1557 lines
48 KiB
Java
1557 lines
48 KiB
Java
/* java.math.BigDecimal -- Arbitrary precision decimals.
|
|
Copyright (C) 1999, 2000, 2001, 2003, 2005, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2, or (at your option)
|
|
any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; see the file COPYING. If not, write to the
|
|
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
|
02110-1301 USA.
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
package java.math;
|
|
|
|
public class BigDecimal extends Number implements Comparable<BigDecimal>
|
|
{
|
|
private BigInteger intVal;
|
|
private int scale;
|
|
private int precision = 0;
|
|
private static final long serialVersionUID = 6108874887143696463L;
|
|
|
|
/**
|
|
* The constant zero as a BigDecimal with scale zero.
|
|
* @since 1.5
|
|
*/
|
|
public static final BigDecimal ZERO =
|
|
new BigDecimal (BigInteger.ZERO, 0);
|
|
|
|
/**
|
|
* The constant one as a BigDecimal with scale zero.
|
|
* @since 1.5
|
|
*/
|
|
public static final BigDecimal ONE =
|
|
new BigDecimal (BigInteger.ONE, 0);
|
|
|
|
/**
|
|
* The constant ten as a BigDecimal with scale zero.
|
|
* @since 1.5
|
|
*/
|
|
public static final BigDecimal TEN =
|
|
new BigDecimal (BigInteger.TEN, 0);
|
|
|
|
public static final int ROUND_UP = 0;
|
|
public static final int ROUND_DOWN = 1;
|
|
public static final int ROUND_CEILING = 2;
|
|
public static final int ROUND_FLOOR = 3;
|
|
public static final int ROUND_HALF_UP = 4;
|
|
public static final int ROUND_HALF_DOWN = 5;
|
|
public static final int ROUND_HALF_EVEN = 6;
|
|
public static final int ROUND_UNNECESSARY = 7;
|
|
|
|
/**
|
|
* Constructs a new BigDecimal whose unscaled value is val and whose
|
|
* scale is zero.
|
|
* @param val the value of the new BigDecimal
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal (int val)
|
|
{
|
|
this.intVal = BigInteger.valueOf(val);
|
|
this.scale = 0;
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal using the BigDecimal(int) constructor and then
|
|
* rounds according to the MathContext.
|
|
* @param val the value for the initial (unrounded) BigDecimal
|
|
* @param mc the MathContext specifying the rounding
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal (int val, MathContext mc)
|
|
{
|
|
this (val);
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal result = this.round(mc);
|
|
this.intVal = result.intVal;
|
|
this.scale = result.scale;
|
|
this.precision = result.precision;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a new BigDecimal whose unscaled value is val and whose
|
|
* scale is zero.
|
|
* @param val the value of the new BigDecimal
|
|
*/
|
|
public BigDecimal (long val)
|
|
{
|
|
this.intVal = BigInteger.valueOf(val);
|
|
this.scale = 0;
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal from the long in the same way as BigDecimal(long)
|
|
* and then rounds according to the MathContext.
|
|
* @param val the long from which we create the initial BigDecimal
|
|
* @param mc the MathContext that specifies the rounding behaviour
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal (long val, MathContext mc)
|
|
{
|
|
this(val);
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal result = this.round(mc);
|
|
this.intVal = result.intVal;
|
|
this.scale = result.scale;
|
|
this.precision = result.precision;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal whose value is given by num rounded according to
|
|
* mc. Since num is already a BigInteger, the rounding refers only to the
|
|
* precision setting in mc, if mc.getPrecision() returns an int lower than
|
|
* the number of digits in num, then rounding is necessary.
|
|
* @param num the unscaledValue, before rounding
|
|
* @param mc the MathContext that specifies the precision
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
|
* is RoundingMode.UNNECESSARY
|
|
* * @since 1.5
|
|
*/
|
|
public BigDecimal (BigInteger num, MathContext mc)
|
|
{
|
|
this (num, 0);
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal result = this.round(mc);
|
|
this.intVal = result.intVal;
|
|
this.scale = result.scale;
|
|
this.precision = result.precision;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal from the String val according to the same
|
|
* rules as the BigDecimal(String) constructor and then rounds
|
|
* according to the MathContext mc.
|
|
* @param val the String from which we construct the initial BigDecimal
|
|
* @param mc the MathContext that specifies the rounding
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal (String val, MathContext mc)
|
|
{
|
|
this (val);
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal result = this.round(mc);
|
|
this.intVal = result.intVal;
|
|
this.scale = result.scale;
|
|
this.precision = result.precision;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal whose unscaled value is num and whose
|
|
* scale is zero.
|
|
* @param num the value of the new BigDecimal
|
|
*/
|
|
public BigDecimal (BigInteger num)
|
|
{
|
|
this (num, 0);
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal whose unscaled value is num and whose
|
|
* scale is scale.
|
|
* @param num
|
|
* @param scale
|
|
*/
|
|
public BigDecimal (BigInteger num, int scale)
|
|
{
|
|
this.intVal = num;
|
|
this.scale = scale;
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal using the BigDecimal(BigInteger, int)
|
|
* constructor and then rounds according to the MathContext.
|
|
* @param num the unscaled value of the unrounded BigDecimal
|
|
* @param scale the scale of the unrounded BigDecimal
|
|
* @param mc the MathContext specifying the rounding
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal (BigInteger num, int scale, MathContext mc)
|
|
{
|
|
this (num, scale);
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal result = this.round(mc);
|
|
this.intVal = result.intVal;
|
|
this.scale = result.scale;
|
|
this.precision = result.precision;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal in the same way as BigDecimal(double) and then
|
|
* rounds according to the MathContext.
|
|
* @param num the double from which the initial BigDecimal is created
|
|
* @param mc the MathContext that specifies the rounding behaviour
|
|
* @throws ArithmeticException if the result is inexact but the rounding type
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal (double num, MathContext mc)
|
|
{
|
|
this (num);
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal result = this.round(mc);
|
|
this.intVal = result.intVal;
|
|
this.scale = result.scale;
|
|
this.precision = result.precision;
|
|
}
|
|
}
|
|
|
|
public BigDecimal (double num) throws NumberFormatException
|
|
{
|
|
if (Double.isInfinite (num) || Double.isNaN (num))
|
|
throw new NumberFormatException ("invalid argument: " + num);
|
|
// Note we can't convert NUM to a String and then use the
|
|
// String-based constructor. The BigDecimal documentation makes
|
|
// it clear that the two constructors work differently.
