
Since we now only call is_just_move on the original instructions, we always have an rtx_insn* (not just a pattern), so we can use single_set on it. This makes no detectable difference at all on all thirty Linux targets I test, but it does help cris, and it is simpler, cleaner code anyway. 2020-07-16 Hans-Peter Nilsson <hp@axis.com> Segher Boessenkool <segher@kernel.crashing.org> PR target/93372 * combine.c (is_just_move): Take an rtx_insn* as argument. Use single_set on it.
15124 lines
486 KiB
C
15124 lines
486 KiB
C
/* Optimize by combining instructions for GNU compiler.
|
||
Copyright (C) 1987-2020 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GCC; see the file COPYING3. If not see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
/* This module is essentially the "combiner" phase of the U. of Arizona
|
||
Portable Optimizer, but redone to work on our list-structured
|
||
representation for RTL instead of their string representation.
|
||
|
||
The LOG_LINKS of each insn identify the most recent assignment
|
||
to each REG used in the insn. It is a list of previous insns,
|
||
each of which contains a SET for a REG that is used in this insn
|
||
and not used or set in between. LOG_LINKs never cross basic blocks.
|
||
They were set up by the preceding pass (lifetime analysis).
|
||
|
||
We try to combine each pair of insns joined by a logical link.
|
||
We also try to combine triplets of insns A, B and C when C has
|
||
a link back to B and B has a link back to A. Likewise for a
|
||
small number of quadruplets of insns A, B, C and D for which
|
||
there's high likelihood of success.
|
||
|
||
LOG_LINKS does not have links for use of the CC0. They don't
|
||
need to, because the insn that sets the CC0 is always immediately
|
||
before the insn that tests it. So we always regard a branch
|
||
insn as having a logical link to the preceding insn. The same is true
|
||
for an insn explicitly using CC0.
|
||
|
||
We check (with modified_between_p) to avoid combining in such a way
|
||
as to move a computation to a place where its value would be different.
|
||
|
||
Combination is done by mathematically substituting the previous
|
||
insn(s) values for the regs they set into the expressions in
|
||
the later insns that refer to these regs. If the result is a valid insn
|
||
for our target machine, according to the machine description,
|
||
we install it, delete the earlier insns, and update the data flow
|
||
information (LOG_LINKS and REG_NOTES) for what we did.
|
||
|
||
There are a few exceptions where the dataflow information isn't
|
||
completely updated (however this is only a local issue since it is
|
||
regenerated before the next pass that uses it):
|
||
|
||
- reg_live_length is not updated
|
||
- reg_n_refs is not adjusted in the rare case when a register is
|
||
no longer required in a computation
|
||
- there are extremely rare cases (see distribute_notes) when a
|
||
REG_DEAD note is lost
|
||
- a LOG_LINKS entry that refers to an insn with multiple SETs may be
|
||
removed because there is no way to know which register it was
|
||
linking
|
||
|
||
To simplify substitution, we combine only when the earlier insn(s)
|
||
consist of only a single assignment. To simplify updating afterward,
|
||
we never combine when a subroutine call appears in the middle.
|
||
|
||
Since we do not represent assignments to CC0 explicitly except when that
|
||
is all an insn does, there is no LOG_LINKS entry in an insn that uses
|
||
the condition code for the insn that set the condition code.
|
||
Fortunately, these two insns must be consecutive.
|
||
Therefore, every JUMP_INSN is taken to have an implicit logical link
|
||
to the preceding insn. This is not quite right, since non-jumps can
|
||
also use the condition code; but in practice such insns would not
|
||
combine anyway. */
|
||
|
||
#include "config.h"
|
||
#include "system.h"
|
||
#include "coretypes.h"
|
||
#include "backend.h"
|
||
#include "target.h"
|
||
#include "rtl.h"
|
||
#include "tree.h"
|
||
#include "cfghooks.h"
|
||
#include "predict.h"
|
||
#include "df.h"
|
||
#include "memmodel.h"
|
||
#include "tm_p.h"
|
||
#include "optabs.h"
|
||
#include "regs.h"
|
||
#include "emit-rtl.h"
|
||
#include "recog.h"
|
||
#include "cgraph.h"
|
||
#include "stor-layout.h"
|
||
#include "cfgrtl.h"
|
||
#include "cfgcleanup.h"
|
||
/* Include expr.h after insn-config.h so we get HAVE_conditional_move. */
|
||
#include "explow.h"
|
||
#include "insn-attr.h"
|
||
#include "rtlhooks-def.h"
|
||
#include "expr.h"
|
||
#include "tree-pass.h"
|
||
#include "valtrack.h"
|
||
#include "rtl-iter.h"
|
||
#include "print-rtl.h"
|
||
#include "function-abi.h"
|
||
|
||
/* Number of attempts to combine instructions in this function. */
|
||
|
||
static int combine_attempts;
|
||
|
||
/* Number of attempts that got as far as substitution in this function. */
|
||
|
||
static int combine_merges;
|
||
|
||
/* Number of instructions combined with added SETs in this function. */
|
||
|
||
static int combine_extras;
|
||
|
||
/* Number of instructions combined in this function. */
|
||
|
||
static int combine_successes;
|
||
|
||
/* Totals over entire compilation. */
|
||
|
||
static int total_attempts, total_merges, total_extras, total_successes;
|
||
|
||
/* combine_instructions may try to replace the right hand side of the
|
||
second instruction with the value of an associated REG_EQUAL note
|
||
before throwing it at try_combine. That is problematic when there
|
||
is a REG_DEAD note for a register used in the old right hand side
|
||
and can cause distribute_notes to do wrong things. This is the
|
||
second instruction if it has been so modified, null otherwise. */
|
||
|
||
static rtx_insn *i2mod;
|
||
|
||
/* When I2MOD is nonnull, this is a copy of the old right hand side. */
|
||
|
||
static rtx i2mod_old_rhs;
|
||
|
||
/* When I2MOD is nonnull, this is a copy of the new right hand side. */
|
||
|
||
static rtx i2mod_new_rhs;
|
||
|
||
struct reg_stat_type {
|
||
/* Record last point of death of (hard or pseudo) register n. */
|
||
rtx_insn *last_death;
|
||
|
||
/* Record last point of modification of (hard or pseudo) register n. */
|
||
rtx_insn *last_set;
|
||
|
||
/* The next group of fields allows the recording of the last value assigned
|
||
to (hard or pseudo) register n. We use this information to see if an
|
||
operation being processed is redundant given a prior operation performed
|
||
on the register. For example, an `and' with a constant is redundant if
|
||
all the zero bits are already known to be turned off.
|
||
|
||
We use an approach similar to that used by cse, but change it in the
|
||
following ways:
|
||
|
||
(1) We do not want to reinitialize at each label.
|
||
(2) It is useful, but not critical, to know the actual value assigned
|
||
to a register. Often just its form is helpful.
|
||
|
||
Therefore, we maintain the following fields:
|
||
|
||
last_set_value the last value assigned
|
||
last_set_label records the value of label_tick when the
|
||
register was assigned
|
||
last_set_table_tick records the value of label_tick when a
|
||
value using the register is assigned
|
||
last_set_invalid set to nonzero when it is not valid
|
||
to use the value of this register in some
|
||
register's value
|
||
|
||
To understand the usage of these tables, it is important to understand
|
||
the distinction between the value in last_set_value being valid and
|
||
the register being validly contained in some other expression in the
|
||
table.
|
||
|
||
(The next two parameters are out of date).
|
||
|
||
reg_stat[i].last_set_value is valid if it is nonzero, and either
|
||
reg_n_sets[i] is 1 or reg_stat[i].last_set_label == label_tick.
|
||
|
||
Register I may validly appear in any expression returned for the value
|
||
of another register if reg_n_sets[i] is 1. It may also appear in the
|
||
value for register J if reg_stat[j].last_set_invalid is zero, or
|
||
reg_stat[i].last_set_label < reg_stat[j].last_set_label.
|
||
|
||
If an expression is found in the table containing a register which may
|
||
not validly appear in an expression, the register is replaced by
|
||
something that won't match, (clobber (const_int 0)). */
|
||
|
||
/* Record last value assigned to (hard or pseudo) register n. */
|
||
|
||
rtx last_set_value;
|
||
|
||
/* Record the value of label_tick when an expression involving register n
|
||
is placed in last_set_value. */
|
||
|
||
int last_set_table_tick;
|
||
|
||
/* Record the value of label_tick when the value for register n is placed in
|
||
last_set_value. */
|
||
|
||
int last_set_label;
|
||
|
||
/* These fields are maintained in parallel with last_set_value and are
|
||
used to store the mode in which the register was last set, the bits
|
||
that were known to be zero when it was last set, and the number of
|
||
sign bits copies it was known to have when it was last set. */
|
||
|
||
unsigned HOST_WIDE_INT last_set_nonzero_bits;
|
||
char last_set_sign_bit_copies;
|
||
ENUM_BITFIELD(machine_mode) last_set_mode : 8;
|
||
|
||
/* Set nonzero if references to register n in expressions should not be
|
||
used. last_set_invalid is set nonzero when this register is being
|
||
assigned to and last_set_table_tick == label_tick. */
|
||
|
||
char last_set_invalid;
|
||
|
||
/* Some registers that are set more than once and used in more than one
|
||
basic block are nevertheless always set in similar ways. For example,
|
||
a QImode register may be loaded from memory in two places on a machine
|
||
where byte loads zero extend.
|
||
|
||
We record in the following fields if a register has some leading bits
|
||
that are always equal to the sign bit, and what we know about the
|
||
nonzero bits of a register, specifically which bits are known to be
|
||
zero.
|
||
|
||
If an entry is zero, it means that we don't know anything special. */
|
||
|
||
unsigned char sign_bit_copies;
|
||
|
||
unsigned HOST_WIDE_INT nonzero_bits;
|
||
|
||
/* Record the value of the label_tick when the last truncation
|
||
happened. The field truncated_to_mode is only valid if
|
||
truncation_label == label_tick. */
|
||
|
||
int truncation_label;
|
||
|
||
/* Record the last truncation seen for this register. If truncation
|
||
is not a nop to this mode we might be able to save an explicit
|
||
truncation if we know that value already contains a truncated
|
||
value. */
|
||
|
||
ENUM_BITFIELD(machine_mode) truncated_to_mode : 8;
|
||
};
|
||
|
||
|
||
static vec<reg_stat_type> reg_stat;
|
||
|
||
/* One plus the highest pseudo for which we track REG_N_SETS.
|
||
regstat_init_n_sets_and_refs allocates the array for REG_N_SETS just once,
|
||
but during combine_split_insns new pseudos can be created. As we don't have
|
||
updated DF information in that case, it is hard to initialize the array
|
||
after growing. The combiner only cares about REG_N_SETS (regno) == 1,
|
||
so instead of growing the arrays, just assume all newly created pseudos
|
||
during combine might be set multiple times. */
|
||
|
||
static unsigned int reg_n_sets_max;
|
||
|
||
/* Record the luid of the last insn that invalidated memory
|
||
(anything that writes memory, and subroutine calls, but not pushes). */
|
||
|
||
static int mem_last_set;
|
||
|
||
/* Record the luid of the last CALL_INSN
|
||
so we can tell whether a potential combination crosses any calls. */
|
||
|
||
static int last_call_luid;
|
||
|
||
/* When `subst' is called, this is the insn that is being modified
|
||
(by combining in a previous insn). The PATTERN of this insn
|
||
is still the old pattern partially modified and it should not be
|
||
looked at, but this may be used to examine the successors of the insn
|
||
to judge whether a simplification is valid. */
|
||
|
||
static rtx_insn *subst_insn;
|
||
|
||
/* This is the lowest LUID that `subst' is currently dealing with.
|
||
get_last_value will not return a value if the register was set at or
|
||
after this LUID. If not for this mechanism, we could get confused if
|
||
I2 or I1 in try_combine were an insn that used the old value of a register
|
||
to obtain a new value. In that case, we might erroneously get the
|
||
new value of the register when we wanted the old one. */
|
||
|
||
static int subst_low_luid;
|
||
|
||
/* This contains any hard registers that are used in newpat; reg_dead_at_p
|
||
must consider all these registers to be always live. */
|
||
|
||
static HARD_REG_SET newpat_used_regs;
|
||
|
||
/* This is an insn to which a LOG_LINKS entry has been added. If this
|
||
insn is the earlier than I2 or I3, combine should rescan starting at
|
||
that location. */
|
||
|
||
static rtx_insn *added_links_insn;
|
||
|
||
/* And similarly, for notes. */
|
||
|
||
static rtx_insn *added_notes_insn;
|
||
|
||
/* Basic block in which we are performing combines. */
|
||
static basic_block this_basic_block;
|
||
static bool optimize_this_for_speed_p;
|
||
|
||
|
||
/* Length of the currently allocated uid_insn_cost array. */
|
||
|
||
static int max_uid_known;
|
||
|
||
/* The following array records the insn_cost for every insn
|
||
in the instruction stream. */
|
||
|
||
static int *uid_insn_cost;
|
||
|
||
/* The following array records the LOG_LINKS for every insn in the
|
||
instruction stream as struct insn_link pointers. */
|
||
|
||
struct insn_link {
|
||
rtx_insn *insn;
|
||
unsigned int regno;
|
||
struct insn_link *next;
|
||
};
|
||
|
||
static struct insn_link **uid_log_links;
|
||
|
||
static inline int
|
||
insn_uid_check (const_rtx insn)
|
||
{
|
||
int uid = INSN_UID (insn);
|
||
gcc_checking_assert (uid <= max_uid_known);
|
||
return uid;
|
||
}
|
||
|
||
#define INSN_COST(INSN) (uid_insn_cost[insn_uid_check (INSN)])
|
||
#define LOG_LINKS(INSN) (uid_log_links[insn_uid_check (INSN)])
|
||
|
||
#define FOR_EACH_LOG_LINK(L, INSN) \
|
||
for ((L) = LOG_LINKS (INSN); (L); (L) = (L)->next)
|
||
|
||
/* Links for LOG_LINKS are allocated from this obstack. */
|
||
|
||
static struct obstack insn_link_obstack;
|
||
|
||
/* Allocate a link. */
|
||
|
||
static inline struct insn_link *
|
||
alloc_insn_link (rtx_insn *insn, unsigned int regno, struct insn_link *next)
|
||
{
|
||
struct insn_link *l
|
||
= (struct insn_link *) obstack_alloc (&insn_link_obstack,
|
||
sizeof (struct insn_link));
|
||
l->insn = insn;
|
||
l->regno = regno;
|
||
l->next = next;
|
||
return l;
|
||
}
|
||
|
||
/* Incremented for each basic block. */
|
||
|
||
static int label_tick;
|
||
|
||
/* Reset to label_tick for each extended basic block in scanning order. */
|
||
|
||
static int label_tick_ebb_start;
|
||
|
||
/* Mode used to compute significance in reg_stat[].nonzero_bits. It is the
|
||
largest integer mode that can fit in HOST_BITS_PER_WIDE_INT. */
|
||
|
||
static scalar_int_mode nonzero_bits_mode;
|
||
|
||
/* Nonzero when reg_stat[].nonzero_bits and reg_stat[].sign_bit_copies can
|
||
be safely used. It is zero while computing them and after combine has
|
||
completed. This former test prevents propagating values based on
|
||
previously set values, which can be incorrect if a variable is modified
|
||
in a loop. */
|
||
|
||
static int nonzero_sign_valid;
|
||
|
||
|
||
/* Record one modification to rtl structure
|
||
to be undone by storing old_contents into *where. */
|
||
|
||
enum undo_kind { UNDO_RTX, UNDO_INT, UNDO_MODE, UNDO_LINKS };
|
||
|
||
struct undo
|
||
{
|
||
struct undo *next;
|
||
enum undo_kind kind;
|
||
union { rtx r; int i; machine_mode m; struct insn_link *l; } old_contents;
|
||
union { rtx *r; int *i; struct insn_link **l; } where;
|
||
};
|
||
|
||
/* Record a bunch of changes to be undone, up to MAX_UNDO of them.
|
||
num_undo says how many are currently recorded.
|
||
|
||
other_insn is nonzero if we have modified some other insn in the process
|
||
of working on subst_insn. It must be verified too. */
|
||
|
||
struct undobuf
|
||
{
|
||
struct undo *undos;
|
||
struct undo *frees;
|
||
rtx_insn *other_insn;
|
||
};
|
||
|
||
static struct undobuf undobuf;
|
||
|
||
/* Number of times the pseudo being substituted for
|
||
was found and replaced. */
|
||
|
||
static int n_occurrences;
|
||
|
||
static rtx reg_nonzero_bits_for_combine (const_rtx, scalar_int_mode,
|
||
scalar_int_mode,
|
||
unsigned HOST_WIDE_INT *);
|
||
static rtx reg_num_sign_bit_copies_for_combine (const_rtx, scalar_int_mode,
|
||
scalar_int_mode,
|
||
unsigned int *);
|
||
static void do_SUBST (rtx *, rtx);
|
||
static void do_SUBST_INT (int *, int);
|
||
static void init_reg_last (void);
|
||
static void setup_incoming_promotions (rtx_insn *);
|
||
static void set_nonzero_bits_and_sign_copies (rtx, const_rtx, void *);
|
||
static int cant_combine_insn_p (rtx_insn *);
|
||
static int can_combine_p (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
|
||
rtx_insn *, rtx_insn *, rtx *, rtx *);
|
||
static int combinable_i3pat (rtx_insn *, rtx *, rtx, rtx, rtx, int, int, rtx *);
|
||
static int contains_muldiv (rtx);
|
||
static rtx_insn *try_combine (rtx_insn *, rtx_insn *, rtx_insn *, rtx_insn *,
|
||
int *, rtx_insn *);
|
||
static void undo_all (void);
|
||
static void undo_commit (void);
|
||
static rtx *find_split_point (rtx *, rtx_insn *, bool);
|
||
static rtx subst (rtx, rtx, rtx, int, int, int);
|
||
static rtx combine_simplify_rtx (rtx, machine_mode, int, int);
|
||
static rtx simplify_if_then_else (rtx);
|
||
static rtx simplify_set (rtx);
|
||
static rtx simplify_logical (rtx);
|
||
static rtx expand_compound_operation (rtx);
|
||
static const_rtx expand_field_assignment (const_rtx);
|
||
static rtx make_extraction (machine_mode, rtx, HOST_WIDE_INT,
|
||
rtx, unsigned HOST_WIDE_INT, int, int, int);
|
||
static int get_pos_from_mask (unsigned HOST_WIDE_INT,
|
||
unsigned HOST_WIDE_INT *);
|
||
static rtx canon_reg_for_combine (rtx, rtx);
|
||
static rtx force_int_to_mode (rtx, scalar_int_mode, scalar_int_mode,
|
||
scalar_int_mode, unsigned HOST_WIDE_INT, int);
|
||
static rtx force_to_mode (rtx, machine_mode,
|
||
unsigned HOST_WIDE_INT, int);
|
||
static rtx if_then_else_cond (rtx, rtx *, rtx *);
|
||
static rtx known_cond (rtx, enum rtx_code, rtx, rtx);
|
||
static int rtx_equal_for_field_assignment_p (rtx, rtx, bool = false);
|
||
static rtx make_field_assignment (rtx);
|
||
static rtx apply_distributive_law (rtx);
|
||
static rtx distribute_and_simplify_rtx (rtx, int);
|
||
static rtx simplify_and_const_int_1 (scalar_int_mode, rtx,
|
||
unsigned HOST_WIDE_INT);
|
||
static rtx simplify_and_const_int (rtx, scalar_int_mode, rtx,
|
||
unsigned HOST_WIDE_INT);
|
||
static int merge_outer_ops (enum rtx_code *, HOST_WIDE_INT *, enum rtx_code,
|
||
HOST_WIDE_INT, machine_mode, int *);
|
||
static rtx simplify_shift_const_1 (enum rtx_code, machine_mode, rtx, int);
|
||
static rtx simplify_shift_const (rtx, enum rtx_code, machine_mode, rtx,
|
||
int);
|
||
static int recog_for_combine (rtx *, rtx_insn *, rtx *);
|
||
static rtx gen_lowpart_for_combine (machine_mode, rtx);
|
||
static enum rtx_code simplify_compare_const (enum rtx_code, machine_mode,
|
||
rtx, rtx *);
|
||
static enum rtx_code simplify_comparison (enum rtx_code, rtx *, rtx *);
|
||
static void update_table_tick (rtx);
|
||
static void record_value_for_reg (rtx, rtx_insn *, rtx);
|
||
static void check_promoted_subreg (rtx_insn *, rtx);
|
||
static void record_dead_and_set_regs_1 (rtx, const_rtx, void *);
|
||
static void record_dead_and_set_regs (rtx_insn *);
|
||
static int get_last_value_validate (rtx *, rtx_insn *, int, int);
|
||
static rtx get_last_value (const_rtx);
|
||
static void reg_dead_at_p_1 (rtx, const_rtx, void *);
|
||
static int reg_dead_at_p (rtx, rtx_insn *);
|
||
static void move_deaths (rtx, rtx, int, rtx_insn *, rtx *);
|
||
static int reg_bitfield_target_p (rtx, rtx);
|
||
static void distribute_notes (rtx, rtx_insn *, rtx_insn *, rtx_insn *, rtx, rtx, rtx);
|
||
static void distribute_links (struct insn_link *);
|
||
static void mark_used_regs_combine (rtx);
|
||
static void record_promoted_value (rtx_insn *, rtx);
|
||
static bool unmentioned_reg_p (rtx, rtx);
|
||
static void record_truncated_values (rtx *, void *);
|
||
static bool reg_truncated_to_mode (machine_mode, const_rtx);
|
||
static rtx gen_lowpart_or_truncate (machine_mode, rtx);
|
||
|
||
|
||
/* It is not safe to use ordinary gen_lowpart in combine.
|
||
See comments in gen_lowpart_for_combine. */
|
||
#undef RTL_HOOKS_GEN_LOWPART
|
||
#define RTL_HOOKS_GEN_LOWPART gen_lowpart_for_combine
|
||
|
||
/* Our implementation of gen_lowpart never emits a new pseudo. */
|
||
#undef RTL_HOOKS_GEN_LOWPART_NO_EMIT
|
||
#define RTL_HOOKS_GEN_LOWPART_NO_EMIT gen_lowpart_for_combine
|
||
|
||
#undef RTL_HOOKS_REG_NONZERO_REG_BITS
|
||
#define RTL_HOOKS_REG_NONZERO_REG_BITS reg_nonzero_bits_for_combine
|
||
|
||
#undef RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES
|
||
#define RTL_HOOKS_REG_NUM_SIGN_BIT_COPIES reg_num_sign_bit_copies_for_combine
|
||
|
||
#undef RTL_HOOKS_REG_TRUNCATED_TO_MODE
|
||
#define RTL_HOOKS_REG_TRUNCATED_TO_MODE reg_truncated_to_mode
|
||
|
||
static const struct rtl_hooks combine_rtl_hooks = RTL_HOOKS_INITIALIZER;
|
||
|
||
|
||
/* Convenience wrapper for the canonicalize_comparison target hook.
|
||
Target hooks cannot use enum rtx_code. */
|
||
static inline void
|
||
target_canonicalize_comparison (enum rtx_code *code, rtx *op0, rtx *op1,
|
||
bool op0_preserve_value)
|
||
{
|
||
int code_int = (int)*code;
|
||
targetm.canonicalize_comparison (&code_int, op0, op1, op0_preserve_value);
|
||
*code = (enum rtx_code)code_int;
|
||
}
|
||
|
||
/* Try to split PATTERN found in INSN. This returns NULL_RTX if
|
||
PATTERN cannot be split. Otherwise, it returns an insn sequence.
|
||
This is a wrapper around split_insns which ensures that the
|
||
reg_stat vector is made larger if the splitter creates a new
|
||
register. */
|
||
|
||
static rtx_insn *
|
||
combine_split_insns (rtx pattern, rtx_insn *insn)
|
||
{
|
||
rtx_insn *ret;
|
||
unsigned int nregs;
|
||
|
||
ret = split_insns (pattern, insn);
|
||
nregs = max_reg_num ();
|
||
if (nregs > reg_stat.length ())
|
||
reg_stat.safe_grow_cleared (nregs);
|
||
return ret;
|
||
}
|
||
|
||
/* This is used by find_single_use to locate an rtx in LOC that
|
||
contains exactly one use of DEST, which is typically either a REG
|
||
or CC0. It returns a pointer to the innermost rtx expression
|
||
containing DEST. Appearances of DEST that are being used to
|
||
totally replace it are not counted. */
|
||
|
||
static rtx *
|
||
find_single_use_1 (rtx dest, rtx *loc)
|
||
{
|
||
rtx x = *loc;
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx *result = NULL;
|
||
rtx *this_result;
|
||
int i;
|
||
const char *fmt;
|
||
|
||
switch (code)
|
||
{
|
||
case CONST:
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
CASE_CONST_ANY:
|
||
case CLOBBER:
|
||
return 0;
|
||
|
||
case SET:
|
||
/* If the destination is anything other than CC0, PC, a REG or a SUBREG
|
||
of a REG that occupies all of the REG, the insn uses DEST if
|
||
it is mentioned in the destination or the source. Otherwise, we
|
||
need just check the source. */
|
||
if (GET_CODE (SET_DEST (x)) != CC0
|
||
&& GET_CODE (SET_DEST (x)) != PC
|
||
&& !REG_P (SET_DEST (x))
|
||
&& ! (GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_DEST (x)))
|
||
&& !read_modify_subreg_p (SET_DEST (x))))
|
||
break;
|
||
|
||
return find_single_use_1 (dest, &SET_SRC (x));
|
||
|
||
case MEM:
|
||
case SUBREG:
|
||
return find_single_use_1 (dest, &XEXP (x, 0));
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If it wasn't one of the common cases above, check each expression and
|
||
vector of this code. Look for a unique usage of DEST. */
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
if (dest == XEXP (x, i)
|
||
|| (REG_P (dest) && REG_P (XEXP (x, i))
|
||
&& REGNO (dest) == REGNO (XEXP (x, i))))
|
||
this_result = loc;
|
||
else
|
||
this_result = find_single_use_1 (dest, &XEXP (x, i));
|
||
|
||
if (result == NULL)
|
||
result = this_result;
|
||
else if (this_result)
|
||
/* Duplicate usage. */
|
||
return NULL;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
{
|
||
if (XVECEXP (x, i, j) == dest
|
||
|| (REG_P (dest)
|
||
&& REG_P (XVECEXP (x, i, j))
|
||
&& REGNO (XVECEXP (x, i, j)) == REGNO (dest)))
|
||
this_result = loc;
|
||
else
|
||
this_result = find_single_use_1 (dest, &XVECEXP (x, i, j));
|
||
|
||
if (result == NULL)
|
||
result = this_result;
|
||
else if (this_result)
|
||
return NULL;
|
||
}
|
||
}
|
||
}
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* See if DEST, produced in INSN, is used only a single time in the
|
||
sequel. If so, return a pointer to the innermost rtx expression in which
|
||
it is used.
|
||
|
||
If PLOC is nonzero, *PLOC is set to the insn containing the single use.
|
||
|
||
If DEST is cc0_rtx, we look only at the next insn. In that case, we don't
|
||
care about REG_DEAD notes or LOG_LINKS.
|
||
|
||
Otherwise, we find the single use by finding an insn that has a
|
||
LOG_LINKS pointing at INSN and has a REG_DEAD note for DEST. If DEST is
|
||
only referenced once in that insn, we know that it must be the first
|
||
and last insn referencing DEST. */
|
||
|
||
static rtx *
|
||
find_single_use (rtx dest, rtx_insn *insn, rtx_insn **ploc)
|
||
{
|
||
basic_block bb;
|
||
rtx_insn *next;
|
||
rtx *result;
|
||
struct insn_link *link;
|
||
|
||
if (dest == cc0_rtx)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (next == 0
|
||
|| (!NONJUMP_INSN_P (next) && !JUMP_P (next)))
|
||
return 0;
|
||
|
||
result = find_single_use_1 (dest, &PATTERN (next));
|
||
if (result && ploc)
|
||
*ploc = next;
|
||
return result;
|
||
}
|
||
|
||
if (!REG_P (dest))
|
||
return 0;
|
||
|
||
bb = BLOCK_FOR_INSN (insn);
|
||
for (next = NEXT_INSN (insn);
|
||
next && BLOCK_FOR_INSN (next) == bb;
|
||
next = NEXT_INSN (next))
|
||
if (NONDEBUG_INSN_P (next) && dead_or_set_p (next, dest))
|
||
{
|
||
FOR_EACH_LOG_LINK (link, next)
|
||
if (link->insn == insn && link->regno == REGNO (dest))
|
||
break;
|
||
|
||
if (link)
|
||
{
|
||
result = find_single_use_1 (dest, &PATTERN (next));
|
||
if (ploc)
|
||
*ploc = next;
|
||
return result;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Substitute NEWVAL, an rtx expression, into INTO, a place in some
|
||
insn. The substitution can be undone by undo_all. If INTO is already
|
||
set to NEWVAL, do not record this change. Because computing NEWVAL might
|
||
also call SUBST, we have to compute it before we put anything into
|
||
the undo table. */
|
||
|
||
static void
|
||
do_SUBST (rtx *into, rtx newval)
|
||
{
|
||
struct undo *buf;
|
||
rtx oldval = *into;
|
||
|
||
if (oldval == newval)
|
||
return;
|
||
|
||
/* We'd like to catch as many invalid transformations here as
|
||
possible. Unfortunately, there are way too many mode changes
|
||
that are perfectly valid, so we'd waste too much effort for
|
||
little gain doing the checks here. Focus on catching invalid
|
||
transformations involving integer constants. */
|
||
if (GET_MODE_CLASS (GET_MODE (oldval)) == MODE_INT
|
||
&& CONST_INT_P (newval))
|
||
{
|
||
/* Sanity check that we're replacing oldval with a CONST_INT
|
||
that is a valid sign-extension for the original mode. */
|
||
gcc_assert (INTVAL (newval)
|
||
== trunc_int_for_mode (INTVAL (newval), GET_MODE (oldval)));
|
||
|
||
/* Replacing the operand of a SUBREG or a ZERO_EXTEND with a
|
||
CONST_INT is not valid, because after the replacement, the
|
||
original mode would be gone. Unfortunately, we can't tell
|
||
when do_SUBST is called to replace the operand thereof, so we
|
||
perform this test on oldval instead, checking whether an
|
||
invalid replacement took place before we got here. */
|
||
gcc_assert (!(GET_CODE (oldval) == SUBREG
|
||
&& CONST_INT_P (SUBREG_REG (oldval))));
|
||
gcc_assert (!(GET_CODE (oldval) == ZERO_EXTEND
|
||
&& CONST_INT_P (XEXP (oldval, 0))));
|
||
}
|
||
|
||
if (undobuf.frees)
|
||
buf = undobuf.frees, undobuf.frees = buf->next;
|
||
else
|
||
buf = XNEW (struct undo);
|
||
|
||
buf->kind = UNDO_RTX;
|
||
buf->where.r = into;
|
||
buf->old_contents.r = oldval;
|
||
*into = newval;
|
||
|
||
buf->next = undobuf.undos, undobuf.undos = buf;
|
||
}
|
||
|
||
#define SUBST(INTO, NEWVAL) do_SUBST (&(INTO), (NEWVAL))
|
||
|
||
/* Similar to SUBST, but NEWVAL is an int expression. Note that substitution
|
||
for the value of a HOST_WIDE_INT value (including CONST_INT) is
|
||
not safe. */
|
||
|
||
static void
|
||
do_SUBST_INT (int *into, int newval)
|
||
{
|
||
struct undo *buf;
|
||
int oldval = *into;
|
||
|
||
if (oldval == newval)
|
||
return;
|
||
|
||
if (undobuf.frees)
|
||
buf = undobuf.frees, undobuf.frees = buf->next;
|
||
else
|
||
buf = XNEW (struct undo);
|
||
|
||
buf->kind = UNDO_INT;
|
||
buf->where.i = into;
|
||
buf->old_contents.i = oldval;
|
||
*into = newval;
|
||
|
||
buf->next = undobuf.undos, undobuf.undos = buf;
|
||
}
|
||
|
||
#define SUBST_INT(INTO, NEWVAL) do_SUBST_INT (&(INTO), (NEWVAL))
|
||
|
||
/* Similar to SUBST, but just substitute the mode. This is used when
|
||
changing the mode of a pseudo-register, so that any other
|
||
references to the entry in the regno_reg_rtx array will change as
|
||
well. */
|
||
|
||
static void
|
||
do_SUBST_MODE (rtx *into, machine_mode newval)
|
||
{
|
||
struct undo *buf;
|
||
machine_mode oldval = GET_MODE (*into);
|
||
|
||
if (oldval == newval)
|
||
return;
|
||
|
||
if (undobuf.frees)
|
||
buf = undobuf.frees, undobuf.frees = buf->next;
|
||
else
|
||
buf = XNEW (struct undo);
|
||
|
||
buf->kind = UNDO_MODE;
|
||
buf->where.r = into;
|
||
buf->old_contents.m = oldval;
|
||
adjust_reg_mode (*into, newval);
|
||
|
||
buf->next = undobuf.undos, undobuf.undos = buf;
|
||
}
|
||
|
||
#define SUBST_MODE(INTO, NEWVAL) do_SUBST_MODE (&(INTO), (NEWVAL))
|
||
|
||
/* Similar to SUBST, but NEWVAL is a LOG_LINKS expression. */
|
||
|
||
static void
|
||
do_SUBST_LINK (struct insn_link **into, struct insn_link *newval)
|
||
{
|
||
struct undo *buf;
|
||
struct insn_link * oldval = *into;
|
||
|
||
if (oldval == newval)
|
||
return;
|
||
|
||
if (undobuf.frees)
|
||
buf = undobuf.frees, undobuf.frees = buf->next;
|
||
else
|
||
buf = XNEW (struct undo);
|
||
|
||
buf->kind = UNDO_LINKS;
|
||
buf->where.l = into;
|
||
buf->old_contents.l = oldval;
|
||
*into = newval;
|
||
|
||
buf->next = undobuf.undos, undobuf.undos = buf;
|
||
}
|
||
|
||
#define SUBST_LINK(oldval, newval) do_SUBST_LINK (&oldval, newval)
|
||
|
||
/* Subroutine of try_combine. Determine whether the replacement patterns
|
||
NEWPAT, NEWI2PAT and NEWOTHERPAT are cheaper according to insn_cost
|
||
than the original sequence I0, I1, I2, I3 and undobuf.other_insn. Note
|
||
that I0, I1 and/or NEWI2PAT may be NULL_RTX. Similarly, NEWOTHERPAT and
|
||
undobuf.other_insn may also both be NULL_RTX. Return false if the cost
|
||
of all the instructions can be estimated and the replacements are more
|
||
expensive than the original sequence. */
|
||
|
||
static bool
|
||
combine_validate_cost (rtx_insn *i0, rtx_insn *i1, rtx_insn *i2, rtx_insn *i3,
|
||
rtx newpat, rtx newi2pat, rtx newotherpat)
|
||
{
|
||
int i0_cost, i1_cost, i2_cost, i3_cost;
|
||
int new_i2_cost, new_i3_cost;
|
||
int old_cost, new_cost;
|
||
|
||
/* Lookup the original insn_costs. */
|
||
i2_cost = INSN_COST (i2);
|
||
i3_cost = INSN_COST (i3);
|
||
|
||
if (i1)
|
||
{
|
||
i1_cost = INSN_COST (i1);
|
||
if (i0)
|
||
{
|
||
i0_cost = INSN_COST (i0);
|
||
old_cost = (i0_cost > 0 && i1_cost > 0 && i2_cost > 0 && i3_cost > 0
|
||
? i0_cost + i1_cost + i2_cost + i3_cost : 0);
|
||
}
|
||
else
|
||
{
|
||
old_cost = (i1_cost > 0 && i2_cost > 0 && i3_cost > 0
|
||
? i1_cost + i2_cost + i3_cost : 0);
|
||
i0_cost = 0;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
old_cost = (i2_cost > 0 && i3_cost > 0) ? i2_cost + i3_cost : 0;
|
||
i1_cost = i0_cost = 0;
|
||
}
|
||
|
||
/* If we have split a PARALLEL I2 to I1,I2, we have counted its cost twice;
|
||
correct that. */
|
||
if (old_cost && i1 && INSN_UID (i1) == INSN_UID (i2))
|
||
old_cost -= i1_cost;
|
||
|
||
|
||
/* Calculate the replacement insn_costs. */
|
||
rtx tmp = PATTERN (i3);
|
||
PATTERN (i3) = newpat;
|
||
int tmpi = INSN_CODE (i3);
|
||
INSN_CODE (i3) = -1;
|
||
new_i3_cost = insn_cost (i3, optimize_this_for_speed_p);
|
||
PATTERN (i3) = tmp;
|
||
INSN_CODE (i3) = tmpi;
|
||
if (newi2pat)
|
||
{
|
||
tmp = PATTERN (i2);
|
||
PATTERN (i2) = newi2pat;
|
||
tmpi = INSN_CODE (i2);
|
||
INSN_CODE (i2) = -1;
|
||
new_i2_cost = insn_cost (i2, optimize_this_for_speed_p);
|
||
PATTERN (i2) = tmp;
|
||
INSN_CODE (i2) = tmpi;
|
||
new_cost = (new_i2_cost > 0 && new_i3_cost > 0)
|
||
? new_i2_cost + new_i3_cost : 0;
|
||
}
|
||
else
|
||
{
|
||
new_cost = new_i3_cost;
|
||
new_i2_cost = 0;
|
||
}
|
||
|
||
if (undobuf.other_insn)
|
||
{
|
||
int old_other_cost, new_other_cost;
|
||
|
||
old_other_cost = INSN_COST (undobuf.other_insn);
|
||
tmp = PATTERN (undobuf.other_insn);
|
||
PATTERN (undobuf.other_insn) = newotherpat;
|
||
tmpi = INSN_CODE (undobuf.other_insn);
|
||
INSN_CODE (undobuf.other_insn) = -1;
|
||
new_other_cost = insn_cost (undobuf.other_insn,
|
||
optimize_this_for_speed_p);
|
||
PATTERN (undobuf.other_insn) = tmp;
|
||
INSN_CODE (undobuf.other_insn) = tmpi;
|
||
if (old_other_cost > 0 && new_other_cost > 0)
|
||
{
|
||
old_cost += old_other_cost;
|
||
new_cost += new_other_cost;
|
||
}
|
||
else
|
||
old_cost = 0;
|
||
}
|
||
|
||
/* Disallow this combination if both new_cost and old_cost are greater than
|
||
zero, and new_cost is greater than old cost. */
|
||
int reject = old_cost > 0 && new_cost > old_cost;
|
||
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "%s combination of insns ",
|
||
reject ? "rejecting" : "allowing");
|
||
if (i0)
|
||
fprintf (dump_file, "%d, ", INSN_UID (i0));
|
||
if (i1 && INSN_UID (i1) != INSN_UID (i2))
|
||
fprintf (dump_file, "%d, ", INSN_UID (i1));
|
||
fprintf (dump_file, "%d and %d\n", INSN_UID (i2), INSN_UID (i3));
|
||
|
||
fprintf (dump_file, "original costs ");
|
||
if (i0)
|
||
fprintf (dump_file, "%d + ", i0_cost);
|
||
if (i1 && INSN_UID (i1) != INSN_UID (i2))
|
||
fprintf (dump_file, "%d + ", i1_cost);
|
||
fprintf (dump_file, "%d + %d = %d\n", i2_cost, i3_cost, old_cost);
|
||
|
||
if (newi2pat)
|
||
fprintf (dump_file, "replacement costs %d + %d = %d\n",
|
||
new_i2_cost, new_i3_cost, new_cost);
|
||
else
|
||
fprintf (dump_file, "replacement cost %d\n", new_cost);
|
||
}
|
||
|
||
if (reject)
|
||
return false;
|
||
|
||
/* Update the uid_insn_cost array with the replacement costs. */
|
||
INSN_COST (i2) = new_i2_cost;
|
||
INSN_COST (i3) = new_i3_cost;
|
||
if (i1)
|
||
{
|
||
INSN_COST (i1) = 0;
|
||
if (i0)
|
||
INSN_COST (i0) = 0;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
|
||
/* Delete any insns that copy a register to itself.
|
||
Return true if the CFG was changed. */
|
||
|
||
static bool
|
||
delete_noop_moves (void)
|
||
{
|
||
rtx_insn *insn, *next;
|
||
basic_block bb;
|
||
|
||
bool edges_deleted = false;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb)); insn = next)
|
||
{
|
||
next = NEXT_INSN (insn);
|
||
if (INSN_P (insn) && noop_move_p (insn))
|
||
{
|
||
if (dump_file)
|
||
fprintf (dump_file, "deleting noop move %d\n", INSN_UID (insn));
|
||
|
||
edges_deleted |= delete_insn_and_edges (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
return edges_deleted;
|
||
}
|
||
|
||
|
||
/* Return false if we do not want to (or cannot) combine DEF. */
|
||
static bool
|
||
can_combine_def_p (df_ref def)
|
||
{
|
||
/* Do not consider if it is pre/post modification in MEM. */
|
||
if (DF_REF_FLAGS (def) & DF_REF_PRE_POST_MODIFY)
|
||
return false;
|
||
|
||
unsigned int regno = DF_REF_REGNO (def);
|
||
|
||
/* Do not combine frame pointer adjustments. */
|
||
if ((regno == FRAME_POINTER_REGNUM
|
||
&& (!reload_completed || frame_pointer_needed))
|
||
|| (!HARD_FRAME_POINTER_IS_FRAME_POINTER
|
||
&& regno == HARD_FRAME_POINTER_REGNUM
|
||
&& (!reload_completed || frame_pointer_needed))
|
||
|| (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& regno == ARG_POINTER_REGNUM && fixed_regs[regno]))
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return false if we do not want to (or cannot) combine USE. */
|
||
static bool
|
||
can_combine_use_p (df_ref use)
|
||
{
|
||
/* Do not consider the usage of the stack pointer by function call. */
|
||
if (DF_REF_FLAGS (use) & DF_REF_CALL_STACK_USAGE)
|
||
return false;
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Fill in log links field for all insns. */
|
||
|
||
static void
|
||
create_log_links (void)
|
||
{
|
||
basic_block bb;
|
||
rtx_insn **next_use;
|
||
rtx_insn *insn;
|
||
df_ref def, use;
|
||
|
||
next_use = XCNEWVEC (rtx_insn *, max_reg_num ());
|
||
|
||
/* Pass through each block from the end, recording the uses of each
|
||
register and establishing log links when def is encountered.
|
||
Note that we do not clear next_use array in order to save time,
|
||
so we have to test whether the use is in the same basic block as def.
|
||
|
||
There are a few cases below when we do not consider the definition or
|
||
usage -- these are taken from original flow.c did. Don't ask me why it is
|
||
done this way; I don't know and if it works, I don't want to know. */
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
FOR_BB_INSNS_REVERSE (bb, insn)
|
||
{
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
/* Log links are created only once. */
|
||
gcc_assert (!LOG_LINKS (insn));
|
||
|
||
FOR_EACH_INSN_DEF (def, insn)
|
||
{
|
||
unsigned int regno = DF_REF_REGNO (def);
|
||
rtx_insn *use_insn;
|
||
|
||
if (!next_use[regno])
|
||
continue;
|
||
|
||
if (!can_combine_def_p (def))
|
||
continue;
|
||
|
||
use_insn = next_use[regno];
|
||
next_use[regno] = NULL;
|
||
|
||
if (BLOCK_FOR_INSN (use_insn) != bb)
|
||
continue;
|
||
|
||
/* flow.c claimed:
|
||
|
||
We don't build a LOG_LINK for hard registers contained
|
||
in ASM_OPERANDs. If these registers get replaced,
|
||
we might wind up changing the semantics of the insn,
|
||
even if reload can make what appear to be valid
|
||
assignments later. */
|
||
if (regno < FIRST_PSEUDO_REGISTER
|
||
&& asm_noperands (PATTERN (use_insn)) >= 0)
|
||
continue;
|
||
|
||
/* Don't add duplicate links between instructions. */
|
||
struct insn_link *links;
|
||
FOR_EACH_LOG_LINK (links, use_insn)
|
||
if (insn == links->insn && regno == links->regno)
|
||
break;
|
||
|
||
if (!links)
|
||
LOG_LINKS (use_insn)
|
||
= alloc_insn_link (insn, regno, LOG_LINKS (use_insn));
|
||
}
|
||
|
||
FOR_EACH_INSN_USE (use, insn)
|
||
if (can_combine_use_p (use))
|
||
next_use[DF_REF_REGNO (use)] = insn;
|
||
}
|
||
}
|
||
|
||
free (next_use);
|
||
}
|
||
|
||
/* Walk the LOG_LINKS of insn B to see if we find a reference to A. Return
|
||
true if we found a LOG_LINK that proves that A feeds B. This only works
|
||
if there are no instructions between A and B which could have a link
|
||
depending on A, since in that case we would not record a link for B.
|
||
We also check the implicit dependency created by a cc0 setter/user
|
||
pair. */
|
||
|
||
static bool
|
||
insn_a_feeds_b (rtx_insn *a, rtx_insn *b)
|
||
{
|
||
struct insn_link *links;
|
||
FOR_EACH_LOG_LINK (links, b)
|
||
if (links->insn == a)
|
||
return true;
|
||
if (HAVE_cc0 && sets_cc0_p (a))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* Main entry point for combiner. F is the first insn of the function.
|
||
NREGS is the first unused pseudo-reg number.
|
||
|
||
Return nonzero if the CFG was changed (e.g. if the combiner has
|
||
turned an indirect jump instruction into a direct jump). */
|
||
static int
|
||
combine_instructions (rtx_insn *f, unsigned int nregs)
|
||
{
|
||
rtx_insn *insn, *next;
|
||
rtx_insn *prev;
|
||
struct insn_link *links, *nextlinks;
|
||
rtx_insn *first;
|
||
basic_block last_bb;
|
||
|
||
int new_direct_jump_p = 0;
|
||
|
||
for (first = f; first && !NONDEBUG_INSN_P (first); )
|
||
first = NEXT_INSN (first);
|
||
if (!first)
|
||
return 0;
|
||
|
||
combine_attempts = 0;
|
||
combine_merges = 0;
|
||
combine_extras = 0;
|
||
combine_successes = 0;
|
||
|
||
rtl_hooks = combine_rtl_hooks;
|
||
|
||
reg_stat.safe_grow_cleared (nregs);
|
||
|
||
init_recog_no_volatile ();
|
||
|
||
/* Allocate array for insn info. */
|
||
max_uid_known = get_max_uid ();
|
||
uid_log_links = XCNEWVEC (struct insn_link *, max_uid_known + 1);
|
||
uid_insn_cost = XCNEWVEC (int, max_uid_known + 1);
|
||
gcc_obstack_init (&insn_link_obstack);
|
||
|
||
nonzero_bits_mode = int_mode_for_size (HOST_BITS_PER_WIDE_INT, 0).require ();
|
||
|
||
/* Don't use reg_stat[].nonzero_bits when computing it. This can cause
|
||
problems when, for example, we have j <<= 1 in a loop. */
|
||
|
||
nonzero_sign_valid = 0;
|
||
label_tick = label_tick_ebb_start = 1;
|
||
|
||
/* Scan all SETs and see if we can deduce anything about what
|
||
bits are known to be zero for some registers and how many copies
|
||
of the sign bit are known to exist for those registers.
|
||
|
||
Also set any known values so that we can use it while searching
|
||
for what bits are known to be set. */
|
||
|
||
setup_incoming_promotions (first);
|
||
/* Allow the entry block and the first block to fall into the same EBB.
