||
|
||
static tree
|
||
find_data_references_in_loop (struct loop *loop, varray_type *datarefs)
|
||
{
|
||
basic_block bb;
|
||
block_stmt_iterator bsi;
|
||
|
||
FOR_EACH_BB (bb)
|
||
{
|
||
if (!flow_bb_inside_loop_p (loop, bb))
|
||
continue;
|
||
|
||
for (bsi = bsi_start (bb); !bsi_end_p (bsi); bsi_next (&bsi))
|
||
{
|
||
tree stmt = bsi_stmt (bsi);
|
||
stmt_ann_t ann = stmt_ann (stmt);
|
||
|
||
if (TREE_CODE (stmt) != MODIFY_EXPR)
|
||
continue;
|
||
|
||
if (!VUSE_OPS (ann)
|
||
&& !V_MUST_DEF_OPS (ann)
|
||
&& !V_MAY_DEF_OPS (ann))
|
||
continue;
|
||
|
||
/* In the GIMPLE representation, a modify expression
|
||
contains a single load or store to memory. */
|
||
if (TREE_CODE (TREE_OPERAND (stmt, 0)) == ARRAY_REF)
|
||
VARRAY_PUSH_GENERIC_PTR
|
||
(*datarefs, analyze_array (stmt, TREE_OPERAND (stmt, 0),
|
||
false));
|
||
|
||
else if (TREE_CODE (TREE_OPERAND (stmt, 1)) == ARRAY_REF)
|
||
VARRAY_PUSH_GENERIC_PTR
|
||
(*datarefs, analyze_array (stmt, TREE_OPERAND (stmt, 1),
|
||
true));
|
||
|
||
else
|
||
return chrec_dont_know;
|
||
}
|
||
}
|
||
|
||
return NULL_TREE;
|
||
}
|
||
|
||
|
||
|
||
/* This section contains all the entry points. */
|
||
|
||
/* Given a loop nest LOOP, the following vectors are returned:
|
||
*DATAREFS is initialized to all the array elements contained in this loop,
|
||
*DEPENDENCE_RELATIONS contains the relations between the data references. */
|
||
|
||
void
|
||
compute_data_dependences_for_loop (unsigned nb_loops,
|
||
struct loop *loop,
|
||
varray_type *datarefs,
|
||
varray_type *dependence_relations)
|
||
{
|
||
unsigned int i;
|
||
|
||
/* If one of the data references is not computable, give up without
|
||
spending time to compute other dependences. */
|
||
if (find_data_references_in_loop (loop, datarefs) == chrec_dont_know)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
|
||
/* Insert a single relation into dependence_relations:
|
||
chrec_dont_know. */
|
||
ddr = initialize_data_dependence_relation (NULL, NULL);
|
||
VARRAY_PUSH_GENERIC_PTR (*dependence_relations, ddr);
|
||
build_classic_dist_vector (ddr, nb_loops, loop->num);
|
||
build_classic_dir_vector (ddr, nb_loops, loop->num);
|
||
return;
|
||
}
|
||
|
||
compute_all_dependences (*datarefs, dependence_relations);
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (*dependence_relations); i++)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
ddr = VARRAY_GENERIC_PTR (*dependence_relations, i);
|
||
build_classic_dist_vector (ddr, nb_loops, loop->num);
|
||
build_classic_dir_vector (ddr, nb_loops, loop->num);
|
||
}
|
||
}
|
||
|
||
/* Entry point (for testing only). Analyze all the data references
|
||
and the dependence relations.
|
||
|
||
The data references are computed first.
|
||
|
||
A relation on these nodes is represented by a complete graph. Some
|
||
of the relations could be of no interest, thus the relations can be
|
||
computed on demand.
|
||
|
||
In the following function we compute all the relations. This is
|
||
just a first implementation that is here for:
|
||
- for showing how to ask for the dependence relations,
|
||
- for the debugging the whole dependence graph,
|
||
- for the dejagnu testcases and maintenance.