|
|
|
|
final int mantissaBits = 52;
|
|
final int exponentBits = 11;
|
|
final long mantMask = (1L << mantissaBits) - 1;
|
|
final long expMask = (1L << exponentBits) - 1;
|
|
|
|
long bits = Double.doubleToLongBits (num);
|
|
long mantissa = bits & mantMask;
|
|
long exponent = (bits >>> mantissaBits) & expMask;
|
|
boolean denormal = exponent == 0;
|
|
|
|
// Correct the exponent for the bias.
|
|
exponent -= denormal ? 1022 : 1023;
|
|
|
|
// Now correct the exponent to account for the bits to the right
|
|
// of the decimal.
|
|
exponent -= mantissaBits;
|
|
// Ordinary numbers have an implied leading `1' bit.
|
|
if (! denormal)
|
|
mantissa |= (1L << mantissaBits);
|
|
|
|
// Shave off factors of 10.
|
|
while (exponent < 0 && (mantissa & 1) == 0)
|
|
{
|
|
++exponent;
|
|
mantissa >>= 1;
|
|
}
|
|
|
|
intVal = BigInteger.valueOf (bits < 0 ? - mantissa : mantissa);
|
|
if (exponent < 0)
|
|
{
|
|
// We have MANTISSA * 2 ^ (EXPONENT).
|
|
// Since (1/2)^N == 5^N * 10^-N we can easily convert this
|
|
// into a power of 10.
|
|
scale = (int) (- exponent);
|
|
BigInteger mult = BigInteger.valueOf (5).pow (scale);
|
|
intVal = intVal.multiply (mult);
|
|
}
|
|
else
|
|
{
|
|
intVal = intVal.shiftLeft ((int) exponent);
|
|
scale = 0;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal from the char subarray and rounding
|
|
* according to the MathContext.
|
|
* @param in the char array
|
|
* @param offset the start of the subarray
|
|
* @param len the length of the subarray
|
|
* @param mc the MathContext for rounding
|
|
* @throws NumberFormatException if the char subarray is not a valid
|
|
* BigDecimal representation
|
|
* @throws ArithmeticException if the result is inexact but the rounding
|
|
* mode is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal(char[] in, int offset, int len, MathContext mc)
|
|
{
|
|
this(in, offset, len);
|
|
// If mc has precision other than zero then we must round.
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal temp = this.round(mc);
|
|
this.intVal = temp.intVal;
|
|
this.scale = temp.scale;
|
|
this.precision = temp.precision;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal from the char array and rounding according
|
|
* to the MathContext.
|
|
* @param in the char array
|
|
* @param mc the MathContext
|
|
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
|
|
* representation
|
|
* @throws ArithmeticException if the result is inexact but the rounding mode
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal(char[] in, MathContext mc)
|
|
{
|
|
this(in, 0, in.length);
|
|
// If mc has precision other than zero then we must round.
|
|
if (mc.getPrecision() != 0)
|
|
{
|
|
BigDecimal temp = this.round(mc);
|
|
this.intVal = temp.intVal;
|
|
this.scale = temp.scale;
|
|
this.precision = temp.precision;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal from the given char array, accepting the same
|
|
* sequence of characters as the BigDecimal(String) constructor.
|
|
* @param in the char array
|
|
* @throws NumberFormatException if <code>in</code> is not a valid BigDecimal
|
|
* representation
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal(char[] in)
|
|
{
|
|
this(in, 0, in.length);
|
|
}
|
|
|
|
/**
|
|
* Constructs a BigDecimal from a char subarray, accepting the same sequence
|
|
* of characters as the BigDecimal(String) constructor.
|
|
* @param in the char array
|
|
* @param offset the start of the subarray
|
|
* @param len the length of the subarray
|
|
* @throws NumberFormatException if <code>in</code> is not a valid
|
|
* BigDecimal representation.
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal(char[] in, int offset, int len)
|
|
{
|
|
// start is the index into the char array where the significand starts
|
|
int start = offset;
|
|
// end is one greater than the index of the last character used
|
|
int end = offset + len;
|
|
// point is the index into the char array where the exponent starts
|
|
// (or, if there is no exponent, this is equal to end)
|
|
int point = offset;
|
|
// dot is the index into the char array where the decimal point is
|
|
// found, or -1 if there is no decimal point
|
|
int dot = -1;
|
|
|
|
// The following examples show what these variables mean. Note that
|
|
// point and dot don't yet have the correct values, they will be
|
|
// properly assigned in a loop later on in this method.
|
|
//
|
|
// Example 1
|
|
//
|
|
// + 1 0 2 . 4 6 9
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
|
//
|
|
// offset = 2, len = 8, start = 3, dot = 6, point = end = 10
|
|
//
|
|
// Example 2
|
|
//
|
|
// + 2 3 4 . 6 1 3 E - 1
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
|
//
|
|
// offset = 2, len = 11, start = 3, dot = 6, point = 10, end = 13
|
|
//
|
|
// Example 3
|
|
//
|
|
// - 1 2 3 4 5 e 7
|
|
// __ __ __ __ __ __ __ __ __ __ __ __ __ __ __ __
|
|
//
|
|
// offset = 2, len = 8, start = 3, dot = -1, point = 8, end = 10
|
|
|
|
// Determine the sign of the number.
|
|
boolean negative = false;
|
|
if (in[offset] == '+')
|
|
{
|
|
++start;
|
|
++point;
|
|
}
|
|
else if (in[offset] == '-')
|
|
{
|
|
++start;
|
|
++point;
|
|
negative = true;
|
|
}
|
|
|
|
// Check each character looking for the decimal point and the
|
|
// start of the exponent.
|
|
while (point < end)
|
|
{
|
|
char c = in[point];
|
|
if (c == '.')
|
|
{
|
|
// If dot != -1 then we've seen more than one decimal point.
|
|
if (dot != -1)
|
|
throw new NumberFormatException("multiple `.'s in number");
|
|
dot = point;
|
|
}
|
|
// Break when we reach the start of the exponent.
|
|
else if (c == 'e' || c == 'E')
|
|
break;
|
|
// Throw an exception if the character was not a decimal or an
|
|
// exponent and is not a digit.