|
||
Conceptually the incoming promotions are assigned to the entry block. */
|
||
last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
||
|
||
create_log_links ();
|
||
FOR_EACH_BB_FN (this_basic_block, cfun)
|
||
{
|
||
optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
|
||
last_call_luid = 0;
|
||
mem_last_set = -1;
|
||
|
||
label_tick++;
|
||
if (!single_pred_p (this_basic_block)
|
||
|| single_pred (this_basic_block) != last_bb)
|
||
label_tick_ebb_start = label_tick;
|
||
last_bb = this_basic_block;
|
||
|
||
FOR_BB_INSNS (this_basic_block, insn)
|
||
if (INSN_P (insn) && BLOCK_FOR_INSN (insn))
|
||
{
|
||
rtx links;
|
||
|
||
subst_low_luid = DF_INSN_LUID (insn);
|
||
subst_insn = insn;
|
||
|
||
note_stores (insn, set_nonzero_bits_and_sign_copies, insn);
|
||
record_dead_and_set_regs (insn);
|
||
|
||
if (AUTO_INC_DEC)
|
||
for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
|
||
if (REG_NOTE_KIND (links) == REG_INC)
|
||
set_nonzero_bits_and_sign_copies (XEXP (links, 0), NULL_RTX,
|
||
insn);
|
||
|
||
/* Record the current insn_cost of this instruction. */
|
||
INSN_COST (insn) = insn_cost (insn, optimize_this_for_speed_p);
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "insn_cost %d for ", INSN_COST (insn));
|
||
dump_insn_slim (dump_file, insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
nonzero_sign_valid = 1;
|
||
|
||
/* Now scan all the insns in forward order. */
|
||
label_tick = label_tick_ebb_start = 1;
|
||
init_reg_last ();
|
||
setup_incoming_promotions (first);
|
||
last_bb = ENTRY_BLOCK_PTR_FOR_FN (cfun);
|
||
int max_combine = param_max_combine_insns;
|
||
|
||
FOR_EACH_BB_FN (this_basic_block, cfun)
|
||
{
|
||
rtx_insn *last_combined_insn = NULL;
|
||
|
||
/* Ignore instruction combination in basic blocks that are going to
|
||
be removed as unreachable anyway. See PR82386. */
|
||
if (EDGE_COUNT (this_basic_block->preds) == 0)
|
||
continue;
|
||
|
||
optimize_this_for_speed_p = optimize_bb_for_speed_p (this_basic_block);
|
||
last_call_luid = 0;
|
||
mem_last_set = -1;
|
||
|
||
label_tick++;
|
||
if (!single_pred_p (this_basic_block)
|
||
|| single_pred (this_basic_block) != last_bb)
|
||
label_tick_ebb_start = label_tick;
|
||
last_bb = this_basic_block;
|
||
|
||
rtl_profile_for_bb (this_basic_block);
|
||
for (insn = BB_HEAD (this_basic_block);
|
||
insn != NEXT_INSN (BB_END (this_basic_block));
|
||
insn = next ? next : NEXT_INSN (insn))
|
||
{
|
||
next = 0;
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
while (last_combined_insn
|
||
&& (!NONDEBUG_INSN_P (last_combined_insn)
|
||
|| last_combined_insn->deleted ()))
|
||
last_combined_insn = PREV_INSN (last_combined_insn);
|
||
if (last_combined_insn == NULL_RTX
|
||
|| BLOCK_FOR_INSN (last_combined_insn) != this_basic_block
|
||
|| DF_INSN_LUID (last_combined_insn) <= DF_INSN_LUID (insn))
|
||
last_combined_insn = insn;
|
||
|
||
/* See if we know about function return values before this
|
||
insn based upon SUBREG flags. */
|
||
check_promoted_subreg (insn, PATTERN (insn));
|
||
|
||
/* See if we can find hardregs and subreg of pseudos in
|
||
narrower modes. This could help turning TRUNCATEs
|
||
into SUBREGs. */
|
||
note_uses (&PATTERN (insn), record_truncated_values, NULL);
|
||
|
||
/* Try this insn with each insn it links back to. */
|
||
|
||
FOR_EACH_LOG_LINK (links, insn)
|
||
if ((next = try_combine (insn, links->insn, NULL,
|
||
NULL, &new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
{
|
||
statistics_counter_event (cfun, "two-insn combine", 1);
|
||
goto retry;
|
||
}
|
||
|
||
/* Try each sequence of three linked insns ending with this one. */
|
||
|
||
if (max_combine >= 3)
|
||
FOR_EACH_LOG_LINK (links, insn)
|
||
{
|
||
rtx_insn *link = links->insn;
|
||
|
||
/* If the linked insn has been replaced by a note, then there
|
||
is no point in pursuing this chain any further. */
|
||
if (NOTE_P (link))
|
||
continue;
|
||
|
||
FOR_EACH_LOG_LINK (nextlinks, link)
|
||
if ((next = try_combine (insn, link, nextlinks->insn,
|
||
NULL, &new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
{
|
||
statistics_counter_event (cfun, "three-insn combine", 1);
|
||
goto retry;
|
||
}
|
||
}
|
||
|
||
/* Try to combine a jump insn that uses CC0
|
||
with a preceding insn that sets CC0, and maybe with its
|
||
logical predecessor as well.
|
||
This is how we make decrement-and-branch insns.
|
||
We need this special code because data flow connections
|
||
via CC0 do not get entered in LOG_LINKS. */
|
||
|
||
if (HAVE_cc0
|
||
&& JUMP_P (insn)
|
||
&& (prev = prev_nonnote_insn (insn)) != 0
|
||
&& NONJUMP_INSN_P (prev)
|
||
&& sets_cc0_p (PATTERN (prev)))
|
||
{
|
||
if ((next = try_combine (insn, prev, NULL, NULL,
|
||
&new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
goto retry;
|
||
|
||
FOR_EACH_LOG_LINK (nextlinks, prev)
|
||
if ((next = try_combine (insn, prev, nextlinks->insn,
|
||
NULL, &new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
goto retry;
|
||
}
|
||
|
||
/* Do the same for an insn that explicitly references CC0. */
|
||
if (HAVE_cc0 && NONJUMP_INSN_P (insn)
|
||
&& (prev = prev_nonnote_insn (insn)) != 0
|
||
&& NONJUMP_INSN_P (prev)
|
||
&& sets_cc0_p (PATTERN (prev))
|
||
&& GET_CODE (PATTERN (insn)) == SET
|
||
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (insn))))
|
||
{
|
||
if ((next = try_combine (insn, prev, NULL, NULL,
|
||
&new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
goto retry;
|
||
|
||
FOR_EACH_LOG_LINK (nextlinks, prev)
|
||
if ((next = try_combine (insn, prev, nextlinks->insn,
|
||
NULL, &new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
goto retry;
|
||
}
|
||
|
||
/* Finally, see if any of the insns that this insn links to
|
||
explicitly references CC0. If so, try this insn, that insn,
|
||
and its predecessor if it sets CC0. */
|
||
if (HAVE_cc0)
|
||
{
|
||
FOR_EACH_LOG_LINK (links, insn)
|
||
if (NONJUMP_INSN_P (links->insn)
|
||
&& GET_CODE (PATTERN (links->insn)) == SET
|
||
&& reg_mentioned_p (cc0_rtx, SET_SRC (PATTERN (links->insn)))
|
||
&& (prev = prev_nonnote_insn (links->insn)) != 0
|
||
&& NONJUMP_INSN_P (prev)
|
||
&& sets_cc0_p (PATTERN (prev))
|
||
&& (next = try_combine (insn, links->insn,
|
||
prev, NULL, &new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
goto retry;
|
||
}
|
||
|
||
/* Try combining an insn with two different insns whose results it
|
||
uses. */
|
||
if (max_combine >= 3)
|
||
FOR_EACH_LOG_LINK (links, insn)
|
||
for (nextlinks = links->next; nextlinks;
|
||
nextlinks = nextlinks->next)
|
||
if ((next = try_combine (insn, links->insn,
|
||
nextlinks->insn, NULL,
|
||
&new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
|
||
{
|
||
statistics_counter_event (cfun, "three-insn combine", 1);
|
||
goto retry;
|
||
}
|
||
|
||
/* Try four-instruction combinations. */
|
||
if (max_combine >= 4)
|
||
FOR_EACH_LOG_LINK (links, insn)
|
||
{
|
||
struct insn_link *next1;
|
||
rtx_insn *link = links->insn;
|
||
|
||
/* If the linked insn has been replaced by a note, then there
|
||
is no point in pursuing this chain any further. */
|
||
if (NOTE_P (link))
|
||
continue;
|
||
|
||
FOR_EACH_LOG_LINK (next1, link)
|
||
{
|
||
rtx_insn *link1 = next1->insn;
|
||
if (NOTE_P (link1))
|
||
continue;
|
||
/* I0 -> I1 -> I2 -> I3. */
|
||
FOR_EACH_LOG_LINK (nextlinks, link1)
|
||
if ((next = try_combine (insn, link, link1,
|
||
nextlinks->insn,
|
||
&new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
{
|
||
statistics_counter_event (cfun, "four-insn combine", 1);
|
||
goto retry;
|
||
}
|
||
/* I0, I1 -> I2, I2 -> I3. */
|
||
for (nextlinks = next1->next; nextlinks;
|
||
nextlinks = nextlinks->next)
|
||
if ((next = try_combine (insn, link, link1,
|
||
nextlinks->insn,
|
||
&new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
{
|
||
statistics_counter_event (cfun, "four-insn combine", 1);
|
||
goto retry;
|
||
}
|
||
}
|
||
|
||
for (next1 = links->next; next1; next1 = next1->next)
|
||
{
|
||
rtx_insn *link1 = next1->insn;
|
||
if (NOTE_P (link1))
|
||
continue;
|
||
/* I0 -> I2; I1, I2 -> I3. */
|
||
FOR_EACH_LOG_LINK (nextlinks, link)
|
||
if ((next = try_combine (insn, link, link1,
|
||
nextlinks->insn,
|
||
&new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
{
|
||
statistics_counter_event (cfun, "four-insn combine", 1);
|
||
goto retry;
|
||
}
|
||
/* I0 -> I1; I1, I2 -> I3. */
|
||
FOR_EACH_LOG_LINK (nextlinks, link1)
|
||
if ((next = try_combine (insn, link, link1,
|
||
nextlinks->insn,
|
||
&new_direct_jump_p,
|
||
last_combined_insn)) != 0)
|
||
{
|
||
statistics_counter_event (cfun, "four-insn combine", 1);
|
||
goto retry;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try this insn with each REG_EQUAL note it links back to. */
|
||
FOR_EACH_LOG_LINK (links, insn)
|
||
{
|
||
rtx set, note;
|
||
rtx_insn *temp = links->insn;
|
||
if ((set = single_set (temp)) != 0
|
||
&& (note = find_reg_equal_equiv_note (temp)) != 0
|
||
&& (note = XEXP (note, 0), GET_CODE (note)) != EXPR_LIST
|
||
&& ! side_effects_p (SET_SRC (set))
|
||
/* Avoid using a register that may already been marked
|
||
dead by an earlier instruction. */
|
||
&& ! unmentioned_reg_p (note, SET_SRC (set))
|
||
&& (GET_MODE (note) == VOIDmode
|
||
? SCALAR_INT_MODE_P (GET_MODE (SET_DEST (set)))
|
||
: (GET_MODE (SET_DEST (set)) == GET_MODE (note)
|
||
&& (GET_CODE (SET_DEST (set)) != ZERO_EXTRACT
|
||
|| (GET_MODE (XEXP (SET_DEST (set), 0))
|
||
== GET_MODE (note))))))
|
||
{
|
||
/* Temporarily replace the set's source with the
|
||
contents of the REG_EQUAL note. The insn will
|
||
be deleted or recognized by try_combine. */
|
||
rtx orig_src = SET_SRC (set);
|
||
rtx orig_dest = SET_DEST (set);
|
||
if (GET_CODE (SET_DEST (set)) == ZERO_EXTRACT)
|
||
SET_DEST (set) = XEXP (SET_DEST (set), 0);
|
||
SET_SRC (set) = note;
|
||
i2mod = temp;
|
||
i2mod_old_rhs = copy_rtx (orig_src);
|
||
i2mod_new_rhs = copy_rtx (note);
|
||
next = try_combine (insn, i2mod, NULL, NULL,
|
||
&new_direct_jump_p,
|
||
last_combined_insn);
|
||
i2mod = NULL;
|
||
if (next)
|
||
{
|
||
statistics_counter_event (cfun, "insn-with-note combine", 1);
|
||
goto retry;
|
||
}
|
||
SET_SRC (set) = orig_src;
|
||
SET_DEST (set) = orig_dest;
|
||
}
|
||
}
|
||
|
||
if (!NOTE_P (insn))
|
||
record_dead_and_set_regs (insn);
|
||
|
||
retry:
|
||
;
|
||
}
|
||
}
|
||
|
||
default_rtl_profile ();
|
||
clear_bb_flags ();
|
||
new_direct_jump_p |= purge_all_dead_edges ();
|
||
new_direct_jump_p |= delete_noop_moves ();
|
||
|
||
/* Clean up. */
|
||
obstack_free (&insn_link_obstack, NULL);
|
||
free (uid_log_links);
|
||
free (uid_insn_cost);
|
||
reg_stat.release ();
|
||
|
||
{
|
||
struct undo *undo, *next;
|
||
for (undo = undobuf.frees; undo; undo = next)
|
||
{
|
||
next = undo->next;
|
||
free (undo);
|
||
}
|
||
undobuf.frees = 0;
|
||
}
|
||
|
||
total_attempts += combine_attempts;
|
||
total_merges += combine_merges;
|
||
total_extras += combine_extras;
|
||
total_successes += combine_successes;
|
||
|
||
nonzero_sign_valid = 0;
|
||
rtl_hooks = general_rtl_hooks;
|
||
|
||
/* Make recognizer allow volatile MEMs again. */
|
||
init_recog ();
|
||
|
||
return new_direct_jump_p;
|
||
}
|
||
|
||
/* Wipe the last_xxx fields of reg_stat in preparation for another pass. */
|
||
|
||
static void
|
||
init_reg_last (void)
|
||
{
|
||
unsigned int i;
|
||
reg_stat_type *p;
|
||
|
||
FOR_EACH_VEC_ELT (reg_stat, i, p)
|
||
memset (p, 0, offsetof (reg_stat_type, sign_bit_copies));
|
||
}
|
||
|
||
/* Set up any promoted values for incoming argument registers. */
|
||
|
||
static void
|
||
setup_incoming_promotions (rtx_insn *first)
|
||
{
|
||
tree arg;
|
||
bool strictly_local = false;
|
||
|
||
for (arg = DECL_ARGUMENTS (current_function_decl); arg;
|
||
arg = DECL_CHAIN (arg))
|
||
{
|
||
rtx x, reg = DECL_INCOMING_RTL (arg);
|
||
int uns1, uns3;
|
||
machine_mode mode1, mode2, mode3, mode4;
|
||
|
||
/* Only continue if the incoming argument is in a register. */
|
||
if (!REG_P (reg))
|
||
continue;
|
||
|
||
/* Determine, if possible, whether all call sites of the current
|
||
function lie within the current compilation unit. (This does
|
||
take into account the exporting of a function via taking its
|
||
address, and so forth.) */
|
||
strictly_local
|
||
= cgraph_node::local_info_node (current_function_decl)->local;
|
||
|
||
/* The mode and signedness of the argument before any promotions happen
|
||
(equal to the mode of the pseudo holding it at that stage). */
|
||
mode1 = TYPE_MODE (TREE_TYPE (arg));
|
||
uns1 = TYPE_UNSIGNED (TREE_TYPE (arg));
|
||
|
||
/* The mode and signedness of the argument after any source language and
|
||
TARGET_PROMOTE_PROTOTYPES-driven promotions. */
|
||
mode2 = TYPE_MODE (DECL_ARG_TYPE (arg));
|
||
uns3 = TYPE_UNSIGNED (DECL_ARG_TYPE (arg));
|
||
|
||
/* The mode and signedness of the argument as it is actually passed,
|
||
see assign_parm_setup_reg in function.c. */
|
||
mode3 = promote_function_mode (TREE_TYPE (arg), mode1, &uns3,
|
||
TREE_TYPE (cfun->decl), 0);
|
||
|
||
/* The mode of the register in which the argument is being passed. */
|
||
mode4 = GET_MODE (reg);
|
||
|
||
/* Eliminate sign extensions in the callee when:
|
||
(a) A mode promotion has occurred; */
|
||
if (mode1 == mode3)
|
||
continue;
|
||
/* (b) The mode of the register is the same as the mode of
|
||
the argument as it is passed; */
|
||
if (mode3 != mode4)
|
||
continue;
|
||
/* (c) There's no language level extension; */
|
||
if (mode1 == mode2)
|
||
;
|
||
/* (c.1) All callers are from the current compilation unit. If that's
|
||
the case we don't have to rely on an ABI, we only have to know
|
||
what we're generating right now, and we know that we will do the
|
||
mode1 to mode2 promotion with the given sign. */
|
||
else if (!strictly_local)
|
||
continue;
|
||
/* (c.2) The combination of the two promotions is useful. This is
|
||
true when the signs match, or if the first promotion is unsigned.
|
||
In the later case, (sign_extend (zero_extend x)) is the same as
|
||
(zero_extend (zero_extend x)), so make sure to force UNS3 true. */
|
||
else if (uns1)
|
||
uns3 = true;
|
||
else if (uns3)
|
||
continue;
|
||
|
||
/* Record that the value was promoted from mode1 to mode3,
|
||
so that any sign extension at the head of the current
|
||
function may be eliminated. */
|
||
x = gen_rtx_CLOBBER (mode1, const0_rtx);
|
||
x = gen_rtx_fmt_e ((uns3 ? ZERO_EXTEND : SIGN_EXTEND), mode3, x);
|
||
record_value_for_reg (reg, first, x);
|
||
}
|
||
}
|
||
|
||
/* If MODE has a precision lower than PREC and SRC is a non-negative constant
|
||
that would appear negative in MODE, sign-extend SRC for use in nonzero_bits
|
||
because some machines (maybe most) will actually do the sign-extension and
|
||
this is the conservative approach.
|
||
|
||
??? For 2.5, try to tighten up the MD files in this regard instead of this
|
||
kludge. */
|
||
|
||
static rtx
|
||
sign_extend_short_imm (rtx src, machine_mode mode, unsigned int prec)
|
||
{
|
||
scalar_int_mode int_mode;
|
||
if (CONST_INT_P (src)
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) < prec
|
||
&& INTVAL (src) > 0
|
||
&& val_signbit_known_set_p (int_mode, INTVAL (src)))
|
||
src = GEN_INT (INTVAL (src) | ~GET_MODE_MASK (int_mode));
|
||
|
||
return src;
|
||
}
|
||
|
||
/* Update RSP for pseudo-register X from INSN's REG_EQUAL note (if one exists)
|
||
and SET. */
|
||
|
||
static void
|
||
update_rsp_from_reg_equal (reg_stat_type *rsp, rtx_insn *insn, const_rtx set,
|
||
rtx x)
|
||
{
|
||
rtx reg_equal_note = insn ? find_reg_equal_equiv_note (insn) : NULL_RTX;
|
||
unsigned HOST_WIDE_INT bits = 0;
|
||
rtx reg_equal = NULL, src = SET_SRC (set);
|
||
unsigned int num = 0;
|
||
|
||
if (reg_equal_note)
|
||
reg_equal = XEXP (reg_equal_note, 0);
|
||
|
||
if (SHORT_IMMEDIATES_SIGN_EXTEND)
|
||
{
|
||
src = sign_extend_short_imm (src, GET_MODE (x), BITS_PER_WORD);
|
||
if (reg_equal)
|
||
reg_equal = sign_extend_short_imm (reg_equal, GET_MODE (x), BITS_PER_WORD);
|
||
}
|
||
|
||
/* Don't call nonzero_bits if it cannot change anything. */
|
||
if (rsp->nonzero_bits != HOST_WIDE_INT_M1U)
|
||
{
|
||
machine_mode mode = GET_MODE (x);
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& HWI_COMPUTABLE_MODE_P (mode))
|
||
mode = nonzero_bits_mode;
|
||
bits = nonzero_bits (src, mode);
|
||
if (reg_equal && bits)
|
||
bits &= nonzero_bits (reg_equal, mode);
|
||
rsp->nonzero_bits |= bits;
|
||
}
|
||
|
||
/* Don't call num_sign_bit_copies if it cannot change anything. */
|
||
if (rsp->sign_bit_copies != 1)
|
||
{
|
||
num = num_sign_bit_copies (SET_SRC (set), GET_MODE (x));
|
||
if (reg_equal && maybe_ne (num, GET_MODE_PRECISION (GET_MODE (x))))
|
||
{
|
||
unsigned int numeq = num_sign_bit_copies (reg_equal, GET_MODE (x));
|
||
if (num == 0 || numeq > num)
|
||
num = numeq;
|
||
}
|
||
if (rsp->sign_bit_copies == 0 || num < rsp->sign_bit_copies)
|
||
rsp->sign_bit_copies = num;
|
||
}
|
||
}
|
||
|
||
/* Called via note_stores. If X is a pseudo that is narrower than
|
||
HOST_BITS_PER_WIDE_INT and is being set, record what bits are known zero.
|
||
|
||
If we are setting only a portion of X and we can't figure out what
|
||
portion, assume all bits will be used since we don't know what will
|
||
be happening.
|
||
|
||
Similarly, set how many bits of X are known to be copies of the sign bit
|
||
at all locations in the function. This is the smallest number implied
|
||
by any set of X. */
|
||
|
||
static void
|
||
set_nonzero_bits_and_sign_copies (rtx x, const_rtx set, void *data)
|
||
{
|
||
rtx_insn *insn = (rtx_insn *) data;
|
||
scalar_int_mode mode;
|
||
|
||
if (REG_P (x)
|
||
&& REGNO (x) >= FIRST_PSEUDO_REGISTER
|
||
/* If this register is undefined at the start of the file, we can't
|
||
say what its contents were. */
|
||
&& ! REGNO_REG_SET_P
|
||
(DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), REGNO (x))
|
||
&& is_a <scalar_int_mode> (GET_MODE (x), &mode)
|
||
&& HWI_COMPUTABLE_MODE_P (mode))
|
||
{
|
||
reg_stat_type *rsp = ®_stat[REGNO (x)];
|
||
|
||
if (set == 0 || GET_CODE (set) == CLOBBER)
|
||
{
|
||
rsp->nonzero_bits = GET_MODE_MASK (mode);
|
||
rsp->sign_bit_copies = 1;
|
||
return;
|
||
}
|
||
|
||
/* If this register is being initialized using itself, and the
|
||
register is uninitialized in this basic block, and there are
|
||
no LOG_LINKS which set the register, then part of the
|
||
register is uninitialized. In that case we can't assume
|
||
anything about the number of nonzero bits.
|
||
|
||
??? We could do better if we checked this in
|
||
reg_{nonzero_bits,num_sign_bit_copies}_for_combine. Then we
|
||
could avoid making assumptions about the insn which initially
|
||
sets the register, while still using the information in other
|
||
insns. We would have to be careful to check every insn
|
||
involved in the combination. */
|
||
|
||
if (insn
|
||
&& reg_referenced_p (x, PATTERN (insn))
|
||
&& !REGNO_REG_SET_P (DF_LR_IN (BLOCK_FOR_INSN (insn)),
|
||
REGNO (x)))
|
||
{
|
||
struct insn_link *link;
|
||
|
||
FOR_EACH_LOG_LINK (link, insn)
|
||
if (dead_or_set_p (link->insn, x))
|
||
break;
|
||
if (!link)
|
||
{
|
||
rsp->nonzero_bits = GET_MODE_MASK (mode);
|
||
rsp->sign_bit_copies = 1;
|
||
return;
|
||
}
|
||
}
|
||
|
||
/* If this is a complex assignment, see if we can convert it into a
|
||
simple assignment. */
|
||
set = expand_field_assignment (set);
|
||
|
||
/* If this is a simple assignment, or we have a paradoxical SUBREG,
|
||
set what we know about X. */
|
||
|
||
if (SET_DEST (set) == x
|
||
|| (paradoxical_subreg_p (SET_DEST (set))
|
||
&& SUBREG_REG (SET_DEST (set)) == x))
|
||
update_rsp_from_reg_equal (rsp, insn, set, x);
|
||
else
|
||
{
|
||
rsp->nonzero_bits = GET_MODE_MASK (mode);
|
||
rsp->sign_bit_copies = 1;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* See if INSN can be combined into I3. PRED, PRED2, SUCC and SUCC2 are
|
||
optionally insns that were previously combined into I3 or that will be
|
||
combined into the merger of INSN and I3. The order is PRED, PRED2,
|
||
INSN, SUCC, SUCC2, I3.
|
||
|
||
Return 0 if the combination is not allowed for any reason.
|
||
|
||
If the combination is allowed, *PDEST will be set to the single
|
||
destination of INSN and *PSRC to the single source, and this function
|
||
will return 1. */
|
||
|
||
static int
|
||
can_combine_p (rtx_insn *insn, rtx_insn *i3, rtx_insn *pred ATTRIBUTE_UNUSED,
|
||
rtx_insn *pred2 ATTRIBUTE_UNUSED, rtx_insn *succ, rtx_insn *succ2,
|
||
rtx *pdest, rtx *psrc)
|
||
{
|
||
int i;
|
||
const_rtx set = 0;
|
||
rtx src, dest;
|
||
rtx_insn *p;
|
||
rtx link;
|
||
bool all_adjacent = true;
|
||
int (*is_volatile_p) (const_rtx);
|
||
|
||
if (succ)
|
||
{
|
||
if (succ2)
|
||
{
|
||
if (next_active_insn (succ2) != i3)
|
||
all_adjacent = false;
|
||
if (next_active_insn (succ) != succ2)
|
||
all_adjacent = false;
|
||
}
|
||
else if (next_active_insn (succ) != i3)
|
||
all_adjacent = false;
|
||
if (next_active_insn (insn) != succ)
|
||
all_adjacent = false;
|
||
}
|
||
else if (next_active_insn (insn) != i3)
|
||
all_adjacent = false;
|
||
|
||
/* Can combine only if previous insn is a SET of a REG, a SUBREG or CC0.
|
||
or a PARALLEL consisting of such a SET and CLOBBERs.
|
||
|
||
If INSN has CLOBBER parallel parts, ignore them for our processing.
|
||
By definition, these happen during the execution of the insn. When it
|
||
is merged with another insn, all bets are off. If they are, in fact,
|
||
needed and aren't also supplied in I3, they may be added by
|
||
recog_for_combine. Otherwise, it won't match.
|
||
|
||
We can also ignore a SET whose SET_DEST is mentioned in a REG_UNUSED
|
||
note.
|
||
|
||
Get the source and destination of INSN. If more than one, can't
|
||
combine. */
|
||
|
||
if (GET_CODE (PATTERN (insn)) == SET)
|
||
set = PATTERN (insn);
|
||
else if (GET_CODE (PATTERN (insn)) == PARALLEL
|
||
&& GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
|
||
{
|
||
for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
|
||
{
|
||
rtx elt = XVECEXP (PATTERN (insn), 0, i);
|
||
|
||
switch (GET_CODE (elt))
|
||
{
|
||
/* This is important to combine floating point insns
|
||
for the SH4 port. */
|
||
case USE:
|
||
/* Combining an isolated USE doesn't make sense.
|
||
We depend here on combinable_i3pat to reject them. */
|
||
/* The code below this loop only verifies that the inputs of
|
||
the SET in INSN do not change. We call reg_set_between_p
|
||
to verify that the REG in the USE does not change between
|
||
I3 and INSN.
|
||
If the USE in INSN was for a pseudo register, the matching
|
||
insn pattern will likely match any register; combining this
|
||
with any other USE would only be safe if we knew that the
|
||
used registers have identical values, or if there was
|
||
something to tell them apart, e.g. different modes. For
|
||
now, we forgo such complicated tests and simply disallow
|
||
combining of USES of pseudo registers with any other USE. */
|
||
if (REG_P (XEXP (elt, 0))
|
||
&& GET_CODE (PATTERN (i3)) == PARALLEL)
|
||
{
|
||
rtx i3pat = PATTERN (i3);
|
||
int i = XVECLEN (i3pat, 0) - 1;
|
||
unsigned int regno = REGNO (XEXP (elt, 0));
|
||
|
||
do
|
||
{
|
||
rtx i3elt = XVECEXP (i3pat, 0, i);
|
||
|
||
if (GET_CODE (i3elt) == USE
|
||
&& REG_P (XEXP (i3elt, 0))
|
||
&& (REGNO (XEXP (i3elt, 0)) == regno
|
||
? reg_set_between_p (XEXP (elt, 0),
|
||
PREV_INSN (insn), i3)
|
||
: regno >= FIRST_PSEUDO_REGISTER))
|
||
return 0;
|
||
}
|
||
while (--i >= 0);
|
||
}
|
||
break;
|
||
|
||
/* We can ignore CLOBBERs. */
|
||
case CLOBBER:
|
||
break;
|
||
|
||
case SET:
|
||
/* Ignore SETs whose result isn't used but not those that
|
||
have side-effects. */
|
||
if (find_reg_note (insn, REG_UNUSED, SET_DEST (elt))
|
||
&& insn_nothrow_p (insn)
|
||
&& !side_effects_p (elt))
|
||
break;
|
||
|
||
/* If we have already found a SET, this is a second one and
|
||
so we cannot combine with this insn. */
|
||
if (set)
|
||
return 0;
|
||
|
||
set = elt;
|
||
break;
|
||
|
||
default:
|
||
/* Anything else means we can't combine. */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
if (set == 0
|
||
/* If SET_SRC is an ASM_OPERANDS we can't throw away these CLOBBERs,
|
||
so don't do anything with it. */
|
||
|| GET_CODE (SET_SRC (set)) == ASM_OPERANDS)
|
||
return 0;
|
||
}
|
||
else
|
||
return 0;
|
||
|
||
if (set == 0)
|
||
return 0;
|
||
|
||
/* The simplification in expand_field_assignment may call back to
|
||
get_last_value, so set safe guard here. */
|
||
subst_low_luid = DF_INSN_LUID (insn);
|
||
|
||
set = expand_field_assignment (set);
|
||
src = SET_SRC (set), dest = SET_DEST (set);
|
||
|
||
/* Do not eliminate user-specified register if it is in an
|
||
asm input because we may break the register asm usage defined
|
||
in GCC manual if allow to do so.
|
||
Be aware that this may cover more cases than we expect but this
|
||
should be harmless. */
|
||
if (REG_P (dest) && REG_USERVAR_P (dest) && HARD_REGISTER_P (dest)
|
||
&& extract_asm_operands (PATTERN (i3)))
|
||
return 0;
|
||
|
||
/* Don't eliminate a store in the stack pointer. */
|
||
if (dest == stack_pointer_rtx
|
||
/* Don't combine with an insn that sets a register to itself if it has
|
||
a REG_EQUAL note. This may be part of a LIBCALL sequence. */
|
||
|| (rtx_equal_p (src, dest) && find_reg_note (insn, REG_EQUAL, NULL_RTX))
|
||
/* Can't merge an ASM_OPERANDS. */
|
||
|| GET_CODE (src) == ASM_OPERANDS
|
||
/* Can't merge a function call. */
|
||
|| GET_CODE (src) == CALL
|
||
/* Don't eliminate a function call argument. */
|
||
|| (CALL_P (i3)
|
||
&& (find_reg_fusage (i3, USE, dest)
|
||
|| (REG_P (dest)
|
||
&& REGNO (dest) < FIRST_PSEUDO_REGISTER
|
||
&& global_regs[REGNO (dest)])))
|
||
/* Don't substitute into an incremented register. */
|
||
|| FIND_REG_INC_NOTE (i3, dest)
|
||
|| (succ && FIND_REG_INC_NOTE (succ, dest))
|
||
|| (succ2 && FIND_REG_INC_NOTE (succ2, dest))
|
||
/* Don't substitute into a non-local goto, this confuses CFG. */
|
||
|| (JUMP_P (i3) && find_reg_note (i3, REG_NON_LOCAL_GOTO, NULL_RTX))
|
||
/* Make sure that DEST is not used after INSN but before SUCC, or
|
||
after SUCC and before SUCC2, or after SUCC2 but before I3. */
|
||
|| (!all_adjacent
|
||
&& ((succ2
|
||
&& (reg_used_between_p (dest, succ2, i3)
|
||
|| reg_used_between_p (dest, succ, succ2)))
|
||
|| (!succ2 && succ && reg_used_between_p (dest, succ, i3))
|
||
|| (!succ2 && !succ && reg_used_between_p (dest, insn, i3))
|
||
|| (succ
|
||
/* SUCC and SUCC2 can be split halves from a PARALLEL; in
|
||
that case SUCC is not in the insn stream, so use SUCC2
|
||
instead for this test. */
|
||
&& reg_used_between_p (dest, insn,
|
||
succ2
|
||
&& INSN_UID (succ) == INSN_UID (succ2)
|
||
? succ2 : succ))))
|
||
/* Make sure that the value that is to be substituted for the register
|
||
does not use any registers whose values alter in between. However,
|
||
If the insns are adjacent, a use can't cross a set even though we
|
||
think it might (this can happen for a sequence of insns each setting
|
||
the same destination; last_set of that register might point to
|
||
a NOTE). If INSN has a REG_EQUIV note, the register is always
|
||
equivalent to the memory so the substitution is valid even if there
|
||
are intervening stores. Also, don't move a volatile asm or
|
||
UNSPEC_VOLATILE across any other insns. */
|
||
|| (! all_adjacent
|
||
&& (((!MEM_P (src)
|
||
|| ! find_reg_note (insn, REG_EQUIV, src))
|
||
&& modified_between_p (src, insn, i3))
|
||
|| (GET_CODE (src) == ASM_OPERANDS && MEM_VOLATILE_P (src))
|
||
|| GET_CODE (src) == UNSPEC_VOLATILE))
|
||
/* Don't combine across a CALL_INSN, because that would possibly
|
||
change whether the life span of some REGs crosses calls or not,
|
||
and it is a pain to update that information.
|
||
Exception: if source is a constant, moving it later can't hurt.
|
||
Accept that as a special case. */
|
||
|| (DF_INSN_LUID (insn) < last_call_luid && ! CONSTANT_P (src)))
|
||
return 0;
|
||
|
||
/* DEST must either be a REG or CC0. */
|
||
if (REG_P (dest))
|
||
{
|
||
/* If register alignment is being enforced for multi-word items in all
|
||
cases except for parameters, it is possible to have a register copy
|
||
insn referencing a hard register that is not allowed to contain the
|
||
mode being copied and which would not be valid as an operand of most
|
||
insns. Eliminate this problem by not combining with such an insn.
|
||
|
||
Also, on some machines we don't want to extend the life of a hard
|
||
register. */
|
||
|
||
if (REG_P (src)
|
||
&& ((REGNO (dest) < FIRST_PSEUDO_REGISTER
|
||
&& !targetm.hard_regno_mode_ok (REGNO (dest), GET_MODE (dest)))
|
||
/* Don't extend the life of a hard register unless it is
|
||
user variable (if we have few registers) or it can't
|
||
fit into the desired register (meaning something special
|
||
is going on).
|
||
Also avoid substituting a return register into I3, because
|
||
reload can't handle a conflict with constraints of other
|
||
inputs. */
|
||
|| (REGNO (src) < FIRST_PSEUDO_REGISTER
|
||
&& !targetm.hard_regno_mode_ok (REGNO (src),
|
||
GET_MODE (src)))))
|
||
return 0;
|
||
}
|
||
else if (GET_CODE (dest) != CC0)
|
||
return 0;
|
||
|
||
|
||
if (GET_CODE (PATTERN (i3)) == PARALLEL)
|
||
for (i = XVECLEN (PATTERN (i3), 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (PATTERN (i3), 0, i)) == CLOBBER)
|
||
{
|
||
rtx reg = XEXP (XVECEXP (PATTERN (i3), 0, i), 0);
|
||
|
||
/* If the clobber represents an earlyclobber operand, we must not
|
||
substitute an expression containing the clobbered register.
|
||
As we do not analyze the constraint strings here, we have to
|
||
make the conservative assumption. However, if the register is
|
||
a fixed hard reg, the clobber cannot represent any operand;
|
||
we leave it up to the machine description to either accept or
|
||
reject use-and-clobber patterns. */
|
||
if (!REG_P (reg)
|
||
|| REGNO (reg) >= FIRST_PSEUDO_REGISTER
|
||
|| !fixed_regs[REGNO (reg)])
|
||
if (reg_overlap_mentioned_p (reg, src))
|
||
return 0;
|
||
}
|
||
|
||
/* If INSN contains anything volatile, or is an `asm' (whether volatile
|
||
or not), reject, unless nothing volatile comes between it and I3 */
|
||
|
||
if (GET_CODE (src) == ASM_OPERANDS || volatile_refs_p (src))
|
||
{
|
||
/* Make sure neither succ nor succ2 contains a volatile reference. */
|
||
if (succ2 != 0 && volatile_refs_p (PATTERN (succ2)))
|
||
return 0;
|
||
if (succ != 0 && volatile_refs_p (PATTERN (succ)))
|
||
return 0;
|
||
/* We'll check insns between INSN and I3 below. */
|
||
}
|
||
|
||
/* If INSN is an asm, and DEST is a hard register, reject, since it has
|
||
to be an explicit register variable, and was chosen for a reason. */
|
||
|
||
if (GET_CODE (src) == ASM_OPERANDS
|
||
&& REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER)
|
||
return 0;
|
||
|
||
/* If INSN contains volatile references (specifically volatile MEMs),
|
||
we cannot combine across any other volatile references.
|
||
Even if INSN doesn't contain volatile references, any intervening
|
||
volatile insn might affect machine state. */
|
||
|
||
is_volatile_p = volatile_refs_p (PATTERN (insn))
|
||
? volatile_refs_p
|
||
: volatile_insn_p;
|
||
|
||
for (p = NEXT_INSN (insn); p != i3; p = NEXT_INSN (p))
|
||
if (INSN_P (p) && p != succ && p != succ2 && is_volatile_p (PATTERN (p)))
|
||
return 0;
|
||
|
||
/* If INSN contains an autoincrement or autodecrement, make sure that
|
||
register is not used between there and I3, and not already used in
|
||
I3 either. Neither must it be used in PRED or SUCC, if they exist.
|
||
Also insist that I3 not be a jump if using LRA; if it were one
|
||
and the incremented register were spilled, we would lose.
|
||
Reload handles this correctly. */
|
||
|
||
if (AUTO_INC_DEC)
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC
|
||
&& ((JUMP_P (i3) && targetm.lra_p ())
|
||
|| reg_used_between_p (XEXP (link, 0), insn, i3)
|
||
|| (pred != NULL_RTX
|
||
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred)))
|
||
|| (pred2 != NULL_RTX
|
||
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (pred2)))
|
||
|| (succ != NULL_RTX
|
||
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ)))
|
||
|| (succ2 != NULL_RTX
|
||
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (succ2)))
|
||
|| reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i3))))
|
||
return 0;
|
||
|
||
/* Don't combine an insn that follows a CC0-setting insn.
|
||
An insn that uses CC0 must not be separated from the one that sets it.
|
||
We do, however, allow I2 to follow a CC0-setting insn if that insn
|
||
is passed as I1; in that case it will be deleted also.
|
||
We also allow combining in this case if all the insns are adjacent
|
||
because that would leave the two CC0 insns adjacent as well.
|
||
It would be more logical to test whether CC0 occurs inside I1 or I2,
|
||
but that would be much slower, and this ought to be equivalent. */
|
||
|
||
if (HAVE_cc0)
|
||
{
|
||
p = prev_nonnote_insn (insn);
|
||
if (p && p != pred && NONJUMP_INSN_P (p) && sets_cc0_p (PATTERN (p))
|
||
&& ! all_adjacent)
|
||
return 0;
|
||
}
|
||
|
||
/* If we get here, we have passed all the tests and the combination is
|
||
to be allowed. */
|
||
|
||
*pdest = dest;
|
||
*psrc = src;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* LOC is the location within I3 that contains its pattern or the component
|
||
of a PARALLEL of the pattern. We validate that it is valid for combining.
|
||
|
||
One problem is if I3 modifies its output, as opposed to replacing it
|
||
entirely, we can't allow the output to contain I2DEST, I1DEST or I0DEST as
|
||
doing so would produce an insn that is not equivalent to the original insns.
|
||
|
||
Consider:
|
||
|
||
(set (reg:DI 101) (reg:DI 100))
|
||
(set (subreg:SI (reg:DI 101) 0) <foo>)
|
||
|
||
This is NOT equivalent to:
|
||
|
||
(parallel [(set (subreg:SI (reg:DI 100) 0) <foo>)
|
||
(set (reg:DI 101) (reg:DI 100))])
|
||
|
||
Not only does this modify 100 (in which case it might still be valid
|
||
if 100 were dead in I2), it sets 101 to the ORIGINAL value of 100.
|
||
|
||
We can also run into a problem if I2 sets a register that I1
|
||
uses and I1 gets directly substituted into I3 (not via I2). In that
|
||
case, we would be getting the wrong value of I2DEST into I3, so we
|
||
must reject the combination. This case occurs when I2 and I1 both
|
||
feed into I3, rather than when I1 feeds into I2, which feeds into I3.
|
||
If I1_NOT_IN_SRC is nonzero, it means that finding I1 in the source
|
||
of a SET must prevent combination from occurring. The same situation
|
||
can occur for I0, in which case I0_NOT_IN_SRC is set.
|
||
|
||
Before doing the above check, we first try to expand a field assignment
|
||
into a set of logical operations.
|
||
|
||
If PI3_DEST_KILLED is nonzero, it is a pointer to a location in which
|
||
we place a register that is both set and used within I3. If more than one
|
||
such register is detected, we fail.
|
||
|
||
Return 1 if the combination is valid, zero otherwise. */
|
||
|
||
static int
|
||
combinable_i3pat (rtx_insn *i3, rtx *loc, rtx i2dest, rtx i1dest, rtx i0dest,
|
||
int i1_not_in_src, int i0_not_in_src, rtx *pi3dest_killed)
|
||
{
|
||
rtx x = *loc;
|
||
|
||
if (GET_CODE (x) == SET)
|
||
{
|
||
rtx set = x ;
|
||
rtx dest = SET_DEST (set);
|
||
rtx src = SET_SRC (set);
|
||
rtx inner_dest = dest;
|
||
rtx subdest;
|
||
|
||
while (GET_CODE (inner_dest) == STRICT_LOW_PART
|
||
|| GET_CODE (inner_dest) == SUBREG
|
||
|| GET_CODE (inner_dest) == ZERO_EXTRACT)
|
||
inner_dest = XEXP (inner_dest, 0);
|
||
|
||
/* Check for the case where I3 modifies its output, as discussed
|
||
above. We don't want to prevent pseudos from being combined
|
||
into the address of a MEM, so only prevent the combination if
|
||
i1 or i2 set the same MEM. */
|
||
if ((inner_dest != dest &&
|
||
(!MEM_P (inner_dest)
|
||
|| rtx_equal_p (i2dest, inner_dest)
|
||
|| (i1dest && rtx_equal_p (i1dest, inner_dest))
|
||
|| (i0dest && rtx_equal_p (i0dest, inner_dest)))
|
||
&& (reg_overlap_mentioned_p (i2dest, inner_dest)
|
||
|| (i1dest && reg_overlap_mentioned_p (i1dest, inner_dest))
|
||
|| (i0dest && reg_overlap_mentioned_p (i0dest, inner_dest))))
|
||
|
||
/* This is the same test done in can_combine_p except we can't test
|
||
all_adjacent; we don't have to, since this instruction will stay
|
||
in place, thus we are not considering increasing the lifetime of
|
||
INNER_DEST.
|
||
|
||
Also, if this insn sets a function argument, combining it with
|
||
something that might need a spill could clobber a previous
|
||
function argument; the all_adjacent test in can_combine_p also
|
||
checks this; here, we do a more specific test for this case. */
|
||
|
||
|| (REG_P (inner_dest)
|
||
&& REGNO (inner_dest) < FIRST_PSEUDO_REGISTER
|
||
&& !targetm.hard_regno_mode_ok (REGNO (inner_dest),
|
||
GET_MODE (inner_dest)))
|
||
|| (i1_not_in_src && reg_overlap_mentioned_p (i1dest, src))
|
||
|| (i0_not_in_src && reg_overlap_mentioned_p (i0dest, src)))
|
||
return 0;
|
||
|
||
/* If DEST is used in I3, it is being killed in this insn, so
|
||
record that for later. We have to consider paradoxical
|
||
subregs here, since they kill the whole register, but we
|
||
ignore partial subregs, STRICT_LOW_PART, etc.
|
||
Never add REG_DEAD notes for the FRAME_POINTER_REGNUM or the
|
||
STACK_POINTER_REGNUM, since these are always considered to be
|
||
live. Similarly for ARG_POINTER_REGNUM if it is fixed. */
|
||
subdest = dest;
|
||
if (GET_CODE (subdest) == SUBREG && !partial_subreg_p (subdest))
|
||
subdest = SUBREG_REG (subdest);
|
||
if (pi3dest_killed
|
||
&& REG_P (subdest)
|
||
&& reg_referenced_p (subdest, PATTERN (i3))
|
||
&& REGNO (subdest) != FRAME_POINTER_REGNUM
|
||
&& (HARD_FRAME_POINTER_IS_FRAME_POINTER
|
||
|| REGNO (subdest) != HARD_FRAME_POINTER_REGNUM)
|
||
&& (FRAME_POINTER_REGNUM == ARG_POINTER_REGNUM
|
||
|| (REGNO (subdest) != ARG_POINTER_REGNUM
|
||
|| ! fixed_regs [REGNO (subdest)]))
|
||
&& REGNO (subdest) != STACK_POINTER_REGNUM)
|
||
{
|
||
if (*pi3dest_killed)
|
||
return 0;
|
||
|
||
*pi3dest_killed = subdest;
|
||
}
|
||
}
|
||
|
||
else if (GET_CODE (x) == PARALLEL)
|
||
{
|
||
int i;
|
||
|
||
for (i = 0; i < XVECLEN (x, 0); i++)
|
||
if (! combinable_i3pat (i3, &XVECEXP (x, 0, i), i2dest, i1dest, i0dest,
|
||
i1_not_in_src, i0_not_in_src, pi3dest_killed))
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Return 1 if X is an arithmetic expression that contains a multiplication
|
||
and division. We don't count multiplications by powers of two here. */
|
||
|
||
static int
|
||
contains_muldiv (rtx x)
|
||
{
|
||
switch (GET_CODE (x))
|
||
{
|
||
case MOD: case DIV: case UMOD: case UDIV:
|
||
return 1;
|
||
|
||
case MULT:
|
||
return ! (CONST_INT_P (XEXP (x, 1))
|
||
&& pow2p_hwi (UINTVAL (XEXP (x, 1))));
|
||
default:
|
||
if (BINARY_P (x))
|
||
return contains_muldiv (XEXP (x, 0))
|
||
|| contains_muldiv (XEXP (x, 1));
|
||
|
||
if (UNARY_P (x))
|
||
return contains_muldiv (XEXP (x, 0));
|
||
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Determine whether INSN can be used in a combination. Return nonzero if
|
||
not. This is used in try_combine to detect early some cases where we
|
||
can't perform combinations. */
|
||
|
||
static int
|
||
cant_combine_insn_p (rtx_insn *insn)
|
||
{
|
||
rtx set;
|
||
rtx src, dest;
|
||
|
||
/* If this isn't really an insn, we can't do anything.
|
||
This can occur when flow deletes an insn that it has merged into an
|
||
auto-increment address. */
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
return 1;
|
||
|
||
/* Never combine loads and stores involving hard regs that are likely
|
||
to be spilled. The register allocator can usually handle such
|
||
reg-reg moves by tying. If we allow the combiner to make
|
||
substitutions of likely-spilled regs, reload might die.