|
||
|
||
It is possible to ask only for a part of the graph, avoiding to
|
||
compute the whole dependence graph. The computed dependences are
|
||
stored in a knowledge base (KB) such that later queries don't
|
||
recompute the same information. The implementation of this KB is
|
||
transparent to the optimizer, and thus the KB can be changed with a
|
||
more efficient implementation, or the KB could be disabled. */
|
||
|
||
void
|
||
analyze_all_data_dependences (struct loops *loops)
|
||
{
|
||
unsigned int i;
|
||
varray_type datarefs;
|
||
varray_type dependence_relations;
|
||
int nb_data_refs = 10;
|
||
|
||
VARRAY_GENERIC_PTR_INIT (datarefs, nb_data_refs, "datarefs");
|
||
VARRAY_GENERIC_PTR_INIT (dependence_relations,
|
||
nb_data_refs * nb_data_refs,
|
||
"dependence_relations");
|
||
|
||
/* Compute DDs on the whole function. */
|
||
compute_data_dependences_for_loop (loops->num, loops->parray[0],
|
||
&datarefs, &dependence_relations);
|
||
|
||
if (dump_file)
|
||
{
|
||
dump_data_dependence_relations (dump_file, dependence_relations);
|
||
fprintf (dump_file, "\n\n");
|
||
}
|
||
|
||
/* Don't dump distances in order to avoid to update the
|
||
testsuite. */
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
|
||
{
|
||
struct data_dependence_relation *ddr =
|
||
(struct data_dependence_relation *)
|
||
VARRAY_GENERIC_PTR (dependence_relations, i);
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE)
|
||
{
|
||
fprintf (dump_file, "DISTANCE_V (");
|
||
print_lambda_vector (dump_file, DDR_DIST_VECT (ddr), loops->num);
|
||
fprintf (dump_file, ")\n");
|
||
fprintf (dump_file, "DIRECTION_V (");
|
||
print_lambda_vector (dump_file, DDR_DIR_VECT (ddr), loops->num);
|
||
fprintf (dump_file, ")\n");
|
||
}
|
||
}
|
||
fprintf (dump_file, "\n\n");
|
||
}
|
||
|
||
if (dump_file && (dump_flags & TDF_STATS))
|
||
{
|
||
unsigned nb_top_relations = 0;
|
||
unsigned nb_bot_relations = 0;
|
||
unsigned nb_basename_differ = 0;
|
||
unsigned nb_chrec_relations = 0;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
|
||
{
|
||
struct data_dependence_relation *ddr;
|
||
ddr = VARRAY_GENERIC_PTR (dependence_relations, i);
|
||
|
||
if (chrec_contains_undetermined (DDR_ARE_DEPENDENT (ddr)))
|
||
nb_top_relations++;
|
||
|
||
else if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
|
||
{
|
||
struct data_reference *a = DDR_A (ddr);
|
||
struct data_reference *b = DDR_B (ddr);
|
||
bool differ_p;
|
||
|
||
if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b)
|
||
|| (array_base_name_differ_p (a, b, &differ_p) && differ_p))
|
||
nb_basename_differ++;
|
||
else
|
||
nb_bot_relations++;
|
||
}
|
||
|
||
else
|
||
nb_chrec_relations++;
|
||
}
|
||
|
||
gather_stats_on_scev_database ();
|
||
}
|
||
|
||
free_dependence_relations (dependence_relations);
|
||
free_data_refs (datarefs);
|
||
}
|
||
|
||
/* Free the memory used by a data dependence relation DDR. */
|
||
|
||
void
|
||
free_dependence_relation (struct data_dependence_relation *ddr)
|
||
{
|
||
if (ddr == NULL)
|
||
return;
|
||
|
||
if (DDR_ARE_DEPENDENT (ddr) == NULL_TREE && DDR_SUBSCRIPTS (ddr))
|
||
varray_clear (DDR_SUBSCRIPTS (ddr));
|
||
free (ddr);
|
||
}
|
||
|
||
/* Free the memory used by the data dependence relations from
|
||
DEPENDENCE_RELATIONS. */
|
||
|
||
void
|
||
free_dependence_relations (varray_type dependence_relations)
|
||
{
|
||
unsigned int i;
|
||
if (dependence_relations == NULL)
|
||
return;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (dependence_relations); i++)
|
||
free_dependence_relation (VARRAY_GENERIC_PTR (dependence_relations, i));
|
||
varray_clear (dependence_relations);
|
||
}
|
||
|
||
/* Free the memory used by the data references from DATAREFS. */
|
||
|
||
void
|
||
free_data_refs (varray_type datarefs)
|
||
{
|
||
unsigned int i;
|
||
|
||
if (datarefs == NULL)
|
||
return;
|
||
|
||
for (i = 0; i < VARRAY_ACTIVE_SIZE (datarefs); i++)
|
||
{
|
||
struct data_reference *dr = (struct data_reference *)
|
||
VARRAY_GENERIC_PTR (datarefs, i);
|
||
if (dr && DR_ACCESS_FNS (dr))
|
||
varray_clear (DR_ACCESS_FNS (dr));
|
||
}
|
||
varray_clear (datarefs);
|
||
}
|