|
|
else if (!Character.isDigit(c))
|
|
throw new NumberFormatException("unrecognized character at " + point
|
|
+ ": " + c);
|
|
++point;
|
|
}
|
|
|
|
// val is a StringBuilder from which we'll create a BigInteger
|
|
// which will be the unscaled value for this BigDecimal
|
|
StringBuilder val = new StringBuilder(point - start - 1);
|
|
if (dot != -1)
|
|
{
|
|
// If there was a decimal we must combine the two parts that
|
|
// contain only digits and we must set the scale properly.
|
|
val.append(in, start, dot - start);
|
|
val.append(in, dot + 1, point - dot - 1);
|
|
scale = point - 1 - dot;
|
|
}
|
|
else
|
|
{
|
|
// If there was no decimal then the unscaled value is just the number
|
|
// formed from all the digits and the scale is zero.
|
|
val.append(in, start, point - start);
|
|
scale = 0;
|
|
}
|
|
if (val.length() == 0)
|
|
throw new NumberFormatException("no digits seen");
|
|
|
|
// Prepend a negative sign if necessary.
|
|
if (negative)
|
|
val.insert(0, '-');
|
|
intVal = new BigInteger(val.toString());
|
|
|
|
// Now parse exponent.
|
|
// If point < end that means we broke out of the previous loop when we
|
|
// saw an 'e' or an 'E'.
|
|
if (point < end)
|
|
{
|
|
point++;
|
|
// Ignore a '+' sign.
|
|
if (in[point] == '+')
|
|
point++;
|
|
|
|
// Throw an exception if there were no digits found after the 'e'
|
|
// or 'E'.
|
|
if (point >= end)
|
|
throw new NumberFormatException("no exponent following e or E");
|
|
|
|
try
|
|
{
|
|
// Adjust the scale according to the exponent.
|
|
// Remember that the value of a BigDecimal is
|
|
// unscaledValue x Math.pow(10, -scale)
|
|
scale -= Integer.parseInt(new String(in, point, end - point));
|
|
}
|
|
catch (NumberFormatException ex)
|
|
{
|
|
throw new NumberFormatException("malformed exponent");
|
|
}
|
|
}
|
|
}
|
|
|
|
public BigDecimal (String num) throws NumberFormatException
|
|
{
|
|
int len = num.length();
|
|
int start = 0, point = 0;
|
|
int dot = -1;
|
|
boolean negative = false;
|
|
if (num.charAt(0) == '+')
|
|
{
|
|
++start;
|
|
++point;
|
|
}
|
|
else if (num.charAt(0) == '-')
|
|
{
|
|
++start;
|
|
++point;
|
|
negative = true;
|
|
}
|
|
|
|
while (point < len)
|
|
{
|
|
char c = num.charAt (point);
|
|
if (c == '.')
|
|
{
|
|
if (dot >= 0)
|
|
throw new NumberFormatException ("multiple `.'s in number");
|
|
dot = point;
|
|
}
|
|
else if (c == 'e' || c == 'E')
|
|
break;
|
|
else if (Character.digit (c, 10) < 0)
|
|
throw new NumberFormatException ("unrecognized character: " + c);
|
|
++point;
|
|
}
|
|
|
|
String val;
|
|
if (dot >= 0)
|
|
{
|
|
val = num.substring (start, dot) + num.substring (dot + 1, point);
|
|
scale = point - 1 - dot;
|
|
}
|
|
else
|
|
{
|
|
val = num.substring (start, point);
|
|
scale = 0;
|
|
}
|
|
if (val.length () == 0)
|
|
throw new NumberFormatException ("no digits seen");
|
|
|
|
if (negative)
|
|
val = "-" + val;
|
|
intVal = new BigInteger (val);
|
|
|
|
// Now parse exponent.
|
|
if (point < len)
|
|
{
|
|
point++;
|
|
if (num.charAt(point) == '+')
|
|
point++;
|
|
|
|
if (point >= len )
|
|
throw new NumberFormatException ("no exponent following e or E");
|
|
|
|
try
|
|
{
|
|
scale -= Integer.parseInt (num.substring (point));
|
|
}
|
|
catch (NumberFormatException ex)
|
|
{
|
|
throw new NumberFormatException ("malformed exponent");
|
|
}
|
|
}
|
|
}
|
|
|
|
public static BigDecimal valueOf (long val)
|
|
{
|
|
return valueOf (val, 0);
|
|
}
|
|
|
|
public static BigDecimal valueOf (long val, int scale)
|
|
throws NumberFormatException
|
|
{
|
|
if ((scale == 0) && ((int)val == val))
|
|
switch ((int) val)
|
|
{
|
|
case 0:
|
|
return ZERO;
|
|
case 1:
|
|
return ONE;
|
|
}
|
|
|
|
return new BigDecimal (BigInteger.valueOf (val), scale);
|
|
}
|
|
|
|
public BigDecimal add (BigDecimal val)
|
|
{
|
|
// For addition, need to line up decimals. Note that the movePointRight
|
|
// method cannot be used for this as it might return a BigDecimal with
|
|
// scale == 0 instead of the scale we need.
|
|
BigInteger op1 = intVal;
|
|
BigInteger op2 = val.intVal;
|
|
if (scale < val.scale)
|
|
op1 = op1.multiply (BigInteger.TEN.pow (val.scale - scale));
|
|
else if (scale > val.scale)
|
|
op2 = op2.multiply (BigInteger.TEN.pow (scale - val.scale));
|
|
|
|
return new BigDecimal (op1.add (op2), Math.max (scale, val.scale));
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is found first by calling the
|
|
* method add(val) and then by rounding according to the MathContext mc.
|
|
* @param val the augend
|
|
* @param mc the MathContext for rounding
|
|
* @throws ArithmeticException if the value is inexact but the rounding is
|
|
* RoundingMode.UNNECESSARY
|
|
* @return <code>this</code> + <code>val</code>, rounded if need be
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal add (BigDecimal val, MathContext mc)
|
|
{
|
|
return add(val).round(mc);
|
|
}
|
|
|
|
public BigDecimal subtract (BigDecimal val)
|
|
{
|
|
return this.add(val.negate());
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is found first by calling the
|
|
* method subtract(val) and then by rounding according to the MathContext mc.
|
|
* @param val the subtrahend
|
|
* @param mc the MathContext for rounding
|
|
* @throws ArithmeticException if the value is inexact but the rounding is
|
|
* RoundingMode.UNNECESSARY
|
|
* @return <code>this</code> - <code>val</code>, rounded if need be
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal subtract (BigDecimal val, MathContext mc)
|
|
{
|
|
return subtract(val).round(mc);
|
|
}
|
|
|
|
public BigDecimal multiply (BigDecimal val)
|
|
{
|
|
return new BigDecimal (intVal.multiply (val.intVal), scale + val.scale);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is (this x val) before it is rounded
|
|
* according to the MathContext mc.