|
||
As an exception, we allow combinations involving fixed regs; these are
|
||
not available to the register allocator so there's no risk involved. */
|
||
|
||
set = single_set (insn);
|
||
if (! set)
|
||
return 0;
|
||
src = SET_SRC (set);
|
||
dest = SET_DEST (set);
|
||
if (GET_CODE (src) == SUBREG)
|
||
src = SUBREG_REG (src);
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
if (REG_P (src) && REG_P (dest)
|
||
&& ((HARD_REGISTER_P (src)
|
||
&& ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src))
|
||
#ifdef LEAF_REGISTERS
|
||
&& ! LEAF_REGISTERS [REGNO (src)])
|
||
#else
|
||
)
|
||
#endif
|
||
|| (HARD_REGISTER_P (dest)
|
||
&& ! TEST_HARD_REG_BIT (fixed_reg_set, REGNO (dest))
|
||
&& targetm.class_likely_spilled_p (REGNO_REG_CLASS (REGNO (dest))))))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
struct likely_spilled_retval_info
|
||
{
|
||
unsigned regno, nregs;
|
||
unsigned mask;
|
||
};
|
||
|
||
/* Called via note_stores by likely_spilled_retval_p. Remove from info->mask
|
||
hard registers that are known to be written to / clobbered in full. */
|
||
static void
|
||
likely_spilled_retval_1 (rtx x, const_rtx set, void *data)
|
||
{
|
||
struct likely_spilled_retval_info *const info =
|
||
(struct likely_spilled_retval_info *) data;
|
||
unsigned regno, nregs;
|
||
unsigned new_mask;
|
||
|
||
if (!REG_P (XEXP (set, 0)))
|
||
return;
|
||
regno = REGNO (x);
|
||
if (regno >= info->regno + info->nregs)
|
||
return;
|
||
nregs = REG_NREGS (x);
|
||
if (regno + nregs <= info->regno)
|
||
return;
|
||
new_mask = (2U << (nregs - 1)) - 1;
|
||
if (regno < info->regno)
|
||
new_mask >>= info->regno - regno;
|
||
else
|
||
new_mask <<= regno - info->regno;
|
||
info->mask &= ~new_mask;
|
||
}
|
||
|
||
/* Return nonzero iff part of the return value is live during INSN, and
|
||
it is likely spilled. This can happen when more than one insn is needed
|
||
to copy the return value, e.g. when we consider to combine into the
|
||
second copy insn for a complex value. */
|
||
|
||
static int
|
||
likely_spilled_retval_p (rtx_insn *insn)
|
||
{
|
||
rtx_insn *use = BB_END (this_basic_block);
|
||
rtx reg;
|
||
rtx_insn *p;
|
||
unsigned regno, nregs;
|
||
/* We assume here that no machine mode needs more than
|
||
32 hard registers when the value overlaps with a register
|
||
for which TARGET_FUNCTION_VALUE_REGNO_P is true. */
|
||
unsigned mask;
|
||
struct likely_spilled_retval_info info;
|
||
|
||
if (!NONJUMP_INSN_P (use) || GET_CODE (PATTERN (use)) != USE || insn == use)
|
||
return 0;
|
||
reg = XEXP (PATTERN (use), 0);
|
||
if (!REG_P (reg) || !targetm.calls.function_value_regno_p (REGNO (reg)))
|
||
return 0;
|
||
regno = REGNO (reg);
|
||
nregs = REG_NREGS (reg);
|
||
if (nregs == 1)
|
||
return 0;
|
||
mask = (2U << (nregs - 1)) - 1;
|
||
|
||
/* Disregard parts of the return value that are set later. */
|
||
info.regno = regno;
|
||
info.nregs = nregs;
|
||
info.mask = mask;
|
||
for (p = PREV_INSN (use); info.mask && p != insn; p = PREV_INSN (p))
|
||
if (INSN_P (p))
|
||
note_stores (p, likely_spilled_retval_1, &info);
|
||
mask = info.mask;
|
||
|
||
/* Check if any of the (probably) live return value registers is
|
||
likely spilled. */
|
||
nregs --;
|
||
do
|
||
{
|
||
if ((mask & 1 << nregs)
|
||
&& targetm.class_likely_spilled_p (REGNO_REG_CLASS (regno + nregs)))
|
||
return 1;
|
||
} while (nregs--);
|
||
return 0;
|
||
}
|
||
|
||
/* Adjust INSN after we made a change to its destination.
|
||
|
||
Changing the destination can invalidate notes that say something about
|
||
the results of the insn and a LOG_LINK pointing to the insn. */
|
||
|
||
static void
|
||
adjust_for_new_dest (rtx_insn *insn)
|
||
{
|
||
/* For notes, be conservative and simply remove them. */
|
||
remove_reg_equal_equiv_notes (insn, true);
|
||
|
||
/* The new insn will have a destination that was previously the destination
|
||
of an insn just above it. Call distribute_links to make a LOG_LINK from
|
||
the next use of that destination. */
|
||
|
||
rtx set = single_set (insn);
|
||
gcc_assert (set);
|
||
|
||
rtx reg = SET_DEST (set);
|
||
|
||
while (GET_CODE (reg) == ZERO_EXTRACT
|
||
|| GET_CODE (reg) == STRICT_LOW_PART
|
||
|| GET_CODE (reg) == SUBREG)
|
||
reg = XEXP (reg, 0);
|
||
gcc_assert (REG_P (reg));
|
||
|
||
distribute_links (alloc_insn_link (insn, REGNO (reg), NULL));
|
||
|
||
df_insn_rescan (insn);
|
||
}
|
||
|
||
/* Return TRUE if combine can reuse reg X in mode MODE.
|
||
ADDED_SETS is nonzero if the original set is still required. */
|
||
static bool
|
||
can_change_dest_mode (rtx x, int added_sets, machine_mode mode)
|
||
{
|
||
unsigned int regno;
|
||
|
||
if (!REG_P (x))
|
||
return false;
|
||
|
||
/* Don't change between modes with different underlying register sizes,
|
||
since this could lead to invalid subregs. */
|
||
if (maybe_ne (REGMODE_NATURAL_SIZE (mode),
|
||
REGMODE_NATURAL_SIZE (GET_MODE (x))))
|
||
return false;
|
||
|
||
regno = REGNO (x);
|
||
/* Allow hard registers if the new mode is legal, and occupies no more
|
||
registers than the old mode. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
return (targetm.hard_regno_mode_ok (regno, mode)
|
||
&& REG_NREGS (x) >= hard_regno_nregs (regno, mode));
|
||
|
||
/* Or a pseudo that is only used once. */
|
||
return (regno < reg_n_sets_max
|
||
&& REG_N_SETS (regno) == 1
|
||
&& !added_sets
|
||
&& !REG_USERVAR_P (x));
|
||
}
|
||
|
||
|
||
/* Check whether X, the destination of a set, refers to part of
|
||
the register specified by REG. */
|
||
|
||
static bool
|
||
reg_subword_p (rtx x, rtx reg)
|
||
{
|
||
/* Check that reg is an integer mode register. */
|
||
if (!REG_P (reg) || GET_MODE_CLASS (GET_MODE (reg)) != MODE_INT)
|
||
return false;
|
||
|
||
if (GET_CODE (x) == STRICT_LOW_PART
|
||
|| GET_CODE (x) == ZERO_EXTRACT)
|
||
x = XEXP (x, 0);
|
||
|
||
return GET_CODE (x) == SUBREG
|
||
&& SUBREG_REG (x) == reg
|
||
&& GET_MODE_CLASS (GET_MODE (x)) == MODE_INT;
|
||
}
|
||
|
||
/* Delete the unconditional jump INSN and adjust the CFG correspondingly.
|
||
Note that the INSN should be deleted *after* removing dead edges, so
|
||
that the kept edge is the fallthrough edge for a (set (pc) (pc))
|
||
but not for a (set (pc) (label_ref FOO)). */
|
||
|
||
static void
|
||
update_cfg_for_uncondjump (rtx_insn *insn)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (insn);
|
||
gcc_assert (BB_END (bb) == insn);
|
||
|
||
purge_dead_edges (bb);
|
||
|
||
delete_insn (insn);
|
||
if (EDGE_COUNT (bb->succs) == 1)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
single_succ_edge (bb)->flags |= EDGE_FALLTHRU;
|
||
|
||
/* Remove barriers from the footer if there are any. */
|
||
for (insn = BB_FOOTER (bb); insn; insn = NEXT_INSN (insn))
|
||
if (BARRIER_P (insn))
|
||
{
|
||
if (PREV_INSN (insn))
|
||
SET_NEXT_INSN (PREV_INSN (insn)) = NEXT_INSN (insn);
|
||
else
|
||
BB_FOOTER (bb) = NEXT_INSN (insn);
|
||
if (NEXT_INSN (insn))
|
||
SET_PREV_INSN (NEXT_INSN (insn)) = PREV_INSN (insn);
|
||
}
|
||
else if (LABEL_P (insn))
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Return whether PAT is a PARALLEL of exactly N register SETs followed
|
||
by an arbitrary number of CLOBBERs. */
|
||
static bool
|
||
is_parallel_of_n_reg_sets (rtx pat, int n)
|
||
{
|
||
if (GET_CODE (pat) != PARALLEL)
|
||
return false;
|
||
|
||
int len = XVECLEN (pat, 0);
|
||
if (len < n)
|
||
return false;
|
||
|
||
int i;
|
||
for (i = 0; i < n; i++)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) != SET
|
||
|| !REG_P (SET_DEST (XVECEXP (pat, 0, i))))
|
||
return false;
|
||
for ( ; i < len; i++)
|
||
switch (GET_CODE (XVECEXP (pat, 0, i)))
|
||
{
|
||
case CLOBBER:
|
||
if (XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
|
||
return false;
|
||
break;
|
||
default:
|
||
return false;
|
||
}
|
||
return true;
|
||
}
|
||
|
||
/* Return whether INSN, a PARALLEL of N register SETs (and maybe some
|
||
CLOBBERs), can be split into individual SETs in that order, without
|
||
changing semantics. */
|
||
static bool
|
||
can_split_parallel_of_n_reg_sets (rtx_insn *insn, int n)
|
||
{
|
||
if (!insn_nothrow_p (insn))
|
||
return false;
|
||
|
||
rtx pat = PATTERN (insn);
|
||
|
||
int i, j;
|
||
for (i = 0; i < n; i++)
|
||
{
|
||
if (side_effects_p (SET_SRC (XVECEXP (pat, 0, i))))
|
||
return false;
|
||
|
||
rtx reg = SET_DEST (XVECEXP (pat, 0, i));
|
||
|
||
for (j = i + 1; j < n; j++)
|
||
if (reg_referenced_p (reg, XVECEXP (pat, 0, j)))
|
||
return false;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Return whether X is just a single_set, with the source
|
||
a general_operand. */
|
||
static bool
|
||
is_just_move (rtx_insn *x)
|
||
{
|
||
rtx set = single_set (x);
|
||
if (!set)
|
||
return false;
|
||
|
||
return general_operand (SET_SRC (set), VOIDmode);
|
||
}
|
||
|
||
/* Callback function to count autoincs. */
|
||
|
||
static int
|
||
count_auto_inc (rtx, rtx, rtx, rtx, rtx, void *arg)
|
||
{
|
||
(*((int *) arg))++;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Try to combine the insns I0, I1 and I2 into I3.
|
||
Here I0, I1 and I2 appear earlier than I3.
|
||
I0 and I1 can be zero; then we combine just I2 into I3, or I1 and I2 into
|
||
I3.
|
||
|
||
If we are combining more than two insns and the resulting insn is not
|
||
recognized, try splitting it into two insns. If that happens, I2 and I3
|
||
are retained and I1/I0 are pseudo-deleted by turning them into a NOTE.
|
||
Otherwise, I0, I1 and I2 are pseudo-deleted.
|
||
|
||
Return 0 if the combination does not work. Then nothing is changed.
|
||
If we did the combination, return the insn at which combine should
|
||
resume scanning.
|
||
|
||
Set NEW_DIRECT_JUMP_P to a nonzero value if try_combine creates a
|
||
new direct jump instruction.
|
||
|
||
LAST_COMBINED_INSN is either I3, or some insn after I3 that has
|
||
been I3 passed to an earlier try_combine within the same basic
|
||
block. */
|
||
|
||
static rtx_insn *
|
||
try_combine (rtx_insn *i3, rtx_insn *i2, rtx_insn *i1, rtx_insn *i0,
|
||
int *new_direct_jump_p, rtx_insn *last_combined_insn)
|
||
{
|
||
/* New patterns for I3 and I2, respectively. */
|
||
rtx newpat, newi2pat = 0;
|
||
rtvec newpat_vec_with_clobbers = 0;
|
||
int substed_i2 = 0, substed_i1 = 0, substed_i0 = 0;
|
||
/* Indicates need to preserve SET in I0, I1 or I2 in I3 if it is not
|
||
dead. */
|
||
int added_sets_0, added_sets_1, added_sets_2;
|
||
/* Total number of SETs to put into I3. */
|
||
int total_sets;
|
||
/* Nonzero if I2's or I1's body now appears in I3. */
|
||
int i2_is_used = 0, i1_is_used = 0;
|
||
/* INSN_CODEs for new I3, new I2, and user of condition code. */
|
||
int insn_code_number, i2_code_number = 0, other_code_number = 0;
|
||
/* Contains I3 if the destination of I3 is used in its source, which means
|
||
that the old life of I3 is being killed. If that usage is placed into
|
||
I2 and not in I3, a REG_DEAD note must be made. */
|
||
rtx i3dest_killed = 0;
|
||
/* SET_DEST and SET_SRC of I2, I1 and I0. */
|
||
rtx i2dest = 0, i2src = 0, i1dest = 0, i1src = 0, i0dest = 0, i0src = 0;
|
||
/* Copy of SET_SRC of I1 and I0, if needed. */
|
||
rtx i1src_copy = 0, i0src_copy = 0, i0src_copy2 = 0;
|
||
/* Set if I2DEST was reused as a scratch register. */
|
||
bool i2scratch = false;
|
||
/* The PATTERNs of I0, I1, and I2, or a copy of them in certain cases. */
|
||
rtx i0pat = 0, i1pat = 0, i2pat = 0;
|
||
/* Indicates if I2DEST or I1DEST is in I2SRC or I1_SRC. */
|
||
int i2dest_in_i2src = 0, i1dest_in_i1src = 0, i2dest_in_i1src = 0;
|
||
int i0dest_in_i0src = 0, i1dest_in_i0src = 0, i2dest_in_i0src = 0;
|
||
int i2dest_killed = 0, i1dest_killed = 0, i0dest_killed = 0;
|
||
int i1_feeds_i2_n = 0, i0_feeds_i2_n = 0, i0_feeds_i1_n = 0;
|
||
/* Notes that must be added to REG_NOTES in I3 and I2. */
|
||
rtx new_i3_notes, new_i2_notes;
|
||
/* Notes that we substituted I3 into I2 instead of the normal case. */
|
||
int i3_subst_into_i2 = 0;
|
||
/* Notes that I1, I2 or I3 is a MULT operation. */
|
||
int have_mult = 0;
|
||
int swap_i2i3 = 0;
|
||
int split_i2i3 = 0;
|
||
int changed_i3_dest = 0;
|
||
bool i2_was_move = false, i3_was_move = false;
|
||
int n_auto_inc = 0;
|
||
|
||
int maxreg;
|
||
rtx_insn *temp_insn;
|
||
rtx temp_expr;
|
||
struct insn_link *link;
|
||
rtx other_pat = 0;
|
||
rtx new_other_notes;
|
||
int i;
|
||
scalar_int_mode dest_mode, temp_mode;
|
||
|
||
/* Immediately return if any of I0,I1,I2 are the same insn (I3 can
|
||
never be). */
|
||
if (i1 == i2 || i0 == i2 || (i0 && i0 == i1))
|
||
return 0;
|
||
|
||
/* Only try four-insn combinations when there's high likelihood of
|
||
success. Look for simple insns, such as loads of constants or
|
||
binary operations involving a constant. */
|
||
if (i0)
|
||
{
|
||
int i;
|
||
int ngood = 0;
|
||
int nshift = 0;
|
||
rtx set0, set3;
|
||
|
||
if (!flag_expensive_optimizations)
|
||
return 0;
|
||
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
rtx_insn *insn = i == 0 ? i0 : i == 1 ? i1 : i == 2 ? i2 : i3;
|
||
rtx set = single_set (insn);
|
||
rtx src;
|
||
if (!set)
|
||
continue;
|
||
src = SET_SRC (set);
|
||
if (CONSTANT_P (src))
|
||
{
|
||
ngood += 2;
|
||
break;
|
||
}
|
||
else if (BINARY_P (src) && CONSTANT_P (XEXP (src, 1)))
|
||
ngood++;
|
||
else if (GET_CODE (src) == ASHIFT || GET_CODE (src) == ASHIFTRT
|
||
|| GET_CODE (src) == LSHIFTRT)
|
||
nshift++;
|
||
}
|
||
|
||
/* If I0 loads a memory and I3 sets the same memory, then I1 and I2
|
||
are likely manipulating its value. Ideally we'll be able to combine
|
||
all four insns into a bitfield insertion of some kind.
|
||
|
||
Note the source in I0 might be inside a sign/zero extension and the
|
||
memory modes in I0 and I3 might be different. So extract the address
|
||
from the destination of I3 and search for it in the source of I0.
|
||
|
||
In the event that there's a match but the source/dest do not actually
|
||
refer to the same memory, the worst that happens is we try some
|
||
combinations that we wouldn't have otherwise. */
|
||
if ((set0 = single_set (i0))
|
||
/* Ensure the source of SET0 is a MEM, possibly buried inside
|
||
an extension. */
|
||
&& (GET_CODE (SET_SRC (set0)) == MEM
|
||
|| ((GET_CODE (SET_SRC (set0)) == ZERO_EXTEND
|
||
|| GET_CODE (SET_SRC (set0)) == SIGN_EXTEND)
|
||
&& GET_CODE (XEXP (SET_SRC (set0), 0)) == MEM))
|
||
&& (set3 = single_set (i3))
|
||
/* Ensure the destination of SET3 is a MEM. */
|
||
&& GET_CODE (SET_DEST (set3)) == MEM
|
||
/* Would it be better to extract the base address for the MEM
|
||
in SET3 and look for that? I don't have cases where it matters
|
||
but I could envision such cases. */
|
||
&& rtx_referenced_p (XEXP (SET_DEST (set3), 0), SET_SRC (set0)))
|
||
ngood += 2;
|
||
|
||
if (ngood < 2 && nshift < 2)
|
||
return 0;
|
||
}
|
||
|
||
/* Exit early if one of the insns involved can't be used for
|
||
combinations. */
|
||
if (CALL_P (i2)
|
||
|| (i1 && CALL_P (i1))
|
||
|| (i0 && CALL_P (i0))
|
||
|| cant_combine_insn_p (i3)
|
||
|| cant_combine_insn_p (i2)
|
||
|| (i1 && cant_combine_insn_p (i1))
|
||
|| (i0 && cant_combine_insn_p (i0))
|
||
|| likely_spilled_retval_p (i3))
|
||
return 0;
|
||
|
||
combine_attempts++;
|
||
undobuf.other_insn = 0;
|
||
|
||
/* Reset the hard register usage information. */
|
||
CLEAR_HARD_REG_SET (newpat_used_regs);
|
||
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
if (i0)
|
||
fprintf (dump_file, "\nTrying %d, %d, %d -> %d:\n",
|
||
INSN_UID (i0), INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
|
||
else if (i1)
|
||
fprintf (dump_file, "\nTrying %d, %d -> %d:\n",
|
||
INSN_UID (i1), INSN_UID (i2), INSN_UID (i3));
|
||
else
|
||
fprintf (dump_file, "\nTrying %d -> %d:\n",
|
||
INSN_UID (i2), INSN_UID (i3));
|
||
|
||
if (i0)
|
||
dump_insn_slim (dump_file, i0);
|
||
if (i1)
|
||
dump_insn_slim (dump_file, i1);
|
||
dump_insn_slim (dump_file, i2);
|
||
dump_insn_slim (dump_file, i3);
|
||
}
|
||
|
||
/* If multiple insns feed into one of I2 or I3, they can be in any
|
||
order. To simplify the code below, reorder them in sequence. */
|
||
if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i2))
|
||
std::swap (i0, i2);
|
||
if (i0 && DF_INSN_LUID (i0) > DF_INSN_LUID (i1))
|
||
std::swap (i0, i1);
|
||
if (i1 && DF_INSN_LUID (i1) > DF_INSN_LUID (i2))
|
||
std::swap (i1, i2);
|
||
|
||
added_links_insn = 0;
|
||
added_notes_insn = 0;
|
||
|
||
/* First check for one important special case that the code below will
|
||
not handle. Namely, the case where I1 is zero, I2 is a PARALLEL
|
||
and I3 is a SET whose SET_SRC is a SET_DEST in I2. In that case,
|
||
we may be able to replace that destination with the destination of I3.
|
||
This occurs in the common code where we compute both a quotient and
|
||
remainder into a structure, in which case we want to do the computation
|
||
directly into the structure to avoid register-register copies.
|
||
|
||
Note that this case handles both multiple sets in I2 and also cases
|
||
where I2 has a number of CLOBBERs inside the PARALLEL.
|
||
|
||
We make very conservative checks below and only try to handle the
|
||
most common cases of this. For example, we only handle the case
|
||
where I2 and I3 are adjacent to avoid making difficult register
|
||
usage tests. */
|
||
|
||
if (i1 == 0 && NONJUMP_INSN_P (i3) && GET_CODE (PATTERN (i3)) == SET
|
||
&& REG_P (SET_SRC (PATTERN (i3)))
|
||
&& REGNO (SET_SRC (PATTERN (i3))) >= FIRST_PSEUDO_REGISTER
|
||
&& find_reg_note (i3, REG_DEAD, SET_SRC (PATTERN (i3)))
|
||
&& GET_CODE (PATTERN (i2)) == PARALLEL
|
||
&& ! side_effects_p (SET_DEST (PATTERN (i3)))
|
||
/* If the dest of I3 is a ZERO_EXTRACT or STRICT_LOW_PART, the code
|
||
below would need to check what is inside (and reg_overlap_mentioned_p
|
||
doesn't support those codes anyway). Don't allow those destinations;
|
||
the resulting insn isn't likely to be recognized anyway. */
|
||
&& GET_CODE (SET_DEST (PATTERN (i3))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (PATTERN (i3))) != STRICT_LOW_PART
|
||
&& ! reg_overlap_mentioned_p (SET_SRC (PATTERN (i3)),
|
||
SET_DEST (PATTERN (i3)))
|
||
&& next_active_insn (i2) == i3)
|
||
{
|
||
rtx p2 = PATTERN (i2);
|
||
|
||
/* Make sure that the destination of I3,
|
||
which we are going to substitute into one output of I2,
|
||
is not used within another output of I2. We must avoid making this:
|
||
(parallel [(set (mem (reg 69)) ...)
|
||
(set (reg 69) ...)])
|
||
which is not well-defined as to order of actions.
|
||
(Besides, reload can't handle output reloads for this.)
|
||
|
||
The problem can also happen if the dest of I3 is a memory ref,
|
||
if another dest in I2 is an indirect memory ref.
|
||
|
||
Neither can this PARALLEL be an asm. We do not allow combining
|
||
that usually (see can_combine_p), so do not here either. */
|
||
bool ok = true;
|
||
for (i = 0; ok && i < XVECLEN (p2, 0); i++)
|
||
{
|
||
if ((GET_CODE (XVECEXP (p2, 0, i)) == SET
|
||
|| GET_CODE (XVECEXP (p2, 0, i)) == CLOBBER)
|
||
&& reg_overlap_mentioned_p (SET_DEST (PATTERN (i3)),
|
||
SET_DEST (XVECEXP (p2, 0, i))))
|
||
ok = false;
|
||
else if (GET_CODE (XVECEXP (p2, 0, i)) == SET
|
||
&& GET_CODE (SET_SRC (XVECEXP (p2, 0, i))) == ASM_OPERANDS)
|
||
ok = false;
|
||
}
|
||
|
||
if (ok)
|
||
for (i = 0; i < XVECLEN (p2, 0); i++)
|
||
if (GET_CODE (XVECEXP (p2, 0, i)) == SET
|
||
&& SET_DEST (XVECEXP (p2, 0, i)) == SET_SRC (PATTERN (i3)))
|
||
{
|
||
combine_merges++;
|
||
|
||
subst_insn = i3;
|
||
subst_low_luid = DF_INSN_LUID (i2);
|
||
|
||
added_sets_2 = added_sets_1 = added_sets_0 = 0;
|
||
i2src = SET_SRC (XVECEXP (p2, 0, i));
|
||
i2dest = SET_DEST (XVECEXP (p2, 0, i));
|
||
i2dest_killed = dead_or_set_p (i2, i2dest);
|
||
|
||
/* Replace the dest in I2 with our dest and make the resulting
|
||
insn the new pattern for I3. Then skip to where we validate
|
||
the pattern. Everything was set up above. */
|
||
SUBST (SET_DEST (XVECEXP (p2, 0, i)), SET_DEST (PATTERN (i3)));
|
||
newpat = p2;
|
||
i3_subst_into_i2 = 1;
|
||
goto validate_replacement;
|
||
}
|
||
}
|
||
|
||
/* If I2 is setting a pseudo to a constant and I3 is setting some
|
||
sub-part of it to another constant, merge them by making a new
|
||
constant. */
|
||
if (i1 == 0
|
||
&& (temp_expr = single_set (i2)) != 0
|
||
&& is_a <scalar_int_mode> (GET_MODE (SET_DEST (temp_expr)), &temp_mode)
|
||
&& CONST_SCALAR_INT_P (SET_SRC (temp_expr))
|
||
&& GET_CODE (PATTERN (i3)) == SET
|
||
&& CONST_SCALAR_INT_P (SET_SRC (PATTERN (i3)))
|
||
&& reg_subword_p (SET_DEST (PATTERN (i3)), SET_DEST (temp_expr)))
|
||
{
|
||
rtx dest = SET_DEST (PATTERN (i3));
|
||
rtx temp_dest = SET_DEST (temp_expr);
|
||
int offset = -1;
|
||
int width = 0;
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT)
|
||
{
|
||
if (CONST_INT_P (XEXP (dest, 1))
|
||
&& CONST_INT_P (XEXP (dest, 2))
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (dest, 0)),
|
||
&dest_mode))
|
||
{
|
||
width = INTVAL (XEXP (dest, 1));
|
||
offset = INTVAL (XEXP (dest, 2));
|
||
dest = XEXP (dest, 0);
|
||
if (BITS_BIG_ENDIAN)
|
||
offset = GET_MODE_PRECISION (dest_mode) - width - offset;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (GET_CODE (dest) == STRICT_LOW_PART)
|
||
dest = XEXP (dest, 0);
|
||
if (is_a <scalar_int_mode> (GET_MODE (dest), &dest_mode))
|
||
{
|
||
width = GET_MODE_PRECISION (dest_mode);
|
||
offset = 0;
|
||
}
|
||
}
|
||
|
||
if (offset >= 0)
|
||
{
|
||
/* If this is the low part, we're done. */
|
||
if (subreg_lowpart_p (dest))
|
||
;
|
||
/* Handle the case where inner is twice the size of outer. */
|
||
else if (GET_MODE_PRECISION (temp_mode)
|
||
== 2 * GET_MODE_PRECISION (dest_mode))
|
||
offset += GET_MODE_PRECISION (dest_mode);
|
||
/* Otherwise give up for now. */
|
||
else
|
||
offset = -1;
|
||
}
|
||
|
||
if (offset >= 0)
|
||
{
|
||
rtx inner = SET_SRC (PATTERN (i3));
|
||
rtx outer = SET_SRC (temp_expr);
|
||
|
||
wide_int o = wi::insert (rtx_mode_t (outer, temp_mode),
|
||
rtx_mode_t (inner, dest_mode),
|
||
offset, width);
|
||
|
||
combine_merges++;
|
||
subst_insn = i3;
|
||
subst_low_luid = DF_INSN_LUID (i2);
|
||
added_sets_2 = added_sets_1 = added_sets_0 = 0;
|
||
i2dest = temp_dest;
|
||
i2dest_killed = dead_or_set_p (i2, i2dest);
|
||
|
||
/* Replace the source in I2 with the new constant and make the
|
||
resulting insn the new pattern for I3. Then skip to where we
|
||
validate the pattern. Everything was set up above. */
|
||
SUBST (SET_SRC (temp_expr),
|
||
immed_wide_int_const (o, temp_mode));
|
||
|
||
newpat = PATTERN (i2);
|
||
|
||
/* The dest of I3 has been replaced with the dest of I2. */
|
||
changed_i3_dest = 1;
|
||
goto validate_replacement;
|
||
}
|
||
}
|
||
|
||
/* If we have no I1 and I2 looks like:
|
||
(parallel [(set (reg:CC X) (compare:CC OP (const_int 0)))
|
||
(set Y OP)])
|
||
make up a dummy I1 that is
|
||
(set Y OP)
|
||
and change I2 to be
|
||
(set (reg:CC X) (compare:CC Y (const_int 0)))
|
||
|
||
(We can ignore any trailing CLOBBERs.)
|
||
|
||
This undoes a previous combination and allows us to match a branch-and-
|
||
decrement insn. */
|
||
|
||
if (!HAVE_cc0 && i1 == 0
|
||
&& is_parallel_of_n_reg_sets (PATTERN (i2), 2)
|
||
&& (GET_MODE_CLASS (GET_MODE (SET_DEST (XVECEXP (PATTERN (i2), 0, 0))))
|
||
== MODE_CC)
|
||
&& GET_CODE (SET_SRC (XVECEXP (PATTERN (i2), 0, 0))) == COMPARE
|
||
&& XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 1) == const0_rtx
|
||
&& rtx_equal_p (XEXP (SET_SRC (XVECEXP (PATTERN (i2), 0, 0)), 0),
|
||
SET_SRC (XVECEXP (PATTERN (i2), 0, 1)))
|
||
&& !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
|
||
&& !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
|
||
{
|
||
/* We make I1 with the same INSN_UID as I2. This gives it
|
||
the same DF_INSN_LUID for value tracking. Our fake I1 will
|
||
never appear in the insn stream so giving it the same INSN_UID
|
||
as I2 will not cause a problem. */
|
||
|
||
i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
|
||
XVECEXP (PATTERN (i2), 0, 1), INSN_LOCATION (i2),
|
||
-1, NULL_RTX);
|
||
INSN_UID (i1) = INSN_UID (i2);
|
||
|
||
SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 0));
|
||
SUBST (XEXP (SET_SRC (PATTERN (i2)), 0),
|
||
SET_DEST (PATTERN (i1)));
|
||
unsigned int regno = REGNO (SET_DEST (PATTERN (i1)));
|
||
SUBST_LINK (LOG_LINKS (i2),
|
||
alloc_insn_link (i1, regno, LOG_LINKS (i2)));
|
||
}
|
||
|
||
/* If I2 is a PARALLEL of two SETs of REGs (and perhaps some CLOBBERs),
|
||
make those two SETs separate I1 and I2 insns, and make an I0 that is
|
||
the original I1. */
|
||
if (!HAVE_cc0 && i0 == 0
|
||
&& is_parallel_of_n_reg_sets (PATTERN (i2), 2)
|
||
&& can_split_parallel_of_n_reg_sets (i2, 2)
|
||
&& !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
|
||
&& !reg_used_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3)
|
||
&& !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 0)), i2, i3)
|
||
&& !reg_set_between_p (SET_DEST (XVECEXP (PATTERN (i2), 0, 1)), i2, i3))
|
||
{
|
||
/* If there is no I1, there is no I0 either. */
|
||
i0 = i1;
|
||
|
||
/* We make I1 with the same INSN_UID as I2. This gives it
|
||
the same DF_INSN_LUID for value tracking. Our fake I1 will
|
||
never appear in the insn stream so giving it the same INSN_UID
|
||
as I2 will not cause a problem. */
|
||
|
||
i1 = gen_rtx_INSN (VOIDmode, NULL, i2, BLOCK_FOR_INSN (i2),
|
||
XVECEXP (PATTERN (i2), 0, 0), INSN_LOCATION (i2),
|
||
-1, NULL_RTX);
|
||
INSN_UID (i1) = INSN_UID (i2);
|
||
|
||
SUBST (PATTERN (i2), XVECEXP (PATTERN (i2), 0, 1));
|
||
}
|
||
|
||
/* Verify that I2 and maybe I1 and I0 can be combined into I3. */
|
||
if (!can_combine_p (i2, i3, i0, i1, NULL, NULL, &i2dest, &i2src))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "Can't combine i2 into i3\n");
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
if (i1 && !can_combine_p (i1, i3, i0, NULL, i2, NULL, &i1dest, &i1src))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "Can't combine i1 into i3\n");
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
if (i0 && !can_combine_p (i0, i3, NULL, NULL, i1, i2, &i0dest, &i0src))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "Can't combine i0 into i3\n");
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* Record whether i2 and i3 are trivial moves. */
|
||
i2_was_move = is_just_move (i2);
|
||
i3_was_move = is_just_move (i3);
|
||
|
||
/* Record whether I2DEST is used in I2SRC and similarly for the other
|
||
cases. Knowing this will help in register status updating below. */
|
||
i2dest_in_i2src = reg_overlap_mentioned_p (i2dest, i2src);
|
||
i1dest_in_i1src = i1 && reg_overlap_mentioned_p (i1dest, i1src);
|
||
i2dest_in_i1src = i1 && reg_overlap_mentioned_p (i2dest, i1src);
|
||
i0dest_in_i0src = i0 && reg_overlap_mentioned_p (i0dest, i0src);
|
||
i1dest_in_i0src = i0 && reg_overlap_mentioned_p (i1dest, i0src);
|
||
i2dest_in_i0src = i0 && reg_overlap_mentioned_p (i2dest, i0src);
|
||
i2dest_killed = dead_or_set_p (i2, i2dest);
|
||
i1dest_killed = i1 && dead_or_set_p (i1, i1dest);
|
||
i0dest_killed = i0 && dead_or_set_p (i0, i0dest);
|
||
|
||
/* For the earlier insns, determine which of the subsequent ones they
|
||
feed. */
|
||
i1_feeds_i2_n = i1 && insn_a_feeds_b (i1, i2);
|
||
i0_feeds_i1_n = i0 && insn_a_feeds_b (i0, i1);
|
||
i0_feeds_i2_n = (i0 && (!i0_feeds_i1_n ? insn_a_feeds_b (i0, i2)
|
||
: (!reg_overlap_mentioned_p (i1dest, i0dest)
|
||
&& reg_overlap_mentioned_p (i0dest, i2src))));
|
||
|
||
/* Ensure that I3's pattern can be the destination of combines. */
|
||
if (! combinable_i3pat (i3, &PATTERN (i3), i2dest, i1dest, i0dest,
|
||
i1 && i2dest_in_i1src && !i1_feeds_i2_n,
|
||
i0 && ((i2dest_in_i0src && !i0_feeds_i2_n)
|
||
|| (i1dest_in_i0src && !i0_feeds_i1_n)),
|
||
&i3dest_killed))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* See if any of the insns is a MULT operation. Unless one is, we will
|
||
reject a combination that is, since it must be slower. Be conservative
|
||
here. */
|
||
if (GET_CODE (i2src) == MULT
|
||
|| (i1 != 0 && GET_CODE (i1src) == MULT)
|
||
|| (i0 != 0 && GET_CODE (i0src) == MULT)
|
||
|| (GET_CODE (PATTERN (i3)) == SET
|
||
&& GET_CODE (SET_SRC (PATTERN (i3))) == MULT))
|
||
have_mult = 1;
|
||
|
||
/* If I3 has an inc, then give up if I1 or I2 uses the reg that is inc'd.
|
||
We used to do this EXCEPT in one case: I3 has a post-inc in an
|
||
output operand. However, that exception can give rise to insns like
|
||
mov r3,(r3)+
|
||
which is a famous insn on the PDP-11 where the value of r3 used as the
|
||
source was model-dependent. Avoid this sort of thing. */
|
||
|
||
#if 0
|
||
if (!(GET_CODE (PATTERN (i3)) == SET
|
||
&& REG_P (SET_SRC (PATTERN (i3)))
|
||
&& MEM_P (SET_DEST (PATTERN (i3)))
|
||
&& (GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_INC
|
||
|| GET_CODE (XEXP (SET_DEST (PATTERN (i3)), 0)) == POST_DEC)))
|
||
/* It's not the exception. */
|
||
#endif
|
||
if (AUTO_INC_DEC)
|
||
{
|
||
rtx link;
|
||
for (link = REG_NOTES (i3); link; link = XEXP (link, 1))
|
||
if (REG_NOTE_KIND (link) == REG_INC
|
||
&& (reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i2))
|
||
|| (i1 != 0
|
||
&& reg_overlap_mentioned_p (XEXP (link, 0), PATTERN (i1)))))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* See if the SETs in I1 or I2 need to be kept around in the merged
|
||
instruction: whenever the value set there is still needed past I3.
|
||
For the SET in I2, this is easy: we see if I2DEST dies or is set in I3.
|
||
|
||
For the SET in I1, we have two cases: if I1 and I2 independently feed
|
||
into I3, the set in I1 needs to be kept around unless I1DEST dies
|
||
or is set in I3. Otherwise (if I1 feeds I2 which feeds I3), the set
|
||
in I1 needs to be kept around unless I1DEST dies or is set in either
|
||
I2 or I3. The same considerations apply to I0. */
|
||
|
||
added_sets_2 = !dead_or_set_p (i3, i2dest);
|
||
|
||
if (i1)
|
||
added_sets_1 = !(dead_or_set_p (i3, i1dest)
|
||
|| (i1_feeds_i2_n && dead_or_set_p (i2, i1dest)));
|
||
else
|
||
added_sets_1 = 0;
|
||
|
||
if (i0)
|
||
added_sets_0 = !(dead_or_set_p (i3, i0dest)
|
||
|| (i0_feeds_i1_n && dead_or_set_p (i1, i0dest))
|
||
|| ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
|
||
&& dead_or_set_p (i2, i0dest)));
|
||
else
|
||
added_sets_0 = 0;
|
||
|
||
/* We are about to copy insns for the case where they need to be kept
|
||
around. Check that they can be copied in the merged instruction. */
|
||
|
||
if (targetm.cannot_copy_insn_p
|
||
&& ((added_sets_2 && targetm.cannot_copy_insn_p (i2))
|
||
|| (i1 && added_sets_1 && targetm.cannot_copy_insn_p (i1))
|
||
|| (i0 && added_sets_0 && targetm.cannot_copy_insn_p (i0))))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* Count how many auto_inc expressions there were in the original insns;
|
||
we need to have the same number in the resulting patterns. */
|
||
|
||
if (i0)
|
||
for_each_inc_dec (PATTERN (i0), count_auto_inc, &n_auto_inc);
|
||
if (i1)
|
||
for_each_inc_dec (PATTERN (i1), count_auto_inc, &n_auto_inc);
|
||
for_each_inc_dec (PATTERN (i2), count_auto_inc, &n_auto_inc);
|
||
for_each_inc_dec (PATTERN (i3), count_auto_inc, &n_auto_inc);
|
||
|
||
/* If the set in I2 needs to be kept around, we must make a copy of
|
||
PATTERN (I2), so that when we substitute I1SRC for I1DEST in
|
||
PATTERN (I2), we are only substituting for the original I1DEST, not into
|
||
an already-substituted copy. This also prevents making self-referential
|
||
rtx. If I2 is a PARALLEL, we just need the piece that assigns I2SRC to
|
||
I2DEST. */
|
||
|
||
if (added_sets_2)
|
||
{
|
||
if (GET_CODE (PATTERN (i2)) == PARALLEL)
|
||
i2pat = gen_rtx_SET (i2dest, copy_rtx (i2src));
|
||
else
|
||
i2pat = copy_rtx (PATTERN (i2));
|
||
}
|
||
|
||
if (added_sets_1)
|
||
{
|
||
if (GET_CODE (PATTERN (i1)) == PARALLEL)
|
||
i1pat = gen_rtx_SET (i1dest, copy_rtx (i1src));
|
||
else
|
||
i1pat = copy_rtx (PATTERN (i1));
|
||
}
|
||
|
||
if (added_sets_0)
|
||
{
|
||
if (GET_CODE (PATTERN (i0)) == PARALLEL)
|
||
i0pat = gen_rtx_SET (i0dest, copy_rtx (i0src));
|
||
else
|
||
i0pat = copy_rtx (PATTERN (i0));
|
||
}
|
||
|
||
combine_merges++;
|
||
|
||
/* Substitute in the latest insn for the regs set by the earlier ones. */
|
||
|
||
maxreg = max_reg_num ();
|
||
|
||
subst_insn = i3;
|
||
|
||
/* Many machines that don't use CC0 have insns that can both perform an
|
||
arithmetic operation and set the condition code. These operations will
|
||
be represented as a PARALLEL with the first element of the vector
|
||
being a COMPARE of an arithmetic operation with the constant zero.
|
||
The second element of the vector will set some pseudo to the result
|
||
of the same arithmetic operation. If we simplify the COMPARE, we won't
|
||
match such a pattern and so will generate an extra insn. Here we test
|
||
for this case, where both the comparison and the operation result are
|
||
needed, and make the PARALLEL by just replacing I2DEST in I3SRC with
|
||
I2SRC. Later we will make the PARALLEL that contains I2. */
|
||
|
||
if (!HAVE_cc0 && i1 == 0 && added_sets_2 && GET_CODE (PATTERN (i3)) == SET
|
||
&& GET_CODE (SET_SRC (PATTERN (i3))) == COMPARE
|
||
&& CONST_INT_P (XEXP (SET_SRC (PATTERN (i3)), 1))
|
||
&& rtx_equal_p (XEXP (SET_SRC (PATTERN (i3)), 0), i2dest))
|
||
{
|
||
rtx newpat_dest;
|
||
rtx *cc_use_loc = NULL;
|
||
rtx_insn *cc_use_insn = NULL;
|
||
rtx op0 = i2src, op1 = XEXP (SET_SRC (PATTERN (i3)), 1);
|
||
machine_mode compare_mode, orig_compare_mode;
|
||
enum rtx_code compare_code = UNKNOWN, orig_compare_code = UNKNOWN;
|
||
scalar_int_mode mode;
|
||
|
||
newpat = PATTERN (i3);
|
||
newpat_dest = SET_DEST (newpat);
|
||
compare_mode = orig_compare_mode = GET_MODE (newpat_dest);
|
||
|
||
if (undobuf.other_insn == 0
|
||
&& (cc_use_loc = find_single_use (SET_DEST (newpat), i3,
|
||
&cc_use_insn)))
|
||
{
|
||
compare_code = orig_compare_code = GET_CODE (*cc_use_loc);
|
||
if (is_a <scalar_int_mode> (GET_MODE (i2dest), &mode))
|
||
compare_code = simplify_compare_const (compare_code, mode,
|
||
op0, &op1);
|
||
target_canonicalize_comparison (&compare_code, &op0, &op1, 1);
|
||
}
|
||
|
||
/* Do the rest only if op1 is const0_rtx, which may be the
|
||
result of simplification. */
|
||
if (op1 == const0_rtx)
|
||
{
|
||
/* If a single use of the CC is found, prepare to modify it
|
||
when SELECT_CC_MODE returns a new CC-class mode, or when
|
||
the above simplify_compare_const() returned a new comparison
|
||
operator. undobuf.other_insn is assigned the CC use insn
|
||
when modifying it. */
|
||
if (cc_use_loc)
|
||
{
|
||
#ifdef SELECT_CC_MODE
|
||
machine_mode new_mode
|
||
= SELECT_CC_MODE (compare_code, op0, op1);
|
||
if (new_mode != orig_compare_mode
|
||
&& can_change_dest_mode (SET_DEST (newpat),
|
||
added_sets_2, new_mode))
|
||
{
|
||
unsigned int regno = REGNO (newpat_dest);
|
||
compare_mode = new_mode;
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
newpat_dest = gen_rtx_REG (compare_mode, regno);
|
||
else
|
||
{
|
||
SUBST_MODE (regno_reg_rtx[regno], compare_mode);
|
||
newpat_dest = regno_reg_rtx[regno];
|
||
}
|
||
}
|
||
#endif
|
||
/* Cases for modifying the CC-using comparison. */
|
||
if (compare_code != orig_compare_code
|
||
/* ??? Do we need to verify the zero rtx? */
|
||
&& XEXP (*cc_use_loc, 1) == const0_rtx)
|
||
{
|
||
/* Replace cc_use_loc with entire new RTX. */
|
||
SUBST (*cc_use_loc,
|
||
gen_rtx_fmt_ee (compare_code, GET_MODE (*cc_use_loc),
|
||
newpat_dest, const0_rtx));
|
||
undobuf.other_insn = cc_use_insn;
|
||
}
|
||
else if (compare_mode != orig_compare_mode)
|
||
{
|
||
/* Just replace the CC reg with a new mode. */
|
||
SUBST (XEXP (*cc_use_loc, 0), newpat_dest);
|
||
undobuf.other_insn = cc_use_insn;
|
||
}
|
||
}
|
||
|
||
/* Now we modify the current newpat:
|
||
First, SET_DEST(newpat) is updated if the CC mode has been
|
||
altered. For targets without SELECT_CC_MODE, this should be
|
||
optimized away. */
|
||
if (compare_mode != orig_compare_mode)
|
||
SUBST (SET_DEST (newpat), newpat_dest);
|
||
/* This is always done to propagate i2src into newpat. */
|
||
SUBST (SET_SRC (newpat),
|
||
gen_rtx_COMPARE (compare_mode, op0, op1));
|
||
/* Create new version of i2pat if needed; the below PARALLEL
|
||
creation needs this to work correctly. */
|
||
if (! rtx_equal_p (i2src, op0))
|
||
i2pat = gen_rtx_SET (i2dest, op0);
|
||
i2_is_used = 1;
|
||
}
|
||
}
|
||
|
||
if (i2_is_used == 0)
|
||
{
|
||
/* It is possible that the source of I2 or I1 may be performing
|
||
an unneeded operation, such as a ZERO_EXTEND of something
|
||
that is known to have the high part zero. Handle that case
|
||
by letting subst look at the inner insns.
|
||
|
||
Another way to do this would be to have a function that tries
|
||
to simplify a single insn instead of merging two or more
|
||
insns. We don't do this because of the potential of infinite
|
||
loops and because of the potential extra memory required.
|
||
However, doing it the way we are is a bit of a kludge and
|
||
doesn't catch all cases.
|
||
|
||
But only do this if -fexpensive-optimizations since it slows
|
||
things down and doesn't usually win.
|
||
|
||
This is not done in the COMPARE case above because the
|
||
unmodified I2PAT is used in the PARALLEL and so a pattern
|
||
with a modified I2SRC would not match. */
|
||
|
||
if (flag_expensive_optimizations)
|
||
{
|
||
/* Pass pc_rtx so no substitutions are done, just
|
||
simplifications. */
|
||
if (i1)
|
||
{
|
||
subst_low_luid = DF_INSN_LUID (i1);
|
||
i1src = subst (i1src, pc_rtx, pc_rtx, 0, 0, 0);
|
||
}
|
||
|
||
subst_low_luid = DF_INSN_LUID (i2);
|
||
i2src = subst (i2src, pc_rtx, pc_rtx, 0, 0, 0);
|
||
}
|
||
|
||
n_occurrences = 0; /* `subst' counts here */
|
||
subst_low_luid = DF_INSN_LUID (i2);
|
||
|
||
/* If I1 feeds into I2 and I1DEST is in I1SRC, we need to make a unique
|
||
copy of I2SRC each time we substitute it, in order to avoid creating
|
||
self-referential RTL when we will be substituting I1SRC for I1DEST
|
||
later. Likewise if I0 feeds into I2, either directly or indirectly
|
||
through I1, and I0DEST is in I0SRC. */
|
||
newpat = subst (PATTERN (i3), i2dest, i2src, 0, 0,
|
||
(i1_feeds_i2_n && i1dest_in_i1src)
|
||
|| ((i0_feeds_i2_n || (i0_feeds_i1_n && i1_feeds_i2_n))
|
||
&& i0dest_in_i0src));
|
||
substed_i2 = 1;
|
||
|
||
/* Record whether I2's body now appears within I3's body. */
|
||
i2_is_used = n_occurrences;
|
||
}
|
||
|
||
/* If we already got a failure, don't try to do more. Otherwise, try to
|
||
substitute I1 if we have it. */
|
||
|
||
if (i1 && GET_CODE (newpat) != CLOBBER)
|
||
{
|
||
/* Before we can do this substitution, we must redo the test done
|
||
above (see detailed comments there) that ensures I1DEST isn't
|
||
mentioned in any SETs in NEWPAT that are field assignments. */
|
||
if (!combinable_i3pat (NULL, &newpat, i1dest, NULL_RTX, NULL_RTX,
|
||
0, 0, 0))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
n_occurrences = 0;
|
||
subst_low_luid = DF_INSN_LUID (i1);
|
||
|
||
/* If the following substitution will modify I1SRC, make a copy of it
|
||
for the case where it is substituted for I1DEST in I2PAT later. */
|
||
if (added_sets_2 && i1_feeds_i2_n)
|
||
i1src_copy = copy_rtx (i1src);
|
||
|
||
/* If I0 feeds into I1 and I0DEST is in I0SRC, we need to make a unique
|
||
copy of I1SRC each time we substitute it, in order to avoid creating
|
||
self-referential RTL when we will be substituting I0SRC for I0DEST
|
||
later. */
|
||
newpat = subst (newpat, i1dest, i1src, 0, 0,
|
||
i0_feeds_i1_n && i0dest_in_i0src);
|
||
substed_i1 = 1;
|
||
|
||
/* Record whether I1's body now appears within I3's body. */
|
||
i1_is_used = n_occurrences;
|
||
}
|
||
|
||
/* Likewise for I0 if we have it. */
|
||
|
||
if (i0 && GET_CODE (newpat) != CLOBBER)
|
||
{
|
||
if (!combinable_i3pat (NULL, &newpat, i0dest, NULL_RTX, NULL_RTX,
|
||
0, 0, 0))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* If the following substitution will modify I0SRC, make a copy of it
|
||
for the case where it is substituted for I0DEST in I1PAT later. */
|
||
if (added_sets_1 && i0_feeds_i1_n)
|
||
i0src_copy = copy_rtx (i0src);
|
||
/* And a copy for I0DEST in I2PAT substitution. */
|
||
if (added_sets_2 && ((i0_feeds_i1_n && i1_feeds_i2_n)
|
||
|| (i0_feeds_i2_n)))
|
||
i0src_copy2 = copy_rtx (i0src);
|
||
|
||
n_occurrences = 0;
|
||
subst_low_luid = DF_INSN_LUID (i0);
|
||
newpat = subst (newpat, i0dest, i0src, 0, 0, 0);
|
||
substed_i0 = 1;
|
||
}
|
||
|
||
if (n_auto_inc)
|
||
{
|
||
int new_n_auto_inc = 0;
|
||
for_each_inc_dec (newpat, count_auto_inc, &new_n_auto_inc);
|
||
|
||
if (n_auto_inc != new_n_auto_inc)
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fprintf (dump_file, "Number of auto_inc expressions changed\n");
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Fail if an autoincrement side-effect has been duplicated. Be careful
|
||
to count all the ways that I2SRC and I1SRC can be used. */
|
||
if ((FIND_REG_INC_NOTE (i2, NULL_RTX) != 0
|
||
&& i2_is_used + added_sets_2 > 1)
|
||
|| (i1 != 0 && FIND_REG_INC_NOTE (i1, NULL_RTX) != 0
|
||
&& (i1_is_used + added_sets_1 + (added_sets_2 && i1_feeds_i2_n)
|
||
> 1))
|
||
|| (i0 != 0 && FIND_REG_INC_NOTE (i0, NULL_RTX) != 0
|
||
&& (n_occurrences + added_sets_0
|
||
+ (added_sets_1 && i0_feeds_i1_n)
|
||
+ (added_sets_2 && i0_feeds_i2_n)
|
||
> 1))
|
||
/* Fail if we tried to make a new register. */
|
||
|| max_reg_num () != maxreg
|
||
/* Fail if we couldn't do something and have a CLOBBER. */
|
||
|| GET_CODE (newpat) == CLOBBER
|
||
/* Fail if this new pattern is a MULT and we didn't have one before
|
||
at the outer level. */
|
||
|| (GET_CODE (newpat) == SET && GET_CODE (SET_SRC (newpat)) == MULT
|
||
&& ! have_mult))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* If the actions of the earlier insns must be kept
|
||
in addition to substituting them into the latest one,
|
||
we must make a new PARALLEL for the latest insn
|
||
to hold additional the SETs. */
|
||
|
||
if (added_sets_0 || added_sets_1 || added_sets_2)
|
||
{
|
||
int extra_sets = added_sets_0 + added_sets_1 + added_sets_2;
|
||
combine_extras++;
|
||
|
||
if (GET_CODE (newpat) == PARALLEL)
|
||
{
|
||
rtvec old = XVEC (newpat, 0);
|
||
total_sets = XVECLEN (newpat, 0) + extra_sets;
|
||
newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
|
||
memcpy (XVEC (newpat, 0)->elem, &old->elem[0],
|
||
sizeof (old->elem[0]) * old->num_elem);
|
||
}
|
||
else
|
||
{
|
||
rtx old = newpat;
|
||
total_sets = 1 + extra_sets;
|
||
newpat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (total_sets));
|
||
XVECEXP (newpat, 0, 0) = old;
|
||
}
|
||
|
||
if (added_sets_0)
|
||
XVECEXP (newpat, 0, --total_sets) = i0pat;
|
||
|
||
if (added_sets_1)
|
||
{
|
||
rtx t = i1pat;
|
||
if (i0_feeds_i1_n)
|
||
t = subst (t, i0dest, i0src_copy ? i0src_copy : i0src, 0, 0, 0);
|
||
|
||
XVECEXP (newpat, 0, --total_sets) = t;
|
||
}
|
||
if (added_sets_2)
|
||
{
|
||
rtx t = i2pat;
|
||
if (i1_feeds_i2_n)
|
||
t = subst (t, i1dest, i1src_copy ? i1src_copy : i1src, 0, 0,
|
||
i0_feeds_i1_n && i0dest_in_i0src);
|
||
if ((i0_feeds_i1_n && i1_feeds_i2_n) || i0_feeds_i2_n)
|
||
t = subst (t, i0dest, i0src_copy2 ? i0src_copy2 : i0src, 0, 0, 0);
|
||
|
||
XVECEXP (newpat, 0, --total_sets) = t;
|
||
}
|
||
}
|
||
|
||
validate_replacement:
|
||
|
||
/* Note which hard regs this insn has as inputs. */
|
||
mark_used_regs_combine (newpat);
|
||
|
||
/* If recog_for_combine fails, it strips existing clobbers. If we'll
|
||
consider splitting this pattern, we might need these clobbers. */
|
||
if (i1 && GET_CODE (newpat) == PARALLEL
|
||
&& GET_CODE (XVECEXP (newpat, 0, XVECLEN (newpat, 0) - 1)) == CLOBBER)
|
||
{
|
||
int len = XVECLEN (newpat, 0);
|
||
|
||
newpat_vec_with_clobbers = rtvec_alloc (len);
|
||
for (i = 0; i < len; i++)
|
||
RTVEC_ELT (newpat_vec_with_clobbers, i) = XVECEXP (newpat, 0, i);
|
||
}
|
||
|
||
/* We have recognized nothing yet. */
|
||
insn_code_number = -1;
|
||
|
||
/* See if this is a PARALLEL of two SETs where one SET's destination is
|
||
a register that is unused and this isn't marked as an instruction that
|
||
might trap in an EH region. In that case, we just need the other SET.
|
||
We prefer this over the PARALLEL.
|
||
|
||
This can occur when simplifying a divmod insn. We *must* test for this
|
||
case here because the code below that splits two independent SETs doesn't
|
||
handle this case correctly when it updates the register status.
|
||
|
||
It's pointless doing this if we originally had two sets, one from
|
||
i3, and one from i2. Combining then splitting the parallel results
|
||
in the original i2 again plus an invalid insn (which we delete).
|
||
The net effect is only to move instructions around, which makes
|
||
debug info less accurate.
|
||
|
||
If the remaining SET came from I2 its destination should not be used
|
||
between I2 and I3. See PR82024. */
|
||
|
||
if (!(added_sets_2 && i1 == 0)
|
||
&& is_parallel_of_n_reg_sets (newpat, 2)
|
||
&& asm_noperands (newpat) < 0)
|
||
{
|
||
rtx set0 = XVECEXP (newpat, 0, 0);
|
||
rtx set1 = XVECEXP (newpat, 0, 1);
|
||
rtx oldpat = newpat;
|
||
|
||
if (((REG_P (SET_DEST (set1))
|
||
&& find_reg_note (i3, REG_UNUSED, SET_DEST (set1)))
|
||
|| (GET_CODE (SET_DEST (set1)) == SUBREG
|
||
&& find_reg_note (i3, REG_UNUSED, SUBREG_REG (SET_DEST (set1)))))
|
||
&& insn_nothrow_p (i3)
|
||
&& !side_effects_p (SET_SRC (set1)))
|
||
{
|
||
newpat = set0;
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
}
|
||
|
||
else if (((REG_P (SET_DEST (set0))
|
||
&& find_reg_note (i3, REG_UNUSED, SET_DEST (set0)))
|
||
|| (GET_CODE (SET_DEST (set0)) == SUBREG
|
||
&& find_reg_note (i3, REG_UNUSED,
|
||
SUBREG_REG (SET_DEST (set0)))))
|
||
&& insn_nothrow_p (i3)
|
||
&& !side_effects_p (SET_SRC (set0)))
|
||
{
|
||
rtx dest = SET_DEST (set1);
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
if (!reg_used_between_p (dest, i2, i3))
|
||
{
|
||
newpat = set1;
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
|
||
if (insn_code_number >= 0)
|
||
changed_i3_dest = 1;
|
||
}
|
||
}
|
||
|
||
if (insn_code_number < 0)
|
||
newpat = oldpat;
|
||
}
|
||
|
||
/* Is the result of combination a valid instruction? */
|
||
if (insn_code_number < 0)
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
|
||
/* If we were combining three insns and the result is a simple SET
|
||
with no ASM_OPERANDS that wasn't recognized, try to split it into two
|
||
insns. There are two ways to do this. It can be split using a
|
||
machine-specific method (like when you have an addition of a large
|
||
constant) or by combine in the function find_split_point. */
|
||
|
||
if (i1 && insn_code_number < 0 && GET_CODE (newpat) == SET
|
||
&& asm_noperands (newpat) < 0)
|
||
{
|
||
rtx parallel, *split;
|
||
rtx_insn *m_split_insn;
|
||
|
||
/* See if the MD file can split NEWPAT. If it can't, see if letting it
|
||
use I2DEST as a scratch register will help. In the latter case,
|
||
convert I2DEST to the mode of the source of NEWPAT if we can. */
|
||
|
||
m_split_insn = combine_split_insns (newpat, i3);
|
||
|
||
/* We can only use I2DEST as a scratch reg if it doesn't overlap any
|
||
inputs of NEWPAT. */
|
||
|
||
/* ??? If I2DEST is not safe, and I1DEST exists, then it would be
|
||
possible to try that as a scratch reg. This would require adding
|
||
more code to make it work though. */
|
||
|
||
if (m_split_insn == 0 && ! reg_overlap_mentioned_p (i2dest, newpat))
|
||
{
|
||
machine_mode new_mode = GET_MODE (SET_DEST (newpat));
|
||
|
||
/* ??? Reusing i2dest without resetting the reg_stat entry for it
|
||
(temporarily, until we are committed to this instruction
|
||
combination) does not work: for example, any call to nonzero_bits
|
||
on the register (from a splitter in the MD file, for example)
|
||
will get the old information, which is invalid.
|
||
|
||
Since nowadays we can create registers during combine just fine,
|
||
we should just create a new one here, not reuse i2dest. */
|
||
|
||
/* First try to split using the original register as a
|
||
scratch register. */
|
||
parallel = gen_rtx_PARALLEL (VOIDmode,
|
||
gen_rtvec (2, newpat,
|
||
gen_rtx_CLOBBER (VOIDmode,
|
||
i2dest)));
|
||
m_split_insn = combine_split_insns (parallel, i3);
|
||
|
||
/* If that didn't work, try changing the mode of I2DEST if
|
||
we can. */
|
||
if (m_split_insn == 0
|
||
&& new_mode != GET_MODE (i2dest)
|
||
&& new_mode != VOIDmode
|
||
&& can_change_dest_mode (i2dest, added_sets_2, new_mode))
|
||
{
|
||
machine_mode old_mode = GET_MODE (i2dest);
|
||
rtx ni2dest;
|
||
|
||
if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
|
||
ni2dest = gen_rtx_REG (new_mode, REGNO (i2dest));
|
||
else
|
||
{
|
||
SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], new_mode);
|
||
ni2dest = regno_reg_rtx[REGNO (i2dest)];
|
||
}
|
||
|
||
parallel = (gen_rtx_PARALLEL
|
||
(VOIDmode,
|
||
gen_rtvec (2, newpat,
|
||
gen_rtx_CLOBBER (VOIDmode,
|
||
ni2dest))));
|
||
m_split_insn = combine_split_insns (parallel, i3);
|
||
|
||
if (m_split_insn == 0
|
||
&& REGNO (i2dest) >= FIRST_PSEUDO_REGISTER)
|
||
{
|
||
struct undo *buf;
|
||
|
||
adjust_reg_mode (regno_reg_rtx[REGNO (i2dest)], old_mode);
|
||
buf = undobuf.undos;
|
||
undobuf.undos = buf->next;
|
||
buf->next = undobuf.frees;
|
||
undobuf.frees = buf;
|
||
}
|
||
}
|
||
|
||
i2scratch = m_split_insn != 0;
|
||
}
|
||
|
||
/* If recog_for_combine has discarded clobbers, try to use them
|
||
again for the split. */
|
||
if (m_split_insn == 0 && newpat_vec_with_clobbers)
|
||
{
|
||
parallel = gen_rtx_PARALLEL (VOIDmode, newpat_vec_with_clobbers);
|
||
m_split_insn = combine_split_insns (parallel, i3);
|
||
}
|
||
|
||
if (m_split_insn && NEXT_INSN (m_split_insn) == NULL_RTX)
|
||
{
|
||
rtx m_split_pat = PATTERN (m_split_insn);
|
||
insn_code_number = recog_for_combine (&m_split_pat, i3, &new_i3_notes);
|
||
if (insn_code_number >= 0)
|
||
newpat = m_split_pat;
|
||
}
|
||
else if (m_split_insn && NEXT_INSN (NEXT_INSN (m_split_insn)) == NULL_RTX
|
||
&& (next_nonnote_nondebug_insn (i2) == i3
|
||
|| !modified_between_p (PATTERN (m_split_insn), i2, i3)))
|
||
{
|
||
rtx i2set, i3set;
|
||
rtx newi3pat = PATTERN (NEXT_INSN (m_split_insn));
|
||
newi2pat = PATTERN (m_split_insn);
|
||
|
||
i3set = single_set (NEXT_INSN (m_split_insn));
|
||
i2set = single_set (m_split_insn);
|
||
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
|
||
/* If I2 or I3 has multiple SETs, we won't know how to track
|
||
register status, so don't use these insns. If I2's destination
|
||
is used between I2 and I3, we also can't use these insns. */
|
||
|
||
if (i2_code_number >= 0 && i2set && i3set
|
||
&& (next_nonnote_nondebug_insn (i2) == i3
|
||
|| ! reg_used_between_p (SET_DEST (i2set), i2, i3)))
|
||
insn_code_number = recog_for_combine (&newi3pat, i3,
|
||
&new_i3_notes);
|
||
if (insn_code_number >= 0)
|
||
newpat = newi3pat;
|
||
|
||
/* It is possible that both insns now set the destination of I3.
|
||
If so, we must show an extra use of it. */
|
||
|
||
if (insn_code_number >= 0)
|
||
{
|
||
rtx new_i3_dest = SET_DEST (i3set);
|
||
rtx new_i2_dest = SET_DEST (i2set);
|
||
|
||
while (GET_CODE (new_i3_dest) == ZERO_EXTRACT
|
||
|| GET_CODE (new_i3_dest) == STRICT_LOW_PART
|
||
|| GET_CODE (new_i3_dest) == SUBREG)
|
||
new_i3_dest = XEXP (new_i3_dest, 0);
|
||
|
||
while (GET_CODE (new_i2_dest) == ZERO_EXTRACT
|
||
|| GET_CODE (new_i2_dest) == STRICT_LOW_PART
|
||
|| GET_CODE (new_i2_dest) == SUBREG)
|
||
new_i2_dest = XEXP (new_i2_dest, 0);
|
||
|
||
if (REG_P (new_i3_dest)
|
||
&& REG_P (new_i2_dest)
|
||
&& REGNO (new_i3_dest) == REGNO (new_i2_dest)
|
||
&& REGNO (new_i2_dest) < reg_n_sets_max)
|
||
INC_REG_N_SETS (REGNO (new_i2_dest), 1);
|
||
}
|
||
}
|
||
|
||
/* If we can split it and use I2DEST, go ahead and see if that
|
||
helps things be recognized. Verify that none of the registers
|
||
are set between I2 and I3. */
|
||
if (insn_code_number < 0
|
||
&& (split = find_split_point (&newpat, i3, false)) != 0
|
||
&& (!HAVE_cc0 || REG_P (i2dest))
|
||
/* We need I2DEST in the proper mode. If it is a hard register
|
||
or the only use of a pseudo, we can change its mode.
|
||
Make sure we don't change a hard register to have a mode that
|
||
isn't valid for it, or change the number of registers. */
|
||
&& (GET_MODE (*split) == GET_MODE (i2dest)
|
||
|| GET_MODE (*split) == VOIDmode
|
||
|| can_change_dest_mode (i2dest, added_sets_2,
|
||
GET_MODE (*split)))
|
||
&& (next_nonnote_nondebug_insn (i2) == i3
|
||
|| !modified_between_p (*split, i2, i3))
|
||
/* We can't overwrite I2DEST if its value is still used by
|
||
NEWPAT. */
|
||
&& ! reg_referenced_p (i2dest, newpat))
|
||
{
|
||
rtx newdest = i2dest;
|
||
enum rtx_code split_code = GET_CODE (*split);
|
||
machine_mode split_mode = GET_MODE (*split);
|
||
bool subst_done = false;
|
||
newi2pat = NULL_RTX;
|
||
|
||
i2scratch = true;
|
||
|
||
/* *SPLIT may be part of I2SRC, so make sure we have the
|
||
original expression around for later debug processing.
|
||
We should not need I2SRC any more in other cases. */
|
||
if (MAY_HAVE_DEBUG_BIND_INSNS)
|
||
i2src = copy_rtx (i2src);
|
||
else
|
||
i2src = NULL;
|
||
|
||
/* Get NEWDEST as a register in the proper mode. We have already
|
||
validated that we can do this. */
|
||
if (GET_MODE (i2dest) != split_mode && split_mode != VOIDmode)
|
||
{
|
||
if (REGNO (i2dest) < FIRST_PSEUDO_REGISTER)
|
||
newdest = gen_rtx_REG (split_mode, REGNO (i2dest));
|
||
else
|
||
{
|
||
SUBST_MODE (regno_reg_rtx[REGNO (i2dest)], split_mode);
|
||
newdest = regno_reg_rtx[REGNO (i2dest)];
|
||
}
|
||
}
|
||
|
||
/* If *SPLIT is a (mult FOO (const_int pow2)), convert it to
|
||
an ASHIFT. This can occur if it was inside a PLUS and hence
|
||
appeared to be a memory address. This is a kludge. */
|
||
if (split_code == MULT
|
||
&& CONST_INT_P (XEXP (*split, 1))
|
||
&& INTVAL (XEXP (*split, 1)) > 0
|
||
&& (i = exact_log2 (UINTVAL (XEXP (*split, 1)))) >= 0)
|
||
{
|
||
rtx i_rtx = gen_int_shift_amount (split_mode, i);
|
||
SUBST (*split, gen_rtx_ASHIFT (split_mode,
|
||
XEXP (*split, 0), i_rtx));
|
||
/* Update split_code because we may not have a multiply
|
||
anymore. */
|
||
split_code = GET_CODE (*split);
|
||
}
|
||
|
||
/* Similarly for (plus (mult FOO (const_int pow2))). */
|
||
if (split_code == PLUS
|
||
&& GET_CODE (XEXP (*split, 0)) == MULT
|
||
&& CONST_INT_P (XEXP (XEXP (*split, 0), 1))
|
||
&& INTVAL (XEXP (XEXP (*split, 0), 1)) > 0
|
||
&& (i = exact_log2 (UINTVAL (XEXP (XEXP (*split, 0), 1)))) >= 0)
|
||
{
|
||
rtx nsplit = XEXP (*split, 0);
|
||
rtx i_rtx = gen_int_shift_amount (GET_MODE (nsplit), i);
|
||
SUBST (XEXP (*split, 0), gen_rtx_ASHIFT (GET_MODE (nsplit),
|
||
XEXP (nsplit, 0),
|
||
i_rtx));
|
||
/* Update split_code because we may not have a multiply
|
||
anymore. */
|
||
split_code = GET_CODE (*split);
|
||
}
|
||
|
||
#ifdef INSN_SCHEDULING
|
||
/* If *SPLIT is a paradoxical SUBREG, when we split it, it should
|
||
be written as a ZERO_EXTEND. */
|
||
if (split_code == SUBREG && MEM_P (SUBREG_REG (*split)))
|
||
{
|
||
/* Or as a SIGN_EXTEND if LOAD_EXTEND_OP says that that's
|
||
what it really is. */
|
||
if (load_extend_op (GET_MODE (SUBREG_REG (*split)))
|
||
== SIGN_EXTEND)
|
||
SUBST (*split, gen_rtx_SIGN_EXTEND (split_mode,
|
||
SUBREG_REG (*split)));
|
||
else
|
||
SUBST (*split, gen_rtx_ZERO_EXTEND (split_mode,
|
||
SUBREG_REG (*split)));
|
||
}
|
||
#endif
|
||
|
||
/* Attempt to split binary operators using arithmetic identities. */
|
||
if (BINARY_P (SET_SRC (newpat))
|
||
&& split_mode == GET_MODE (SET_SRC (newpat))
|
||
&& ! side_effects_p (SET_SRC (newpat)))
|
||
{
|
||
rtx setsrc = SET_SRC (newpat);
|
||
machine_mode mode = GET_MODE (setsrc);
|
||
enum rtx_code code = GET_CODE (setsrc);
|
||
rtx src_op0 = XEXP (setsrc, 0);
|
||
rtx src_op1 = XEXP (setsrc, 1);
|
||
|
||
/* Split "X = Y op Y" as "Z = Y; X = Z op Z". */
|
||
if (rtx_equal_p (src_op0, src_op1))
|
||
{
|
||
newi2pat = gen_rtx_SET (newdest, src_op0);
|
||
SUBST (XEXP (setsrc, 0), newdest);
|
||
SUBST (XEXP (setsrc, 1), newdest);
|
||
subst_done = true;
|
||
}
|
||
/* Split "((P op Q) op R) op S" where op is PLUS or MULT. */
|
||
else if ((code == PLUS || code == MULT)
|
||
&& GET_CODE (src_op0) == code
|
||
&& GET_CODE (XEXP (src_op0, 0)) == code
|
||
&& (INTEGRAL_MODE_P (mode)
|
||
|| (FLOAT_MODE_P (mode)
|
||
&& flag_unsafe_math_optimizations)))
|
||
{
|
||
rtx p = XEXP (XEXP (src_op0, 0), 0);
|
||
rtx q = XEXP (XEXP (src_op0, 0), 1);
|
||
rtx r = XEXP (src_op0, 1);
|
||
rtx s = src_op1;
|
||
|
||
/* Split both "((X op Y) op X) op Y" and
|
||
"((X op Y) op Y) op X" as "T op T" where T is
|
||
"X op Y". */
|
||
if ((rtx_equal_p (p,r) && rtx_equal_p (q,s))
|
||
|| (rtx_equal_p (p,s) && rtx_equal_p (q,r)))
|
||
{
|
||
newi2pat = gen_rtx_SET (newdest, XEXP (src_op0, 0));
|
||
SUBST (XEXP (setsrc, 0), newdest);
|
||
SUBST (XEXP (setsrc, 1), newdest);
|
||
subst_done = true;
|
||
}
|
||
/* Split "((X op X) op Y) op Y)" as "T op T" where
|
||
T is "X op Y". */
|
||
else if (rtx_equal_p (p,q) && rtx_equal_p (r,s))
|
||
{
|
||
rtx tmp = simplify_gen_binary (code, mode, p, r);
|
||
newi2pat = gen_rtx_SET (newdest, tmp);
|
||
SUBST (XEXP (setsrc, 0), newdest);
|
||
SUBST (XEXP (setsrc, 1), newdest);
|
||
subst_done = true;
|
||
}
|
||
}
|
||
}
|
||
|
||
if (!subst_done)
|
||
{
|
||
newi2pat = gen_rtx_SET (newdest, *split);
|
||
SUBST (*split, newdest);
|
||
}
|
||
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
|
||
/* recog_for_combine might have added CLOBBERs to newi2pat.
|
||
Make sure NEWPAT does not depend on the clobbered regs. */
|
||
if (GET_CODE (newi2pat) == PARALLEL)
|
||
for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
|
||
{
|
||
rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
|
||
if (reg_overlap_mentioned_p (reg, newpat))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If the split point was a MULT and we didn't have one before,
|
||
don't use one now. */
|
||
if (i2_code_number >= 0 && ! (split_code == MULT && ! have_mult))
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
}
|
||
}
|
||
|
||
/* Check for a case where we loaded from memory in a narrow mode and
|
||
then sign extended it, but we need both registers. In that case,
|
||
we have a PARALLEL with both loads from the same memory location.
|
||
We can split this into a load from memory followed by a register-register
|
||
copy. This saves at least one insn, more if register allocation can
|
||
eliminate the copy.
|
||
|
||
We cannot do this if the destination of the first assignment is a
|
||
condition code register or cc0. We eliminate this case by making sure
|
||
the SET_DEST and SET_SRC have the same mode.
|
||
|
||
We cannot do this if the destination of the second assignment is
|
||
a register that we have already assumed is zero-extended. Similarly
|
||
for a SUBREG of such a register. */
|
||
|
||
else if (i1 && insn_code_number < 0 && asm_noperands (newpat) < 0
|
||
&& GET_CODE (newpat) == PARALLEL
|
||
&& XVECLEN (newpat, 0) == 2
|
||
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
|
||
&& GET_CODE (SET_SRC (XVECEXP (newpat, 0, 0))) == SIGN_EXTEND
|
||
&& (GET_MODE (SET_DEST (XVECEXP (newpat, 0, 0)))
|
||
== GET_MODE (SET_SRC (XVECEXP (newpat, 0, 0))))
|
||
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
|
||
&& rtx_equal_p (SET_SRC (XVECEXP (newpat, 0, 1)),
|
||
XEXP (SET_SRC (XVECEXP (newpat, 0, 0)), 0))
|
||
&& !modified_between_p (SET_SRC (XVECEXP (newpat, 0, 1)), i2, i3)
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
|
||
&& ! (temp_expr = SET_DEST (XVECEXP (newpat, 0, 1)),
|
||
(REG_P (temp_expr)
|
||
&& reg_stat[REGNO (temp_expr)].nonzero_bits != 0
|
||
&& known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
|
||
BITS_PER_WORD)
|
||
&& known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
|
||
HOST_BITS_PER_INT)
|
||
&& (reg_stat[REGNO (temp_expr)].nonzero_bits
|
||
!= GET_MODE_MASK (word_mode))))
|
||
&& ! (GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) == SUBREG
|
||
&& (temp_expr = SUBREG_REG (SET_DEST (XVECEXP (newpat, 0, 1))),
|
||
(REG_P (temp_expr)
|
||
&& reg_stat[REGNO (temp_expr)].nonzero_bits != 0
|
||
&& known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
|
||
BITS_PER_WORD)
|
||
&& known_lt (GET_MODE_PRECISION (GET_MODE (temp_expr)),
|
||
HOST_BITS_PER_INT)
|
||
&& (reg_stat[REGNO (temp_expr)].nonzero_bits
|
||
!= GET_MODE_MASK (word_mode)))))
|
||
&& ! reg_overlap_mentioned_p (SET_DEST (XVECEXP (newpat, 0, 1)),
|
||
SET_SRC (XVECEXP (newpat, 0, 1)))
|
||
&& ! find_reg_note (i3, REG_UNUSED,
|
||
SET_DEST (XVECEXP (newpat, 0, 0))))
|
||
{
|
||
rtx ni2dest;
|
||
|
||
newi2pat = XVECEXP (newpat, 0, 0);
|
||
ni2dest = SET_DEST (XVECEXP (newpat, 0, 0));
|
||
newpat = XVECEXP (newpat, 0, 1);
|
||
SUBST (SET_SRC (newpat),
|
||
gen_lowpart (GET_MODE (SET_SRC (newpat)), ni2dest));
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
|
||
if (i2_code_number >= 0)
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
|
||
if (insn_code_number >= 0)
|
||
swap_i2i3 = 1;
|
||
}
|
||
|
||
/* Similarly, check for a case where we have a PARALLEL of two independent
|
||
SETs but we started with three insns. In this case, we can do the sets
|
||
as two separate insns. This case occurs when some SET allows two
|
||
other insns to combine, but the destination of that SET is still live.
|
||
|
||
Also do this if we started with two insns and (at least) one of the
|
||
resulting sets is a noop; this noop will be deleted later.
|
||
|
||
Also do this if we started with two insns neither of which was a simple
|
||
move. */
|
||
|
||
else if (insn_code_number < 0 && asm_noperands (newpat) < 0
|
||
&& GET_CODE (newpat) == PARALLEL
|
||
&& XVECLEN (newpat, 0) == 2
|
||
&& GET_CODE (XVECEXP (newpat, 0, 0)) == SET
|
||
&& GET_CODE (XVECEXP (newpat, 0, 1)) == SET
|
||
&& (i1
|
||
|| set_noop_p (XVECEXP (newpat, 0, 0))
|
||
|| set_noop_p (XVECEXP (newpat, 0, 1))
|
||
|| (!i2_was_move && !i3_was_move))
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 0))) != STRICT_LOW_PART
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != ZERO_EXTRACT
|
||
&& GET_CODE (SET_DEST (XVECEXP (newpat, 0, 1))) != STRICT_LOW_PART
|
||
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 1)),
|
||
XVECEXP (newpat, 0, 0))
|
||
&& ! reg_referenced_p (SET_DEST (XVECEXP (newpat, 0, 0)),
|
||
XVECEXP (newpat, 0, 1))
|
||
&& ! (contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 0)))
|
||
&& contains_muldiv (SET_SRC (XVECEXP (newpat, 0, 1)))))
|
||
{
|
||
rtx set0 = XVECEXP (newpat, 0, 0);
|
||
rtx set1 = XVECEXP (newpat, 0, 1);
|
||
|
||
/* Normally, it doesn't matter which of the two is done first,
|
||
but the one that references cc0 can't be the second, and
|
||
one which uses any regs/memory set in between i2 and i3 can't
|
||
be first. The PARALLEL might also have been pre-existing in i3,
|
||
so we need to make sure that we won't wrongly hoist a SET to i2
|
||
that would conflict with a death note present in there, or would
|
||
have its dest modified between i2 and i3. */
|
||
if (!modified_between_p (SET_SRC (set1), i2, i3)
|
||
&& !(REG_P (SET_DEST (set1))
|
||
&& find_reg_note (i2, REG_DEAD, SET_DEST (set1)))
|
||
&& !(GET_CODE (SET_DEST (set1)) == SUBREG
|
||
&& find_reg_note (i2, REG_DEAD,
|
||
SUBREG_REG (SET_DEST (set1))))
|
||
&& !modified_between_p (SET_DEST (set1), i2, i3)
|
||
&& (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set0))
|
||
/* If I3 is a jump, ensure that set0 is a jump so that
|
||
we do not create invalid RTL. */
|
||
&& (!JUMP_P (i3) || SET_DEST (set0) == pc_rtx)
|
||
)
|
||
{
|
||
newi2pat = set1;
|
||
newpat = set0;
|
||
}
|
||
else if (!modified_between_p (SET_SRC (set0), i2, i3)
|
||
&& !(REG_P (SET_DEST (set0))
|
||
&& find_reg_note (i2, REG_DEAD, SET_DEST (set0)))
|
||
&& !(GET_CODE (SET_DEST (set0)) == SUBREG
|
||
&& find_reg_note (i2, REG_DEAD,
|
||
SUBREG_REG (SET_DEST (set0))))
|
||
&& !modified_between_p (SET_DEST (set0), i2, i3)
|
||
&& (!HAVE_cc0 || !reg_referenced_p (cc0_rtx, set1))
|
||
/* If I3 is a jump, ensure that set1 is a jump so that
|
||
we do not create invalid RTL. */
|
||
&& (!JUMP_P (i3) || SET_DEST (set1) == pc_rtx)
|
||
)
|
||
{
|
||
newi2pat = set0;
|
||
newpat = set1;
|
||
}
|
||
else
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
i2_code_number = recog_for_combine (&newi2pat, i2, &new_i2_notes);
|
||
|
||
if (i2_code_number >= 0)
|
||
{
|
||
/* recog_for_combine might have added CLOBBERs to newi2pat.
|
||
Make sure NEWPAT does not depend on the clobbered regs. */
|
||
if (GET_CODE (newi2pat) == PARALLEL)
|
||
{
|
||
for (i = XVECLEN (newi2pat, 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (newi2pat, 0, i)) == CLOBBER)
|
||
{
|
||
rtx reg = XEXP (XVECEXP (newi2pat, 0, i), 0);
|
||
if (reg_overlap_mentioned_p (reg, newpat))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
}
|
||
}
|
||
|
||
insn_code_number = recog_for_combine (&newpat, i3, &new_i3_notes);
|
||
|
||
if (insn_code_number >= 0)
|
||
split_i2i3 = 1;
|
||
}
|
||
}
|
||
|
||
/* If it still isn't recognized, fail and change things back the way they
|
||
were. */
|
||
if ((insn_code_number < 0
|
||
/* Is the result a reasonable ASM_OPERANDS? */
|
||
&& (! check_asm_operands (newpat) || added_sets_1 || added_sets_2)))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
/* If we had to change another insn, make sure it is valid also. */
|
||
if (undobuf.other_insn)
|
||
{
|
||
CLEAR_HARD_REG_SET (newpat_used_regs);
|
||
|
||
other_pat = PATTERN (undobuf.other_insn);
|
||
other_code_number = recog_for_combine (&other_pat, undobuf.other_insn,
|
||
&new_other_notes);
|
||
|
||
if (other_code_number < 0 && ! check_asm_operands (other_pat))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* If I2 is the CC0 setter and I3 is the CC0 user then check whether
|
||
they are adjacent to each other or not. */
|
||
if (HAVE_cc0)
|
||
{
|
||
rtx_insn *p = prev_nonnote_insn (i3);
|
||
if (p && p != i2 && NONJUMP_INSN_P (p) && newi2pat
|
||
&& sets_cc0_p (newi2pat))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Only allow this combination if insn_cost reports that the
|
||
replacement instructions are cheaper than the originals. */
|
||
if (!combine_validate_cost (i0, i1, i2, i3, newpat, newi2pat, other_pat))
|
||
{
|
||
undo_all ();
|
||
return 0;
|
||
}
|
||
|
||
if (MAY_HAVE_DEBUG_BIND_INSNS)
|
||
{
|
||
struct undo *undo;
|
||
|
||
for (undo = undobuf.undos; undo; undo = undo->next)
|
||
if (undo->kind == UNDO_MODE)
|
||
{
|
||
rtx reg = *undo->where.r;
|
||
machine_mode new_mode = GET_MODE (reg);
|
||
machine_mode old_mode = undo->old_contents.m;
|
||
|
||
/* Temporarily revert mode back. */
|
||
adjust_reg_mode (reg, old_mode);
|
||
|
||
if (reg == i2dest && i2scratch)
|
||
{
|
||
/* If we used i2dest as a scratch register with a
|
||
different mode, substitute it for the original
|
||
i2src while its original mode is temporarily
|
||
restored, and then clear i2scratch so that we don't
|
||
do it again later. */
|
||
propagate_for_debug (i2, last_combined_insn, reg, i2src,
|
||
this_basic_block);
|
||
i2scratch = false;
|
||
/* Put back the new mode. */
|
||
adjust_reg_mode (reg, new_mode);
|
||
}
|
||
else
|
||
{
|
||
rtx tempreg = gen_raw_REG (old_mode, REGNO (reg));
|
||
rtx_insn *first, *last;
|
||
|
||
if (reg == i2dest)
|
||
{
|
||
first = i2;
|
||
last = last_combined_insn;
|
||
}
|
||
else
|
||
{
|
||
first = i3;
|
||
last = undobuf.other_insn;
|
||
gcc_assert (last);
|
||
if (DF_INSN_LUID (last)
|
||
< DF_INSN_LUID (last_combined_insn))
|
||
last = last_combined_insn;
|
||
}
|
||
|
||
/* We're dealing with a reg that changed mode but not
|
||
meaning, so we want to turn it into a subreg for
|
||
the new mode. However, because of REG sharing and
|
||
because its mode had already changed, we have to do
|
||
it in two steps. First, replace any debug uses of
|
||
reg, with its original mode temporarily restored,
|
||
with this copy we have created; then, replace the
|
||
copy with the SUBREG of the original shared reg,
|
||
once again changed to the new mode. */
|
||
propagate_for_debug (first, last, reg, tempreg,
|
||
this_basic_block);
|
||
adjust_reg_mode (reg, new_mode);
|
||
propagate_for_debug (first, last, tempreg,
|
||
lowpart_subreg (old_mode, reg, new_mode),
|
||
this_basic_block);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* If we will be able to accept this, we have made a
|
||
change to the destination of I3. This requires us to
|
||
do a few adjustments. */
|
||
|
||
if (changed_i3_dest)
|
||
{
|
||
PATTERN (i3) = newpat;
|
||
adjust_for_new_dest (i3);
|
||
}
|
||
|
||
/* We now know that we can do this combination. Merge the insns and
|
||
update the status of registers and LOG_LINKS. */
|
||
|
||
if (undobuf.other_insn)
|
||
{
|
||
rtx note, next;
|
||
|
||
PATTERN (undobuf.other_insn) = other_pat;
|
||
|
||
/* If any of the notes in OTHER_INSN were REG_DEAD or REG_UNUSED,
|
||
ensure that they are still valid. Then add any non-duplicate
|
||
notes added by recog_for_combine. */
|
||
for (note = REG_NOTES (undobuf.other_insn); note; note = next)
|
||
{
|
||
next = XEXP (note, 1);
|
||
|
||
if ((REG_NOTE_KIND (note) == REG_DEAD
|
||
&& !reg_referenced_p (XEXP (note, 0),
|
||
PATTERN (undobuf.other_insn)))
|
||
||(REG_NOTE_KIND (note) == REG_UNUSED
|
||
&& !reg_set_p (XEXP (note, 0),
|
||
PATTERN (undobuf.other_insn)))
|
||
/* Simply drop equal note since it may be no longer valid
|
||
for other_insn. It may be possible to record that CC
|
||
register is changed and only discard those notes, but
|
||
in practice it's unnecessary complication and doesn't
|
||
give any meaningful improvement.
|
||
|
||
See PR78559. */
|
||
|| REG_NOTE_KIND (note) == REG_EQUAL
|
||
|| REG_NOTE_KIND (note) == REG_EQUIV)
|
||
remove_note (undobuf.other_insn, note);
|
||
}
|
||
|
||
distribute_notes (new_other_notes, undobuf.other_insn,
|
||
undobuf.other_insn, NULL, NULL_RTX, NULL_RTX,
|
||
NULL_RTX);
|
||
}
|
||
|
||
if (swap_i2i3)
|
||
{
|
||
/* I3 now uses what used to be its destination and which is now
|
||
I2's destination. This requires us to do a few adjustments. */
|
||
PATTERN (i3) = newpat;
|
||
adjust_for_new_dest (i3);
|
||
}
|
||
|
||
if (swap_i2i3 || split_i2i3)
|
||
{
|
||
/* We might need a LOG_LINK from I3 to I2. But then we used to
|
||
have one, so we still will.
|
||
|
||
However, some later insn might be using I2's dest and have
|
||
a LOG_LINK pointing at I3. We should change it to point at
|
||
I2 instead. */
|
||
|
||
/* newi2pat is usually a SET here; however, recog_for_combine might
|
||
have added some clobbers. */
|
||
rtx x = newi2pat;
|
||
if (GET_CODE (x) == PARALLEL)
|
||
x = XVECEXP (newi2pat, 0, 0);
|
||
|
||
if (REG_P (SET_DEST (x))
|
||
|| (GET_CODE (SET_DEST (x)) == SUBREG
|
||
&& REG_P (SUBREG_REG (SET_DEST (x)))))
|
||
{
|
||
unsigned int regno = reg_or_subregno (SET_DEST (x));
|
||
|
||
bool done = false;
|
||
for (rtx_insn *insn = NEXT_INSN (i3);
|
||
!done
|
||
&& insn
|
||
&& NONDEBUG_INSN_P (insn)
|
||
&& BLOCK_FOR_INSN (insn) == this_basic_block;
|
||
insn = NEXT_INSN (insn))
|
||
{
|
||
struct insn_link *link;
|
||
FOR_EACH_LOG_LINK (link, insn)
|
||
if (link->insn == i3 && link->regno == regno)
|
||
{
|
||
link->insn = i2;
|
||
done = true;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
{
|
||
rtx i3notes, i2notes, i1notes = 0, i0notes = 0;
|
||
struct insn_link *i3links, *i2links, *i1links = 0, *i0links = 0;
|
||
rtx midnotes = 0;
|
||
int from_luid;
|
||
/* Compute which registers we expect to eliminate. newi2pat may be setting
|
||
either i3dest or i2dest, so we must check it. */
|
||
rtx elim_i2 = ((newi2pat && reg_set_p (i2dest, newi2pat))
|
||
|| i2dest_in_i2src || i2dest_in_i1src || i2dest_in_i0src
|
||
|| !i2dest_killed
|
||
? 0 : i2dest);
|
||
/* For i1, we need to compute both local elimination and global
|
||
elimination information with respect to newi2pat because i1dest
|
||
may be the same as i3dest, in which case newi2pat may be setting
|
||
i1dest. Global information is used when distributing REG_DEAD
|
||
note for i2 and i3, in which case it does matter if newi2pat sets
|
||
i1dest or not.
|
||
|
||
Local information is used when distributing REG_DEAD note for i1,
|
||
in which case it doesn't matter if newi2pat sets i1dest or not.
|
||
See PR62151, if we have four insns combination:
|
||
i0: r0 <- i0src
|
||
i1: r1 <- i1src (using r0)
|
||
REG_DEAD (r0)
|
||
i2: r0 <- i2src (using r1)
|
||
i3: r3 <- i3src (using r0)
|
||
ix: using r0
|
||
From i1's point of view, r0 is eliminated, no matter if it is set
|
||
by newi2pat or not. In other words, REG_DEAD info for r0 in i1
|
||
should be discarded.
|
||
|
||
Note local information only affects cases in forms like "I1->I2->I3",
|
||
"I0->I1->I2->I3" or "I0&I1->I2, I2->I3". For other cases like
|
||
"I0->I1, I1&I2->I3" or "I1&I2->I3", newi2pat won't set i1dest or
|
||
i0dest anyway. */
|
||
rtx local_elim_i1 = (i1 == 0 || i1dest_in_i1src || i1dest_in_i0src
|
||
|| !i1dest_killed
|
||
? 0 : i1dest);
|
||
rtx elim_i1 = (local_elim_i1 == 0
|
||
|| (newi2pat && reg_set_p (i1dest, newi2pat))
|
||
? 0 : i1dest);
|
||
/* Same case as i1. */
|
||
rtx local_elim_i0 = (i0 == 0 || i0dest_in_i0src || !i0dest_killed
|
||
? 0 : i0dest);
|
||
rtx elim_i0 = (local_elim_i0 == 0
|
||
|| (newi2pat && reg_set_p (i0dest, newi2pat))
|
||
? 0 : i0dest);
|
||
|
||
/* Get the old REG_NOTES and LOG_LINKS from all our insns and
|
||
clear them. */
|
||
i3notes = REG_NOTES (i3), i3links = LOG_LINKS (i3);
|
||
i2notes = REG_NOTES (i2), i2links = LOG_LINKS (i2);
|
||
if (i1)
|
||
i1notes = REG_NOTES (i1), i1links = LOG_LINKS (i1);
|
||
if (i0)
|
||
i0notes = REG_NOTES (i0), i0links = LOG_LINKS (i0);
|
||
|
||
/* Ensure that we do not have something that should not be shared but
|
||
occurs multiple times in the new insns. Check this by first
|
||
resetting all the `used' flags and then copying anything is shared. */
|
||
|
||
reset_used_flags (i3notes);
|
||
reset_used_flags (i2notes);
|
||
reset_used_flags (i1notes);
|
||
reset_used_flags (i0notes);
|
||
reset_used_flags (newpat);
|
||
reset_used_flags (newi2pat);
|
||
if (undobuf.other_insn)
|
||
reset_used_flags (PATTERN (undobuf.other_insn));
|
||
|
||
i3notes = copy_rtx_if_shared (i3notes);
|
||
i2notes = copy_rtx_if_shared (i2notes);
|
||
i1notes = copy_rtx_if_shared (i1notes);
|
||
i0notes = copy_rtx_if_shared (i0notes);
|
||
newpat = copy_rtx_if_shared (newpat);
|
||
newi2pat = copy_rtx_if_shared (newi2pat);
|
||
if (undobuf.other_insn)
|
||
reset_used_flags (PATTERN (undobuf.other_insn));
|
||
|
||
INSN_CODE (i3) = insn_code_number;
|
||
PATTERN (i3) = newpat;
|
||
|
||
if (CALL_P (i3) && CALL_INSN_FUNCTION_USAGE (i3))
|
||
{
|
||
for (rtx link = CALL_INSN_FUNCTION_USAGE (i3); link;
|
||
link = XEXP (link, 1))
|
||
{
|
||
if (substed_i2)
|
||
{
|
||
/* I2SRC must still be meaningful at this point. Some
|
||
splitting operations can invalidate I2SRC, but those
|
||
operations do not apply to calls. */
|
||
gcc_assert (i2src);
|
||
XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
|
||
i2dest, i2src);
|
||
}
|
||
if (substed_i1)
|
||
XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
|
||
i1dest, i1src);
|
||
if (substed_i0)
|
||
XEXP (link, 0) = simplify_replace_rtx (XEXP (link, 0),
|
||
i0dest, i0src);
|
||
}
|
||
}
|
||
|
||
if (undobuf.other_insn)
|
||
INSN_CODE (undobuf.other_insn) = other_code_number;
|
||
|
||
/* We had one special case above where I2 had more than one set and
|
||
we replaced a destination of one of those sets with the destination
|
||
of I3. In that case, we have to update LOG_LINKS of insns later
|
||
in this basic block. Note that this (expensive) case is rare.