|
|
* @param val the multiplicand
|
|
* @param mc the MathContext for rounding
|
|
* @return a new BigDecimal with value approximately (this x val)
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal multiply (BigDecimal val, MathContext mc)
|
|
{
|
|
return multiply(val).round(mc);
|
|
}
|
|
|
|
public BigDecimal divide (BigDecimal val, int roundingMode)
|
|
throws ArithmeticException, IllegalArgumentException
|
|
{
|
|
return divide (val, scale, roundingMode);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is (this / val), with the specified scale
|
|
* and rounding according to the RoundingMode
|
|
* @param val the divisor
|
|
* @param scale the scale of the BigDecimal returned
|
|
* @param roundingMode the rounding mode to use
|
|
* @return a BigDecimal whose value is approximately (this / val)
|
|
* @throws ArithmeticException if divisor is zero or the rounding mode is
|
|
* UNNECESSARY but the specified scale cannot represent the value exactly
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal divide(BigDecimal val,
|
|
int scale, RoundingMode roundingMode)
|
|
{
|
|
return divide (val, scale, roundingMode.ordinal());
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is (this / val) rounded according to the
|
|
* RoundingMode
|
|
* @param val the divisor
|
|
* @param roundingMode the rounding mode to use
|
|
* @return a BigDecimal whose value is approximately (this / val)
|
|
* @throws ArithmeticException if divisor is zero or the rounding mode is
|
|
* UNNECESSARY but the specified scale cannot represent the value exactly
|
|
*/
|
|
public BigDecimal divide (BigDecimal val, RoundingMode roundingMode)
|
|
{
|
|
return divide (val, scale, roundingMode.ordinal());
|
|
}
|
|
|
|
public BigDecimal divide(BigDecimal val, int newScale, int roundingMode)
|
|
throws ArithmeticException, IllegalArgumentException
|
|
{
|
|
if (roundingMode < 0 || roundingMode > 7)
|
|
throw
|
|
new IllegalArgumentException("illegal rounding mode: " + roundingMode);
|
|
|
|
if (intVal.signum () == 0) // handle special case of 0.0/0.0
|
|
return newScale == 0 ? ZERO : new BigDecimal (ZERO.intVal, newScale);
|
|
|
|
// Ensure that pow gets a non-negative value.
|
|
BigInteger valIntVal = val.intVal;
|
|
int power = newScale - (scale - val.scale);
|
|
if (power < 0)
|
|
{
|
|
// Effectively increase the scale of val to avoid an
|
|
// ArithmeticException for a negative power.
|
|
valIntVal = valIntVal.multiply (BigInteger.TEN.pow (-power));
|
|
power = 0;
|
|
}
|
|
|
|
BigInteger dividend = intVal.multiply (BigInteger.TEN.pow (power));
|
|
|
|
BigInteger parts[] = dividend.divideAndRemainder (valIntVal);
|
|
|
|
BigInteger unrounded = parts[0];
|
|
if (parts[1].signum () == 0) // no remainder, no rounding necessary
|
|
return new BigDecimal (unrounded, newScale);
|
|
|
|
if (roundingMode == ROUND_UNNECESSARY)
|
|
throw new ArithmeticException ("Rounding necessary");
|
|
|
|
int sign = intVal.signum () * valIntVal.signum ();
|
|
|
|
if (roundingMode == ROUND_CEILING)
|
|
roundingMode = (sign > 0) ? ROUND_UP : ROUND_DOWN;
|
|
else if (roundingMode == ROUND_FLOOR)
|
|
roundingMode = (sign < 0) ? ROUND_UP : ROUND_DOWN;
|
|
else
|
|
{
|
|
// half is -1 if remainder*2 < positive intValue (*power), 0 if equal,
|
|
// 1 if >. This implies that the remainder to round is less than,
|
|
// equal to, or greater than half way to the next digit.
|
|
BigInteger posRemainder
|
|
= parts[1].signum () < 0 ? parts[1].negate() : parts[1];
|
|
valIntVal = valIntVal.signum () < 0 ? valIntVal.negate () : valIntVal;
|
|
int half = posRemainder.shiftLeft(1).compareTo(valIntVal);
|
|
|
|
switch(roundingMode)
|
|
{
|
|
case ROUND_HALF_UP:
|
|
roundingMode = (half < 0) ? ROUND_DOWN : ROUND_UP;
|
|
break;
|
|
case ROUND_HALF_DOWN:
|
|
roundingMode = (half > 0) ? ROUND_UP : ROUND_DOWN;
|
|
break;
|
|
case ROUND_HALF_EVEN:
|
|
if (half < 0)
|
|
roundingMode = ROUND_DOWN;
|
|
else if (half > 0)
|
|
roundingMode = ROUND_UP;
|
|
else if (unrounded.testBit(0)) // odd, then ROUND_HALF_UP
|
|
roundingMode = ROUND_UP;
|
|
else // even, ROUND_HALF_DOWN
|
|
roundingMode = ROUND_DOWN;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (roundingMode == ROUND_UP)
|
|
unrounded = unrounded.add (BigInteger.valueOf (sign > 0 ? 1 : -1));
|
|
|
|
// roundingMode == ROUND_DOWN
|
|
return new BigDecimal (unrounded, newScale);
|
|
}
|
|
|
|
/**
|
|
* Performs division, if the resulting quotient requires rounding
|
|
* (has a nonterminating decimal expansion),
|
|
* an ArithmeticException is thrown.
|
|
* #see divide(BigDecimal, int, int)
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal divide(BigDecimal divisor)
|
|
throws ArithmeticException, IllegalArgumentException
|
|
{
|
|
return divide(divisor, scale, ROUND_UNNECESSARY);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is the remainder in the quotient
|
|
* this / val. This is obtained by
|
|
* subtract(divideToIntegralValue(val).multiply(val)).
|
|
* @param val the divisor
|
|
* @return a BigDecimal whose value is the remainder
|
|
* @throws ArithmeticException if val == 0
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal remainder(BigDecimal val)
|
|
{
|
|
return subtract(divideToIntegralValue(val).multiply(val));
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal array, the first element of which is the integer part
|
|
* of this / val, and the second element of which is the remainder of
|
|
* that quotient.