|
||
|
||
Also, in this case, we must pretend that all REG_NOTEs for I2
|
||
actually came from I3, so that REG_UNUSED notes from I2 will be
|
||
properly handled. */
|
||
|
||
if (i3_subst_into_i2)
|
||
{
|
||
for (i = 0; i < XVECLEN (PATTERN (i2), 0); i++)
|
||
if ((GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == SET
|
||
|| GET_CODE (XVECEXP (PATTERN (i2), 0, i)) == CLOBBER)
|
||
&& REG_P (SET_DEST (XVECEXP (PATTERN (i2), 0, i)))
|
||
&& SET_DEST (XVECEXP (PATTERN (i2), 0, i)) != i2dest
|
||
&& ! find_reg_note (i2, REG_UNUSED,
|
||
SET_DEST (XVECEXP (PATTERN (i2), 0, i))))
|
||
for (temp_insn = NEXT_INSN (i2);
|
||
temp_insn
|
||
&& (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| BB_HEAD (this_basic_block) != temp_insn);
|
||
temp_insn = NEXT_INSN (temp_insn))
|
||
if (temp_insn != i3 && NONDEBUG_INSN_P (temp_insn))
|
||
FOR_EACH_LOG_LINK (link, temp_insn)
|
||
if (link->insn == i2)
|
||
link->insn = i3;
|
||
|
||
if (i3notes)
|
||
{
|
||
rtx link = i3notes;
|
||
while (XEXP (link, 1))
|
||
link = XEXP (link, 1);
|
||
XEXP (link, 1) = i2notes;
|
||
}
|
||
else
|
||
i3notes = i2notes;
|
||
i2notes = 0;
|
||
}
|
||
|
||
LOG_LINKS (i3) = NULL;
|
||
REG_NOTES (i3) = 0;
|
||
LOG_LINKS (i2) = NULL;
|
||
REG_NOTES (i2) = 0;
|
||
|
||
if (newi2pat)
|
||
{
|
||
if (MAY_HAVE_DEBUG_BIND_INSNS && i2scratch)
|
||
propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
|
||
this_basic_block);
|
||
INSN_CODE (i2) = i2_code_number;
|
||
PATTERN (i2) = newi2pat;
|
||
}
|
||
else
|
||
{
|
||
if (MAY_HAVE_DEBUG_BIND_INSNS && i2src)
|
||
propagate_for_debug (i2, last_combined_insn, i2dest, i2src,
|
||
this_basic_block);
|
||
SET_INSN_DELETED (i2);
|
||
}
|
||
|
||
if (i1)
|
||
{
|
||
LOG_LINKS (i1) = NULL;
|
||
REG_NOTES (i1) = 0;
|
||
if (MAY_HAVE_DEBUG_BIND_INSNS)
|
||
propagate_for_debug (i1, last_combined_insn, i1dest, i1src,
|
||
this_basic_block);
|
||
SET_INSN_DELETED (i1);
|
||
}
|
||
|
||
if (i0)
|
||
{
|
||
LOG_LINKS (i0) = NULL;
|
||
REG_NOTES (i0) = 0;
|
||
if (MAY_HAVE_DEBUG_BIND_INSNS)
|
||
propagate_for_debug (i0, last_combined_insn, i0dest, i0src,
|
||
this_basic_block);
|
||
SET_INSN_DELETED (i0);
|
||
}
|
||
|
||
/* Get death notes for everything that is now used in either I3 or
|
||
I2 and used to die in a previous insn. If we built two new
|
||
patterns, move from I1 to I2 then I2 to I3 so that we get the
|
||
proper movement on registers that I2 modifies. */
|
||
|
||
if (i0)
|
||
from_luid = DF_INSN_LUID (i0);
|
||
else if (i1)
|
||
from_luid = DF_INSN_LUID (i1);
|
||
else
|
||
from_luid = DF_INSN_LUID (i2);
|
||
if (newi2pat)
|
||
move_deaths (newi2pat, NULL_RTX, from_luid, i2, &midnotes);
|
||
move_deaths (newpat, newi2pat, from_luid, i3, &midnotes);
|
||
|
||
/* Distribute all the LOG_LINKS and REG_NOTES from I1, I2, and I3. */
|
||
if (i3notes)
|
||
distribute_notes (i3notes, i3, i3, newi2pat ? i2 : NULL,
|
||
elim_i2, elim_i1, elim_i0);
|
||
if (i2notes)
|
||
distribute_notes (i2notes, i2, i3, newi2pat ? i2 : NULL,
|
||
elim_i2, elim_i1, elim_i0);
|
||
if (i1notes)
|
||
distribute_notes (i1notes, i1, i3, newi2pat ? i2 : NULL,
|
||
elim_i2, local_elim_i1, local_elim_i0);
|
||
if (i0notes)
|
||
distribute_notes (i0notes, i0, i3, newi2pat ? i2 : NULL,
|
||
elim_i2, elim_i1, local_elim_i0);
|
||
if (midnotes)
|
||
distribute_notes (midnotes, NULL, i3, newi2pat ? i2 : NULL,
|
||
elim_i2, elim_i1, elim_i0);
|
||
|
||
/* Distribute any notes added to I2 or I3 by recog_for_combine. We
|
||
know these are REG_UNUSED and want them to go to the desired insn,
|
||
so we always pass it as i3. */
|
||
|
||
if (newi2pat && new_i2_notes)
|
||
distribute_notes (new_i2_notes, i2, i2, NULL, NULL_RTX, NULL_RTX,
|
||
NULL_RTX);
|
||
|
||
if (new_i3_notes)
|
||
distribute_notes (new_i3_notes, i3, i3, NULL, NULL_RTX, NULL_RTX,
|
||
NULL_RTX);
|
||
|
||
/* If I3DEST was used in I3SRC, it really died in I3. We may need to
|
||
put a REG_DEAD note for it somewhere. If NEWI2PAT exists and sets
|
||
I3DEST, the death must be somewhere before I2, not I3. If we passed I3
|
||
in that case, it might delete I2. Similarly for I2 and I1.
|
||
Show an additional death due to the REG_DEAD note we make here. If
|
||
we discard it in distribute_notes, we will decrement it again. */
|
||
|
||
if (i3dest_killed)
|
||
{
|
||
rtx new_note = alloc_reg_note (REG_DEAD, i3dest_killed, NULL_RTX);
|
||
if (newi2pat && reg_set_p (i3dest_killed, newi2pat))
|
||
distribute_notes (new_note, NULL, i2, NULL, elim_i2,
|
||
elim_i1, elim_i0);
|
||
else
|
||
distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
|
||
elim_i2, elim_i1, elim_i0);
|
||
}
|
||
|
||
if (i2dest_in_i2src)
|
||
{
|
||
rtx new_note = alloc_reg_note (REG_DEAD, i2dest, NULL_RTX);
|
||
if (newi2pat && reg_set_p (i2dest, newi2pat))
|
||
distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
|
||
NULL_RTX, NULL_RTX);
|
||
else
|
||
distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
|
||
NULL_RTX, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
if (i1dest_in_i1src)
|
||
{
|
||
rtx new_note = alloc_reg_note (REG_DEAD, i1dest, NULL_RTX);
|
||
if (newi2pat && reg_set_p (i1dest, newi2pat))
|
||
distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
|
||
NULL_RTX, NULL_RTX);
|
||
else
|
||
distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
|
||
NULL_RTX, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
if (i0dest_in_i0src)
|
||
{
|
||
rtx new_note = alloc_reg_note (REG_DEAD, i0dest, NULL_RTX);
|
||
if (newi2pat && reg_set_p (i0dest, newi2pat))
|
||
distribute_notes (new_note, NULL, i2, NULL, NULL_RTX,
|
||
NULL_RTX, NULL_RTX);
|
||
else
|
||
distribute_notes (new_note, NULL, i3, newi2pat ? i2 : NULL,
|
||
NULL_RTX, NULL_RTX, NULL_RTX);
|
||
}
|
||
|
||
distribute_links (i3links);
|
||
distribute_links (i2links);
|
||
distribute_links (i1links);
|
||
distribute_links (i0links);
|
||
|
||
if (REG_P (i2dest))
|
||
{
|
||
struct insn_link *link;
|
||
rtx_insn *i2_insn = 0;
|
||
rtx i2_val = 0, set;
|
||
|
||
/* The insn that used to set this register doesn't exist, and
|
||
this life of the register may not exist either. See if one of
|
||
I3's links points to an insn that sets I2DEST. If it does,
|
||
that is now the last known value for I2DEST. If we don't update
|
||
this and I2 set the register to a value that depended on its old
|
||
contents, we will get confused. If this insn is used, thing
|
||
will be set correctly in combine_instructions. */
|
||
FOR_EACH_LOG_LINK (link, i3)
|
||
if ((set = single_set (link->insn)) != 0
|
||
&& rtx_equal_p (i2dest, SET_DEST (set)))
|
||
i2_insn = link->insn, i2_val = SET_SRC (set);
|
||
|
||
record_value_for_reg (i2dest, i2_insn, i2_val);
|
||
|
||
/* If the reg formerly set in I2 died only once and that was in I3,
|
||
zero its use count so it won't make `reload' do any work. */
|
||
if (! added_sets_2
|
||
&& (newi2pat == 0 || ! reg_mentioned_p (i2dest, newi2pat))
|
||
&& ! i2dest_in_i2src
|
||
&& REGNO (i2dest) < reg_n_sets_max)
|
||
INC_REG_N_SETS (REGNO (i2dest), -1);
|
||
}
|
||
|
||
if (i1 && REG_P (i1dest))
|
||
{
|
||
struct insn_link *link;
|
||
rtx_insn *i1_insn = 0;
|
||
rtx i1_val = 0, set;
|
||
|
||
FOR_EACH_LOG_LINK (link, i3)
|
||
if ((set = single_set (link->insn)) != 0
|
||
&& rtx_equal_p (i1dest, SET_DEST (set)))
|
||
i1_insn = link->insn, i1_val = SET_SRC (set);
|
||
|
||
record_value_for_reg (i1dest, i1_insn, i1_val);
|
||
|
||
if (! added_sets_1
|
||
&& ! i1dest_in_i1src
|
||
&& REGNO (i1dest) < reg_n_sets_max)
|
||
INC_REG_N_SETS (REGNO (i1dest), -1);
|
||
}
|
||
|
||
if (i0 && REG_P (i0dest))
|
||
{
|
||
struct insn_link *link;
|
||
rtx_insn *i0_insn = 0;
|
||
rtx i0_val = 0, set;
|
||
|
||
FOR_EACH_LOG_LINK (link, i3)
|
||
if ((set = single_set (link->insn)) != 0
|
||
&& rtx_equal_p (i0dest, SET_DEST (set)))
|
||
i0_insn = link->insn, i0_val = SET_SRC (set);
|
||
|
||
record_value_for_reg (i0dest, i0_insn, i0_val);
|
||
|
||
if (! added_sets_0
|
||
&& ! i0dest_in_i0src
|
||
&& REGNO (i0dest) < reg_n_sets_max)
|
||
INC_REG_N_SETS (REGNO (i0dest), -1);
|
||
}
|
||
|
||
/* Update reg_stat[].nonzero_bits et al for any changes that may have
|
||
been made to this insn. The order is important, because newi2pat
|
||
can affect nonzero_bits of newpat. */
|
||
if (newi2pat)
|
||
note_pattern_stores (newi2pat, set_nonzero_bits_and_sign_copies, NULL);
|
||
note_pattern_stores (newpat, set_nonzero_bits_and_sign_copies, NULL);
|
||
}
|
||
|
||
if (undobuf.other_insn != NULL_RTX)
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "modifying other_insn ");
|
||
dump_insn_slim (dump_file, undobuf.other_insn);
|
||
}
|
||
df_insn_rescan (undobuf.other_insn);
|
||
}
|
||
|
||
if (i0 && !(NOTE_P (i0) && (NOTE_KIND (i0) == NOTE_INSN_DELETED)))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "modifying insn i0 ");
|
||
dump_insn_slim (dump_file, i0);
|
||
}
|
||
df_insn_rescan (i0);
|
||
}
|
||
|
||
if (i1 && !(NOTE_P (i1) && (NOTE_KIND (i1) == NOTE_INSN_DELETED)))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "modifying insn i1 ");
|
||
dump_insn_slim (dump_file, i1);
|
||
}
|
||
df_insn_rescan (i1);
|
||
}
|
||
|
||
if (i2 && !(NOTE_P (i2) && (NOTE_KIND (i2) == NOTE_INSN_DELETED)))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "modifying insn i2 ");
|
||
dump_insn_slim (dump_file, i2);
|
||
}
|
||
df_insn_rescan (i2);
|
||
}
|
||
|
||
if (i3 && !(NOTE_P (i3) && (NOTE_KIND (i3) == NOTE_INSN_DELETED)))
|
||
{
|
||
if (dump_file)
|
||
{
|
||
fprintf (dump_file, "modifying insn i3 ");
|
||
dump_insn_slim (dump_file, i3);
|
||
}
|
||
df_insn_rescan (i3);
|
||
}
|
||
|
||
/* Set new_direct_jump_p if a new return or simple jump instruction
|
||
has been created. Adjust the CFG accordingly. */
|
||
if (returnjump_p (i3) || any_uncondjump_p (i3))
|
||
{
|
||
*new_direct_jump_p = 1;
|
||
mark_jump_label (PATTERN (i3), i3, 0);
|
||
update_cfg_for_uncondjump (i3);
|
||
}
|
||
|
||
if (undobuf.other_insn != NULL_RTX
|
||
&& (returnjump_p (undobuf.other_insn)
|
||
|| any_uncondjump_p (undobuf.other_insn)))
|
||
{
|
||
*new_direct_jump_p = 1;
|
||
update_cfg_for_uncondjump (undobuf.other_insn);
|
||
}
|
||
|
||
if (GET_CODE (PATTERN (i3)) == TRAP_IF
|
||
&& XEXP (PATTERN (i3), 0) == const1_rtx)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (i3);
|
||
gcc_assert (bb);
|
||
remove_edge (split_block (bb, i3));
|
||
emit_barrier_after_bb (bb);
|
||
*new_direct_jump_p = 1;
|
||
}
|
||
|
||
if (undobuf.other_insn
|
||
&& GET_CODE (PATTERN (undobuf.other_insn)) == TRAP_IF
|
||
&& XEXP (PATTERN (undobuf.other_insn), 0) == const1_rtx)
|
||
{
|
||
basic_block bb = BLOCK_FOR_INSN (undobuf.other_insn);
|
||
gcc_assert (bb);
|
||
remove_edge (split_block (bb, undobuf.other_insn));
|
||
emit_barrier_after_bb (bb);
|
||
*new_direct_jump_p = 1;
|
||
}
|
||
|
||
/* A noop might also need cleaning up of CFG, if it comes from the
|
||
simplification of a jump. */
|
||
if (JUMP_P (i3)
|
||
&& GET_CODE (newpat) == SET
|
||
&& SET_SRC (newpat) == pc_rtx
|
||
&& SET_DEST (newpat) == pc_rtx)
|
||
{
|
||
*new_direct_jump_p = 1;
|
||
update_cfg_for_uncondjump (i3);
|
||
}
|
||
|
||
if (undobuf.other_insn != NULL_RTX
|
||
&& JUMP_P (undobuf.other_insn)
|
||
&& GET_CODE (PATTERN (undobuf.other_insn)) == SET
|
||
&& SET_SRC (PATTERN (undobuf.other_insn)) == pc_rtx
|
||
&& SET_DEST (PATTERN (undobuf.other_insn)) == pc_rtx)
|
||
{
|
||
*new_direct_jump_p = 1;
|
||
update_cfg_for_uncondjump (undobuf.other_insn);
|
||
}
|
||
|
||
combine_successes++;
|
||
undo_commit ();
|
||
|
||
rtx_insn *ret = newi2pat ? i2 : i3;
|
||
if (added_links_insn && DF_INSN_LUID (added_links_insn) < DF_INSN_LUID (ret))
|
||
ret = added_links_insn;
|
||
if (added_notes_insn && DF_INSN_LUID (added_notes_insn) < DF_INSN_LUID (ret))
|
||
ret = added_notes_insn;
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Get a marker for undoing to the current state. */
|
||
|
||
static void *
|
||
get_undo_marker (void)
|
||
{
|
||
return undobuf.undos;
|
||
}
|
||
|
||
/* Undo the modifications up to the marker. */
|
||
|
||
static void
|
||
undo_to_marker (void *marker)
|
||
{
|
||
struct undo *undo, *next;
|
||
|
||
for (undo = undobuf.undos; undo != marker; undo = next)
|
||
{
|
||
gcc_assert (undo);
|
||
|
||
next = undo->next;
|
||
switch (undo->kind)
|
||
{
|
||
case UNDO_RTX:
|
||
*undo->where.r = undo->old_contents.r;
|
||
break;
|
||
case UNDO_INT:
|
||
*undo->where.i = undo->old_contents.i;
|
||
break;
|
||
case UNDO_MODE:
|
||
adjust_reg_mode (*undo->where.r, undo->old_contents.m);
|
||
break;
|
||
case UNDO_LINKS:
|
||
*undo->where.l = undo->old_contents.l;
|
||
break;
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
undo->next = undobuf.frees;
|
||
undobuf.frees = undo;
|
||
}
|
||
|
||
undobuf.undos = (struct undo *) marker;
|
||
}
|
||
|
||
/* Undo all the modifications recorded in undobuf. */
|
||
|
||
static void
|
||
undo_all (void)
|
||
{
|
||
undo_to_marker (0);
|
||
}
|
||
|
||
/* We've committed to accepting the changes we made. Move all
|
||
of the undos to the free list. */
|
||
|
||
static void
|
||
undo_commit (void)
|
||
{
|
||
struct undo *undo, *next;
|
||
|
||
for (undo = undobuf.undos; undo; undo = next)
|
||
{
|
||
next = undo->next;
|
||
undo->next = undobuf.frees;
|
||
undobuf.frees = undo;
|
||
}
|
||
undobuf.undos = 0;
|
||
}
|
||
|
||
/* Find the innermost point within the rtx at LOC, possibly LOC itself,
|
||
where we have an arithmetic expression and return that point. LOC will
|
||
be inside INSN.
|
||
|
||
try_combine will call this function to see if an insn can be split into
|
||
two insns. */
|
||
|
||
static rtx *
|
||
find_split_point (rtx *loc, rtx_insn *insn, bool set_src)
|
||
{
|
||
rtx x = *loc;
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx *split;
|
||
unsigned HOST_WIDE_INT len = 0;
|
||
HOST_WIDE_INT pos = 0;
|
||
int unsignedp = 0;
|
||
rtx inner = NULL_RTX;
|
||
scalar_int_mode mode, inner_mode;
|
||
|
||
/* First special-case some codes. */
|
||
switch (code)
|
||
{
|
||
case SUBREG:
|
||
#ifdef INSN_SCHEDULING
|
||
/* If we are making a paradoxical SUBREG invalid, it becomes a split
|
||
point. */
|
||
if (MEM_P (SUBREG_REG (x)))
|
||
return loc;
|
||
#endif
|
||
return find_split_point (&SUBREG_REG (x), insn, false);
|
||
|
||
case MEM:
|
||
/* If we have (mem (const ..)) or (mem (symbol_ref ...)), split it
|
||
using LO_SUM and HIGH. */
|
||
if (HAVE_lo_sum && (GET_CODE (XEXP (x, 0)) == CONST
|
||
|| GET_CODE (XEXP (x, 0)) == SYMBOL_REF))
|
||
{
|
||
machine_mode address_mode = get_address_mode (x);
|
||
|
||
SUBST (XEXP (x, 0),
|
||
gen_rtx_LO_SUM (address_mode,
|
||
gen_rtx_HIGH (address_mode, XEXP (x, 0)),
|
||
XEXP (x, 0)));
|
||
return &XEXP (XEXP (x, 0), 0);
|
||
}
|
||
|
||
/* If we have a PLUS whose second operand is a constant and the
|
||
address is not valid, perhaps we can split it up using
|
||
the machine-specific way to split large constants. We use
|
||
the first pseudo-reg (one of the virtual regs) as a placeholder;
|
||
it will not remain in the result. */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
|
||
&& ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
|
||
MEM_ADDR_SPACE (x)))
|
||
{
|
||
rtx reg = regno_reg_rtx[FIRST_PSEUDO_REGISTER];
|
||
rtx_insn *seq = combine_split_insns (gen_rtx_SET (reg, XEXP (x, 0)),
|
||
subst_insn);
|
||
|
||
/* This should have produced two insns, each of which sets our
|
||
placeholder. If the source of the second is a valid address,
|
||
we can put both sources together and make a split point
|
||
in the middle. */
|
||
|
||
if (seq
|
||
&& NEXT_INSN (seq) != NULL_RTX
|
||
&& NEXT_INSN (NEXT_INSN (seq)) == NULL_RTX
|
||
&& NONJUMP_INSN_P (seq)
|
||
&& GET_CODE (PATTERN (seq)) == SET
|
||
&& SET_DEST (PATTERN (seq)) == reg
|
||
&& ! reg_mentioned_p (reg,
|
||
SET_SRC (PATTERN (seq)))
|
||
&& NONJUMP_INSN_P (NEXT_INSN (seq))
|
||
&& GET_CODE (PATTERN (NEXT_INSN (seq))) == SET
|
||
&& SET_DEST (PATTERN (NEXT_INSN (seq))) == reg
|
||
&& memory_address_addr_space_p
|
||
(GET_MODE (x), SET_SRC (PATTERN (NEXT_INSN (seq))),
|
||
MEM_ADDR_SPACE (x)))
|
||
{
|
||
rtx src1 = SET_SRC (PATTERN (seq));
|
||
rtx src2 = SET_SRC (PATTERN (NEXT_INSN (seq)));
|
||
|
||
/* Replace the placeholder in SRC2 with SRC1. If we can
|
||
find where in SRC2 it was placed, that can become our
|
||
split point and we can replace this address with SRC2.
|
||
Just try two obvious places. */
|
||
|
||
src2 = replace_rtx (src2, reg, src1);
|
||
split = 0;
|
||
if (XEXP (src2, 0) == src1)
|
||
split = &XEXP (src2, 0);
|
||
else if (GET_RTX_FORMAT (GET_CODE (XEXP (src2, 0)))[0] == 'e'
|
||
&& XEXP (XEXP (src2, 0), 0) == src1)
|
||
split = &XEXP (XEXP (src2, 0), 0);
|
||
|
||
if (split)
|
||
{
|
||
SUBST (XEXP (x, 0), src2);
|
||
return split;
|
||
}
|
||
}
|
||
|
||
/* If that didn't work and we have a nested plus, like:
|
||
((REG1 * CONST1) + REG2) + CONST2 and (REG1 + REG2) + CONST2
|
||
is valid address, try to split (REG1 * CONST1). */
|
||
if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
|
||
&& !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
|
||
&& OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
|
||
&& ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 0)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
|
||
0), 0)))))
|
||
{
|
||
rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 0);
|
||
XEXP (XEXP (XEXP (x, 0), 0), 0) = reg;
|
||
if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
|
||
MEM_ADDR_SPACE (x)))
|
||
{
|
||
XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
|
||
return &XEXP (XEXP (XEXP (x, 0), 0), 0);
|
||
}
|
||
XEXP (XEXP (XEXP (x, 0), 0), 0) = tem;
|
||
}
|
||
else if (GET_CODE (XEXP (XEXP (x, 0), 0)) == PLUS
|
||
&& OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 0))
|
||
&& !OBJECT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
|
||
&& ! (GET_CODE (XEXP (XEXP (XEXP (x, 0), 0), 1)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (XEXP (XEXP (x, 0),
|
||
0), 1)))))
|
||
{
|
||
rtx tem = XEXP (XEXP (XEXP (x, 0), 0), 1);
|
||
XEXP (XEXP (XEXP (x, 0), 0), 1) = reg;
|
||
if (memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
|
||
MEM_ADDR_SPACE (x)))
|
||
{
|
||
XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
|
||
return &XEXP (XEXP (XEXP (x, 0), 0), 1);
|
||
}
|
||
XEXP (XEXP (XEXP (x, 0), 0), 1) = tem;
|
||
}
|
||
|
||
/* If that didn't work, perhaps the first operand is complex and
|
||
needs to be computed separately, so make a split point there.
|
||
This will occur on machines that just support REG + CONST
|
||
and have a constant moved through some previous computation. */
|
||
if (!OBJECT_P (XEXP (XEXP (x, 0), 0))
|
||
&& ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
|
||
return &XEXP (XEXP (x, 0), 0);
|
||
}
|
||
|
||
/* If we have a PLUS whose first operand is complex, try computing it
|
||
separately by making a split there. */
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS
|
||
&& ! memory_address_addr_space_p (GET_MODE (x), XEXP (x, 0),
|
||
MEM_ADDR_SPACE (x))
|
||
&& ! OBJECT_P (XEXP (XEXP (x, 0), 0))
|
||
&& ! (GET_CODE (XEXP (XEXP (x, 0), 0)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (XEXP (x, 0), 0)))))
|
||
return &XEXP (XEXP (x, 0), 0);
|
||
break;
|
||
|
||
case SET:
|
||
/* If SET_DEST is CC0 and SET_SRC is not an operand, a COMPARE, or a
|
||
ZERO_EXTRACT, the most likely reason why this doesn't match is that
|
||
we need to put the operand into a register. So split at that
|
||
point. */
|
||
|
||
if (SET_DEST (x) == cc0_rtx
|
||
&& GET_CODE (SET_SRC (x)) != COMPARE
|
||
&& GET_CODE (SET_SRC (x)) != ZERO_EXTRACT
|
||
&& !OBJECT_P (SET_SRC (x))
|
||
&& ! (GET_CODE (SET_SRC (x)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (SET_SRC (x)))))
|
||
return &SET_SRC (x);
|
||
|
||
/* See if we can split SET_SRC as it stands. */
|
||
split = find_split_point (&SET_SRC (x), insn, true);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
|
||
/* See if we can split SET_DEST as it stands. */
|
||
split = find_split_point (&SET_DEST (x), insn, false);
|
||
if (split && split != &SET_DEST (x))
|
||
return split;
|
||
|
||
/* See if this is a bitfield assignment with everything constant. If
|
||
so, this is an IOR of an AND, so split it into that. */
|
||
if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (SET_DEST (x), 0)),
|
||
&inner_mode)
|
||
&& HWI_COMPUTABLE_MODE_P (inner_mode)
|
||
&& CONST_INT_P (XEXP (SET_DEST (x), 1))
|
||
&& CONST_INT_P (XEXP (SET_DEST (x), 2))
|
||
&& CONST_INT_P (SET_SRC (x))
|
||
&& ((INTVAL (XEXP (SET_DEST (x), 1))
|
||
+ INTVAL (XEXP (SET_DEST (x), 2)))
|
||
<= GET_MODE_PRECISION (inner_mode))
|
||
&& ! side_effects_p (XEXP (SET_DEST (x), 0)))
|
||
{
|
||
HOST_WIDE_INT pos = INTVAL (XEXP (SET_DEST (x), 2));
|
||
unsigned HOST_WIDE_INT len = INTVAL (XEXP (SET_DEST (x), 1));
|
||
rtx dest = XEXP (SET_DEST (x), 0);
|
||
unsigned HOST_WIDE_INT mask = (HOST_WIDE_INT_1U << len) - 1;
|
||
unsigned HOST_WIDE_INT src = INTVAL (SET_SRC (x)) & mask;
|
||
rtx or_mask;
|
||
|
||
if (BITS_BIG_ENDIAN)
|
||
pos = GET_MODE_PRECISION (inner_mode) - len - pos;
|
||
|
||
or_mask = gen_int_mode (src << pos, inner_mode);
|
||
if (src == mask)
|
||
SUBST (SET_SRC (x),
|
||
simplify_gen_binary (IOR, inner_mode, dest, or_mask));
|
||
else
|
||
{
|
||
rtx negmask = gen_int_mode (~(mask << pos), inner_mode);
|
||
SUBST (SET_SRC (x),
|
||
simplify_gen_binary (IOR, inner_mode,
|
||
simplify_gen_binary (AND, inner_mode,
|
||
dest, negmask),
|
||
or_mask));
|
||
}
|
||
|
||
SUBST (SET_DEST (x), dest);
|
||
|
||
split = find_split_point (&SET_SRC (x), insn, true);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
}
|
||
|
||
/* Otherwise, see if this is an operation that we can split into two.
|
||
If so, try to split that. */
|
||
code = GET_CODE (SET_SRC (x));
|
||
|
||
switch (code)
|
||
{
|
||
case AND:
|
||
/* If we are AND'ing with a large constant that is only a single
|
||
bit and the result is only being used in a context where we
|
||
need to know if it is zero or nonzero, replace it with a bit
|
||
extraction. This will avoid the large constant, which might
|
||
have taken more than one insn to make. If the constant were
|
||
not a valid argument to the AND but took only one insn to make,
|
||
this is no worse, but if it took more than one insn, it will
|
||
be better. */
|
||
|
||
if (CONST_INT_P (XEXP (SET_SRC (x), 1))
|
||
&& REG_P (XEXP (SET_SRC (x), 0))
|
||
&& (pos = exact_log2 (UINTVAL (XEXP (SET_SRC (x), 1)))) >= 7
|
||
&& REG_P (SET_DEST (x))
|
||
&& (split = find_single_use (SET_DEST (x), insn, NULL)) != 0
|
||
&& (GET_CODE (*split) == EQ || GET_CODE (*split) == NE)
|
||
&& XEXP (*split, 0) == SET_DEST (x)
|
||
&& XEXP (*split, 1) == const0_rtx)
|
||
{
|
||
rtx extraction = make_extraction (GET_MODE (SET_DEST (x)),
|
||
XEXP (SET_SRC (x), 0),
|
||
pos, NULL_RTX, 1, 1, 0, 0);
|
||
if (extraction != 0)
|
||
{
|
||
SUBST (SET_SRC (x), extraction);
|
||
return find_split_point (loc, insn, false);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case NE:
|
||
/* If STORE_FLAG_VALUE is -1, this is (NE X 0) and only one bit of X
|
||
is known to be on, this can be converted into a NEG of a shift. */
|
||
if (STORE_FLAG_VALUE == -1 && XEXP (SET_SRC (x), 1) == const0_rtx
|
||
&& GET_MODE (SET_SRC (x)) == GET_MODE (XEXP (SET_SRC (x), 0))
|
||
&& ((pos = exact_log2 (nonzero_bits (XEXP (SET_SRC (x), 0),
|
||
GET_MODE (XEXP (SET_SRC (x),
|
||
0))))) >= 1))
|
||
{
|
||
machine_mode mode = GET_MODE (XEXP (SET_SRC (x), 0));
|
||
rtx pos_rtx = gen_int_shift_amount (mode, pos);
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_NEG (mode,
|
||
gen_rtx_LSHIFTRT (mode,
|
||
XEXP (SET_SRC (x), 0),
|
||
pos_rtx)));
|
||
|
||
split = find_split_point (&SET_SRC (x), insn, true);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
}
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
inner = XEXP (SET_SRC (x), 0);
|
||
|
||
/* We can't optimize if either mode is a partial integer
|
||
mode as we don't know how many bits are significant
|
||
in those modes. */
|
||
if (!is_int_mode (GET_MODE (inner), &inner_mode)
|
||
|| GET_MODE_CLASS (GET_MODE (SET_SRC (x))) == MODE_PARTIAL_INT)
|
||
break;
|
||
|
||
pos = 0;
|
||
len = GET_MODE_PRECISION (inner_mode);
|
||
unsignedp = 0;
|
||
break;
|
||
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
if (is_a <scalar_int_mode> (GET_MODE (XEXP (SET_SRC (x), 0)),
|
||
&inner_mode)
|
||
&& CONST_INT_P (XEXP (SET_SRC (x), 1))
|
||
&& CONST_INT_P (XEXP (SET_SRC (x), 2)))
|
||
{
|
||
inner = XEXP (SET_SRC (x), 0);
|
||
len = INTVAL (XEXP (SET_SRC (x), 1));
|
||
pos = INTVAL (XEXP (SET_SRC (x), 2));
|
||
|
||
if (BITS_BIG_ENDIAN)
|
||
pos = GET_MODE_PRECISION (inner_mode) - len - pos;
|
||
unsignedp = (code == ZERO_EXTRACT);
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (len
|
||
&& known_subrange_p (pos, len,
|
||
0, GET_MODE_PRECISION (GET_MODE (inner)))
|
||
&& is_a <scalar_int_mode> (GET_MODE (SET_SRC (x)), &mode))
|
||
{
|
||
/* For unsigned, we have a choice of a shift followed by an
|
||
AND or two shifts. Use two shifts for field sizes where the
|
||
constant might be too large. We assume here that we can
|
||
always at least get 8-bit constants in an AND insn, which is
|
||
true for every current RISC. */
|
||
|
||
if (unsignedp && len <= 8)
|
||
{
|
||
unsigned HOST_WIDE_INT mask
|
||
= (HOST_WIDE_INT_1U << len) - 1;
|
||
rtx pos_rtx = gen_int_shift_amount (mode, pos);
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_AND (mode,
|
||
gen_rtx_LSHIFTRT
|
||
(mode, gen_lowpart (mode, inner), pos_rtx),
|
||
gen_int_mode (mask, mode)));
|
||
|
||
split = find_split_point (&SET_SRC (x), insn, true);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
}
|
||
else
|
||
{
|
||
int left_bits = GET_MODE_PRECISION (mode) - len - pos;
|
||
int right_bits = GET_MODE_PRECISION (mode) - len;
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_fmt_ee
|
||
(unsignedp ? LSHIFTRT : ASHIFTRT, mode,
|
||
gen_rtx_ASHIFT (mode,
|
||
gen_lowpart (mode, inner),
|
||
gen_int_shift_amount (mode, left_bits)),
|
||
gen_int_shift_amount (mode, right_bits)));
|
||
|
||
split = find_split_point (&SET_SRC (x), insn, true);
|
||
if (split && split != &SET_SRC (x))
|
||
return split;
|
||
}
|
||
}
|
||
|
||
/* See if this is a simple operation with a constant as the second
|
||
operand. It might be that this constant is out of range and hence
|
||
could be used as a split point. */
|
||
if (BINARY_P (SET_SRC (x))
|
||
&& CONSTANT_P (XEXP (SET_SRC (x), 1))
|
||
&& (OBJECT_P (XEXP (SET_SRC (x), 0))
|
||
|| (GET_CODE (XEXP (SET_SRC (x), 0)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (SET_SRC (x), 0))))))
|
||
return &XEXP (SET_SRC (x), 1);
|
||
|
||
/* Finally, see if this is a simple operation with its first operand
|
||
not in a register. The operation might require this operand in a
|
||
register, so return it as a split point. We can always do this
|
||
because if the first operand were another operation, we would have
|
||
already found it as a split point. */
|
||
if ((BINARY_P (SET_SRC (x)) || UNARY_P (SET_SRC (x)))
|
||
&& ! register_operand (XEXP (SET_SRC (x), 0), VOIDmode))
|
||
return &XEXP (SET_SRC (x), 0);
|
||
|
||
return 0;
|
||
|
||
case AND:
|
||
case IOR:
|
||
/* We write NOR as (and (not A) (not B)), but if we don't have a NOR,
|
||
it is better to write this as (not (ior A B)) so we can split it.
|
||
Similarly for IOR. */
|
||
if (GET_CODE (XEXP (x, 0)) == NOT && GET_CODE (XEXP (x, 1)) == NOT)
|
||
{
|
||
SUBST (*loc,
|
||
gen_rtx_NOT (GET_MODE (x),
|
||
gen_rtx_fmt_ee (code == IOR ? AND : IOR,
|
||
GET_MODE (x),
|
||
XEXP (XEXP (x, 0), 0),
|
||
XEXP (XEXP (x, 1), 0))));
|
||
return find_split_point (loc, insn, set_src);
|
||
}
|
||
|
||
/* Many RISC machines have a large set of logical insns. If the
|
||
second operand is a NOT, put it first so we will try to split the
|
||
other operand first. */
|
||
if (GET_CODE (XEXP (x, 1)) == NOT)
|
||
{
|
||
rtx tem = XEXP (x, 0);
|
||
SUBST (XEXP (x, 0), XEXP (x, 1));
|
||
SUBST (XEXP (x, 1), tem);
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
case MINUS:
|
||
/* Canonicalization can produce (minus A (mult B C)), where C is a
|
||
constant. It may be better to try splitting (plus (mult B -C) A)
|
||
instead if this isn't a multiply by a power of two. */
|
||
if (set_src && code == MINUS && GET_CODE (XEXP (x, 1)) == MULT
|
||
&& GET_CODE (XEXP (XEXP (x, 1), 1)) == CONST_INT
|
||
&& !pow2p_hwi (INTVAL (XEXP (XEXP (x, 1), 1))))
|
||
{
|
||
machine_mode mode = GET_MODE (x);
|
||
unsigned HOST_WIDE_INT this_int = INTVAL (XEXP (XEXP (x, 1), 1));
|
||
HOST_WIDE_INT other_int = trunc_int_for_mode (-this_int, mode);
|
||
SUBST (*loc, gen_rtx_PLUS (mode,
|
||
gen_rtx_MULT (mode,
|
||
XEXP (XEXP (x, 1), 0),
|
||
gen_int_mode (other_int,
|
||
mode)),
|
||
XEXP (x, 0)));
|
||
return find_split_point (loc, insn, set_src);
|
||
}
|
||
|
||
/* Split at a multiply-accumulate instruction. However if this is
|
||
the SET_SRC, we likely do not have such an instruction and it's
|
||
worthless to try this split. */
|
||
if (!set_src
|
||
&& (GET_CODE (XEXP (x, 0)) == MULT
|
||
|| (GET_CODE (XEXP (x, 0)) == ASHIFT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == CONST_INT)))
|
||
return loc;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Otherwise, select our actions depending on our rtx class. */
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_BITFIELD_OPS: /* This is ZERO_EXTRACT and SIGN_EXTRACT. */
|
||
case RTX_TERNARY:
|
||
split = find_split_point (&XEXP (x, 2), insn, false);
|
||
if (split)
|
||
return split;
|
||
/* fall through */
|
||
case RTX_BIN_ARITH:
|
||
case RTX_COMM_ARITH:
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
split = find_split_point (&XEXP (x, 1), insn, false);
|
||
if (split)
|
||
return split;
|
||
/* fall through */
|
||
case RTX_UNARY:
|
||
/* Some machines have (and (shift ...) ...) insns. If X is not
|
||
an AND, but XEXP (X, 0) is, use it as our split point. */
|
||
if (GET_CODE (x) != AND && GET_CODE (XEXP (x, 0)) == AND)
|
||
return &XEXP (x, 0);
|
||
|
||
split = find_split_point (&XEXP (x, 0), insn, false);
|
||
if (split)
|
||
return split;
|
||
return loc;
|
||
|
||
default:
|
||
/* Otherwise, we don't have a split point. */
|
||
return 0;
|
||
}
|
||
}
|
||
|
||
/* Throughout X, replace FROM with TO, and return the result.
|
||
The result is TO if X is FROM;
|
||
otherwise the result is X, but its contents may have been modified.
|
||
If they were modified, a record was made in undobuf so that
|
||
undo_all will (among other things) return X to its original state.
|
||
|
||
If the number of changes necessary is too much to record to undo,
|
||
the excess changes are not made, so the result is invalid.
|
||
The changes already made can still be undone.
|
||
undobuf.num_undo is incremented for such changes, so by testing that
|
||
the caller can tell whether the result is valid.
|
||
|
||
`n_occurrences' is incremented each time FROM is replaced.
|
||
|
||
IN_DEST is nonzero if we are processing the SET_DEST of a SET.
|
||
|
||
IN_COND is nonzero if we are at the top level of a condition.
|
||
|
||
UNIQUE_COPY is nonzero if each substitution must be unique. We do this
|
||
by copying if `n_occurrences' is nonzero. */
|
||
|
||
static rtx
|
||
subst (rtx x, rtx from, rtx to, int in_dest, int in_cond, int unique_copy)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
machine_mode op0_mode = VOIDmode;
|
||
const char *fmt;
|
||
int len, i;
|
||
rtx new_rtx;
|
||
|
||
/* Two expressions are equal if they are identical copies of a shared
|
||
RTX or if they are both registers with the same register number
|
||
and mode. */
|
||
|
||
#define COMBINE_RTX_EQUAL_P(X,Y) \
|
||
((X) == (Y) \
|
||
|| (REG_P (X) && REG_P (Y) \
|
||
&& REGNO (X) == REGNO (Y) && GET_MODE (X) == GET_MODE (Y)))
|
||
|
||
/* Do not substitute into clobbers of regs -- this will never result in
|
||
valid RTL. */
|
||
if (GET_CODE (x) == CLOBBER && REG_P (XEXP (x, 0)))
|
||
return x;
|
||
|
||
if (! in_dest && COMBINE_RTX_EQUAL_P (x, from))
|
||
{
|
||
n_occurrences++;
|
||
return (unique_copy && n_occurrences > 1 ? copy_rtx (to) : to);
|
||
}
|
||
|
||
/* If X and FROM are the same register but different modes, they
|
||
will not have been seen as equal above. However, the log links code
|
||
will make a LOG_LINKS entry for that case. If we do nothing, we
|
||
will try to rerecognize our original insn and, when it succeeds,
|
||
we will delete the feeding insn, which is incorrect.
|
||
|
||
So force this insn not to match in this (rare) case. */
|
||
if (! in_dest && code == REG && REG_P (from)
|
||
&& reg_overlap_mentioned_p (x, from))
|
||
return gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
||
|
||
/* If this is an object, we are done unless it is a MEM or LO_SUM, both
|
||
of which may contain things that can be combined. */
|
||
if (code != MEM && code != LO_SUM && OBJECT_P (x))
|
||
return x;
|
||
|
||
/* It is possible to have a subexpression appear twice in the insn.
|
||
Suppose that FROM is a register that appears within TO.
|
||
Then, after that subexpression has been scanned once by `subst',
|
||
the second time it is scanned, TO may be found. If we were
|
||
to scan TO here, we would find FROM within it and create a
|
||
self-referent rtl structure which is completely wrong. */
|
||
if (COMBINE_RTX_EQUAL_P (x, to))
|
||
return to;
|
||
|
||
/* Parallel asm_operands need special attention because all of the
|
||
inputs are shared across the arms. Furthermore, unsharing the
|
||
rtl results in recognition failures. Failure to handle this case
|
||
specially can result in circular rtl.
|
||
|
||
Solve this by doing a normal pass across the first entry of the
|
||
parallel, and only processing the SET_DESTs of the subsequent
|
||
entries. Ug. */
|
||
|
||
if (code == PARALLEL
|
||
&& GET_CODE (XVECEXP (x, 0, 0)) == SET
|
||
&& GET_CODE (SET_SRC (XVECEXP (x, 0, 0))) == ASM_OPERANDS)
|
||
{
|
||
new_rtx = subst (XVECEXP (x, 0, 0), from, to, 0, 0, unique_copy);
|
||
|
||
/* If this substitution failed, this whole thing fails. */
|
||
if (GET_CODE (new_rtx) == CLOBBER
|
||
&& XEXP (new_rtx, 0) == const0_rtx)
|
||
return new_rtx;
|
||
|
||
SUBST (XVECEXP (x, 0, 0), new_rtx);
|
||
|
||
for (i = XVECLEN (x, 0) - 1; i >= 1; i--)
|
||
{
|
||
rtx dest = SET_DEST (XVECEXP (x, 0, i));
|
||
|
||
if (!REG_P (dest)
|
||
&& GET_CODE (dest) != CC0
|
||
&& GET_CODE (dest) != PC)
|
||
{
|
||
new_rtx = subst (dest, from, to, 0, 0, unique_copy);
|
||
|
||
/* If this substitution failed, this whole thing fails. */
|
||
if (GET_CODE (new_rtx) == CLOBBER
|
||
&& XEXP (new_rtx, 0) == const0_rtx)
|
||
return new_rtx;
|
||
|
||
SUBST (SET_DEST (XVECEXP (x, 0, i)), new_rtx);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
len = GET_RTX_LENGTH (code);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
/* We don't need to process a SET_DEST that is a register, CC0,
|
||
or PC, so set up to skip this common case. All other cases
|
||
where we want to suppress replacing something inside a
|
||
SET_SRC are handled via the IN_DEST operand. */
|
||
if (code == SET
|
||
&& (REG_P (SET_DEST (x))
|
||
|| GET_CODE (SET_DEST (x)) == CC0
|
||
|| GET_CODE (SET_DEST (x)) == PC))
|
||
fmt = "ie";
|
||
|
||
/* Trying to simplify the operands of a widening MULT is not likely
|
||
to create RTL matching a machine insn. */
|
||
if (code == MULT
|
||
&& (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|
||
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
|
||
&& (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
|
||
|| GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
|
||
&& REG_P (XEXP (XEXP (x, 0), 0))
|
||
&& REG_P (XEXP (XEXP (x, 1), 0))
|
||
&& from == to)
|
||
return x;
|
||
|
||
|
||
/* Get the mode of operand 0 in case X is now a SIGN_EXTEND of a
|
||
constant. */
|
||
if (fmt[0] == 'e')
|
||
op0_mode = GET_MODE (XEXP (x, 0));
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
{
|
||
if (COMBINE_RTX_EQUAL_P (XVECEXP (x, i, j), from))
|
||
{
|
||
new_rtx = (unique_copy && n_occurrences
|
||
? copy_rtx (to) : to);
|
||
n_occurrences++;
|
||
}
|
||
else
|
||
{
|
||
new_rtx = subst (XVECEXP (x, i, j), from, to, 0, 0,
|
||
unique_copy);
|
||
|
||
/* If this substitution failed, this whole thing
|
||
fails. */
|
||
if (GET_CODE (new_rtx) == CLOBBER
|
||
&& XEXP (new_rtx, 0) == const0_rtx)
|
||
return new_rtx;
|
||
}
|
||
|
||
SUBST (XVECEXP (x, i, j), new_rtx);
|
||
}
|
||
}
|
||
else if (fmt[i] == 'e')
|
||
{
|
||
/* If this is a register being set, ignore it. */
|
||
new_rtx = XEXP (x, i);
|
||
if (in_dest
|
||
&& i == 0
|
||
&& (((code == SUBREG || code == ZERO_EXTRACT)
|
||
&& REG_P (new_rtx))
|
||
|| code == STRICT_LOW_PART))
|
||
;
|
||
|
||
else if (COMBINE_RTX_EQUAL_P (XEXP (x, i), from))
|
||
{
|
||
/* In general, don't install a subreg involving two
|
||
modes not tieable. It can worsen register
|
||
allocation, and can even make invalid reload
|
||
insns, since the reg inside may need to be copied
|
||
from in the outside mode, and that may be invalid
|
||
if it is an fp reg copied in integer mode.
|
||
|
||
We allow two exceptions to this: It is valid if
|
||
it is inside another SUBREG and the mode of that
|
||
SUBREG and the mode of the inside of TO is
|
||
tieable and it is valid if X is a SET that copies
|
||
FROM to CC0. */
|
||
|
||
if (GET_CODE (to) == SUBREG
|
||
&& !targetm.modes_tieable_p (GET_MODE (to),
|
||
GET_MODE (SUBREG_REG (to)))
|
||
&& ! (code == SUBREG
|
||
&& (targetm.modes_tieable_p
|
||
(GET_MODE (x), GET_MODE (SUBREG_REG (to)))))
|
||
&& (!HAVE_cc0
|
||
|| (! (code == SET
|
||
&& i == 1
|
||
&& XEXP (x, 0) == cc0_rtx))))
|
||
return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
|
||
|
||
if (code == SUBREG
|
||
&& REG_P (to)
|
||
&& REGNO (to) < FIRST_PSEUDO_REGISTER
|
||
&& simplify_subreg_regno (REGNO (to), GET_MODE (to),
|
||
SUBREG_BYTE (x),
|
||
GET_MODE (x)) < 0)
|
||
return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
|
||
|
||
new_rtx = (unique_copy && n_occurrences ? copy_rtx (to) : to);
|
||
n_occurrences++;
|
||
}
|
||
else
|
||
/* If we are in a SET_DEST, suppress most cases unless we
|
||
have gone inside a MEM, in which case we want to
|
||
simplify the address. We assume here that things that
|
||
are actually part of the destination have their inner
|
||
parts in the first expression. This is true for SUBREG,
|
||
STRICT_LOW_PART, and ZERO_EXTRACT, which are the only
|
||
things aside from REG and MEM that should appear in a
|
||
SET_DEST. */
|
||
new_rtx = subst (XEXP (x, i), from, to,
|
||
(((in_dest
|
||
&& (code == SUBREG || code == STRICT_LOW_PART
|
||
|| code == ZERO_EXTRACT))
|
||
|| code == SET)
|
||
&& i == 0),
|
||
code == IF_THEN_ELSE && i == 0,
|
||
unique_copy);
|
||
|
||
/* If we found that we will have to reject this combination,
|
||
indicate that by returning the CLOBBER ourselves, rather than
|
||
an expression containing it. This will speed things up as
|
||
well as prevent accidents where two CLOBBERs are considered
|
||
to be equal, thus producing an incorrect simplification. */
|
||
|
||
if (GET_CODE (new_rtx) == CLOBBER && XEXP (new_rtx, 0) == const0_rtx)
|
||
return new_rtx;
|
||
|
||
if (GET_CODE (x) == SUBREG && CONST_SCALAR_INT_P (new_rtx))
|
||
{
|
||
machine_mode mode = GET_MODE (x);
|
||
|
||
x = simplify_subreg (GET_MODE (x), new_rtx,
|
||
GET_MODE (SUBREG_REG (x)),
|
||
SUBREG_BYTE (x));
|
||
if (! x)
|
||
x = gen_rtx_CLOBBER (mode, const0_rtx);
|
||
}
|
||
else if (CONST_SCALAR_INT_P (new_rtx)
|
||
&& (GET_CODE (x) == ZERO_EXTEND
|
||
|| GET_CODE (x) == SIGN_EXTEND
|
||
|| GET_CODE (x) == FLOAT
|
||
|| GET_CODE (x) == UNSIGNED_FLOAT))
|
||
{
|
||
x = simplify_unary_operation (GET_CODE (x), GET_MODE (x),
|
||
new_rtx,
|
||
GET_MODE (XEXP (x, 0)));
|
||
if (!x)
|
||
return gen_rtx_CLOBBER (VOIDmode, const0_rtx);
|
||
}
|
||
else
|
||
SUBST (XEXP (x, i), new_rtx);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check if we are loading something from the constant pool via float
|
||
extension; in this case we would undo compress_float_constant
|
||
optimization and degenerate constant load to an immediate value. */
|
||
if (GET_CODE (x) == FLOAT_EXTEND
|
||
&& MEM_P (XEXP (x, 0))
|
||
&& MEM_READONLY_P (XEXP (x, 0)))
|
||
{
|
||
rtx tmp = avoid_constant_pool_reference (x);
|
||
if (x != tmp)
|
||
return x;
|
||
}
|
||
|
||
/* Try to simplify X. If the simplification changed the code, it is likely
|
||
that further simplification will help, so loop, but limit the number
|
||
of repetitions that will be performed. */
|
||
|
||
for (i = 0; i < 4; i++)
|
||
{
|
||
/* If X is sufficiently simple, don't bother trying to do anything
|
||
with it. */
|
||
if (code != CONST_INT && code != REG && code != CLOBBER)
|
||
x = combine_simplify_rtx (x, op0_mode, in_dest, in_cond);
|
||
|
||
if (GET_CODE (x) == code)
|
||
break;
|
||
|
||
code = GET_CODE (x);
|
||
|
||
/* We no longer know the original mode of operand 0 since we
|
||
have changed the form of X) */
|
||
op0_mode = VOIDmode;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* If X is a commutative operation whose operands are not in the canonical
|
||
order, use substitutions to swap them. */
|
||
|
||
static void
|
||
maybe_swap_commutative_operands (rtx x)
|
||
{
|
||
if (COMMUTATIVE_ARITH_P (x)
|
||
&& swap_commutative_operands_p (XEXP (x, 0), XEXP (x, 1)))
|
||
{
|
||
rtx temp = XEXP (x, 0);
|
||
SUBST (XEXP (x, 0), XEXP (x, 1));
|
||
SUBST (XEXP (x, 1), temp);
|
||
}
|
||
}
|
||
|
||
/* Simplify X, a piece of RTL. We just operate on the expression at the
|
||
outer level; call `subst' to simplify recursively. Return the new
|
||
expression.