|
|
* @param val the divisor
|
|
* @return the above described BigDecimal array
|
|
* @throws ArithmeticException if val == 0
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal[] divideAndRemainder(BigDecimal val)
|
|
{
|
|
BigDecimal[] result = new BigDecimal[2];
|
|
result[0] = divideToIntegralValue(val);
|
|
result[1] = subtract(result[0].multiply(val));
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is the integer part of the quotient
|
|
* this / val. The preferred scale is this.scale - val.scale.
|
|
* @param val the divisor
|
|
* @return a BigDecimal whose value is the integer part of this / val.
|
|
* @throws ArithmeticException if val == 0
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal divideToIntegralValue(BigDecimal val)
|
|
{
|
|
return divide(val, ROUND_DOWN).floor().setScale(scale - val.scale, ROUND_DOWN);
|
|
}
|
|
|
|
/**
|
|
* Mutates this BigDecimal into one with no fractional part, whose value is
|
|
* equal to the largest integer that is <= to this BigDecimal. Note that
|
|
* since this method is private it is okay to mutate this BigDecimal.
|
|
* @return the BigDecimal obtained through the floor operation on this
|
|
* BigDecimal.
|
|
*/
|
|
private BigDecimal floor()
|
|
{
|
|
if (scale <= 0)
|
|
return this;
|
|
String intValStr = intVal.toString();
|
|
intValStr = intValStr.substring(0, intValStr.length() - scale);
|
|
intVal = new BigInteger(intValStr).multiply(BigInteger.TEN.pow(scale));
|
|
return this;
|
|
}
|
|
|
|
public int compareTo (BigDecimal val)
|
|
{
|
|
if (scale == val.scale)
|
|
return intVal.compareTo (val.intVal);
|
|
|
|
BigInteger thisParts[] =
|
|
intVal.divideAndRemainder (BigInteger.TEN.pow (scale));
|
|
BigInteger valParts[] =
|
|
val.intVal.divideAndRemainder (BigInteger.TEN.pow (val.scale));
|
|
|
|
int compare;
|
|
if ((compare = thisParts[0].compareTo (valParts[0])) != 0)
|
|
return compare;
|
|
|
|
// quotients are the same, so compare remainders
|
|
|
|
// Add some trailing zeros to the remainder with the smallest scale
|
|
if (scale < val.scale)
|
|
thisParts[1] = thisParts[1].multiply
|
|
(BigInteger.valueOf (10).pow (val.scale - scale));
|
|
else if (scale > val.scale)
|
|
valParts[1] = valParts[1].multiply
|
|
(BigInteger.valueOf (10).pow (scale - val.scale));
|
|
|
|
// and compare them
|
|
return thisParts[1].compareTo (valParts[1]);
|
|
}
|
|
|
|
public boolean equals (Object o)
|
|
{
|
|
return (o instanceof BigDecimal
|
|
&& scale == ((BigDecimal) o).scale
|
|
&& compareTo ((BigDecimal) o) == 0);
|
|
}
|
|
|
|
public int hashCode()
|
|
{
|
|
return intValue() ^ scale;
|
|
}
|
|
|
|
public BigDecimal max (BigDecimal val)
|
|
{
|
|
switch (compareTo (val))
|
|
{
|
|
case 1:
|
|
return this;
|
|
default:
|
|
return val;
|
|
}
|
|
}
|
|
|
|
public BigDecimal min (BigDecimal val)
|
|
{
|
|
switch (compareTo (val))
|
|
{
|
|
case -1:
|
|
return this;
|
|
default:
|
|
return val;
|
|
}
|
|
}
|
|
|
|
public BigDecimal movePointLeft (int n)
|
|
{
|
|
return (n < 0) ? movePointRight (-n) : new BigDecimal (intVal, scale + n);
|
|
}
|
|
|
|
public BigDecimal movePointRight (int n)
|
|
{
|
|
if (n < 0)
|
|
return movePointLeft (-n);
|
|
|
|
if (scale >= n)
|
|
return new BigDecimal (intVal, scale - n);
|
|
|
|
return new BigDecimal (intVal.multiply
|
|
(BigInteger.TEN.pow (n - scale)), 0);
|
|
}
|
|
|
|
public int signum ()
|
|
{
|
|
return intVal.signum ();
|
|
}
|
|
|
|
public int scale ()
|
|
{
|
|
return scale;
|
|
}
|
|
|
|
public BigInteger unscaledValue()
|
|
{
|
|
return intVal;
|
|
}
|
|
|
|
public BigDecimal abs ()
|
|
{
|
|
return new BigDecimal (intVal.abs (), scale);
|
|
}
|
|
|
|
public BigDecimal negate ()
|
|
{
|
|
return new BigDecimal (intVal.negate (), scale);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is found first by negating this via
|
|
* the negate() method, then by rounding according to the MathContext mc.
|
|
* @param mc the MathContext for rounding
|
|
* @return a BigDecimal whose value is approximately (-this)
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal negate(MathContext mc)
|
|
{
|
|
BigDecimal result = negate();
|
|
if (mc.getPrecision() != 0)
|
|
result = result.round(mc);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns this BigDecimal. This is included for symmetry with the
|
|
* method negate().
|
|
* @return this
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal plus()
|
|
{
|
|
return this;
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is found by rounding <code>this</code>
|
|
* according to the MathContext. This is the same as round(MathContext).
|
|
* @param mc the MathContext for rounding
|
|
* @return a BigDecimal whose value is <code>this</code> before being rounded
|
|
* @throws ArithmeticException if the value is inexact but the rounding mode
|
|
* is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal plus(MathContext mc)
|
|
{
|
|
return round(mc);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal which is this BigDecimal rounded according to the
|
|
* MathContext rounding settings.
|
|
* @param mc the MathContext that tells us how to round
|
|
* @return the rounded BigDecimal
|
|
*/
|
|
public BigDecimal round(MathContext mc)
|
|
{
|
|
int mcPrecision = mc.getPrecision();
|
|
int numToChop = precision() - mcPrecision;
|
|
// If mc specifies not to chop any digits or if we've already chopped
|
|
// enough digits (say by using a MathContext in the constructor for this
|
|
// BigDecimal) then just return this.
|
|
if (mcPrecision == 0 || numToChop <= 0)
|
|
return this;
|
|
|
|
// Make a new BigDecimal which is the correct power of 10 to chop off
|
|
// the required number of digits and then call divide.
|
|
BigDecimal div = new BigDecimal(BigInteger.TEN.pow(numToChop));
|
|
BigDecimal rounded = divide(div, scale, mc.getRoundingMode().ordinal());
|
|
rounded.scale -= numToChop;
|
|
rounded.precision = mcPrecision;
|
|
return rounded;
|
|
}
|
|
|
|
/**
|
|
* Returns the precision of this BigDecimal (the number of digits in the
|
|
* unscaled value). The precision of a zero value is 1.
|
|
* @return the number of digits in the unscaled value, or 1 if the value
|
|
* is zero.
|
|
*/
|
|
public int precision()
|
|
{
|
|
if (precision == 0)
|
|
{
|
|
String s = intVal.toString();
|
|
precision = s.length() - (( s.charAt(0) == '-' ) ? 1 : 0);
|
|
}
|
|
return precision;
|
|
}
|
|
|
|
/**
|
|
* Returns the String representation of this BigDecimal, using scientific
|
|
* notation if necessary. The following steps are taken to generate
|
|
* the result:
|
|
*
|
|
* 1. the BigInteger unscaledValue's toString method is called and if
|
|
* <code>scale == 0<code> is returned.
|
|
* 2. an <code>int adjExp</code> is created which is equal to the negation
|
|
* of <code>scale</code> plus the number of digits in the unscaled value,
|
|
* minus one.
|
|
* 3. if <code>scale >= 0 && adjExp >= -6</code> then we represent this
|
|
* BigDecimal without scientific notation. A decimal is added if the
|
|
* scale is positive and zeros are prepended as necessary.
|
|
* 4. if scale is negative or adjExp is less than -6 we use scientific
|
|
* notation. If the unscaled value has more than one digit, a decimal
|
|
* as inserted after the first digit, the character 'E' is appended
|
|
* and adjExp is appended.
|
|
*/
|
|
public String toString()
|
|
{
|
|
// bigStr is the String representation of the unscaled value. If
|
|
// scale is zero we simply return this.
|
|
String bigStr = intVal.toString();
|
|
if (scale == 0)
|
|
return bigStr;
|
|
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
|
|
|
StringBuilder val = new StringBuilder();
|
|
|
|
if (scale >= 0 && (point - 1) >= -6)
|
|
{
|
|
// Convert to character form without scientific notation.
|
|
if (point <= 0)
|
|
{
|
|
// Zeros need to be prepended to the StringBuilder.
|
|
if (negative)
|
|
val.append('-');
|
|
// Prepend a '0' and a '.' and then as many more '0's as necessary.
|
|
val.append('0').append('.');
|
|
while (point < 0)
|
|
{
|
|
val.append('0');
|
|
point++;
|
|
}
|
|
// Append the unscaled value.
|
|
val.append(bigStr.substring(negative ? 1 : 0));
|
|
}
|
|
else
|
|
{
|
|
// No zeros need to be prepended so the String is simply the
|
|
// unscaled value with the decimal point inserted.
|
|
val.append(bigStr);
|
|
val.insert(point + (negative ? 1 : 0), '.');
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We must use scientific notation to represent this BigDecimal.
|
|
val.append(bigStr);
|
|
// If there is more than one digit in the unscaled value we put a
|
|
// decimal after the first digit.
|
|
if (bigStr.length() > 1)
|
|
val.insert( ( negative ? 2 : 1 ), '.');
|
|
// And then append 'E' and the exponent = (point - 1).
|
|
val.append('E');
|
|
if (point - 1 >= 0)
|
|
val.append('+');
|
|
val.append( point - 1 );
|
|
}
|
|
return val.toString();
|
|
}
|
|
|
|
/**
|
|
* Returns the String representation of this BigDecimal, using engineering
|
|
* notation if necessary. This is similar to toString() but when exponents
|
|
* are used the exponent is made to be a multiple of 3 such that the integer
|
|
* part is between 1 and 999.
|
|
*
|
|
* @return a String representation of this BigDecimal in engineering notation
|
|
* @since 1.5
|
|
*/
|
|
public String toEngineeringString()
|
|
{
|
|
// bigStr is the String representation of the unscaled value. If
|
|
// scale is zero we simply return this.
|
|
String bigStr = intVal.toString();
|
|
if (scale == 0)
|
|
return bigStr;
|
|
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
|
|
|
// This is the adjusted exponent described above.
|
|
int adjExp = point - 1;
|
|
StringBuilder val = new StringBuilder();
|
|
|
|
if (scale >= 0 && adjExp >= -6)
|
|
{
|
|
// Convert to character form without scientific notation.
|
|
if (point <= 0)
|
|
{
|
|
// Zeros need to be prepended to the StringBuilder.
|
|
if (negative)
|
|
val.append('-');
|
|
// Prepend a '0' and a '.' and then as many more '0's as necessary.
|
|
val.append('0').append('.');
|
|
while (point < 0)
|
|
{
|
|
val.append('0');
|
|
point++;
|
|
}
|
|
// Append the unscaled value.
|
|
val.append(bigStr.substring(negative ? 1 : 0));
|
|
}
|
|
else
|
|
{
|
|
// No zeros need to be prepended so the String is simply the
|
|
// unscaled value with the decimal point inserted.
|
|
val.append(bigStr);
|
|
val.insert(point + (negative ? 1 : 0), '.');
|
|
}
|
|
}
|
|
else
|
|
{
|
|
// We must use scientific notation to represent this BigDecimal.
|
|
// The exponent must be a multiple of 3 and the integer part
|
|
// must be between 1 and 999.
|
|
val.append(bigStr);
|
|
int zeros = adjExp % 3;
|
|
int dot = 1;
|
|
if (adjExp > 0)
|
|
{
|
|
// If the exponent is positive we just move the decimal to the
|
|
// right and decrease the exponent until it is a multiple of 3.
|
|
dot += zeros;
|
|
adjExp -= zeros;
|
|
}
|
|
else
|
|
{
|
|
// If the exponent is negative then we move the dot to the right
|
|
// and decrease the exponent (increase its magnitude) until
|
|
// it is a multiple of 3. Note that this is not adjExp -= zeros
|
|
// because the mod operator doesn't give us the distance to the
|
|
// correct multiple of 3. (-5 mod 3) is -2 but the distance from
|
|
// -5 to the correct multiple of 3 (-6) is 1, not 2.