|
||
|
||
OP0_MODE is the original mode of XEXP (x, 0). IN_DEST is nonzero
|
||
if we are inside a SET_DEST. IN_COND is nonzero if we are at the top level
|
||
of a condition. */
|
||
|
||
static rtx
|
||
combine_simplify_rtx (rtx x, machine_mode op0_mode, int in_dest,
|
||
int in_cond)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
machine_mode mode = GET_MODE (x);
|
||
scalar_int_mode int_mode;
|
||
rtx temp;
|
||
int i;
|
||
|
||
/* If this is a commutative operation, put a constant last and a complex
|
||
expression first. We don't need to do this for comparisons here. */
|
||
maybe_swap_commutative_operands (x);
|
||
|
||
/* Try to fold this expression in case we have constants that weren't
|
||
present before. */
|
||
temp = 0;
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
if (op0_mode == VOIDmode)
|
||
op0_mode = GET_MODE (XEXP (x, 0));
|
||
temp = simplify_unary_operation (code, mode, XEXP (x, 0), op0_mode);
|
||
break;
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
{
|
||
machine_mode cmp_mode = GET_MODE (XEXP (x, 0));
|
||
if (cmp_mode == VOIDmode)
|
||
{
|
||
cmp_mode = GET_MODE (XEXP (x, 1));
|
||
if (cmp_mode == VOIDmode)
|
||
cmp_mode = op0_mode;
|
||
}
|
||
temp = simplify_relational_operation (code, mode, cmp_mode,
|
||
XEXP (x, 0), XEXP (x, 1));
|
||
}
|
||
break;
|
||
case RTX_COMM_ARITH:
|
||
case RTX_BIN_ARITH:
|
||
temp = simplify_binary_operation (code, mode, XEXP (x, 0), XEXP (x, 1));
|
||
break;
|
||
case RTX_BITFIELD_OPS:
|
||
case RTX_TERNARY:
|
||
temp = simplify_ternary_operation (code, mode, op0_mode, XEXP (x, 0),
|
||
XEXP (x, 1), XEXP (x, 2));
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (temp)
|
||
{
|
||
x = temp;
|
||
code = GET_CODE (temp);
|
||
op0_mode = VOIDmode;
|
||
mode = GET_MODE (temp);
|
||
}
|
||
|
||
/* If this is a simple operation applied to an IF_THEN_ELSE, try
|
||
applying it to the arms of the IF_THEN_ELSE. This often simplifies
|
||
things. Check for cases where both arms are testing the same
|
||
condition.
|
||
|
||
Don't do anything if all operands are very simple. */
|
||
|
||
if ((BINARY_P (x)
|
||
&& ((!OBJECT_P (XEXP (x, 0))
|
||
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (x, 0)))))
|
||
|| (!OBJECT_P (XEXP (x, 1))
|
||
&& ! (GET_CODE (XEXP (x, 1)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (x, 1)))))))
|
||
|| (UNARY_P (x)
|
||
&& (!OBJECT_P (XEXP (x, 0))
|
||
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& OBJECT_P (SUBREG_REG (XEXP (x, 0)))))))
|
||
{
|
||
rtx cond, true_rtx, false_rtx;
|
||
|
||
cond = if_then_else_cond (x, &true_rtx, &false_rtx);
|
||
if (cond != 0
|
||
/* If everything is a comparison, what we have is highly unlikely
|
||
to be simpler, so don't use it. */
|
||
&& ! (COMPARISON_P (x)
|
||
&& (COMPARISON_P (true_rtx) || COMPARISON_P (false_rtx)))
|
||
/* Similarly, if we end up with one of the expressions the same
|
||
as the original, it is certainly not simpler. */
|
||
&& ! rtx_equal_p (x, true_rtx)
|
||
&& ! rtx_equal_p (x, false_rtx))
|
||
{
|
||
rtx cop1 = const0_rtx;
|
||
enum rtx_code cond_code = simplify_comparison (NE, &cond, &cop1);
|
||
|
||
if (cond_code == NE && COMPARISON_P (cond))
|
||
return x;
|
||
|
||
/* Simplify the alternative arms; this may collapse the true and
|
||
false arms to store-flag values. Be careful to use copy_rtx
|
||
here since true_rtx or false_rtx might share RTL with x as a
|
||
result of the if_then_else_cond call above. */
|
||
true_rtx = subst (copy_rtx (true_rtx), pc_rtx, pc_rtx, 0, 0, 0);
|
||
false_rtx = subst (copy_rtx (false_rtx), pc_rtx, pc_rtx, 0, 0, 0);
|
||
|
||
/* If true_rtx and false_rtx are not general_operands, an if_then_else
|
||
is unlikely to be simpler. */
|
||
if (general_operand (true_rtx, VOIDmode)
|
||
&& general_operand (false_rtx, VOIDmode))
|
||
{
|
||
enum rtx_code reversed;
|
||
|
||
/* Restarting if we generate a store-flag expression will cause
|
||
us to loop. Just drop through in this case. */
|
||
|
||
/* If the result values are STORE_FLAG_VALUE and zero, we can
|
||
just make the comparison operation. */
|
||
if (true_rtx == const_true_rtx && false_rtx == const0_rtx)
|
||
x = simplify_gen_relational (cond_code, mode, VOIDmode,
|
||
cond, cop1);
|
||
else if (true_rtx == const0_rtx && false_rtx == const_true_rtx
|
||
&& ((reversed = reversed_comparison_code_parts
|
||
(cond_code, cond, cop1, NULL))
|
||
!= UNKNOWN))
|
||
x = simplify_gen_relational (reversed, mode, VOIDmode,
|
||
cond, cop1);
|
||
|
||
/* Likewise, we can make the negate of a comparison operation
|
||
if the result values are - STORE_FLAG_VALUE and zero. */
|
||
else if (CONST_INT_P (true_rtx)
|
||
&& INTVAL (true_rtx) == - STORE_FLAG_VALUE
|
||
&& false_rtx == const0_rtx)
|
||
x = simplify_gen_unary (NEG, mode,
|
||
simplify_gen_relational (cond_code,
|
||
mode, VOIDmode,
|
||
cond, cop1),
|
||
mode);
|
||
else if (CONST_INT_P (false_rtx)
|
||
&& INTVAL (false_rtx) == - STORE_FLAG_VALUE
|
||
&& true_rtx == const0_rtx
|
||
&& ((reversed = reversed_comparison_code_parts
|
||
(cond_code, cond, cop1, NULL))
|
||
!= UNKNOWN))
|
||
x = simplify_gen_unary (NEG, mode,
|
||
simplify_gen_relational (reversed,
|
||
mode, VOIDmode,
|
||
cond, cop1),
|
||
mode);
|
||
|
||
code = GET_CODE (x);
|
||
op0_mode = VOIDmode;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* First see if we can apply the inverse distributive law. */
|
||
if (code == PLUS || code == MINUS
|
||
|| code == AND || code == IOR || code == XOR)
|
||
{
|
||
x = apply_distributive_law (x);
|
||
code = GET_CODE (x);
|
||
op0_mode = VOIDmode;
|
||
}
|
||
|
||
/* If CODE is an associative operation not otherwise handled, see if we
|
||
can associate some operands. This can win if they are constants or
|
||
if they are logically related (i.e. (a & b) & a). */
|
||
if ((code == PLUS || code == MINUS || code == MULT || code == DIV
|
||
|| code == AND || code == IOR || code == XOR
|
||
|| code == SMAX || code == SMIN || code == UMAX || code == UMIN)
|
||
&& ((INTEGRAL_MODE_P (mode) && code != DIV)
|
||
|| (flag_associative_math && FLOAT_MODE_P (mode))))
|
||
{
|
||
if (GET_CODE (XEXP (x, 0)) == code)
|
||
{
|
||
rtx other = XEXP (XEXP (x, 0), 0);
|
||
rtx inner_op0 = XEXP (XEXP (x, 0), 1);
|
||
rtx inner_op1 = XEXP (x, 1);
|
||
rtx inner;
|
||
|
||
/* Make sure we pass the constant operand if any as the second
|
||
one if this is a commutative operation. */
|
||
if (CONSTANT_P (inner_op0) && COMMUTATIVE_ARITH_P (x))
|
||
std::swap (inner_op0, inner_op1);
|
||
inner = simplify_binary_operation (code == MINUS ? PLUS
|
||
: code == DIV ? MULT
|
||
: code,
|
||
mode, inner_op0, inner_op1);
|
||
|
||
/* For commutative operations, try the other pair if that one
|
||
didn't simplify. */
|
||
if (inner == 0 && COMMUTATIVE_ARITH_P (x))
|
||
{
|
||
other = XEXP (XEXP (x, 0), 1);
|
||
inner = simplify_binary_operation (code, mode,
|
||
XEXP (XEXP (x, 0), 0),
|
||
XEXP (x, 1));
|
||
}
|
||
|
||
if (inner)
|
||
return simplify_gen_binary (code, mode, other, inner);
|
||
}
|
||
}
|
||
|
||
/* A little bit of algebraic simplification here. */
|
||
switch (code)
|
||
{
|
||
case MEM:
|
||
/* Ensure that our address has any ASHIFTs converted to MULT in case
|
||
address-recognizing predicates are called later. */
|
||
temp = make_compound_operation (XEXP (x, 0), MEM);
|
||
SUBST (XEXP (x, 0), temp);
|
||
break;
|
||
|
||
case SUBREG:
|
||
if (op0_mode == VOIDmode)
|
||
op0_mode = GET_MODE (SUBREG_REG (x));
|
||
|
||
/* See if this can be moved to simplify_subreg. */
|
||
if (CONSTANT_P (SUBREG_REG (x))
|
||
&& known_eq (subreg_lowpart_offset (mode, op0_mode), SUBREG_BYTE (x))
|
||
/* Don't call gen_lowpart if the inner mode
|
||
is VOIDmode and we cannot simplify it, as SUBREG without
|
||
inner mode is invalid. */
|
||
&& (GET_MODE (SUBREG_REG (x)) != VOIDmode
|
||
|| gen_lowpart_common (mode, SUBREG_REG (x))))
|
||
return gen_lowpart (mode, SUBREG_REG (x));
|
||
|
||
if (GET_MODE_CLASS (GET_MODE (SUBREG_REG (x))) == MODE_CC)
|
||
break;
|
||
{
|
||
rtx temp;
|
||
temp = simplify_subreg (mode, SUBREG_REG (x), op0_mode,
|
||
SUBREG_BYTE (x));
|
||
if (temp)
|
||
return temp;
|
||
|
||
/* If op is known to have all lower bits zero, the result is zero. */
|
||
scalar_int_mode int_mode, int_op0_mode;
|
||
if (!in_dest
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& is_a <scalar_int_mode> (op0_mode, &int_op0_mode)
|
||
&& (GET_MODE_PRECISION (int_mode)
|
||
< GET_MODE_PRECISION (int_op0_mode))
|
||
&& known_eq (subreg_lowpart_offset (int_mode, int_op0_mode),
|
||
SUBREG_BYTE (x))
|
||
&& HWI_COMPUTABLE_MODE_P (int_op0_mode)
|
||
&& ((nonzero_bits (SUBREG_REG (x), int_op0_mode)
|
||
& GET_MODE_MASK (int_mode)) == 0)
|
||
&& !side_effects_p (SUBREG_REG (x)))
|
||
return CONST0_RTX (int_mode);
|
||
}
|
||
|
||
/* Don't change the mode of the MEM if that would change the meaning
|
||
of the address. */
|
||
if (MEM_P (SUBREG_REG (x))
|
||
&& (MEM_VOLATILE_P (SUBREG_REG (x))
|
||
|| mode_dependent_address_p (XEXP (SUBREG_REG (x), 0),
|
||
MEM_ADDR_SPACE (SUBREG_REG (x)))))
|
||
return gen_rtx_CLOBBER (mode, const0_rtx);
|
||
|
||
/* Note that we cannot do any narrowing for non-constants since
|
||
we might have been counting on using the fact that some bits were
|
||
zero. We now do this in the SET. */
|
||
|
||
break;
|
||
|
||
case NEG:
|
||
temp = expand_compound_operation (XEXP (x, 0));
|
||
|
||
/* For C equal to the width of MODE minus 1, (neg (ashiftrt X C)) can be
|
||
replaced by (lshiftrt X C). This will convert
|
||
(neg (sign_extract X 1 Y)) to (zero_extract X 1 Y). */
|
||
|
||
if (GET_CODE (temp) == ASHIFTRT
|
||
&& CONST_INT_P (XEXP (temp, 1))
|
||
&& INTVAL (XEXP (temp, 1)) == GET_MODE_UNIT_PRECISION (mode) - 1)
|
||
return simplify_shift_const (NULL_RTX, LSHIFTRT, mode, XEXP (temp, 0),
|
||
INTVAL (XEXP (temp, 1)));
|
||
|
||
/* If X has only a single bit that might be nonzero, say, bit I, convert
|
||
(neg X) to (ashiftrt (ashift X C-I) C-I) where C is the bitsize of
|
||
MODE minus 1. This will convert (neg (zero_extract X 1 Y)) to
|
||
(sign_extract X 1 Y). But only do this if TEMP isn't a register
|
||
or a SUBREG of one since we'd be making the expression more
|
||
complex if it was just a register. */
|
||
|
||
if (!REG_P (temp)
|
||
&& ! (GET_CODE (temp) == SUBREG
|
||
&& REG_P (SUBREG_REG (temp)))
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& (i = exact_log2 (nonzero_bits (temp, int_mode))) >= 0)
|
||
{
|
||
rtx temp1 = simplify_shift_const
|
||
(NULL_RTX, ASHIFTRT, int_mode,
|
||
simplify_shift_const (NULL_RTX, ASHIFT, int_mode, temp,
|
||
GET_MODE_PRECISION (int_mode) - 1 - i),
|
||
GET_MODE_PRECISION (int_mode) - 1 - i);
|
||
|
||
/* If all we did was surround TEMP with the two shifts, we
|
||
haven't improved anything, so don't use it. Otherwise,
|
||
we are better off with TEMP1. */
|
||
if (GET_CODE (temp1) != ASHIFTRT
|
||
|| GET_CODE (XEXP (temp1, 0)) != ASHIFT
|
||
|| XEXP (XEXP (temp1, 0), 0) != temp)
|
||
return temp1;
|
||
}
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
/* We can't handle truncation to a partial integer mode here
|
||
because we don't know the real bitsize of the partial
|
||
integer mode. */
|
||
if (GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
|
||
break;
|
||
|
||
if (HWI_COMPUTABLE_MODE_P (mode))
|
||
SUBST (XEXP (x, 0),
|
||
force_to_mode (XEXP (x, 0), GET_MODE (XEXP (x, 0)),
|
||
GET_MODE_MASK (mode), 0));
|
||
|
||
/* We can truncate a constant value and return it. */
|
||
{
|
||
poly_int64 c;
|
||
if (poly_int_rtx_p (XEXP (x, 0), &c))
|
||
return gen_int_mode (c, mode);
|
||
}
|
||
|
||
/* Similarly to what we do in simplify-rtx.c, a truncate of a register
|
||
whose value is a comparison can be replaced with a subreg if
|
||
STORE_FLAG_VALUE permits. */
|
||
if (HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (STORE_FLAG_VALUE & ~GET_MODE_MASK (mode)) == 0
|
||
&& (temp = get_last_value (XEXP (x, 0)))
|
||
&& COMPARISON_P (temp))
|
||
return gen_lowpart (mode, XEXP (x, 0));
|
||
break;
|
||
|
||
case CONST:
|
||
/* (const (const X)) can become (const X). Do it this way rather than
|
||
returning the inner CONST since CONST can be shared with a
|
||
REG_EQUAL note. */
|
||
if (GET_CODE (XEXP (x, 0)) == CONST)
|
||
SUBST (XEXP (x, 0), XEXP (XEXP (x, 0), 0));
|
||
break;
|
||
|
||
case LO_SUM:
|
||
/* Convert (lo_sum (high FOO) FOO) to FOO. This is necessary so we
|
||
can add in an offset. find_split_point will split this address up
|
||
again if it doesn't match. */
|
||
if (HAVE_lo_sum && GET_CODE (XEXP (x, 0)) == HIGH
|
||
&& rtx_equal_p (XEXP (XEXP (x, 0), 0), XEXP (x, 1)))
|
||
return XEXP (x, 1);
|
||
break;
|
||
|
||
case PLUS:
|
||
/* (plus (xor (and <foo> (const_int pow2 - 1)) <c>) <-c>)
|
||
when c is (const_int (pow2 + 1) / 2) is a sign extension of a
|
||
bit-field and can be replaced by either a sign_extend or a
|
||
sign_extract. The `and' may be a zero_extend and the two
|
||
<c>, -<c> constants may be reversed. */
|
||
if (GET_CODE (XEXP (x, 0)) == XOR
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
|
||
&& INTVAL (XEXP (x, 1)) == -INTVAL (XEXP (XEXP (x, 0), 1))
|
||
&& ((i = exact_log2 (UINTVAL (XEXP (XEXP (x, 0), 1)))) >= 0
|
||
|| (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0)
|
||
&& HWI_COMPUTABLE_MODE_P (int_mode)
|
||
&& ((GET_CODE (XEXP (XEXP (x, 0), 0)) == AND
|
||
&& CONST_INT_P (XEXP (XEXP (XEXP (x, 0), 0), 1))
|
||
&& (UINTVAL (XEXP (XEXP (XEXP (x, 0), 0), 1))
|
||
== (HOST_WIDE_INT_1U << (i + 1)) - 1))
|
||
|| (GET_CODE (XEXP (XEXP (x, 0), 0)) == ZERO_EXTEND
|
||
&& known_eq ((GET_MODE_PRECISION
|
||
(GET_MODE (XEXP (XEXP (XEXP (x, 0), 0), 0)))),
|
||
(unsigned int) i + 1))))
|
||
return simplify_shift_const
|
||
(NULL_RTX, ASHIFTRT, int_mode,
|
||
simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
|
||
XEXP (XEXP (XEXP (x, 0), 0), 0),
|
||
GET_MODE_PRECISION (int_mode) - (i + 1)),
|
||
GET_MODE_PRECISION (int_mode) - (i + 1));
|
||
|
||
/* If only the low-order bit of X is possibly nonzero, (plus x -1)
|
||
can become (ashiftrt (ashift (xor x 1) C) C) where C is
|
||
the bitsize of the mode - 1. This allows simplification of
|
||
"a = (b & 8) == 0;" */
|
||
if (XEXP (x, 1) == constm1_rtx
|
||
&& !REG_P (XEXP (x, 0))
|
||
&& ! (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& REG_P (SUBREG_REG (XEXP (x, 0))))
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& nonzero_bits (XEXP (x, 0), int_mode) == 1)
|
||
return simplify_shift_const
|
||
(NULL_RTX, ASHIFTRT, int_mode,
|
||
simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
|
||
gen_rtx_XOR (int_mode, XEXP (x, 0),
|
||
const1_rtx),
|
||
GET_MODE_PRECISION (int_mode) - 1),
|
||
GET_MODE_PRECISION (int_mode) - 1);
|
||
|
||
/* If we are adding two things that have no bits in common, convert
|
||
the addition into an IOR. This will often be further simplified,
|
||
for example in cases like ((a & 1) + (a & 2)), which can
|
||
become a & 3. */
|
||
|
||
if (HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (nonzero_bits (XEXP (x, 0), mode)
|
||
& nonzero_bits (XEXP (x, 1), mode)) == 0)
|
||
{
|
||
/* Try to simplify the expression further. */
|
||
rtx tor = simplify_gen_binary (IOR, mode, XEXP (x, 0), XEXP (x, 1));
|
||
temp = combine_simplify_rtx (tor, VOIDmode, in_dest, 0);
|
||
|
||
/* If we could, great. If not, do not go ahead with the IOR
|
||
replacement, since PLUS appears in many special purpose
|
||
address arithmetic instructions. */
|
||
if (GET_CODE (temp) != CLOBBER
|
||
&& (GET_CODE (temp) != IOR
|
||
|| ((XEXP (temp, 0) != XEXP (x, 0)
|
||
|| XEXP (temp, 1) != XEXP (x, 1))
|
||
&& (XEXP (temp, 0) != XEXP (x, 1)
|
||
|| XEXP (temp, 1) != XEXP (x, 0)))))
|
||
return temp;
|
||
}
|
||
|
||
/* Canonicalize x + x into x << 1. */
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& rtx_equal_p (XEXP (x, 0), XEXP (x, 1))
|
||
&& !side_effects_p (XEXP (x, 0)))
|
||
return simplify_gen_binary (ASHIFT, mode, XEXP (x, 0), const1_rtx);
|
||
|
||
break;
|
||
|
||
case MINUS:
|
||
/* (minus <foo> (and <foo> (const_int -pow2))) becomes
|
||
(and <foo> (const_int pow2-1)) */
|
||
if (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_CODE (XEXP (x, 1)) == AND
|
||
&& CONST_INT_P (XEXP (XEXP (x, 1), 1))
|
||
&& pow2p_hwi (-UINTVAL (XEXP (XEXP (x, 1), 1)))
|
||
&& rtx_equal_p (XEXP (XEXP (x, 1), 0), XEXP (x, 0)))
|
||
return simplify_and_const_int (NULL_RTX, int_mode, XEXP (x, 0),
|
||
-INTVAL (XEXP (XEXP (x, 1), 1)) - 1);
|
||
break;
|
||
|
||
case MULT:
|
||
/* If we have (mult (plus A B) C), apply the distributive law and then
|
||
the inverse distributive law to see if things simplify. This
|
||
occurs mostly in addresses, often when unrolling loops. */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == PLUS)
|
||
{
|
||
rtx result = distribute_and_simplify_rtx (x, 0);
|
||
if (result)
|
||
return result;
|
||
}
|
||
|
||
/* Try simplify a*(b/c) as (a*b)/c. */
|
||
if (FLOAT_MODE_P (mode) && flag_associative_math
|
||
&& GET_CODE (XEXP (x, 0)) == DIV)
|
||
{
|
||
rtx tem = simplify_binary_operation (MULT, mode,
|
||
XEXP (XEXP (x, 0), 0),
|
||
XEXP (x, 1));
|
||
if (tem)
|
||
return simplify_gen_binary (DIV, mode, tem, XEXP (XEXP (x, 0), 1));
|
||
}
|
||
break;
|
||
|
||
case UDIV:
|
||
/* If this is a divide by a power of two, treat it as a shift if
|
||
its first operand is a shift. */
|
||
if (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
|
||
&& (GET_CODE (XEXP (x, 0)) == ASHIFT
|
||
|| GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
|| GET_CODE (XEXP (x, 0)) == ASHIFTRT
|
||
|| GET_CODE (XEXP (x, 0)) == ROTATE
|
||
|| GET_CODE (XEXP (x, 0)) == ROTATERT))
|
||
return simplify_shift_const (NULL_RTX, LSHIFTRT, int_mode,
|
||
XEXP (x, 0), i);
|
||
break;
|
||
|
||
case EQ: case NE:
|
||
case GT: case GTU: case GE: case GEU:
|
||
case LT: case LTU: case LE: case LEU:
|
||
case UNEQ: case LTGT:
|
||
case UNGT: case UNGE:
|
||
case UNLT: case UNLE:
|
||
case UNORDERED: case ORDERED:
|
||
/* If the first operand is a condition code, we can't do anything
|
||
with it. */
|
||
if (GET_CODE (XEXP (x, 0)) == COMPARE
|
||
|| (GET_MODE_CLASS (GET_MODE (XEXP (x, 0))) != MODE_CC
|
||
&& ! CC0_P (XEXP (x, 0))))
|
||
{
|
||
rtx op0 = XEXP (x, 0);
|
||
rtx op1 = XEXP (x, 1);
|
||
enum rtx_code new_code;
|
||
|
||
if (GET_CODE (op0) == COMPARE)
|
||
op1 = XEXP (op0, 1), op0 = XEXP (op0, 0);
|
||
|
||
/* Simplify our comparison, if possible. */
|
||
new_code = simplify_comparison (code, &op0, &op1);
|
||
|
||
/* If STORE_FLAG_VALUE is 1, we can convert (ne x 0) to simply X
|
||
if only the low-order bit is possibly nonzero in X (such as when
|
||
X is a ZERO_EXTRACT of one bit). Similarly, we can convert EQ to
|
||
(xor X 1) or (minus 1 X); we use the former. Finally, if X is
|
||
known to be either 0 or -1, NE becomes a NEG and EQ becomes
|
||
(plus X 1).
|
||
|
||
Remove any ZERO_EXTRACT we made when thinking this was a
|
||
comparison. It may now be simpler to use, e.g., an AND. If a
|
||
ZERO_EXTRACT is indeed appropriate, it will be placed back by
|
||
the call to make_compound_operation in the SET case.
|
||
|
||
Don't apply these optimizations if the caller would
|
||
prefer a comparison rather than a value.
|
||
E.g., for the condition in an IF_THEN_ELSE most targets need
|
||
an explicit comparison. */
|
||
|
||
if (in_cond)
|
||
;
|
||
|
||
else if (STORE_FLAG_VALUE == 1
|
||
&& new_code == NE
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& nonzero_bits (op0, int_mode) == 1)
|
||
return gen_lowpart (int_mode,
|
||
expand_compound_operation (op0));
|
||
|
||
else if (STORE_FLAG_VALUE == 1
|
||
&& new_code == NE
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& (num_sign_bit_copies (op0, int_mode)
|
||
== GET_MODE_PRECISION (int_mode)))
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return simplify_gen_unary (NEG, int_mode,
|
||
gen_lowpart (int_mode, op0),
|
||
int_mode);
|
||
}
|
||
|
||
else if (STORE_FLAG_VALUE == 1
|
||
&& new_code == EQ
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& nonzero_bits (op0, int_mode) == 1)
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return simplify_gen_binary (XOR, int_mode,
|
||
gen_lowpart (int_mode, op0),
|
||
const1_rtx);
|
||
}
|
||
|
||
else if (STORE_FLAG_VALUE == 1
|
||
&& new_code == EQ
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& (num_sign_bit_copies (op0, int_mode)
|
||
== GET_MODE_PRECISION (int_mode)))
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return plus_constant (int_mode, gen_lowpart (int_mode, op0), 1);
|
||
}
|
||
|
||
/* If STORE_FLAG_VALUE is -1, we have cases similar to
|
||
those above. */
|
||
if (in_cond)
|
||
;
|
||
|
||
else if (STORE_FLAG_VALUE == -1
|
||
&& new_code == NE
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& (num_sign_bit_copies (op0, int_mode)
|
||
== GET_MODE_PRECISION (int_mode)))
|
||
return gen_lowpart (int_mode, expand_compound_operation (op0));
|
||
|
||
else if (STORE_FLAG_VALUE == -1
|
||
&& new_code == NE
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& nonzero_bits (op0, int_mode) == 1)
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return simplify_gen_unary (NEG, int_mode,
|
||
gen_lowpart (int_mode, op0),
|
||
int_mode);
|
||
}
|
||
|
||
else if (STORE_FLAG_VALUE == -1
|
||
&& new_code == EQ
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& (num_sign_bit_copies (op0, int_mode)
|
||
== GET_MODE_PRECISION (int_mode)))
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return simplify_gen_unary (NOT, int_mode,
|
||
gen_lowpart (int_mode, op0),
|
||
int_mode);
|
||
}
|
||
|
||
/* If X is 0/1, (eq X 0) is X-1. */
|
||
else if (STORE_FLAG_VALUE == -1
|
||
&& new_code == EQ
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& nonzero_bits (op0, int_mode) == 1)
|
||
{
|
||
op0 = expand_compound_operation (op0);
|
||
return plus_constant (int_mode, gen_lowpart (int_mode, op0), -1);
|
||
}
|
||
|
||
/* If STORE_FLAG_VALUE says to just test the sign bit and X has just
|
||
one bit that might be nonzero, we can convert (ne x 0) to
|
||
(ashift x c) where C puts the bit in the sign bit. Remove any
|
||
AND with STORE_FLAG_VALUE when we are done, since we are only
|
||
going to test the sign bit. */
|
||
if (new_code == NE
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& HWI_COMPUTABLE_MODE_P (int_mode)
|
||
&& val_signbit_p (int_mode, STORE_FLAG_VALUE)
|
||
&& op1 == const0_rtx
|
||
&& int_mode == GET_MODE (op0)
|
||
&& (i = exact_log2 (nonzero_bits (op0, int_mode))) >= 0)
|
||
{
|
||
x = simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
|
||
expand_compound_operation (op0),
|
||
GET_MODE_PRECISION (int_mode) - 1 - i);
|
||
if (GET_CODE (x) == AND && XEXP (x, 1) == const_true_rtx)
|
||
return XEXP (x, 0);
|
||
else
|
||
return x;
|
||
}
|
||
|
||
/* If the code changed, return a whole new comparison.
|
||
We also need to avoid using SUBST in cases where
|
||
simplify_comparison has widened a comparison with a CONST_INT,
|
||
since in that case the wider CONST_INT may fail the sanity
|
||
checks in do_SUBST. */
|
||
if (new_code != code
|
||
|| (CONST_INT_P (op1)
|
||
&& GET_MODE (op0) != GET_MODE (XEXP (x, 0))
|
||
&& GET_MODE (op0) != GET_MODE (XEXP (x, 1))))
|
||
return gen_rtx_fmt_ee (new_code, mode, op0, op1);
|
||
|
||
/* Otherwise, keep this operation, but maybe change its operands.
|
||
This also converts (ne (compare FOO BAR) 0) to (ne FOO BAR). */
|
||
SUBST (XEXP (x, 0), op0);
|
||
SUBST (XEXP (x, 1), op1);
|
||
}
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
return simplify_if_then_else (x);
|
||
|
||
case ZERO_EXTRACT:
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTEND:
|
||
/* If we are processing SET_DEST, we are done. */
|
||
if (in_dest)
|
||
return x;
|
||
|
||
return expand_compound_operation (x);
|
||
|
||
case SET:
|
||
return simplify_set (x);
|
||
|
||
case AND:
|
||
case IOR:
|
||
return simplify_logical (x);
|
||
|
||
case ASHIFT:
|
||
case LSHIFTRT:
|
||
case ASHIFTRT:
|
||
case ROTATE:
|
||
case ROTATERT:
|
||
/* If this is a shift by a constant amount, simplify it. */
|
||
if (CONST_INT_P (XEXP (x, 1)))
|
||
return simplify_shift_const (x, code, mode, XEXP (x, 0),
|
||
INTVAL (XEXP (x, 1)));
|
||
|
||
else if (SHIFT_COUNT_TRUNCATED && !REG_P (XEXP (x, 1)))
|
||
SUBST (XEXP (x, 1),
|
||
force_to_mode (XEXP (x, 1), GET_MODE (XEXP (x, 1)),
|
||
(HOST_WIDE_INT_1U
|
||
<< exact_log2 (GET_MODE_UNIT_BITSIZE
|
||
(GET_MODE (x))))
|
||
- 1,
|
||
0));
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Simplify X, an IF_THEN_ELSE expression. Return the new expression. */
|
||
|
||
static rtx
|
||
simplify_if_then_else (rtx x)
|
||
{
|
||
machine_mode mode = GET_MODE (x);
|
||
rtx cond = XEXP (x, 0);
|
||
rtx true_rtx = XEXP (x, 1);
|
||
rtx false_rtx = XEXP (x, 2);
|
||
enum rtx_code true_code = GET_CODE (cond);
|
||
int comparison_p = COMPARISON_P (cond);
|
||
rtx temp;
|
||
int i;
|
||
enum rtx_code false_code;
|
||
rtx reversed;
|
||
scalar_int_mode int_mode, inner_mode;
|
||
|
||
/* Simplify storing of the truth value. */
|
||
if (comparison_p && true_rtx == const_true_rtx && false_rtx == const0_rtx)
|
||
return simplify_gen_relational (true_code, mode, VOIDmode,
|
||
XEXP (cond, 0), XEXP (cond, 1));
|
||
|
||
/* Also when the truth value has to be reversed. */
|
||
if (comparison_p
|
||
&& true_rtx == const0_rtx && false_rtx == const_true_rtx
|
||
&& (reversed = reversed_comparison (cond, mode)))
|
||
return reversed;
|
||
|
||
/* Sometimes we can simplify the arm of an IF_THEN_ELSE if a register used
|
||
in it is being compared against certain values. Get the true and false
|
||
comparisons and see if that says anything about the value of each arm. */
|
||
|
||
if (comparison_p
|
||
&& ((false_code = reversed_comparison_code (cond, NULL))
|
||
!= UNKNOWN)
|
||
&& REG_P (XEXP (cond, 0)))
|
||
{
|
||
HOST_WIDE_INT nzb;
|
||
rtx from = XEXP (cond, 0);
|
||
rtx true_val = XEXP (cond, 1);
|
||
rtx false_val = true_val;
|
||
int swapped = 0;
|
||
|
||
/* If FALSE_CODE is EQ, swap the codes and arms. */
|
||
|
||
if (false_code == EQ)
|
||
{
|
||
swapped = 1, true_code = EQ, false_code = NE;
|
||
std::swap (true_rtx, false_rtx);
|
||
}
|
||
|
||
scalar_int_mode from_mode;
|
||
if (is_a <scalar_int_mode> (GET_MODE (from), &from_mode))
|
||
{
|
||
/* If we are comparing against zero and the expression being
|
||
tested has only a single bit that might be nonzero, that is
|
||
its value when it is not equal to zero. Similarly if it is
|
||
known to be -1 or 0. */
|
||
if (true_code == EQ
|
||
&& true_val == const0_rtx
|
||
&& pow2p_hwi (nzb = nonzero_bits (from, from_mode)))
|
||
{
|
||
false_code = EQ;
|
||
false_val = gen_int_mode (nzb, from_mode);
|
||
}
|
||
else if (true_code == EQ
|
||
&& true_val == const0_rtx
|
||
&& (num_sign_bit_copies (from, from_mode)
|
||
== GET_MODE_PRECISION (from_mode)))
|
||
{
|
||
false_code = EQ;
|
||
false_val = constm1_rtx;
|
||
}
|
||
}
|
||
|
||
/* Now simplify an arm if we know the value of the register in the
|
||
branch and it is used in the arm. Be careful due to the potential
|
||
of locally-shared RTL. */
|
||
|
||
if (reg_mentioned_p (from, true_rtx))
|
||
true_rtx = subst (known_cond (copy_rtx (true_rtx), true_code,
|
||
from, true_val),
|
||
pc_rtx, pc_rtx, 0, 0, 0);
|
||
if (reg_mentioned_p (from, false_rtx))
|
||
false_rtx = subst (known_cond (copy_rtx (false_rtx), false_code,
|
||
from, false_val),
|
||
pc_rtx, pc_rtx, 0, 0, 0);
|
||
|
||
SUBST (XEXP (x, 1), swapped ? false_rtx : true_rtx);
|
||
SUBST (XEXP (x, 2), swapped ? true_rtx : false_rtx);
|
||
|
||
true_rtx = XEXP (x, 1);
|
||
false_rtx = XEXP (x, 2);
|
||
true_code = GET_CODE (cond);
|
||
}
|
||
|
||
/* If we have (if_then_else FOO (pc) (label_ref BAR)) and FOO can be
|
||
reversed, do so to avoid needing two sets of patterns for
|
||
subtract-and-branch insns. Similarly if we have a constant in the true
|
||
arm, the false arm is the same as the first operand of the comparison, or
|
||
the false arm is more complicated than the true arm. */
|
||
|
||
if (comparison_p
|
||
&& reversed_comparison_code (cond, NULL) != UNKNOWN
|
||
&& (true_rtx == pc_rtx
|
||
|| (CONSTANT_P (true_rtx)
|
||
&& !CONST_INT_P (false_rtx) && false_rtx != pc_rtx)
|
||
|| true_rtx == const0_rtx
|
||
|| (OBJECT_P (true_rtx) && !OBJECT_P (false_rtx))
|
||
|| (GET_CODE (true_rtx) == SUBREG && OBJECT_P (SUBREG_REG (true_rtx))
|
||
&& !OBJECT_P (false_rtx))
|
||
|| reg_mentioned_p (true_rtx, false_rtx)
|
||
|| rtx_equal_p (false_rtx, XEXP (cond, 0))))
|
||
{
|
||
SUBST (XEXP (x, 0), reversed_comparison (cond, GET_MODE (cond)));
|
||
SUBST (XEXP (x, 1), false_rtx);
|
||
SUBST (XEXP (x, 2), true_rtx);
|
||
|
||
std::swap (true_rtx, false_rtx);
|
||
cond = XEXP (x, 0);
|
||
|
||
/* It is possible that the conditional has been simplified out. */
|
||
true_code = GET_CODE (cond);
|
||
comparison_p = COMPARISON_P (cond);
|
||
}
|
||
|
||
/* If the two arms are identical, we don't need the comparison. */
|
||
|
||
if (rtx_equal_p (true_rtx, false_rtx) && ! side_effects_p (cond))
|
||
return true_rtx;
|
||
|
||
/* Convert a == b ? b : a to "a". */
|
||
if (true_code == EQ && ! side_effects_p (cond)
|
||
&& !HONOR_NANS (mode)
|
||
&& rtx_equal_p (XEXP (cond, 0), false_rtx)
|
||
&& rtx_equal_p (XEXP (cond, 1), true_rtx))
|
||
return false_rtx;
|
||
else if (true_code == NE && ! side_effects_p (cond)
|
||
&& !HONOR_NANS (mode)
|
||
&& rtx_equal_p (XEXP (cond, 0), true_rtx)
|
||
&& rtx_equal_p (XEXP (cond, 1), false_rtx))
|
||
return true_rtx;
|
||
|
||
/* Look for cases where we have (abs x) or (neg (abs X)). */
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& comparison_p
|
||
&& XEXP (cond, 1) == const0_rtx
|
||
&& GET_CODE (false_rtx) == NEG
|
||
&& rtx_equal_p (true_rtx, XEXP (false_rtx, 0))
|
||
&& rtx_equal_p (true_rtx, XEXP (cond, 0))
|
||
&& ! side_effects_p (true_rtx))
|
||
switch (true_code)
|
||
{
|
||
case GT:
|
||
case GE:
|
||
return simplify_gen_unary (ABS, mode, true_rtx, mode);
|
||
case LT:
|
||
case LE:
|
||
return
|
||
simplify_gen_unary (NEG, mode,
|
||
simplify_gen_unary (ABS, mode, true_rtx, mode),
|
||
mode);
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Look for MIN or MAX. */
|
||
|
||
if ((! FLOAT_MODE_P (mode)
|
||
|| (flag_unsafe_math_optimizations
|
||
&& !HONOR_NANS (mode)
|
||
&& !HONOR_SIGNED_ZEROS (mode)))
|
||
&& comparison_p
|
||
&& rtx_equal_p (XEXP (cond, 0), true_rtx)
|
||
&& rtx_equal_p (XEXP (cond, 1), false_rtx)
|
||
&& ! side_effects_p (cond))
|
||
switch (true_code)
|
||
{
|
||
case GE:
|
||
case GT:
|
||
return simplify_gen_binary (SMAX, mode, true_rtx, false_rtx);
|
||
case LE:
|
||
case LT:
|
||
return simplify_gen_binary (SMIN, mode, true_rtx, false_rtx);
|
||
case GEU:
|
||
case GTU:
|
||
return simplify_gen_binary (UMAX, mode, true_rtx, false_rtx);
|
||
case LEU:
|
||
case LTU:
|
||
return simplify_gen_binary (UMIN, mode, true_rtx, false_rtx);
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* If we have (if_then_else COND (OP Z C1) Z) and OP is an identity when its
|
||
second operand is zero, this can be done as (OP Z (mult COND C2)) where
|
||
C2 = C1 * STORE_FLAG_VALUE. Similarly if OP has an outer ZERO_EXTEND or
|
||
SIGN_EXTEND as long as Z is already extended (so we don't destroy it).