|
|
if (zeros == -2)
|
|
{
|
|
dot += 1;
|
|
adjExp -= 1;
|
|
}
|
|
else if (zeros == -1)
|
|
{
|
|
dot += 2;
|
|
adjExp -= 2;
|
|
}
|
|
}
|
|
|
|
// Either we have to append zeros because, for example, 1.1E+5 should
|
|
// be 110E+3, or we just have to put the decimal in the right place.
|
|
if (dot > val.length())
|
|
{
|
|
while (dot > val.length())
|
|
val.append('0');
|
|
}
|
|
else if (bigStr.length() > dot)
|
|
val.insert(dot + (negative ? 1 : 0), '.');
|
|
|
|
// And then append 'E' and the exponent (adjExp).
|
|
val.append('E');
|
|
if (adjExp >= 0)
|
|
val.append('+');
|
|
val.append(adjExp);
|
|
}
|
|
return val.toString();
|
|
}
|
|
|
|
/**
|
|
* Returns a String representation of this BigDecimal without using
|
|
* scientific notation. This is how toString() worked for releases 1.4
|
|
* and previous. Zeros may be added to the end of the String. For
|
|
* example, an unscaled value of 1234 and a scale of -3 would result in
|
|
* the String 1234000, but the toString() method would return
|
|
* 1.234E+6.
|
|
* @return a String representation of this BigDecimal
|
|
* @since 1.5
|
|
*/
|
|
public String toPlainString()
|
|
{
|
|
// If the scale is zero we simply return the String representation of the
|
|
// unscaled value.
|
|
String bigStr = intVal.toString();
|
|
if (scale == 0)
|
|
return bigStr;
|
|
|
|
// Remember if we have to put a negative sign at the start.
|
|
boolean negative = (bigStr.charAt(0) == '-');
|
|
|
|
int point = bigStr.length() - scale - (negative ? 1 : 0);
|
|
|
|
StringBuffer sb = new StringBuffer(bigStr.length() + 2
|
|
+ (point <= 0 ? (-point + 1) : 0));
|
|
if (point <= 0)
|
|
{
|
|
// We have to prepend zeros and a decimal point.
|
|
if (negative)
|
|
sb.append('-');
|
|
sb.append('0').append('.');
|
|
while (point < 0)
|
|
{
|
|
sb.append('0');
|
|
point++;
|
|
}
|
|
sb.append(bigStr.substring(negative ? 1 : 0));
|
|
}
|
|
else if (point < bigStr.length())
|
|
{
|
|
// No zeros need to be prepended or appended, just put the decimal
|
|
// in the right place.
|
|
sb.append(bigStr);
|
|
sb.insert(point + (negative ? 1 : 0), '.');
|
|
}
|
|
else
|
|
{
|
|
// We must append zeros instead of using scientific notation.
|
|
sb.append(bigStr);
|
|
for (int i = bigStr.length(); i < point; i++)
|
|
sb.append('0');
|
|
}
|
|
return sb.toString();
|
|
}
|
|
|
|
/**
|
|
* Converts this BigDecimal to a BigInteger. Any fractional part will
|
|
* be discarded.
|
|
* @return a BigDecimal whose value is equal to floor[this]
|
|
*/
|
|
public BigInteger toBigInteger ()
|
|
{
|
|
// If scale > 0 then we must divide, if scale > 0 then we must multiply,
|
|
// and if scale is zero then we just return intVal;
|
|
if (scale > 0)
|
|
return intVal.divide (BigInteger.TEN.pow (scale));
|
|
else if (scale < 0)
|
|
return intVal.multiply(BigInteger.TEN.pow(-scale));
|
|
return intVal;
|
|
}
|
|
|
|
/**
|
|
* Converts this BigDecimal into a BigInteger, throwing an
|
|
* ArithmeticException if the conversion is not exact.
|
|
* @return a BigInteger whose value is equal to the value of this BigDecimal
|
|
* @since 1.5
|
|
*/
|
|
public BigInteger toBigIntegerExact()
|
|
{
|
|
if (scale > 0)
|
|
{
|
|
// If we have to divide, we must check if the result is exact.
|
|
BigInteger[] result =
|
|
intVal.divideAndRemainder(BigInteger.TEN.pow(scale));
|
|
if (result[1].equals(BigInteger.ZERO))
|
|
return result[0];
|
|
throw new ArithmeticException("No exact BigInteger representation");
|
|
}
|
|
else if (scale < 0)
|
|
// If we're multiplying instead, then we needn't check for exactness.
|
|
return intVal.multiply(BigInteger.TEN.pow(-scale));
|
|
// If the scale is zero we can simply return intVal.
|
|
return intVal;
|
|
}
|
|
|
|
public int intValue ()
|
|
{
|
|
return toBigInteger ().intValue ();
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal which is numerically equal to this BigDecimal but
|
|
* with no trailing zeros in the representation. For example, if this
|
|
* BigDecimal has [unscaledValue, scale] = [6313000, 4] this method returns
|
|
* a BigDecimal with [unscaledValue, scale] = [6313, 1]. As another
|
|
* example, [12400, -2] would become [124, -4].
|
|
* @return a numerically equal BigDecimal with no trailing zeros
|
|
*/
|
|
public BigDecimal stripTrailingZeros()
|
|
{
|
|
String intValStr = intVal.toString();
|
|
int newScale = scale;
|
|
int pointer = intValStr.length() - 1;
|
|
// This loop adjusts pointer which will be used to give us the substring
|
|
// of intValStr to use in our new BigDecimal, and also accordingly
|
|
// adjusts the scale of our new BigDecimal.
|
|
while (intValStr.charAt(pointer) == '0')
|
|
{
|
|
pointer --;
|
|
newScale --;
|
|
}
|
|
// Create a new BigDecimal with the appropriate substring and then
|
|
// set its scale.
|
|
BigDecimal result = new BigDecimal(intValStr.substring(0, pointer + 1));
|
|
result.scale = newScale;
|
|
return result;
|
|
}
|
|
|
|
public long longValue ()
|
|
{
|
|
return toBigInteger().longValue();
|
|
}
|
|
|
|
public float floatValue()
|
|
{
|
|
return Float.valueOf(toString()).floatValue();
|
|
}
|
|
|
|
public double doubleValue()
|
|
{
|
|
return Double.valueOf(toString()).doubleValue();
|
|
}
|
|
|
|
public BigDecimal setScale (int scale) throws ArithmeticException
|
|
{
|
|
return setScale (scale, ROUND_UNNECESSARY);
|
|
}
|
|
|
|
public BigDecimal setScale (int scale, int roundingMode)
|
|
throws ArithmeticException, IllegalArgumentException
|
|
{
|
|
// NOTE: The 1.5 JRE doesn't throw this, ones prior to it do and
|
|
// the spec says it should. Nevertheless, if 1.6 doesn't fix this
|
|
// we should consider removing it.
|
|
if( scale < 0 ) throw new ArithmeticException("Scale parameter < 0.");
|
|
return divide (ONE, scale, roundingMode);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is the same as this BigDecimal but whose
|
|
* representation has a scale of <code>newScale</code>. If the scale is
|
|
* reduced then rounding may occur, according to the RoundingMode.
|
|
* @param newScale
|
|
* @param roundingMode
|
|
* @return a BigDecimal whose scale is as given, whose value is
|
|
* <code>this</code> with possible rounding
|
|
* @throws ArithmeticException if the rounding mode is UNNECESSARY but
|
|
* rounding is required
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal setScale(int newScale, RoundingMode roundingMode)
|
|
{
|
|
return setScale(newScale, roundingMode.ordinal());
|
|
}
|
|
|
|
/**
|
|
* Returns a new BigDecimal constructed from the BigDecimal(String)
|
|
* constructor using the Double.toString(double) method to obtain
|
|
* the String.
|
|
* @param val the double value used in Double.toString(double)
|
|
* @return a BigDecimal representation of val
|
|
* @throws NumberFormatException if val is NaN or infinite
|
|
* @since 1.5
|
|
*/
|
|
public static BigDecimal valueOf(double val)
|
|
{
|
|
if (Double.isInfinite(val) || Double.isNaN(val))
|
|
throw new NumberFormatException("argument cannot be NaN or infinite.");
|
|
return new BigDecimal(Double.toString(val));
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose numerical value is the numerical value
|
|
* of this BigDecimal multiplied by 10 to the power of <code>n</code>.
|
|
* @param n the power of ten
|
|
* @return the new BigDecimal
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal scaleByPowerOfTen(int n)
|
|
{
|
|
BigDecimal result = new BigDecimal(intVal, scale - n);
|
|
result.precision = precision;
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is <code>this</code> to the power of
|
|
* <code>n</code>.
|
|
* @param n the power
|
|
* @return the new BigDecimal
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal pow(int n)
|
|
{
|
|
if (n < 0 || n > 999999999)
|
|
throw new ArithmeticException("n must be between 0 and 999999999");
|
|
BigDecimal result = new BigDecimal(intVal.pow(n), scale * n);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is determined by first calling pow(n)
|
|
* and then by rounding according to the MathContext mc.
|
|
* @param n the power
|
|
* @param mc the MathContext
|
|
* @return the new BigDecimal
|
|
* @throws ArithmeticException if n < 0 or n > 999999999 or if the result is
|
|
* inexact but the rounding is RoundingMode.UNNECESSARY
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal pow(int n, MathContext mc)
|
|
{
|
|
// FIXME: The specs claim to use the X3.274-1996 algorithm. We
|
|
// currently do not.
|
|
return pow(n).round(mc);
|
|
}
|
|
|
|
/**
|
|
* Returns a BigDecimal whose value is the absolute value of this BigDecimal
|
|
* with rounding according to the given MathContext.
|
|
* @param mc the MathContext
|
|
* @return the new BigDecimal
|
|
*/
|
|
public BigDecimal abs(MathContext mc)
|
|
{
|
|
BigDecimal result = abs();
|
|
result = result.round(mc);
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Returns the size of a unit in the last place of this BigDecimal. This
|
|
* returns a BigDecimal with [unscaledValue, scale] = [1, this.scale()].
|
|
* @return the size of a unit in the last place of <code>this</code>.
|
|
* @since 1.5
|
|
*/
|
|
public BigDecimal ulp()
|
|
{
|
|
return new BigDecimal(BigInteger.ONE, scale);
|
|
}
|
|
|
|
/**
|
|
* Converts this BigDecimal to a long value.
|
|
* @return the long value
|
|
* @throws ArithmeticException if rounding occurs or if overflow occurs
|
|
* @since 1.5
|
|
*/
|
|
public long longValueExact()
|
|
{
|
|
// Set scale will throw an exception if rounding occurs.
|
|
BigDecimal temp = setScale(0, ROUND_UNNECESSARY);
|
|
BigInteger tempVal = temp.intVal;
|
|
// Check for overflow.
|
|
long result = intVal.longValue();
|
|
if (tempVal.compareTo(BigInteger.valueOf(Long.MAX_VALUE)) > 1
|
|
|| (result < 0 && signum() == 1) || (result > 0 && signum() == -1))
|
|
throw new ArithmeticException("this BigDecimal is too " +
|
|
"large to fit into the return type");
|
|
|
|
return intVal.longValue();
|
|
}
|
|
|
|
/**
|
|
* Converts this BigDecimal into an int by first calling longValueExact
|
|
* and then checking that the <code>long</code> returned from that
|
|
* method fits into an <code>int</code>.
|
|
* @return an int whose value is <code>this</code>
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
|
* or is too large to fit into an int.
|
|
* @since 1.5
|
|
*/
|
|
public int intValueExact()
|
|
{
|
|
long temp = longValueExact();
|
|
int result = (int)temp;
|
|
if (result != temp)
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into an int");
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Converts this BigDecimal into a byte by first calling longValueExact
|
|
* and then checking that the <code>long</code> returned from that
|
|
* method fits into a <code>byte</code>.
|
|
* @return a byte whose value is <code>this</code>
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
|
* or is too large to fit into a byte.
|
|
* @since 1.5
|
|
*/
|
|
public byte byteValueExact()
|
|
{
|
|
long temp = longValueExact();
|
|
byte result = (byte)temp;
|
|
if (result != temp)
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into a byte");
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* Converts this BigDecimal into a short by first calling longValueExact
|
|
* and then checking that the <code>long</code> returned from that
|
|
* method fits into a <code>short</code>.
|
|
* @return a short whose value is <code>this</code>
|
|
* @throws ArithmeticException if this BigDecimal has a fractional part
|
|
* or is too large to fit into a short.
|
|
* @since 1.5
|
|
*/
|
|
public short shortValueExact()
|
|
{
|
|
long temp = longValueExact();
|
|
short result = (short)temp;
|
|
if (result != temp)
|
|
throw new ArithmeticException ("this BigDecimal cannot fit into a short");
|
|
return result;
|
|
}
|
|
}
|