|
||
We can do this kind of thing in some cases when STORE_FLAG_VALUE is
|
||
neither 1 or -1, but it isn't worth checking for. */
|
||
|
||
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
&& comparison_p
|
||
&& is_int_mode (mode, &int_mode)
|
||
&& ! side_effects_p (x))
|
||
{
|
||
rtx t = make_compound_operation (true_rtx, SET);
|
||
rtx f = make_compound_operation (false_rtx, SET);
|
||
rtx cond_op0 = XEXP (cond, 0);
|
||
rtx cond_op1 = XEXP (cond, 1);
|
||
enum rtx_code op = UNKNOWN, extend_op = UNKNOWN;
|
||
scalar_int_mode m = int_mode;
|
||
rtx z = 0, c1 = NULL_RTX;
|
||
|
||
if ((GET_CODE (t) == PLUS || GET_CODE (t) == MINUS
|
||
|| GET_CODE (t) == IOR || GET_CODE (t) == XOR
|
||
|| GET_CODE (t) == ASHIFT
|
||
|| GET_CODE (t) == LSHIFTRT || GET_CODE (t) == ASHIFTRT)
|
||
&& rtx_equal_p (XEXP (t, 0), f))
|
||
c1 = XEXP (t, 1), op = GET_CODE (t), z = f;
|
||
|
||
/* If an identity-zero op is commutative, check whether there
|
||
would be a match if we swapped the operands. */
|
||
else if ((GET_CODE (t) == PLUS || GET_CODE (t) == IOR
|
||
|| GET_CODE (t) == XOR)
|
||
&& rtx_equal_p (XEXP (t, 1), f))
|
||
c1 = XEXP (t, 0), op = GET_CODE (t), z = f;
|
||
else if (GET_CODE (t) == SIGN_EXTEND
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == MINUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|
||
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
|
||
&& (num_sign_bit_copies (f, GET_MODE (f))
|
||
> (unsigned int)
|
||
(GET_MODE_PRECISION (int_mode)
|
||
- GET_MODE_PRECISION (inner_mode))))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = SIGN_EXTEND;
|
||
m = inner_mode;
|
||
}
|
||
else if (GET_CODE (t) == SIGN_EXTEND
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
|
||
&& (num_sign_bit_copies (f, GET_MODE (f))
|
||
> (unsigned int)
|
||
(GET_MODE_PRECISION (int_mode)
|
||
- GET_MODE_PRECISION (inner_mode))))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = SIGN_EXTEND;
|
||
m = inner_mode;
|
||
}
|
||
else if (GET_CODE (t) == ZERO_EXTEND
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == MINUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFT
|
||
|| GET_CODE (XEXP (t, 0)) == LSHIFTRT
|
||
|| GET_CODE (XEXP (t, 0)) == ASHIFTRT)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 0)) == SUBREG
|
||
&& HWI_COMPUTABLE_MODE_P (int_mode)
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 0))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 0)), f)
|
||
&& ((nonzero_bits (f, GET_MODE (f))
|
||
& ~GET_MODE_MASK (inner_mode))
|
||
== 0))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 1); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = ZERO_EXTEND;
|
||
m = inner_mode;
|
||
}
|
||
else if (GET_CODE (t) == ZERO_EXTEND
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (t, 0)), &inner_mode)
|
||
&& (GET_CODE (XEXP (t, 0)) == PLUS
|
||
|| GET_CODE (XEXP (t, 0)) == IOR
|
||
|| GET_CODE (XEXP (t, 0)) == XOR)
|
||
&& GET_CODE (XEXP (XEXP (t, 0), 1)) == SUBREG
|
||
&& HWI_COMPUTABLE_MODE_P (int_mode)
|
||
&& subreg_lowpart_p (XEXP (XEXP (t, 0), 1))
|
||
&& rtx_equal_p (SUBREG_REG (XEXP (XEXP (t, 0), 1)), f)
|
||
&& ((nonzero_bits (f, GET_MODE (f))
|
||
& ~GET_MODE_MASK (inner_mode))
|
||
== 0))
|
||
{
|
||
c1 = XEXP (XEXP (t, 0), 0); z = f; op = GET_CODE (XEXP (t, 0));
|
||
extend_op = ZERO_EXTEND;
|
||
m = inner_mode;
|
||
}
|
||
|
||
if (z)
|
||
{
|
||
machine_mode cm = m;
|
||
if ((op == ASHIFT || op == LSHIFTRT || op == ASHIFTRT)
|
||
&& GET_MODE (c1) != VOIDmode)
|
||
cm = GET_MODE (c1);
|
||
temp = subst (simplify_gen_relational (true_code, cm, VOIDmode,
|
||
cond_op0, cond_op1),
|
||
pc_rtx, pc_rtx, 0, 0, 0);
|
||
temp = simplify_gen_binary (MULT, cm, temp,
|
||
simplify_gen_binary (MULT, cm, c1,
|
||
const_true_rtx));
|
||
temp = subst (temp, pc_rtx, pc_rtx, 0, 0, 0);
|
||
temp = simplify_gen_binary (op, m, gen_lowpart (m, z), temp);
|
||
|
||
if (extend_op != UNKNOWN)
|
||
temp = simplify_gen_unary (extend_op, int_mode, temp, m);
|
||
|
||
return temp;
|
||
}
|
||
}
|
||
|
||
/* If we have (if_then_else (ne A 0) C1 0) and either A is known to be 0 or
|
||
1 and C1 is a single bit or A is known to be 0 or -1 and C1 is the
|
||
negation of a single bit, we can convert this operation to a shift. We
|
||
can actually do this more generally, but it doesn't seem worth it. */
|
||
|
||
if (true_code == NE
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& XEXP (cond, 1) == const0_rtx
|
||
&& false_rtx == const0_rtx
|
||
&& CONST_INT_P (true_rtx)
|
||
&& ((nonzero_bits (XEXP (cond, 0), int_mode) == 1
|
||
&& (i = exact_log2 (UINTVAL (true_rtx))) >= 0)
|
||
|| ((num_sign_bit_copies (XEXP (cond, 0), int_mode)
|
||
== GET_MODE_PRECISION (int_mode))
|
||
&& (i = exact_log2 (-UINTVAL (true_rtx))) >= 0)))
|
||
return
|
||
simplify_shift_const (NULL_RTX, ASHIFT, int_mode,
|
||
gen_lowpart (int_mode, XEXP (cond, 0)), i);
|
||
|
||
/* (IF_THEN_ELSE (NE A 0) C1 0) is A or a zero-extend of A if the only
|
||
non-zero bit in A is C1. */
|
||
if (true_code == NE && XEXP (cond, 1) == const0_rtx
|
||
&& false_rtx == const0_rtx && CONST_INT_P (true_rtx)
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (cond, 0)), &inner_mode)
|
||
&& (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))
|
||
== nonzero_bits (XEXP (cond, 0), inner_mode)
|
||
&& (i = exact_log2 (UINTVAL (true_rtx) & GET_MODE_MASK (int_mode))) >= 0)
|
||
{
|
||
rtx val = XEXP (cond, 0);
|
||
if (inner_mode == int_mode)
|
||
return val;
|
||
else if (GET_MODE_PRECISION (inner_mode) < GET_MODE_PRECISION (int_mode))
|
||
return simplify_gen_unary (ZERO_EXTEND, int_mode, val, inner_mode);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Simplify X, a SET expression. Return the new expression. */
|
||
|
||
static rtx
|
||
simplify_set (rtx x)
|
||
{
|
||
rtx src = SET_SRC (x);
|
||
rtx dest = SET_DEST (x);
|
||
machine_mode mode
|
||
= GET_MODE (src) != VOIDmode ? GET_MODE (src) : GET_MODE (dest);
|
||
rtx_insn *other_insn;
|
||
rtx *cc_use;
|
||
scalar_int_mode int_mode;
|
||
|
||
/* (set (pc) (return)) gets written as (return). */
|
||
if (GET_CODE (dest) == PC && ANY_RETURN_P (src))
|
||
return src;
|
||
|
||
/* Now that we know for sure which bits of SRC we are using, see if we can
|
||
simplify the expression for the object knowing that we only need the
|
||
low-order bits. */
|
||
|
||
if (GET_MODE_CLASS (mode) == MODE_INT && HWI_COMPUTABLE_MODE_P (mode))
|
||
{
|
||
src = force_to_mode (src, mode, HOST_WIDE_INT_M1U, 0);
|
||
SUBST (SET_SRC (x), src);
|
||
}
|
||
|
||
/* If we are setting CC0 or if the source is a COMPARE, look for the use of
|
||
the comparison result and try to simplify it unless we already have used
|
||
undobuf.other_insn. */
|
||
if ((GET_MODE_CLASS (mode) == MODE_CC
|
||
|| GET_CODE (src) == COMPARE
|
||
|| CC0_P (dest))
|
||
&& (cc_use = find_single_use (dest, subst_insn, &other_insn)) != 0
|
||
&& (undobuf.other_insn == 0 || other_insn == undobuf.other_insn)
|
||
&& COMPARISON_P (*cc_use)
|
||
&& rtx_equal_p (XEXP (*cc_use, 0), dest))
|
||
{
|
||
enum rtx_code old_code = GET_CODE (*cc_use);
|
||
enum rtx_code new_code;
|
||
rtx op0, op1, tmp;
|
||
int other_changed = 0;
|
||
rtx inner_compare = NULL_RTX;
|
||
machine_mode compare_mode = GET_MODE (dest);
|
||
|
||
if (GET_CODE (src) == COMPARE)
|
||
{
|
||
op0 = XEXP (src, 0), op1 = XEXP (src, 1);
|
||
if (GET_CODE (op0) == COMPARE && op1 == const0_rtx)
|
||
{
|
||
inner_compare = op0;
|
||
op0 = XEXP (inner_compare, 0), op1 = XEXP (inner_compare, 1);
|
||
}
|
||
}
|
||
else
|
||
op0 = src, op1 = CONST0_RTX (GET_MODE (src));
|
||
|
||
tmp = simplify_relational_operation (old_code, compare_mode, VOIDmode,
|
||
op0, op1);
|
||
if (!tmp)
|
||
new_code = old_code;
|
||
else if (!CONSTANT_P (tmp))
|
||
{
|
||
new_code = GET_CODE (tmp);
|
||
op0 = XEXP (tmp, 0);
|
||
op1 = XEXP (tmp, 1);
|
||
}
|
||
else
|
||
{
|
||
rtx pat = PATTERN (other_insn);
|
||
undobuf.other_insn = other_insn;
|
||
SUBST (*cc_use, tmp);
|
||
|
||
/* Attempt to simplify CC user. */
|
||
if (GET_CODE (pat) == SET)
|
||
{
|
||
rtx new_rtx = simplify_rtx (SET_SRC (pat));
|
||
if (new_rtx != NULL_RTX)
|
||
SUBST (SET_SRC (pat), new_rtx);
|
||
}
|
||
|
||
/* Convert X into a no-op move. */
|
||
SUBST (SET_DEST (x), pc_rtx);
|
||
SUBST (SET_SRC (x), pc_rtx);
|
||
return x;
|
||
}
|
||
|
||
/* Simplify our comparison, if possible. */
|
||
new_code = simplify_comparison (new_code, &op0, &op1);
|
||
|
||
#ifdef SELECT_CC_MODE
|
||
/* If this machine has CC modes other than CCmode, check to see if we
|
||
need to use a different CC mode here. */
|
||
if (GET_MODE_CLASS (GET_MODE (op0)) == MODE_CC)
|
||
compare_mode = GET_MODE (op0);
|
||
else if (inner_compare
|
||
&& GET_MODE_CLASS (GET_MODE (inner_compare)) == MODE_CC
|
||
&& new_code == old_code
|
||
&& op0 == XEXP (inner_compare, 0)
|
||
&& op1 == XEXP (inner_compare, 1))
|
||
compare_mode = GET_MODE (inner_compare);
|
||
else
|
||
compare_mode = SELECT_CC_MODE (new_code, op0, op1);
|
||
|
||
/* If the mode changed, we have to change SET_DEST, the mode in the
|
||
compare, and the mode in the place SET_DEST is used. If SET_DEST is
|
||
a hard register, just build new versions with the proper mode. If it
|
||
is a pseudo, we lose unless it is only time we set the pseudo, in
|
||
which case we can safely change its mode. */
|
||
if (!HAVE_cc0 && compare_mode != GET_MODE (dest))
|
||
{
|
||
if (can_change_dest_mode (dest, 0, compare_mode))
|
||
{
|
||
unsigned int regno = REGNO (dest);
|
||
rtx new_dest;
|
||
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
new_dest = gen_rtx_REG (compare_mode, regno);
|
||
else
|
||
{
|
||
SUBST_MODE (regno_reg_rtx[regno], compare_mode);
|
||
new_dest = regno_reg_rtx[regno];
|
||
}
|
||
|
||
SUBST (SET_DEST (x), new_dest);
|
||
SUBST (XEXP (*cc_use, 0), new_dest);
|
||
other_changed = 1;
|
||
|
||
dest = new_dest;
|
||
}
|
||
}
|
||
#endif /* SELECT_CC_MODE */
|
||
|
||
/* If the code changed, we have to build a new comparison in
|
||
undobuf.other_insn. */
|
||
if (new_code != old_code)
|
||
{
|
||
int other_changed_previously = other_changed;
|
||
unsigned HOST_WIDE_INT mask;
|
||
rtx old_cc_use = *cc_use;
|
||
|
||
SUBST (*cc_use, gen_rtx_fmt_ee (new_code, GET_MODE (*cc_use),
|
||
dest, const0_rtx));
|
||
other_changed = 1;
|
||
|
||
/* If the only change we made was to change an EQ into an NE or
|
||
vice versa, OP0 has only one bit that might be nonzero, and OP1
|
||
is zero, check if changing the user of the condition code will
|
||
produce a valid insn. If it won't, we can keep the original code
|
||
in that insn by surrounding our operation with an XOR. */
|
||
|
||
if (((old_code == NE && new_code == EQ)
|
||
|| (old_code == EQ && new_code == NE))
|
||
&& ! other_changed_previously && op1 == const0_rtx
|
||
&& HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
|
||
&& pow2p_hwi (mask = nonzero_bits (op0, GET_MODE (op0))))
|
||
{
|
||
rtx pat = PATTERN (other_insn), note = 0;
|
||
|
||
if ((recog_for_combine (&pat, other_insn, ¬e) < 0
|
||
&& ! check_asm_operands (pat)))
|
||
{
|
||
*cc_use = old_cc_use;
|
||
other_changed = 0;
|
||
|
||
op0 = simplify_gen_binary (XOR, GET_MODE (op0), op0,
|
||
gen_int_mode (mask,
|
||
GET_MODE (op0)));
|
||
}
|
||
}
|
||
}
|
||
|
||
if (other_changed)
|
||
undobuf.other_insn = other_insn;
|
||
|
||
/* Don't generate a compare of a CC with 0, just use that CC. */
|
||
if (GET_MODE (op0) == compare_mode && op1 == const0_rtx)
|
||
{
|
||
SUBST (SET_SRC (x), op0);
|
||
src = SET_SRC (x);
|
||
}
|
||
/* Otherwise, if we didn't previously have the same COMPARE we
|
||
want, create it from scratch. */
|
||
else if (GET_CODE (src) != COMPARE || GET_MODE (src) != compare_mode
|
||
|| XEXP (src, 0) != op0 || XEXP (src, 1) != op1)
|
||
{
|
||
SUBST (SET_SRC (x), gen_rtx_COMPARE (compare_mode, op0, op1));
|
||
src = SET_SRC (x);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Get SET_SRC in a form where we have placed back any
|
||
compound expressions. Then do the checks below. */
|
||
src = make_compound_operation (src, SET);
|
||
SUBST (SET_SRC (x), src);
|
||
}
|
||
|
||
/* If we have (set x (subreg:m1 (op:m2 ...) 0)) with OP being some operation,
|
||
and X being a REG or (subreg (reg)), we may be able to convert this to
|
||
(set (subreg:m2 x) (op)).
|
||
|
||
We can always do this if M1 is narrower than M2 because that means that
|
||
we only care about the low bits of the result.
|
||
|
||
However, on machines without WORD_REGISTER_OPERATIONS defined, we cannot
|
||
perform a narrower operation than requested since the high-order bits will
|
||
be undefined. On machine where it is defined, this transformation is safe
|
||
as long as M1 and M2 have the same number of words. */
|
||
|
||
if (GET_CODE (src) == SUBREG && subreg_lowpart_p (src)
|
||
&& !OBJECT_P (SUBREG_REG (src))
|
||
&& (known_equal_after_align_up
|
||
(GET_MODE_SIZE (GET_MODE (src)),
|
||
GET_MODE_SIZE (GET_MODE (SUBREG_REG (src))),
|
||
UNITS_PER_WORD))
|
||
&& (WORD_REGISTER_OPERATIONS || !paradoxical_subreg_p (src))
|
||
&& ! (REG_P (dest) && REGNO (dest) < FIRST_PSEUDO_REGISTER
|
||
&& !REG_CAN_CHANGE_MODE_P (REGNO (dest),
|
||
GET_MODE (SUBREG_REG (src)),
|
||
GET_MODE (src)))
|
||
&& (REG_P (dest)
|
||
|| (GET_CODE (dest) == SUBREG
|
||
&& REG_P (SUBREG_REG (dest)))))
|
||
{
|
||
SUBST (SET_DEST (x),
|
||
gen_lowpart (GET_MODE (SUBREG_REG (src)),
|
||
dest));
|
||
SUBST (SET_SRC (x), SUBREG_REG (src));
|
||
|
||
src = SET_SRC (x), dest = SET_DEST (x);
|
||
}
|
||
|
||
/* If we have (set (cc0) (subreg ...)), we try to remove the subreg
|
||
in SRC. */
|
||
if (dest == cc0_rtx
|
||
&& partial_subreg_p (src)
|
||
&& subreg_lowpart_p (src))
|
||
{
|
||
rtx inner = SUBREG_REG (src);
|
||
machine_mode inner_mode = GET_MODE (inner);
|
||
|
||
/* Here we make sure that we don't have a sign bit on. */
|
||
if (val_signbit_known_clear_p (GET_MODE (src),
|
||
nonzero_bits (inner, inner_mode)))
|
||
{
|
||
SUBST (SET_SRC (x), inner);
|
||
src = SET_SRC (x);
|
||
}
|
||
}
|
||
|
||
/* If we have (set FOO (subreg:M (mem:N BAR) 0)) with M wider than N, this
|
||
would require a paradoxical subreg. Replace the subreg with a
|
||
zero_extend to avoid the reload that would otherwise be required.
|
||
Don't do this unless we have a scalar integer mode, otherwise the
|
||
transformation is incorrect. */
|
||
|
||
enum rtx_code extend_op;
|
||
if (paradoxical_subreg_p (src)
|
||
&& MEM_P (SUBREG_REG (src))
|
||
&& SCALAR_INT_MODE_P (GET_MODE (src))
|
||
&& (extend_op = load_extend_op (GET_MODE (SUBREG_REG (src)))) != UNKNOWN)
|
||
{
|
||
SUBST (SET_SRC (x),
|
||
gen_rtx_fmt_e (extend_op, GET_MODE (src), SUBREG_REG (src)));
|
||
|
||
src = SET_SRC (x);
|
||
}
|
||
|
||
/* If we don't have a conditional move, SET_SRC is an IF_THEN_ELSE, and we
|
||
are comparing an item known to be 0 or -1 against 0, use a logical
|
||
operation instead. Check for one of the arms being an IOR of the other
|
||
arm with some value. We compute three terms to be IOR'ed together. In
|
||
practice, at most two will be nonzero. Then we do the IOR's. */
|
||
|
||
if (GET_CODE (dest) != PC
|
||
&& GET_CODE (src) == IF_THEN_ELSE
|
||
&& is_int_mode (GET_MODE (src), &int_mode)
|
||
&& (GET_CODE (XEXP (src, 0)) == EQ || GET_CODE (XEXP (src, 0)) == NE)
|
||
&& XEXP (XEXP (src, 0), 1) == const0_rtx
|
||
&& int_mode == GET_MODE (XEXP (XEXP (src, 0), 0))
|
||
&& (!HAVE_conditional_move
|
||
|| ! can_conditionally_move_p (int_mode))
|
||
&& (num_sign_bit_copies (XEXP (XEXP (src, 0), 0), int_mode)
|
||
== GET_MODE_PRECISION (int_mode))
|
||
&& ! side_effects_p (src))
|
||
{
|
||
rtx true_rtx = (GET_CODE (XEXP (src, 0)) == NE
|
||
? XEXP (src, 1) : XEXP (src, 2));
|
||
rtx false_rtx = (GET_CODE (XEXP (src, 0)) == NE
|
||
? XEXP (src, 2) : XEXP (src, 1));
|
||
rtx term1 = const0_rtx, term2, term3;
|
||
|
||
if (GET_CODE (true_rtx) == IOR
|
||
&& rtx_equal_p (XEXP (true_rtx, 0), false_rtx))
|
||
term1 = false_rtx, true_rtx = XEXP (true_rtx, 1), false_rtx = const0_rtx;
|
||
else if (GET_CODE (true_rtx) == IOR
|
||
&& rtx_equal_p (XEXP (true_rtx, 1), false_rtx))
|
||
term1 = false_rtx, true_rtx = XEXP (true_rtx, 0), false_rtx = const0_rtx;
|
||
else if (GET_CODE (false_rtx) == IOR
|
||
&& rtx_equal_p (XEXP (false_rtx, 0), true_rtx))
|
||
term1 = true_rtx, false_rtx = XEXP (false_rtx, 1), true_rtx = const0_rtx;
|
||
else if (GET_CODE (false_rtx) == IOR
|
||
&& rtx_equal_p (XEXP (false_rtx, 1), true_rtx))
|
||
term1 = true_rtx, false_rtx = XEXP (false_rtx, 0), true_rtx = const0_rtx;
|
||
|
||
term2 = simplify_gen_binary (AND, int_mode,
|
||
XEXP (XEXP (src, 0), 0), true_rtx);
|
||
term3 = simplify_gen_binary (AND, int_mode,
|
||
simplify_gen_unary (NOT, int_mode,
|
||
XEXP (XEXP (src, 0), 0),
|
||
int_mode),
|
||
false_rtx);
|
||
|
||
SUBST (SET_SRC (x),
|
||
simplify_gen_binary (IOR, int_mode,
|
||
simplify_gen_binary (IOR, int_mode,
|
||
term1, term2),
|
||
term3));
|
||
|
||
src = SET_SRC (x);
|
||
}
|
||
|
||
/* If either SRC or DEST is a CLOBBER of (const_int 0), make this
|
||
whole thing fail. */
|
||
if (GET_CODE (src) == CLOBBER && XEXP (src, 0) == const0_rtx)
|
||
return src;
|
||
else if (GET_CODE (dest) == CLOBBER && XEXP (dest, 0) == const0_rtx)
|
||
return dest;
|
||
else
|
||
/* Convert this into a field assignment operation, if possible. */
|
||
return make_field_assignment (x);
|
||
}
|
||
|
||
/* Simplify, X, and AND, IOR, or XOR operation, and return the simplified
|
||
result. */
|
||
|
||
static rtx
|
||
simplify_logical (rtx x)
|
||
{
|
||
rtx op0 = XEXP (x, 0);
|
||
rtx op1 = XEXP (x, 1);
|
||
scalar_int_mode mode;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case AND:
|
||
/* We can call simplify_and_const_int only if we don't lose
|
||
any (sign) bits when converting INTVAL (op1) to
|
||
"unsigned HOST_WIDE_INT". */
|
||
if (is_a <scalar_int_mode> (GET_MODE (x), &mode)
|
||
&& CONST_INT_P (op1)
|
||
&& (HWI_COMPUTABLE_MODE_P (mode)
|
||
|| INTVAL (op1) > 0))
|
||
{
|
||
x = simplify_and_const_int (x, mode, op0, INTVAL (op1));
|
||
if (GET_CODE (x) != AND)
|
||
return x;
|
||
|
||
op0 = XEXP (x, 0);
|
||
op1 = XEXP (x, 1);
|
||
}
|
||
|
||
/* If we have any of (and (ior A B) C) or (and (xor A B) C),
|
||
apply the distributive law and then the inverse distributive
|
||
law to see if things simplify. */
|
||
if (GET_CODE (op0) == IOR || GET_CODE (op0) == XOR)
|
||
{
|
||
rtx result = distribute_and_simplify_rtx (x, 0);
|
||
if (result)
|
||
return result;
|
||
}
|
||
if (GET_CODE (op1) == IOR || GET_CODE (op1) == XOR)
|
||
{
|
||
rtx result = distribute_and_simplify_rtx (x, 1);
|
||
if (result)
|
||
return result;
|
||
}
|
||
break;
|
||
|
||
case IOR:
|
||
/* If we have (ior (and A B) C), apply the distributive law and then
|
||
the inverse distributive law to see if things simplify. */
|
||
|
||
if (GET_CODE (op0) == AND)
|
||
{
|
||
rtx result = distribute_and_simplify_rtx (x, 0);
|
||
if (result)
|
||
return result;
|
||
}
|
||
|
||
if (GET_CODE (op1) == AND)
|
||
{
|
||
rtx result = distribute_and_simplify_rtx (x, 1);
|
||
if (result)
|
||
return result;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* We consider ZERO_EXTRACT, SIGN_EXTRACT, and SIGN_EXTEND as "compound
|
||
operations" because they can be replaced with two more basic operations.
|
||
ZERO_EXTEND is also considered "compound" because it can be replaced with
|
||
an AND operation, which is simpler, though only one operation.
|
||
|
||
The function expand_compound_operation is called with an rtx expression
|
||
and will convert it to the appropriate shifts and AND operations,
|
||
simplifying at each stage.
|
||
|
||
The function make_compound_operation is called to convert an expression
|
||
consisting of shifts and ANDs into the equivalent compound expression.
|
||
It is the inverse of this function, loosely speaking. */
|
||
|
||
static rtx
|
||
expand_compound_operation (rtx x)
|
||
{
|
||
unsigned HOST_WIDE_INT pos = 0, len;
|
||
int unsignedp = 0;
|
||
unsigned int modewidth;
|
||
rtx tem;
|
||
scalar_int_mode inner_mode;
|
||
|
||
switch (GET_CODE (x))
|
||
{
|
||
case ZERO_EXTEND:
|
||
unsignedp = 1;
|
||
/* FALLTHRU */
|
||
case SIGN_EXTEND:
|
||
/* We can't necessarily use a const_int for a multiword mode;
|
||
it depends on implicitly extending the value.
|
||
Since we don't know the right way to extend it,
|
||
we can't tell whether the implicit way is right.
|
||
|
||
Even for a mode that is no wider than a const_int,
|
||
we can't win, because we need to sign extend one of its bits through
|
||
the rest of it, and we don't know which bit. */
|
||
if (CONST_INT_P (XEXP (x, 0)))
|
||
return x;
|
||
|
||
/* Reject modes that aren't scalar integers because turning vector
|
||
or complex modes into shifts causes problems. */
|
||
if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
|
||
return x;
|
||
|
||
/* Return if (subreg:MODE FROM 0) is not a safe replacement for
|
||
(zero_extend:MODE FROM) or (sign_extend:MODE FROM). It is for any MEM
|
||
because (SUBREG (MEM...)) is guaranteed to cause the MEM to be
|
||
reloaded. If not for that, MEM's would very rarely be safe.
|
||
|
||
Reject modes bigger than a word, because we might not be able
|
||
to reference a two-register group starting with an arbitrary register
|
||
(and currently gen_lowpart might crash for a SUBREG). */
|
||
|
||
if (GET_MODE_SIZE (inner_mode) > UNITS_PER_WORD)
|
||
return x;
|
||
|
||
len = GET_MODE_PRECISION (inner_mode);
|
||
/* If the inner object has VOIDmode (the only way this can happen
|
||
is if it is an ASM_OPERANDS), we can't do anything since we don't
|
||
know how much masking to do. */
|
||
if (len == 0)
|
||
return x;
|
||
|
||
break;
|
||
|
||
case ZERO_EXTRACT:
|
||
unsignedp = 1;
|
||
|
||
/* fall through */
|
||
|
||
case SIGN_EXTRACT:
|
||
/* If the operand is a CLOBBER, just return it. */
|
||
if (GET_CODE (XEXP (x, 0)) == CLOBBER)
|
||
return XEXP (x, 0);
|
||
|
||
if (!CONST_INT_P (XEXP (x, 1))
|
||
|| !CONST_INT_P (XEXP (x, 2)))
|
||
return x;
|
||
|
||
/* Reject modes that aren't scalar integers because turning vector
|
||
or complex modes into shifts causes problems. */
|
||
if (!is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode))
|
||
return x;
|
||
|
||
len = INTVAL (XEXP (x, 1));
|
||
pos = INTVAL (XEXP (x, 2));
|
||
|
||
/* This should stay within the object being extracted, fail otherwise. */
|
||
if (len + pos > GET_MODE_PRECISION (inner_mode))
|
||
return x;
|
||
|
||
if (BITS_BIG_ENDIAN)
|
||
pos = GET_MODE_PRECISION (inner_mode) - len - pos;
|
||
|
||
break;
|
||
|
||
default:
|
||
return x;
|
||
}
|
||
|
||
/* We've rejected non-scalar operations by now. */
|
||
scalar_int_mode mode = as_a <scalar_int_mode> (GET_MODE (x));
|
||
|
||
/* Convert sign extension to zero extension, if we know that the high
|
||
bit is not set, as this is easier to optimize. It will be converted
|
||
back to cheaper alternative in make_extraction. */
|
||
if (GET_CODE (x) == SIGN_EXTEND
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& ((nonzero_bits (XEXP (x, 0), inner_mode)
|
||
& ~(((unsigned HOST_WIDE_INT) GET_MODE_MASK (inner_mode)) >> 1))
|
||
== 0))
|
||
{
|
||
rtx temp = gen_rtx_ZERO_EXTEND (mode, XEXP (x, 0));
|
||
rtx temp2 = expand_compound_operation (temp);
|
||
|
||
/* Make sure this is a profitable operation. */
|
||
if (set_src_cost (x, mode, optimize_this_for_speed_p)
|
||
> set_src_cost (temp2, mode, optimize_this_for_speed_p))
|
||
return temp2;
|
||
else if (set_src_cost (x, mode, optimize_this_for_speed_p)
|
||
> set_src_cost (temp, mode, optimize_this_for_speed_p))
|
||
return temp;
|
||
else
|
||
return x;
|
||
}
|
||
|
||
/* We can optimize some special cases of ZERO_EXTEND. */
|
||
if (GET_CODE (x) == ZERO_EXTEND)
|
||
{
|
||
/* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI if we
|
||
know that the last value didn't have any inappropriate bits
|
||
set. */
|
||
if (GET_CODE (XEXP (x, 0)) == TRUNCATE
|
||
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (nonzero_bits (XEXP (XEXP (x, 0), 0), mode)
|
||
& ~GET_MODE_MASK (inner_mode)) == 0)
|
||
return XEXP (XEXP (x, 0), 0);
|
||
|
||
/* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
|
||
if (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
|
||
&& subreg_lowpart_p (XEXP (x, 0))
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (nonzero_bits (SUBREG_REG (XEXP (x, 0)), mode)
|
||
& ~GET_MODE_MASK (inner_mode)) == 0)
|
||
return SUBREG_REG (XEXP (x, 0));
|
||
|
||
/* (zero_extend:DI (truncate:SI foo:DI)) is just foo:DI when foo
|
||
is a comparison and STORE_FLAG_VALUE permits. This is like
|
||
the first case, but it works even when MODE is larger
|
||
than HOST_WIDE_INT. */
|
||
if (GET_CODE (XEXP (x, 0)) == TRUNCATE
|
||
&& GET_MODE (XEXP (XEXP (x, 0), 0)) == mode
|
||
&& COMPARISON_P (XEXP (XEXP (x, 0), 0))
|
||
&& GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
|
||
return XEXP (XEXP (x, 0), 0);
|
||
|
||
/* Likewise for (zero_extend:DI (subreg:SI foo:DI 0)). */
|
||
if (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& GET_MODE (SUBREG_REG (XEXP (x, 0))) == mode
|
||
&& subreg_lowpart_p (XEXP (x, 0))
|
||
&& COMPARISON_P (SUBREG_REG (XEXP (x, 0)))
|
||
&& GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (STORE_FLAG_VALUE & ~GET_MODE_MASK (inner_mode)) == 0)
|
||
return SUBREG_REG (XEXP (x, 0));
|
||
|
||
}
|
||
|
||
/* If we reach here, we want to return a pair of shifts. The inner
|
||
shift is a left shift of BITSIZE - POS - LEN bits. The outer
|
||
shift is a right shift of BITSIZE - LEN bits. It is arithmetic or
|
||
logical depending on the value of UNSIGNEDP.
|
||
|
||
If this was a ZERO_EXTEND or ZERO_EXTRACT, this pair of shifts will be
|
||
converted into an AND of a shift.
|
||
|
||
We must check for the case where the left shift would have a negative
|
||
count. This can happen in a case like (x >> 31) & 255 on machines
|
||
that can't shift by a constant. On those machines, we would first
|
||
combine the shift with the AND to produce a variable-position
|
||
extraction. Then the constant of 31 would be substituted in
|
||
to produce such a position. */
|
||
|
||
modewidth = GET_MODE_PRECISION (mode);
|
||
if (modewidth >= pos + len)
|
||
{
|
||
tem = gen_lowpart (mode, XEXP (x, 0));
|
||
if (!tem || GET_CODE (tem) == CLOBBER)
|
||
return x;
|
||
tem = simplify_shift_const (NULL_RTX, ASHIFT, mode,
|
||
tem, modewidth - pos - len);
|
||
tem = simplify_shift_const (NULL_RTX, unsignedp ? LSHIFTRT : ASHIFTRT,
|
||
mode, tem, modewidth - len);
|
||
}
|
||
else if (unsignedp && len < HOST_BITS_PER_WIDE_INT)
|
||
tem = simplify_and_const_int (NULL_RTX, mode,
|
||
simplify_shift_const (NULL_RTX, LSHIFTRT,
|
||
mode, XEXP (x, 0),
|
||
pos),
|
||
(HOST_WIDE_INT_1U << len) - 1);
|
||
else
|
||
/* Any other cases we can't handle. */
|
||
return x;
|
||
|
||
/* If we couldn't do this for some reason, return the original
|
||
expression. */
|
||
if (GET_CODE (tem) == CLOBBER)
|
||
return x;
|
||
|
||
return tem;
|
||
}
|
||
|
||
/* X is a SET which contains an assignment of one object into
|
||
a part of another (such as a bit-field assignment, STRICT_LOW_PART,
|
||
or certain SUBREGS). If possible, convert it into a series of
|
||
logical operations.
|
||
|
||
We half-heartedly support variable positions, but do not at all
|
||
support variable lengths. */
|
||
|
||
static const_rtx
|
||
expand_field_assignment (const_rtx x)
|
||
{
|
||
rtx inner;
|
||
rtx pos; /* Always counts from low bit. */
|
||
int len, inner_len;
|
||
rtx mask, cleared, masked;
|
||
scalar_int_mode compute_mode;
|
||
|
||
/* Loop until we find something we can't simplify. */
|
||
while (1)
|
||
{
|
||
if (GET_CODE (SET_DEST (x)) == STRICT_LOW_PART
|
||
&& GET_CODE (XEXP (SET_DEST (x), 0)) == SUBREG)
|
||
{
|
||
rtx x0 = XEXP (SET_DEST (x), 0);
|
||
if (!GET_MODE_PRECISION (GET_MODE (x0)).is_constant (&len))
|
||
break;
|
||
inner = SUBREG_REG (XEXP (SET_DEST (x), 0));
|
||
pos = gen_int_mode (subreg_lsb (XEXP (SET_DEST (x), 0)),
|
||
MAX_MODE_INT);
|
||
}
|
||
else if (GET_CODE (SET_DEST (x)) == ZERO_EXTRACT
|
||
&& CONST_INT_P (XEXP (SET_DEST (x), 1)))
|
||
{
|
||
inner = XEXP (SET_DEST (x), 0);
|
||
if (!GET_MODE_PRECISION (GET_MODE (inner)).is_constant (&inner_len))
|
||
break;
|
||
|
||
len = INTVAL (XEXP (SET_DEST (x), 1));
|
||
pos = XEXP (SET_DEST (x), 2);
|
||
|
||
/* A constant position should stay within the width of INNER. */
|
||
if (CONST_INT_P (pos) && INTVAL (pos) + len > inner_len)
|
||
break;
|
||
|
||
if (BITS_BIG_ENDIAN)
|
||
{
|
||
if (CONST_INT_P (pos))
|
||
pos = GEN_INT (inner_len - len - INTVAL (pos));
|
||
else if (GET_CODE (pos) == MINUS
|
||
&& CONST_INT_P (XEXP (pos, 1))
|
||
&& INTVAL (XEXP (pos, 1)) == inner_len - len)
|
||
/* If position is ADJUST - X, new position is X. */
|
||
pos = XEXP (pos, 0);
|
||
else
|
||
pos = simplify_gen_binary (MINUS, GET_MODE (pos),
|
||
gen_int_mode (inner_len - len,
|
||
GET_MODE (pos)),
|
||
pos);
|
||
}
|
||
}
|
||
|
||
/* If the destination is a subreg that overwrites the whole of the inner
|
||
register, we can move the subreg to the source. */
|
||
else if (GET_CODE (SET_DEST (x)) == SUBREG
|
||
/* We need SUBREGs to compute nonzero_bits properly. */
|
||
&& nonzero_sign_valid
|
||
&& !read_modify_subreg_p (SET_DEST (x)))
|
||
{
|
||
x = gen_rtx_SET (SUBREG_REG (SET_DEST (x)),
|
||
gen_lowpart
|
||
(GET_MODE (SUBREG_REG (SET_DEST (x))),
|
||
SET_SRC (x)));
|
||
continue;
|
||
}
|
||
else
|
||
break;
|
||
|
||
while (GET_CODE (inner) == SUBREG && subreg_lowpart_p (inner))
|
||
inner = SUBREG_REG (inner);
|
||
|
||
/* Don't attempt bitwise arithmetic on non scalar integer modes. */
|
||
if (!is_a <scalar_int_mode> (GET_MODE (inner), &compute_mode))
|
||
{
|
||
/* Don't do anything for vector or complex integral types. */
|
||
if (! FLOAT_MODE_P (GET_MODE (inner)))
|
||
break;
|
||
|
||
/* Try to find an integral mode to pun with. */
|
||
if (!int_mode_for_size (GET_MODE_BITSIZE (GET_MODE (inner)), 0)
|
||
.exists (&compute_mode))
|
||
break;
|
||
|
||
inner = gen_lowpart (compute_mode, inner);
|
||
}
|
||
|
||
/* Compute a mask of LEN bits, if we can do this on the host machine. */
|
||
if (len >= HOST_BITS_PER_WIDE_INT)
|
||
break;
|
||
|
||
/* Don't try to compute in too wide unsupported modes. */
|
||
if (!targetm.scalar_mode_supported_p (compute_mode))
|
||
break;
|
||
|
||
/* Now compute the equivalent expression. Make a copy of INNER
|
||
for the SET_DEST in case it is a MEM into which we will substitute;
|
||
we don't want shared RTL in that case. */
|
||
mask = gen_int_mode ((HOST_WIDE_INT_1U << len) - 1,
|
||
compute_mode);
|
||
cleared = simplify_gen_binary (AND, compute_mode,
|
||
simplify_gen_unary (NOT, compute_mode,
|
||
simplify_gen_binary (ASHIFT,
|
||
compute_mode,
|
||
mask, pos),
|
||
compute_mode),
|
||
inner);
|
||
masked = simplify_gen_binary (ASHIFT, compute_mode,
|
||
simplify_gen_binary (
|
||
AND, compute_mode,
|
||
gen_lowpart (compute_mode, SET_SRC (x)),
|
||
mask),
|
||
pos);
|
||
|
||
x = gen_rtx_SET (copy_rtx (inner),
|
||
simplify_gen_binary (IOR, compute_mode,
|
||
cleared, masked));
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Return an RTX for a reference to LEN bits of INNER. If POS_RTX is nonzero,
|
||
it is an RTX that represents the (variable) starting position; otherwise,
|
||
POS is the (constant) starting bit position. Both are counted from the LSB.
|
||
|
||
UNSIGNEDP is nonzero for an unsigned reference and zero for a signed one.
|
||
|
||
IN_DEST is nonzero if this is a reference in the destination of a SET.
|
||
This is used when a ZERO_ or SIGN_EXTRACT isn't needed. If nonzero,
|
||
a STRICT_LOW_PART will be used, if zero, ZERO_EXTEND or SIGN_EXTEND will
|
||
be used.
|
||
|
||
IN_COMPARE is nonzero if we are in a COMPARE. This means that a
|
||
ZERO_EXTRACT should be built even for bits starting at bit 0.
|
||
|
||
MODE is the desired mode of the result (if IN_DEST == 0).
|
||
|
||
The result is an RTX for the extraction or NULL_RTX if the target
|
||
can't handle it. */
|
||
|
||
static rtx
|
||
make_extraction (machine_mode mode, rtx inner, HOST_WIDE_INT pos,
|
||
rtx pos_rtx, unsigned HOST_WIDE_INT len, int unsignedp,
|
||
int in_dest, int in_compare)
|
||
{
|
||
/* This mode describes the size of the storage area
|
||
to fetch the overall value from. Within that, we
|
||
ignore the POS lowest bits, etc. */
|
||
machine_mode is_mode = GET_MODE (inner);
|
||
machine_mode inner_mode;
|
||
scalar_int_mode wanted_inner_mode;
|
||
scalar_int_mode wanted_inner_reg_mode = word_mode;
|
||
scalar_int_mode pos_mode = word_mode;
|
||
machine_mode extraction_mode = word_mode;
|
||
rtx new_rtx = 0;
|
||
rtx orig_pos_rtx = pos_rtx;
|
||
HOST_WIDE_INT orig_pos;
|
||
|
||
if (pos_rtx && CONST_INT_P (pos_rtx))
|
||
pos = INTVAL (pos_rtx), pos_rtx = 0;
|
||
|
||
if (GET_CODE (inner) == SUBREG
|
||
&& subreg_lowpart_p (inner)
|
||
&& (paradoxical_subreg_p (inner)
|
||
/* If trying or potentionally trying to extract
|
||
bits outside of is_mode, don't look through
|
||
non-paradoxical SUBREGs. See PR82192. */
|
||
|| (pos_rtx == NULL_RTX
|
||
&& known_le (pos + len, GET_MODE_PRECISION (is_mode)))))
|
||
{
|
||
/* If going from (subreg:SI (mem:QI ...)) to (mem:QI ...),
|
||
consider just the QI as the memory to extract from.
|
||
The subreg adds or removes high bits; its mode is
|
||
irrelevant to the meaning of this extraction,
|
||
since POS and LEN count from the lsb. */
|
||
if (MEM_P (SUBREG_REG (inner)))
|
||
is_mode = GET_MODE (SUBREG_REG (inner));
|
||
inner = SUBREG_REG (inner);
|
||
}
|
||
else if (GET_CODE (inner) == ASHIFT
|
||
&& CONST_INT_P (XEXP (inner, 1))
|
||
&& pos_rtx == 0 && pos == 0
|
||
&& len > UINTVAL (XEXP (inner, 1)))
|
||
{
|
||
/* We're extracting the least significant bits of an rtx
|
||
(ashift X (const_int C)), where LEN > C. Extract the
|
||
least significant (LEN - C) bits of X, giving an rtx
|
||
whose mode is MODE, then shift it left C times. */
|
||
new_rtx = make_extraction (mode, XEXP (inner, 0),
|
||
0, 0, len - INTVAL (XEXP (inner, 1)),
|
||
unsignedp, in_dest, in_compare);
|
||
if (new_rtx != 0)
|
||
return gen_rtx_ASHIFT (mode, new_rtx, XEXP (inner, 1));
|
||
}
|
||
else if (GET_CODE (inner) == TRUNCATE
|
||
/* If trying or potentionally trying to extract
|
||
bits outside of is_mode, don't look through
|
||
TRUNCATE. See PR82192. */
|
||
&& pos_rtx == NULL_RTX
|
||
&& known_le (pos + len, GET_MODE_PRECISION (is_mode)))
|
||
inner = XEXP (inner, 0);
|
||
|
||
inner_mode = GET_MODE (inner);
|
||
|
||
/* See if this can be done without an extraction. We never can if the
|
||
width of the field is not the same as that of some integer mode. For
|
||
registers, we can only avoid the extraction if the position is at the
|
||
low-order bit and this is either not in the destination or we have the
|
||
appropriate STRICT_LOW_PART operation available.
|
||
|
||
For MEM, we can avoid an extract if the field starts on an appropriate
|
||
boundary and we can change the mode of the memory reference. */
|
||
|
||
scalar_int_mode tmode;
|
||
if (int_mode_for_size (len, 1).exists (&tmode)
|
||
&& ((pos_rtx == 0 && (pos % BITS_PER_WORD) == 0
|
||
&& !MEM_P (inner)
|
||
&& (pos == 0 || REG_P (inner))
|
||
&& (inner_mode == tmode
|
||
|| !REG_P (inner)
|
||
|| TRULY_NOOP_TRUNCATION_MODES_P (tmode, inner_mode)
|
||
|| reg_truncated_to_mode (tmode, inner))
|
||
&& (! in_dest
|
||
|| (REG_P (inner)
|
||
&& have_insn_for (STRICT_LOW_PART, tmode))))
|
||
|| (MEM_P (inner) && pos_rtx == 0
|
||
&& (pos
|
||
% (STRICT_ALIGNMENT ? GET_MODE_ALIGNMENT (tmode)
|
||
: BITS_PER_UNIT)) == 0
|
||
/* We can't do this if we are widening INNER_MODE (it
|
||
may not be aligned, for one thing). */
|
||
&& !paradoxical_subreg_p (tmode, inner_mode)
|
||
&& known_le (pos + len, GET_MODE_PRECISION (is_mode))
|
||
&& (inner_mode == tmode
|
||
|| (! mode_dependent_address_p (XEXP (inner, 0),
|
||
MEM_ADDR_SPACE (inner))
|
||
&& ! MEM_VOLATILE_P (inner))))))
|
||
{
|
||
/* If INNER is a MEM, make a new MEM that encompasses just the desired
|
||
field. If the original and current mode are the same, we need not
|
||
adjust the offset. Otherwise, we do if bytes big endian.
|
||
|
||
If INNER is not a MEM, get a piece consisting of just the field
|
||
of interest (in this case POS % BITS_PER_WORD must be 0). */
|
||
|
||
if (MEM_P (inner))
|
||
{
|
||
poly_int64 offset;
|
||
|
||
/* POS counts from lsb, but make OFFSET count in memory order. */
|
||
if (BYTES_BIG_ENDIAN)
|
||
offset = bits_to_bytes_round_down (GET_MODE_PRECISION (is_mode)
|
||
- len - pos);
|
||
else
|
||
offset = pos / BITS_PER_UNIT;
|
||
|
||
new_rtx = adjust_address_nv (inner, tmode, offset);
|
||
}
|
||
else if (REG_P (inner))
|
||
{
|
||
if (tmode != inner_mode)
|
||
{
|
||
/* We can't call gen_lowpart in a DEST since we
|
||
always want a SUBREG (see below) and it would sometimes
|
||
return a new hard register. */
|
||
if (pos || in_dest)
|
||
{
|
||
poly_uint64 offset
|
||
= subreg_offset_from_lsb (tmode, inner_mode, pos);
|
||
|
||
/* Avoid creating invalid subregs, for example when
|
||
simplifying (x>>32)&255. */
|
||
if (!validate_subreg (tmode, inner_mode, inner, offset))
|
||
return NULL_RTX;
|
||
|
||
new_rtx = gen_rtx_SUBREG (tmode, inner, offset);
|
||
}
|
||
else
|
||
new_rtx = gen_lowpart (tmode, inner);
|
||
}
|
||
else
|
||
new_rtx = inner;
|
||
}
|
||
else
|
||
new_rtx = force_to_mode (inner, tmode,
|
||
len >= HOST_BITS_PER_WIDE_INT
|
||
? HOST_WIDE_INT_M1U
|
||
: (HOST_WIDE_INT_1U << len) - 1, 0);
|
||
|
||
/* If this extraction is going into the destination of a SET,
|
||
make a STRICT_LOW_PART unless we made a MEM. */
|
||
|
||
if (in_dest)
|
||
return (MEM_P (new_rtx) ? new_rtx
|
||
: (GET_CODE (new_rtx) != SUBREG
|
||
? gen_rtx_CLOBBER (tmode, const0_rtx)
|
||
: gen_rtx_STRICT_LOW_PART (VOIDmode, new_rtx)));
|
||
|
||
if (mode == tmode)
|
||
return new_rtx;
|
||
|
||
if (CONST_SCALAR_INT_P (new_rtx))
|
||
return simplify_unary_operation (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
|
||
mode, new_rtx, tmode);
|
||
|
||
/* If we know that no extraneous bits are set, and that the high
|
||
bit is not set, convert the extraction to the cheaper of
|
||
sign and zero extension, that are equivalent in these cases. */
|
||
if (flag_expensive_optimizations
|
||
&& (HWI_COMPUTABLE_MODE_P (tmode)
|
||
&& ((nonzero_bits (new_rtx, tmode)
|
||
& ~(((unsigned HOST_WIDE_INT)GET_MODE_MASK (tmode)) >> 1))
|
||
== 0)))
|
||
{
|
||
rtx temp = gen_rtx_ZERO_EXTEND (mode, new_rtx);
|
||
rtx temp1 = gen_rtx_SIGN_EXTEND (mode, new_rtx);
|
||
|
||
/* Prefer ZERO_EXTENSION, since it gives more information to
|
||
backends. */
|
||
if (set_src_cost (temp, mode, optimize_this_for_speed_p)
|
||
<= set_src_cost (temp1, mode, optimize_this_for_speed_p))
|
||
return temp;
|
||
return temp1;
|
||
}
|
||
|
||
/* Otherwise, sign- or zero-extend unless we already are in the
|
||
proper mode. */
|
||
|
||
return (gen_rtx_fmt_e (unsignedp ? ZERO_EXTEND : SIGN_EXTEND,
|
||
mode, new_rtx));
|
||
}
|
||
|
||
/* Unless this is a COMPARE or we have a funny memory reference,
|
||
don't do anything with zero-extending field extracts starting at
|
||
the low-order bit since they are simple AND operations. */
|
||
if (pos_rtx == 0 && pos == 0 && ! in_dest
|
||
&& ! in_compare && unsignedp)
|
||
return 0;
|
||
|
||
/* Unless INNER is not MEM, reject this if we would be spanning bytes or
|
||
if the position is not a constant and the length is not 1. In all
|
||
other cases, we would only be going outside our object in cases when
|
||
an original shift would have been undefined. */
|
||
if (MEM_P (inner)
|
||
&& ((pos_rtx == 0 && maybe_gt (pos + len, GET_MODE_PRECISION (is_mode)))
|
||
|| (pos_rtx != 0 && len != 1)))
|
||
return 0;
|
||
|
||
enum extraction_pattern pattern = (in_dest ? EP_insv
|
||
: unsignedp ? EP_extzv : EP_extv);
|
||
|
||
/* If INNER is not from memory, we want it to have the mode of a register
|
||
extraction pattern's structure operand, or word_mode if there is no
|
||
such pattern. The same applies to extraction_mode and pos_mode
|
||
and their respective operands.
|
||
|
||
For memory, assume that the desired extraction_mode and pos_mode
|
||
are the same as for a register operation, since at present we don't
|
||
have named patterns for aligned memory structures. */
|
||
class extraction_insn insn;
|
||
unsigned int inner_size;
|
||
if (GET_MODE_BITSIZE (inner_mode).is_constant (&inner_size)
|
||
&& get_best_reg_extraction_insn (&insn, pattern, inner_size, mode))
|
||
{
|
||
wanted_inner_reg_mode = insn.struct_mode.require ();
|
||
pos_mode = insn.pos_mode;
|
||
extraction_mode = insn.field_mode;
|
||
}
|
||
|
||
/* Never narrow an object, since that might not be safe. */
|
||
|
||
if (mode != VOIDmode
|
||
&& partial_subreg_p (extraction_mode, mode))
|
||
extraction_mode = mode;
|
||
|
||
/* Punt if len is too large for extraction_mode. */
|
||
if (maybe_gt (len, GET_MODE_PRECISION (extraction_mode)))
|
||
return NULL_RTX;
|
||
|
||
if (!MEM_P (inner))
|
||
wanted_inner_mode = wanted_inner_reg_mode;
|
||
else
|
||
{
|
||
/* Be careful not to go beyond the extracted object and maintain the
|
||
natural alignment of the memory. */
|
||
wanted_inner_mode = smallest_int_mode_for_size (len);
|
||
while (pos % GET_MODE_BITSIZE (wanted_inner_mode) + len
|
||
> GET_MODE_BITSIZE (wanted_inner_mode))
|
||
wanted_inner_mode = GET_MODE_WIDER_MODE (wanted_inner_mode).require ();
|
||
}
|
||
|
||
orig_pos = pos;
|
||
|
||
if (BITS_BIG_ENDIAN)
|
||
{
|
||
/* POS is passed as if BITS_BIG_ENDIAN == 0, so we need to convert it to
|
||
BITS_BIG_ENDIAN style. If position is constant, compute new
|
||
position. Otherwise, build subtraction.
|
||
Note that POS is relative to the mode of the original argument.
|
||
If it's a MEM we need to recompute POS relative to that.
|
||
However, if we're extracting from (or inserting into) a register,
|
||
we want to recompute POS relative to wanted_inner_mode. */
|
||
int width;
|
||
if (!MEM_P (inner))
|
||
width = GET_MODE_BITSIZE (wanted_inner_mode);
|
||
else if (!GET_MODE_BITSIZE (is_mode).is_constant (&width))
|
||
return NULL_RTX;
|
||
|
||
if (pos_rtx == 0)
|
||
pos = width - len - pos;
|
||
else
|
||
pos_rtx
|
||
= gen_rtx_MINUS (GET_MODE (pos_rtx),
|
||
gen_int_mode (width - len, GET_MODE (pos_rtx)),
|
||
pos_rtx);
|
||
/* POS may be less than 0 now, but we check for that below.
|
||
Note that it can only be less than 0 if !MEM_P (inner). */
|
||
}
|
||
|
||
/* If INNER has a wider mode, and this is a constant extraction, try to
|
||
make it smaller and adjust the byte to point to the byte containing
|
||
the value. */
|
||
if (wanted_inner_mode != VOIDmode
|
||
&& inner_mode != wanted_inner_mode
|
||
&& ! pos_rtx
|
||
&& partial_subreg_p (wanted_inner_mode, is_mode)
|
||
&& MEM_P (inner)
|
||
&& ! mode_dependent_address_p (XEXP (inner, 0), MEM_ADDR_SPACE (inner))
|
||
&& ! MEM_VOLATILE_P (inner))
|
||
{
|
||
poly_int64 offset = 0;
|
||
|
||
/* The computations below will be correct if the machine is big
|
||
endian in both bits and bytes or little endian in bits and bytes.
|
||
If it is mixed, we must adjust. */
|
||
|
||
/* If bytes are big endian and we had a paradoxical SUBREG, we must
|
||
adjust OFFSET to compensate. */
|
||
if (BYTES_BIG_ENDIAN
|
||
&& paradoxical_subreg_p (is_mode, inner_mode))
|
||
offset -= GET_MODE_SIZE (is_mode) - GET_MODE_SIZE (inner_mode);
|
||
|
||
/* We can now move to the desired byte. */
|
||
offset += (pos / GET_MODE_BITSIZE (wanted_inner_mode))
|
||
* GET_MODE_SIZE (wanted_inner_mode);
|
||
pos %= GET_MODE_BITSIZE (wanted_inner_mode);
|
||
|
||
if (BYTES_BIG_ENDIAN != BITS_BIG_ENDIAN
|
||
&& is_mode != wanted_inner_mode)
|
||
offset = (GET_MODE_SIZE (is_mode)
|
||
- GET_MODE_SIZE (wanted_inner_mode) - offset);
|
||
|
||
inner = adjust_address_nv (inner, wanted_inner_mode, offset);
|
||
}
|
||
|
||
/* If INNER is not memory, get it into the proper mode. If we are changing
|
||
its mode, POS must be a constant and smaller than the size of the new
|
||
mode. */
|
||
else if (!MEM_P (inner))
|
||
{
|
||
/* On the LHS, don't create paradoxical subregs implicitely truncating
|
||
the register unless TARGET_TRULY_NOOP_TRUNCATION. */
|
||
if (in_dest
|
||
&& !TRULY_NOOP_TRUNCATION_MODES_P (GET_MODE (inner),
|
||
wanted_inner_mode))
|
||
return NULL_RTX;
|
||
|
||
if (GET_MODE (inner) != wanted_inner_mode
|
||
&& (pos_rtx != 0
|
||
|| orig_pos + len > GET_MODE_BITSIZE (wanted_inner_mode)))
|
||
return NULL_RTX;
|
||
|
||
if (orig_pos < 0)
|
||
return NULL_RTX;
|
||
|
||
inner = force_to_mode (inner, wanted_inner_mode,
|
||
pos_rtx
|
||
|| len + orig_pos >= HOST_BITS_PER_WIDE_INT
|
||
? HOST_WIDE_INT_M1U
|
||
: (((HOST_WIDE_INT_1U << len) - 1)
|
||
<< orig_pos),
|
||
0);
|
||
}
|
||
|
||
/* Adjust mode of POS_RTX, if needed. If we want a wider mode, we
|
||
have to zero extend. Otherwise, we can just use a SUBREG.
|
||
|
||
We dealt with constant rtxes earlier, so pos_rtx cannot
|
||
have VOIDmode at this point. */
|
||
if (pos_rtx != 0
|
||
&& (GET_MODE_SIZE (pos_mode)
|
||
> GET_MODE_SIZE (as_a <scalar_int_mode> (GET_MODE (pos_rtx)))))
|
||
{
|
||
rtx temp = simplify_gen_unary (ZERO_EXTEND, pos_mode, pos_rtx,
|
||
GET_MODE (pos_rtx));
|
||
|
||
/* If we know that no extraneous bits are set, and that the high
|
||
bit is not set, convert extraction to cheaper one - either
|
||
SIGN_EXTENSION or ZERO_EXTENSION, that are equivalent in these
|
||
cases. */
|
||
if (flag_expensive_optimizations
|
||
&& (HWI_COMPUTABLE_MODE_P (GET_MODE (pos_rtx))
|
||
&& ((nonzero_bits (pos_rtx, GET_MODE (pos_rtx))
|
||
& ~(((unsigned HOST_WIDE_INT)
|
||
GET_MODE_MASK (GET_MODE (pos_rtx)))
|
||
>> 1))
|
||
== 0)))
|
||
{
|
||
rtx temp1 = simplify_gen_unary (SIGN_EXTEND, pos_mode, pos_rtx,
|
||
GET_MODE (pos_rtx));
|
||
|
||
/* Prefer ZERO_EXTENSION, since it gives more information to
|
||
backends. */
|
||
if (set_src_cost (temp1, pos_mode, optimize_this_for_speed_p)
|
||
< set_src_cost (temp, pos_mode, optimize_this_for_speed_p))
|
||
temp = temp1;
|
||
}
|
||
pos_rtx = temp;
|
||
}
|
||
|
||
/* Make POS_RTX unless we already have it and it is correct. If we don't
|
||
have a POS_RTX but we do have an ORIG_POS_RTX, the latter must
|
||
be a CONST_INT. */
|
||
if (pos_rtx == 0 && orig_pos_rtx != 0 && INTVAL (orig_pos_rtx) == pos)
|
||
pos_rtx = orig_pos_rtx;
|
||
|
||
else if (pos_rtx == 0)
|
||
pos_rtx = GEN_INT (pos);
|
||
|
||
/* Make the required operation. See if we can use existing rtx. */
|
||
new_rtx = gen_rtx_fmt_eee (unsignedp ? ZERO_EXTRACT : SIGN_EXTRACT,
|
||
extraction_mode, inner, GEN_INT (len), pos_rtx);
|
||
if (! in_dest)
|
||
new_rtx = gen_lowpart (mode, new_rtx);
|
||
|
||
return new_rtx;
|
||
}
|
||
|
||
/* See if X (of mode MODE) contains an ASHIFT of COUNT or more bits that
|
||
can be commuted with any other operations in X. Return X without
|
||
that shift if so. */
|
||
|
||
static rtx
|
||
extract_left_shift (scalar_int_mode mode, rtx x, int count)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx tem;
|
||
|
||
switch (code)
|
||
{
|
||
case ASHIFT:
|
||
/* This is the shift itself. If it is wide enough, we will return
|
||
either the value being shifted if the shift count is equal to
|
||
COUNT or a shift for the difference. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= count)
|
||
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (x, 0),
|
||
INTVAL (XEXP (x, 1)) - count);
|
||
break;
|
||
|
||
case NEG: case NOT:
|
||
if ((tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
|
||
return simplify_gen_unary (code, mode, tem, mode);
|
||
|
||
break;
|
||
|
||
case PLUS: case IOR: case XOR: case AND:
|
||
/* If we can safely shift this constant and we find the inner shift,
|
||
make a new operation. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& (UINTVAL (XEXP (x, 1))
|
||
& (((HOST_WIDE_INT_1U << count)) - 1)) == 0
|
||
&& (tem = extract_left_shift (mode, XEXP (x, 0), count)) != 0)
|
||
{
|
||
HOST_WIDE_INT val = INTVAL (XEXP (x, 1)) >> count;
|
||
return simplify_gen_binary (code, mode, tem,
|
||
gen_int_mode (val, mode));
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Subroutine of make_compound_operation. *X_PTR is the rtx at the current
|
||
level of the expression and MODE is its mode. IN_CODE is as for
|
||
make_compound_operation. *NEXT_CODE_PTR is the value of IN_CODE
|
||
that should be used when recursing on operands of *X_PTR.
|
||
|
||
There are two possible actions:
|
||
|
||
- Return null. This tells the caller to recurse on *X_PTR with IN_CODE
|
||
equal to *NEXT_CODE_PTR, after which *X_PTR holds the final value.
|
||
|
||
- Return a new rtx, which the caller returns directly. */
|
||
|
||
static rtx
|
||
make_compound_operation_int (scalar_int_mode mode, rtx *x_ptr,
|
||
enum rtx_code in_code,
|
||
enum rtx_code *next_code_ptr)
|
||
{
|
||
rtx x = *x_ptr;
|
||
enum rtx_code next_code = *next_code_ptr;
|
||
enum rtx_code code = GET_CODE (x);
|
||
int mode_width = GET_MODE_PRECISION (mode);
|
||
rtx rhs, lhs;
|
||
rtx new_rtx = 0;
|
||
int i;
|
||
rtx tem;
|
||
scalar_int_mode inner_mode;
|
||
bool equality_comparison = false;
|
||
|
||
if (in_code == EQ)
|
||
{
|
||
equality_comparison = true;
|
||
in_code = COMPARE;
|
||
}
|
||
|
||
/* Process depending on the code of this operation. If NEW is set
|
||
nonzero, it will be returned. */
|
||
|
||
switch (code)
|
||
{
|
||
case ASHIFT:
|
||
/* Convert shifts by constants into multiplications if inside
|
||
an address. */
|
||
if (in_code == MEM && CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& INTVAL (XEXP (x, 1)) >= 0)
|
||
{
|
||
HOST_WIDE_INT count = INTVAL (XEXP (x, 1));
|
||
HOST_WIDE_INT multval = HOST_WIDE_INT_1 << count;
|
||
|
||
new_rtx = make_compound_operation (XEXP (x, 0), next_code);
|
||
if (GET_CODE (new_rtx) == NEG)
|
||
{
|
||
new_rtx = XEXP (new_rtx, 0);
|
||
multval = -multval;
|
||
}
|
||
multval = trunc_int_for_mode (multval, mode);
|
||
new_rtx = gen_rtx_MULT (mode, new_rtx, gen_int_mode (multval, mode));
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
lhs = XEXP (x, 0);
|
||
rhs = XEXP (x, 1);
|
||
lhs = make_compound_operation (lhs, next_code);
|
||
rhs = make_compound_operation (rhs, next_code);
|
||
if (GET_CODE (lhs) == MULT && GET_CODE (XEXP (lhs, 0)) == NEG)
|
||
{
|
||
tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (lhs, 0), 0),
|
||
XEXP (lhs, 1));
|
||
new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
|
||
}
|
||
else if (GET_CODE (lhs) == MULT
|
||
&& (CONST_INT_P (XEXP (lhs, 1)) && INTVAL (XEXP (lhs, 1)) < 0))
|
||
{
|
||
tem = simplify_gen_binary (MULT, mode, XEXP (lhs, 0),
|
||
simplify_gen_unary (NEG, mode,
|
||
XEXP (lhs, 1),
|
||
mode));
|
||
new_rtx = simplify_gen_binary (MINUS, mode, rhs, tem);
|
||
}
|
||
else
|
||
{
|
||
SUBST (XEXP (x, 0), lhs);
|
||
SUBST (XEXP (x, 1), rhs);
|
||
}
|
||
maybe_swap_commutative_operands (x);
|
||
return x;
|
||
|
||
case MINUS:
|
||
lhs = XEXP (x, 0);
|
||
rhs = XEXP (x, 1);
|
||
lhs = make_compound_operation (lhs, next_code);
|
||
rhs = make_compound_operation (rhs, next_code);
|
||
if (GET_CODE (rhs) == MULT && GET_CODE (XEXP (rhs, 0)) == NEG)
|
||
{
|
||
tem = simplify_gen_binary (MULT, mode, XEXP (XEXP (rhs, 0), 0),
|
||
XEXP (rhs, 1));
|
||
return simplify_gen_binary (PLUS, mode, tem, lhs);
|
||
}
|
||
else if (GET_CODE (rhs) == MULT
|
||
&& (CONST_INT_P (XEXP (rhs, 1)) && INTVAL (XEXP (rhs, 1)) < 0))
|
||
{
|
||
tem = simplify_gen_binary (MULT, mode, XEXP (rhs, 0),
|
||
simplify_gen_unary (NEG, mode,
|
||
XEXP (rhs, 1),
|
||
mode));
|
||
return simplify_gen_binary (PLUS, mode, tem, lhs);
|
||
}
|
||
else
|
||
{
|
||
SUBST (XEXP (x, 0), lhs);
|
||
SUBST (XEXP (x, 1), rhs);
|
||
return x;
|
||
}
|
||
|
||
case AND:
|
||
/* If the second operand is not a constant, we can't do anything
|
||
with it. */
|
||
if (!CONST_INT_P (XEXP (x, 1)))
|
||
break;
|
||
|
||
/* If the constant is a power of two minus one and the first operand
|
||
is a logical right shift, make an extraction. */
|
||
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
{
|
||
new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
|
||
new_rtx = make_extraction (mode, new_rtx, 0, XEXP (XEXP (x, 0), 1),
|
||
i, 1, 0, in_code == COMPARE);
|
||
}
|
||
|
||
/* Same as previous, but for (subreg (lshiftrt ...)) in first op. */
|
||
else if (GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (x, 0))
|
||
&& is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (XEXP (x, 0))),
|
||
&inner_mode)
|
||
&& GET_CODE (SUBREG_REG (XEXP (x, 0))) == LSHIFTRT
|
||
&& (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
{
|
||
rtx inner_x0 = SUBREG_REG (XEXP (x, 0));
|
||
new_rtx = make_compound_operation (XEXP (inner_x0, 0), next_code);
|
||
new_rtx = make_extraction (inner_mode, new_rtx, 0,
|
||
XEXP (inner_x0, 1),
|
||
i, 1, 0, in_code == COMPARE);
|
||
|
||
/* If we narrowed the mode when dropping the subreg, then we lose. */
|
||
if (GET_MODE_SIZE (inner_mode) < GET_MODE_SIZE (mode))
|
||
new_rtx = NULL;
|
||
|
||
/* If that didn't give anything, see if the AND simplifies on
|
||
its own. */
|
||
if (!new_rtx && i >= 0)
|
||
{
|
||
new_rtx = make_compound_operation (XEXP (x, 0), next_code);
|
||
new_rtx = make_extraction (mode, new_rtx, 0, NULL_RTX, i, 1,
|
||
0, in_code == COMPARE);
|
||
}
|
||
}
|
||
/* Same as previous, but for (xor/ior (lshiftrt...) (lshiftrt...)). */
|
||
else if ((GET_CODE (XEXP (x, 0)) == XOR
|
||
|| GET_CODE (XEXP (x, 0)) == IOR)
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 0)) == LSHIFTRT
|
||
&& GET_CODE (XEXP (XEXP (x, 0), 1)) == LSHIFTRT
|
||
&& (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
{
|
||
/* Apply the distributive law, and then try to make extractions. */
|
||
new_rtx = gen_rtx_fmt_ee (GET_CODE (XEXP (x, 0)), mode,
|
||
gen_rtx_AND (mode, XEXP (XEXP (x, 0), 0),
|
||
XEXP (x, 1)),
|
||
gen_rtx_AND (mode, XEXP (XEXP (x, 0), 1),
|
||
XEXP (x, 1)));
|
||
new_rtx = make_compound_operation (new_rtx, in_code);
|
||
}
|
||
|
||
/* If we are have (and (rotate X C) M) and C is larger than the number
|
||
of bits in M, this is an extraction. */
|
||
|
||
else if (GET_CODE (XEXP (x, 0)) == ROTATE
|
||
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
|
||
&& (i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0
|
||
&& i <= INTVAL (XEXP (XEXP (x, 0), 1)))
|
||
{
|
||
new_rtx = make_compound_operation (XEXP (XEXP (x, 0), 0), next_code);
|
||
new_rtx = make_extraction (mode, new_rtx,
|
||
(GET_MODE_PRECISION (mode)
|
||
- INTVAL (XEXP (XEXP (x, 0), 1))),
|
||
NULL_RTX, i, 1, 0, in_code == COMPARE);
|
||
}
|
||
|
||
/* On machines without logical shifts, if the operand of the AND is
|
||
a logical shift and our mask turns off all the propagated sign
|
||
bits, we can replace the logical shift with an arithmetic shift. */
|
||
else if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& !have_insn_for (LSHIFTRT, mode)
|
||
&& have_insn_for (ASHIFTRT, mode)
|
||
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
||
|
||
mask >>= INTVAL (XEXP (XEXP (x, 0), 1));
|
||
if ((INTVAL (XEXP (x, 1)) & ~mask) == 0)
|
||
SUBST (XEXP (x, 0),
|
||
gen_rtx_ASHIFTRT (mode,
|
||
make_compound_operation (XEXP (XEXP (x,
|
||
0),
|
||
0),
|
||
next_code),
|
||
XEXP (XEXP (x, 0), 1)));
|
||
}
|
||
|
||
/* If the constant is one less than a power of two, this might be
|
||
representable by an extraction even if no shift is present.
|
||
If it doesn't end up being a ZERO_EXTEND, we will ignore it unless
|
||
we are in a COMPARE. */
|
||
else if ((i = exact_log2 (UINTVAL (XEXP (x, 1)) + 1)) >= 0)
|
||
new_rtx = make_extraction (mode,
|
||
make_compound_operation (XEXP (x, 0),
|
||
next_code),
|
||
0, NULL_RTX, i, 1, 0, in_code == COMPARE);
|
||
|
||
/* If we are in a comparison and this is an AND with a power of two,
|
||
convert this into the appropriate bit extract. */
|
||
else if (in_code == COMPARE
|
||
&& (i = exact_log2 (UINTVAL (XEXP (x, 1)))) >= 0
|
||
&& (equality_comparison || i < GET_MODE_PRECISION (mode) - 1))
|
||
new_rtx = make_extraction (mode,
|
||
make_compound_operation (XEXP (x, 0),
|
||
next_code),
|
||
i, NULL_RTX, 1, 1, 0, 1);
|
||
|
||
/* If the one operand is a paradoxical subreg of a register or memory and
|
||
the constant (limited to the smaller mode) has only zero bits where
|
||
the sub expression has known zero bits, this can be expressed as
|
||
a zero_extend. */
|
||
else if (GET_CODE (XEXP (x, 0)) == SUBREG)
|
||
{
|
||
rtx sub;
|
||
|
||
sub = XEXP (XEXP (x, 0), 0);
|
||
machine_mode sub_mode = GET_MODE (sub);
|
||
int sub_width;
|
||
if ((REG_P (sub) || MEM_P (sub))
|
||
&& GET_MODE_PRECISION (sub_mode).is_constant (&sub_width)
|
||
&& sub_width < mode_width)
|
||
{
|
||
unsigned HOST_WIDE_INT mode_mask = GET_MODE_MASK (sub_mode);
|
||
unsigned HOST_WIDE_INT mask;
|
||
|
||
/* original AND constant with all the known zero bits set */
|
||
mask = UINTVAL (XEXP (x, 1)) | (~nonzero_bits (sub, sub_mode));
|
||
if ((mask & mode_mask) == mode_mask)
|
||
{
|
||
new_rtx = make_compound_operation (sub, next_code);
|
||
new_rtx = make_extraction (mode, new_rtx, 0, 0, sub_width,
|
||
1, 0, in_code == COMPARE);
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
case LSHIFTRT:
|
||
/* If the sign bit is known to be zero, replace this with an
|
||
arithmetic shift. */
|
||
if (have_insn_for (ASHIFTRT, mode)
|
||
&& ! have_insn_for (LSHIFTRT, mode)
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (x, 0), mode) & (1 << (mode_width - 1))) == 0)
|
||
{
|
||
new_rtx = gen_rtx_ASHIFTRT (mode,
|
||
make_compound_operation (XEXP (x, 0),
|
||
next_code),
|
||
XEXP (x, 1));
|
||
break;
|
||
}
|
||
|
||
/* fall through */
|
||
|
||
case ASHIFTRT:
|
||
lhs = XEXP (x, 0);
|
||
rhs = XEXP (x, 1);
|
||
|
||
/* If we have (ashiftrt (ashift foo C1) C2) with C2 >= C1,
|
||
this is a SIGN_EXTRACT. */
|
||
if (CONST_INT_P (rhs)
|
||
&& GET_CODE (lhs) == ASHIFT
|
||
&& CONST_INT_P (XEXP (lhs, 1))
|
||
&& INTVAL (rhs) >= INTVAL (XEXP (lhs, 1))
|
||
&& INTVAL (XEXP (lhs, 1)) >= 0
|
||
&& INTVAL (rhs) < mode_width)
|
||
{
|
||
new_rtx = make_compound_operation (XEXP (lhs, 0), next_code);
|
||
new_rtx = make_extraction (mode, new_rtx,
|
||
INTVAL (rhs) - INTVAL (XEXP (lhs, 1)),
|
||
NULL_RTX, mode_width - INTVAL (rhs),
|
||
code == LSHIFTRT, 0, in_code == COMPARE);
|
||
break;
|
||
}
|
||
|
||
/* See if we have operations between an ASHIFTRT and an ASHIFT.
|
||
If so, try to merge the shifts into a SIGN_EXTEND. We could
|
||
also do this for some cases of SIGN_EXTRACT, but it doesn't
|
||
seem worth the effort; the case checked for occurs on Alpha. */
|
||
|
||
if (!OBJECT_P (lhs)
|
||
&& ! (GET_CODE (lhs) == SUBREG
|
||
&& (OBJECT_P (SUBREG_REG (lhs))))
|
||
&& CONST_INT_P (rhs)
|
||
&& INTVAL (rhs) >= 0
|
||
&& INTVAL (rhs) < HOST_BITS_PER_WIDE_INT
|
||
&& INTVAL (rhs) < mode_width
|
||
&& (new_rtx = extract_left_shift (mode, lhs, INTVAL (rhs))) != 0)
|
||
new_rtx = make_extraction (mode, make_compound_operation (new_rtx,
|
||
next_code),
|
||
0, NULL_RTX, mode_width - INTVAL (rhs),
|
||
code == LSHIFTRT, 0, in_code == COMPARE);
|
||
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* Call ourselves recursively on the inner expression. If we are
|
||
narrowing the object and it has a different RTL code from
|
||
what it originally did, do this SUBREG as a force_to_mode. */
|
||
{
|
||
rtx inner = SUBREG_REG (x), simplified;
|
||
enum rtx_code subreg_code = in_code;
|
||
|
||
/* If the SUBREG is masking of a logical right shift,
|
||
make an extraction. */
|
||
if (GET_CODE (inner) == LSHIFTRT
|
||
&& is_a <scalar_int_mode> (GET_MODE (inner), &inner_mode)
|
||
&& GET_MODE_SIZE (mode) < GET_MODE_SIZE (inner_mode)
|
||
&& CONST_INT_P (XEXP (inner, 1))
|
||
&& UINTVAL (XEXP (inner, 1)) < GET_MODE_PRECISION (inner_mode)
|
||
&& subreg_lowpart_p (x))
|
||
{
|
||
new_rtx = make_compound_operation (XEXP (inner, 0), next_code);
|
||
int width = GET_MODE_PRECISION (inner_mode)
|
||
- INTVAL (XEXP (inner, 1));
|
||
if (width > mode_width)
|
||
width = mode_width;
|
||
new_rtx = make_extraction (mode, new_rtx, 0, XEXP (inner, 1),
|
||
width, 1, 0, in_code == COMPARE);
|
||
break;
|
||
}
|
||
|
||
/* If in_code is COMPARE, it isn't always safe to pass it through
|
||
to the recursive make_compound_operation call. */
|
||
if (subreg_code == COMPARE
|
||
&& (!subreg_lowpart_p (x)
|
||
|| GET_CODE (inner) == SUBREG
|
||
/* (subreg:SI (and:DI (reg:DI) (const_int 0x800000000)) 0)
|
||
is (const_int 0), rather than
|
||
(subreg:SI (lshiftrt:DI (reg:DI) (const_int 35)) 0).
|
||
Similarly (subreg:QI (and:SI (reg:SI) (const_int 0x80)) 0)
|
||
for non-equality comparisons against 0 is not equivalent
|
||
to (subreg:QI (lshiftrt:SI (reg:SI) (const_int 7)) 0). */
|
||
|| (GET_CODE (inner) == AND
|
||
&& CONST_INT_P (XEXP (inner, 1))
|
||
&& partial_subreg_p (x)
|
||
&& exact_log2 (UINTVAL (XEXP (inner, 1)))
|
||
>= GET_MODE_BITSIZE (mode) - 1)))
|
||
subreg_code = SET;
|
||
|
||
tem = make_compound_operation (inner, subreg_code);
|
||
|
||
simplified
|
||
= simplify_subreg (mode, tem, GET_MODE (inner), SUBREG_BYTE (x));
|
||
if (simplified)
|
||
tem = simplified;
|
||
|
||
if (GET_CODE (tem) != GET_CODE (inner)
|
||
&& partial_subreg_p (x)
|
||
&& subreg_lowpart_p (x))
|
||
{
|
||
rtx newer
|
||
= force_to_mode (tem, mode, HOST_WIDE_INT_M1U, 0);
|
||
|
||
/* If we have something other than a SUBREG, we might have
|
||
done an expansion, so rerun ourselves. */
|
||
if (GET_CODE (newer) != SUBREG)
|
||
newer = make_compound_operation (newer, in_code);
|
||
|
||
/* force_to_mode can expand compounds. If it just re-expanded
|
||
the compound, use gen_lowpart to convert to the desired
|
||
mode. */
|
||
if (rtx_equal_p (newer, x)
|
||
/* Likewise if it re-expanded the compound only partially.
|
||
This happens for SUBREG of ZERO_EXTRACT if they extract
|
||
the same number of bits. */
|
||
|| (GET_CODE (newer) == SUBREG
|
||
&& (GET_CODE (SUBREG_REG (newer)) == LSHIFTRT
|
||
|| GET_CODE (SUBREG_REG (newer)) == ASHIFTRT)
|
||
&& GET_CODE (inner) == AND
|
||
&& rtx_equal_p (SUBREG_REG (newer), XEXP (inner, 0))))
|
||
return gen_lowpart (GET_MODE (x), tem);
|
||
|
||
return newer;
|
||
}
|
||
|
||
if (simplified)
|
||
return tem;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
if (new_rtx)
|
||
*x_ptr = gen_lowpart (mode, new_rtx);
|
||
*next_code_ptr = next_code;
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Look at the expression rooted at X. Look for expressions
|
||
equivalent to ZERO_EXTRACT, SIGN_EXTRACT, ZERO_EXTEND, SIGN_EXTEND.
|
||
Form these expressions.
|
||
|
||
Return the new rtx, usually just X.
|
||
|
||
Also, for machines like the VAX that don't have logical shift insns,
|
||
try to convert logical to arithmetic shift operations in cases where
|
||
they are equivalent. This undoes the canonicalizations to logical
|
||
shifts done elsewhere.
|
||
|
||
We try, as much as possible, to re-use rtl expressions to save memory.
|
||
|
||
IN_CODE says what kind of expression we are processing. Normally, it is
|
||
SET. In a memory address it is MEM. When processing the arguments of
|
||
a comparison or a COMPARE against zero, it is COMPARE, or EQ if more
|
||
precisely it is an equality comparison against zero. */
|
||
|
||
rtx
|
||
make_compound_operation (rtx x, enum rtx_code in_code)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *fmt;
|
||
int i, j;
|
||
enum rtx_code next_code;
|
||
rtx new_rtx, tem;
|
||
|
||
/* Select the code to be used in recursive calls. Once we are inside an
|
||
address, we stay there. If we have a comparison, set to COMPARE,
|
||
but once inside, go back to our default of SET. */
|
||
|
||
next_code = (code == MEM ? MEM
|
||
: ((code == COMPARE || COMPARISON_P (x))
|
||
&& XEXP (x, 1) == const0_rtx) ? COMPARE
|
||
: in_code == COMPARE || in_code == EQ ? SET : in_code);
|
||
|
||
scalar_int_mode mode;
|
||
if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
|
||
{
|
||
rtx new_rtx = make_compound_operation_int (mode, &x, in_code,
|
||
&next_code);
|
||
if (new_rtx)
|
||
return new_rtx;
|
||
code = GET_CODE (x);
|
||
}
|
||
|
||
/* Now recursively process each operand of this operation. We need to
|
||
handle ZERO_EXTEND specially so that we don't lose track of the
|
||
inner mode. */
|
||
if (code == ZERO_EXTEND)
|
||
{
|
||
new_rtx = make_compound_operation (XEXP (x, 0), next_code);
|
||
tem = simplify_const_unary_operation (ZERO_EXTEND, GET_MODE (x),
|
||
new_rtx, GET_MODE (XEXP (x, 0)));
|
||
if (tem)
|
||
return tem;
|
||
SUBST (XEXP (x, 0), new_rtx);
|
||
return x;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = 0; i < GET_RTX_LENGTH (code); i++)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
new_rtx = make_compound_operation (XEXP (x, i), next_code);
|
||
SUBST (XEXP (x, i), new_rtx);
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
{
|
||
new_rtx = make_compound_operation (XVECEXP (x, i, j), next_code);
|
||
SUBST (XVECEXP (x, i, j), new_rtx);
|
||
}
|
||
|
||
maybe_swap_commutative_operands (x);
|
||
return x;
|
||
}
|
||
|
||
/* Given M see if it is a value that would select a field of bits
|
||
within an item, but not the entire word. Return -1 if not.
|
||
Otherwise, return the starting position of the field, where 0 is the
|
||
low-order bit.
|
||
|
||
*PLEN is set to the length of the field. */
|
||
|
||
static int
|
||
get_pos_from_mask (unsigned HOST_WIDE_INT m, unsigned HOST_WIDE_INT *plen)
|
||
{
|
||
/* Get the bit number of the first 1 bit from the right, -1 if none. */
|
||
int pos = m ? ctz_hwi (m) : -1;
|
||
int len = 0;
|
||
|
||
if (pos >= 0)
|
||
/* Now shift off the low-order zero bits and see if we have a
|
||
power of two minus 1. */
|
||
len = exact_log2 ((m >> pos) + 1);
|
||
|
||
if (len <= 0)
|
||
pos = -1;
|
||
|
||
*plen = len;
|
||
return pos;
|
||
}
|
||
|
||
/* If X refers to a register that equals REG in value, replace these
|
||
references with REG. */
|
||
static rtx
|
||
canon_reg_for_combine (rtx x, rtx reg)
|
||
{
|
||
rtx op0, op1, op2;
|
||
const char *fmt;
|
||
int i;
|
||
bool copied;
|
||
|
||
enum rtx_code code = GET_CODE (x);
|
||
switch (GET_RTX_CLASS (code))
|
||
{
|
||
case RTX_UNARY:
|
||
op0 = canon_reg_for_combine (XEXP (x, 0), reg);
|
||
if (op0 != XEXP (x, 0))
|
||
return simplify_gen_unary (GET_CODE (x), GET_MODE (x), op0,
|
||
GET_MODE (reg));
|
||
break;
|
||
|
||
case RTX_BIN_ARITH:
|
||
case RTX_COMM_ARITH:
|
||
op0 = canon_reg_for_combine (XEXP (x, 0), reg);
|
||
op1 = canon_reg_for_combine (XEXP (x, 1), reg);
|
||
if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
|
||
return simplify_gen_binary (GET_CODE (x), GET_MODE (x), op0, op1);
|
||
break;
|
||
|
||
case RTX_COMPARE:
|
||
case RTX_COMM_COMPARE:
|
||
op0 = canon_reg_for_combine (XEXP (x, 0), reg);
|
||
op1 = canon_reg_for_combine (XEXP (x, 1), reg);
|
||
if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
|
||
return simplify_gen_relational (GET_CODE (x), GET_MODE (x),
|
||
GET_MODE (op0), op0, op1);
|
||
break;
|
||
|
||
case RTX_TERNARY:
|
||
case RTX_BITFIELD_OPS:
|
||
op0 = canon_reg_for_combine (XEXP (x, 0), reg);
|
||
op1 = canon_reg_for_combine (XEXP (x, 1), reg);
|
||
op2 = canon_reg_for_combine (XEXP (x, 2), reg);
|
||
if (op0 != XEXP (x, 0) || op1 != XEXP (x, 1) || op2 != XEXP (x, 2))
|
||
return simplify_gen_ternary (GET_CODE (x), GET_MODE (x),
|
||
GET_MODE (op0), op0, op1, op2);
|
||
/* FALLTHRU */
|
||
|
||
case RTX_OBJ:
|
||
if (REG_P (x))
|
||
{
|
||
if (rtx_equal_p (get_last_value (reg), x)
|
||
|| rtx_equal_p (reg, get_last_value (x)))
|
||
return reg;
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* fall through */
|
||
|
||
default:
|
||
fmt = GET_RTX_FORMAT (code);
|
||
copied = false;
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
rtx op = canon_reg_for_combine (XEXP (x, i), reg);
|
||
if (op != XEXP (x, i))
|
||
{
|
||
if (!copied)
|
||
{
|
||
copied = true;
|
||
x = copy_rtx (x);
|
||
}
|
||
XEXP (x, i) = op;
|
||
}
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
{
|
||
rtx op = canon_reg_for_combine (XVECEXP (x, i, j), reg);
|
||
if (op != XVECEXP (x, i, j))
|
||
{
|
||
if (!copied)
|
||
{
|
||
copied = true;
|
||
x = copy_rtx (x);
|
||
}
|
||
XVECEXP (x, i, j) = op;
|
||
}
|
||
}
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Return X converted to MODE. If the value is already truncated to
|
||
MODE we can just return a subreg even though in the general case we
|
||
would need an explicit truncation. */
|
||
|
||
static rtx
|
||
gen_lowpart_or_truncate (machine_mode mode, rtx x)
|
||
{
|
||
if (!CONST_INT_P (x)
|
||
&& partial_subreg_p (mode, GET_MODE (x))
|
||
&& !TRULY_NOOP_TRUNCATION_MODES_P (mode, GET_MODE (x))
|
||
&& !(REG_P (x) && reg_truncated_to_mode (mode, x)))
|
||
{
|
||
/* Bit-cast X into an integer mode. */
|
||
if (!SCALAR_INT_MODE_P (GET_MODE (x)))
|
||
x = gen_lowpart (int_mode_for_mode (GET_MODE (x)).require (), x);
|
||
x = simplify_gen_unary (TRUNCATE, int_mode_for_mode (mode).require (),
|
||
x, GET_MODE (x));
|
||
}
|
||
|
||
return gen_lowpart (mode, x);
|
||
}
|
||
|
||
/* See if X can be simplified knowing that we will only refer to it in
|
||
MODE and will only refer to those bits that are nonzero in MASK.
|
||
If other bits are being computed or if masking operations are done
|
||
that select a superset of the bits in MASK, they can sometimes be
|
||
ignored.
|
||
|
||
Return a possibly simplified expression, but always convert X to
|
||
MODE. If X is a CONST_INT, AND the CONST_INT with MASK.
|
||
|
||
If JUST_SELECT is nonzero, don't optimize by noticing that bits in MASK
|
||
are all off in X. This is used when X will be complemented, by either
|
||
NOT, NEG, or XOR. */
|
||
|
||
static rtx
|
||
force_to_mode (rtx x, machine_mode mode, unsigned HOST_WIDE_INT mask,
|
||
int just_select)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int next_select = just_select || code == XOR || code == NOT || code == NEG;
|
||
machine_mode op_mode;
|
||
unsigned HOST_WIDE_INT nonzero;
|
||
|
||
/* If this is a CALL or ASM_OPERANDS, don't do anything. Some of the
|
||
code below will do the wrong thing since the mode of such an
|
||
expression is VOIDmode.
|
||
|
||
Also do nothing if X is a CLOBBER; this can happen if X was
|
||
the return value from a call to gen_lowpart. */
|
||
if (code == CALL || code == ASM_OPERANDS || code == CLOBBER)
|
||
return x;
|
||
|
||
/* We want to perform the operation in its present mode unless we know
|
||
that the operation is valid in MODE, in which case we do the operation
|
||
in MODE. */
|
||
op_mode = ((GET_MODE_CLASS (mode) == GET_MODE_CLASS (GET_MODE (x))
|
||
&& have_insn_for (code, mode))
|
||
? mode : GET_MODE (x));
|
||
|
||
/* It is not valid to do a right-shift in a narrower mode
|
||
than the one it came in with. */
|
||
if ((code == LSHIFTRT || code == ASHIFTRT)
|
||
&& partial_subreg_p (mode, GET_MODE (x)))
|
||
op_mode = GET_MODE (x);
|
||
|
||
/* Truncate MASK to fit OP_MODE. */
|
||
if (op_mode)
|
||
mask &= GET_MODE_MASK (op_mode);
|
||
|
||
/* Determine what bits of X are guaranteed to be (non)zero. */
|
||
nonzero = nonzero_bits (x, mode);
|
||
|
||
/* If none of the bits in X are needed, return a zero. */
|
||
if (!just_select && (nonzero & mask) == 0 && !side_effects_p (x))
|
||
x = const0_rtx;
|
||
|
||
/* If X is a CONST_INT, return a new one. Do this here since the
|
||
test below will fail. */
|
||
if (CONST_INT_P (x))
|
||
{
|
||
if (SCALAR_INT_MODE_P (mode))
|
||
return gen_int_mode (INTVAL (x) & mask, mode);
|
||
else
|
||
{
|
||
x = GEN_INT (INTVAL (x) & mask);
|
||
return gen_lowpart_common (mode, x);
|
||
}
|
||
}
|
||
|
||
/* If X is narrower than MODE and we want all the bits in X's mode, just
|
||
get X in the proper mode. */
|
||
if (paradoxical_subreg_p (mode, GET_MODE (x))
|
||
&& (GET_MODE_MASK (GET_MODE (x)) & ~mask) == 0)
|
||
return gen_lowpart (mode, x);
|
||
|
||
/* We can ignore the effect of a SUBREG if it narrows the mode or
|
||
if the constant masks to zero all the bits the mode doesn't have. */
|
||
if (GET_CODE (x) == SUBREG
|
||
&& subreg_lowpart_p (x)
|
||
&& (partial_subreg_p (x)
|
||
|| (mask
|
||
& GET_MODE_MASK (GET_MODE (x))
|
||
& ~GET_MODE_MASK (GET_MODE (SUBREG_REG (x)))) == 0))
|
||
return force_to_mode (SUBREG_REG (x), mode, mask, next_select);
|
||
|
||
scalar_int_mode int_mode, xmode;
|
||
if (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& is_a <scalar_int_mode> (GET_MODE (x), &xmode))
|
||
/* OP_MODE is either MODE or XMODE, so it must be a scalar
|
||
integer too. */
|
||
return force_int_to_mode (x, int_mode, xmode,
|
||
as_a <scalar_int_mode> (op_mode),
|
||
mask, just_select);
|
||
|
||
return gen_lowpart_or_truncate (mode, x);
|
||
}
|
||
|
||
/* Subroutine of force_to_mode that handles cases in which both X and
|
||
the result are scalar integers. MODE is the mode of the result,
|
||
XMODE is the mode of X, and OP_MODE says which of MODE or XMODE
|
||
is preferred for simplified versions of X. The other arguments
|
||
are as for force_to_mode. */
|
||
|
||
static rtx
|
||
force_int_to_mode (rtx x, scalar_int_mode mode, scalar_int_mode xmode,
|
||
scalar_int_mode op_mode, unsigned HOST_WIDE_INT mask,
|
||
int just_select)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
int next_select = just_select || code == XOR || code == NOT || code == NEG;
|
||
unsigned HOST_WIDE_INT fuller_mask;
|
||
rtx op0, op1, temp;
|
||
poly_int64 const_op0;
|
||
|
||
/* When we have an arithmetic operation, or a shift whose count we
|
||
do not know, we need to assume that all bits up to the highest-order
|
||
bit in MASK will be needed. This is how we form such a mask. */
|
||
if (mask & (HOST_WIDE_INT_1U << (HOST_BITS_PER_WIDE_INT - 1)))
|
||
fuller_mask = HOST_WIDE_INT_M1U;
|
||
else
|
||
fuller_mask = ((HOST_WIDE_INT_1U << (floor_log2 (mask) + 1))
|
||
- 1);
|
||
|
||
switch (code)
|
||
{
|
||
case CLOBBER:
|
||
/* If X is a (clobber (const_int)), return it since we know we are
|
||
generating something that won't match. */
|
||
return x;
|
||
|
||
case SIGN_EXTEND:
|
||
case ZERO_EXTEND:
|
||
case ZERO_EXTRACT:
|
||
case SIGN_EXTRACT:
|
||
x = expand_compound_operation (x);
|
||
if (GET_CODE (x) != code)
|
||
return force_to_mode (x, mode, mask, next_select);
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
/* Similarly for a truncate. */
|
||
return force_to_mode (XEXP (x, 0), mode, mask, next_select);
|
||
|
||
case AND:
|
||
/* If this is an AND with a constant, convert it into an AND
|
||
whose constant is the AND of that constant with MASK. If it
|
||
remains an AND of MASK, delete it since it is redundant. */
|
||
|
||
if (CONST_INT_P (XEXP (x, 1)))
|
||
{
|
||
x = simplify_and_const_int (x, op_mode, XEXP (x, 0),
|
||
mask & INTVAL (XEXP (x, 1)));
|
||
xmode = op_mode;
|
||
|
||
/* If X is still an AND, see if it is an AND with a mask that
|
||
is just some low-order bits. If so, and it is MASK, we don't
|
||
need it. */
|
||
|
||
if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
|
||
&& (INTVAL (XEXP (x, 1)) & GET_MODE_MASK (xmode)) == mask)
|
||
x = XEXP (x, 0);
|
||
|
||
/* If it remains an AND, try making another AND with the bits
|
||
in the mode mask that aren't in MASK turned on. If the
|
||
constant in the AND is wide enough, this might make a
|
||
cheaper constant. */
|
||
|
||
if (GET_CODE (x) == AND && CONST_INT_P (XEXP (x, 1))
|
||
&& GET_MODE_MASK (xmode) != mask
|
||
&& HWI_COMPUTABLE_MODE_P (xmode))
|
||
{
|
||
unsigned HOST_WIDE_INT cval
|
||
= UINTVAL (XEXP (x, 1)) | (GET_MODE_MASK (xmode) & ~mask);
|
||
rtx y;
|
||
|
||
y = simplify_gen_binary (AND, xmode, XEXP (x, 0),
|
||
gen_int_mode (cval, xmode));
|
||
if (set_src_cost (y, xmode, optimize_this_for_speed_p)
|
||
< set_src_cost (x, xmode, optimize_this_for_speed_p))
|
||
x = y;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
goto binop;
|
||
|
||
case PLUS:
|
||
/* In (and (plus FOO C1) M), if M is a mask that just turns off
|
||
low-order bits (as in an alignment operation) and FOO is already
|
||
aligned to that boundary, mask C1 to that boundary as well.
|
||
This may eliminate that PLUS and, later, the AND. */
|
||
|
||
{
|
||
unsigned int width = GET_MODE_PRECISION (mode);
|
||
unsigned HOST_WIDE_INT smask = mask;
|
||
|
||
/* If MODE is narrower than HOST_WIDE_INT and mask is a negative
|
||
number, sign extend it. */
|
||
|
||
if (width < HOST_BITS_PER_WIDE_INT
|
||
&& (smask & (HOST_WIDE_INT_1U << (width - 1))) != 0)
|
||
smask |= HOST_WIDE_INT_M1U << width;
|
||
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& pow2p_hwi (- smask)
|
||
&& (nonzero_bits (XEXP (x, 0), mode) & ~smask) == 0
|
||
&& (INTVAL (XEXP (x, 1)) & ~smask) != 0)
|
||
return force_to_mode (plus_constant (xmode, XEXP (x, 0),
|
||
(INTVAL (XEXP (x, 1)) & smask)),
|
||
mode, smask, next_select);
|
||
}
|
||
|
||
/* fall through */
|
||
|
||
case MULT:
|
||
/* Substituting into the operands of a widening MULT is not likely to
|
||
create RTL matching a machine insn. */
|
||
if (code == MULT
|
||
&& (GET_CODE (XEXP (x, 0)) == ZERO_EXTEND
|
||
|| GET_CODE (XEXP (x, 0)) == SIGN_EXTEND)
|
||
&& (GET_CODE (XEXP (x, 1)) == ZERO_EXTEND
|
||
|| GET_CODE (XEXP (x, 1)) == SIGN_EXTEND)
|
||
&& REG_P (XEXP (XEXP (x, 0), 0))
|
||
&& REG_P (XEXP (XEXP (x, 1), 0)))
|
||
return gen_lowpart_or_truncate (mode, x);
|
||
|
||
/* For PLUS, MINUS and MULT, we need any bits less significant than the
|
||
most significant bit in MASK since carries from those bits will
|
||
affect the bits we are interested in. */
|
||
mask = fuller_mask;
|
||
goto binop;
|
||
|
||
case MINUS:
|
||
/* If X is (minus C Y) where C's least set bit is larger than any bit
|
||
in the mask, then we may replace with (neg Y). */
|
||
if (poly_int_rtx_p (XEXP (x, 0), &const_op0)
|
||
&& known_alignment (poly_uint64 (const_op0)) > mask)
|
||
{
|
||
x = simplify_gen_unary (NEG, xmode, XEXP (x, 1), xmode);
|
||
return force_to_mode (x, mode, mask, next_select);
|
||
}
|
||
|
||
/* Similarly, if C contains every bit in the fuller_mask, then we may
|
||
replace with (not Y). */
|
||
if (CONST_INT_P (XEXP (x, 0))
|
||
&& ((UINTVAL (XEXP (x, 0)) | fuller_mask) == UINTVAL (XEXP (x, 0))))
|
||
{
|
||
x = simplify_gen_unary (NOT, xmode, XEXP (x, 1), xmode);
|
||
return force_to_mode (x, mode, mask, next_select);
|
||
}
|
||
|
||
mask = fuller_mask;
|
||
goto binop;
|
||
|
||
case IOR:
|
||
case XOR:
|
||
/* If X is (ior (lshiftrt FOO C1) C2), try to commute the IOR and
|
||
LSHIFTRT so we end up with an (and (lshiftrt (ior ...) ...) ...)
|
||
operation which may be a bitfield extraction. Ensure that the
|
||
constant we form is not wider than the mode of X. */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& ((INTVAL (XEXP (XEXP (x, 0), 1))
|
||
+ floor_log2 (INTVAL (XEXP (x, 1))))
|
||
< GET_MODE_PRECISION (xmode))
|
||
&& (UINTVAL (XEXP (x, 1))
|
||
& ~nonzero_bits (XEXP (x, 0), xmode)) == 0)
|
||
{
|
||
temp = gen_int_mode ((INTVAL (XEXP (x, 1)) & mask)
|
||
<< INTVAL (XEXP (XEXP (x, 0), 1)),
|
||
xmode);
|
||
temp = simplify_gen_binary (GET_CODE (x), xmode,
|
||
XEXP (XEXP (x, 0), 0), temp);
|
||
x = simplify_gen_binary (LSHIFTRT, xmode, temp,
|
||
XEXP (XEXP (x, 0), 1));
|
||
return force_to_mode (x, mode, mask, next_select);
|
||
}
|
||
|
||
binop:
|
||
/* For most binary operations, just propagate into the operation and
|
||
change the mode if we have an operation of that mode. */
|
||
|
||
op0 = force_to_mode (XEXP (x, 0), mode, mask, next_select);
|
||
op1 = force_to_mode (XEXP (x, 1), mode, mask, next_select);
|
||
|
||
/* If we ended up truncating both operands, truncate the result of the
|
||
operation instead. */
|
||
if (GET_CODE (op0) == TRUNCATE
|
||
&& GET_CODE (op1) == TRUNCATE)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = XEXP (op1, 0);
|
||
}
|
||
|
||
op0 = gen_lowpart_or_truncate (op_mode, op0);
|
||
op1 = gen_lowpart_or_truncate (op_mode, op1);
|
||
|
||
if (op_mode != xmode || op0 != XEXP (x, 0) || op1 != XEXP (x, 1))
|
||
{
|
||
x = simplify_gen_binary (code, op_mode, op0, op1);
|
||
xmode = op_mode;
|
||
}
|
||
break;
|
||
|
||
case ASHIFT:
|
||
/* For left shifts, do the same, but just for the first operand.
|
||
However, we cannot do anything with shifts where we cannot
|
||
guarantee that the counts are smaller than the size of the mode
|
||
because such a count will have a different meaning in a
|
||
wider mode. */
|
||
|
||
if (! (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (mode))
|
||
&& ! (GET_MODE (XEXP (x, 1)) != VOIDmode
|
||
&& (nonzero_bits (XEXP (x, 1), GET_MODE (XEXP (x, 1)))
|
||
< (unsigned HOST_WIDE_INT) GET_MODE_PRECISION (mode))))
|
||
break;
|
||
|
||
/* If the shift count is a constant and we can do arithmetic in
|
||
the mode of the shift, refine which bits we need. Otherwise, use the
|
||
conservative form of the mask. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < GET_MODE_PRECISION (op_mode)
|
||
&& HWI_COMPUTABLE_MODE_P (op_mode))
|
||
mask >>= INTVAL (XEXP (x, 1));
|
||
else
|
||
mask = fuller_mask;
|
||
|
||
op0 = gen_lowpart_or_truncate (op_mode,
|
||
force_to_mode (XEXP (x, 0), mode,
|
||
mask, next_select));
|
||
|
||
if (op_mode != xmode || op0 != XEXP (x, 0))
|
||
{
|
||
x = simplify_gen_binary (code, op_mode, op0, XEXP (x, 1));
|
||
xmode = op_mode;
|
||
}
|
||
break;
|
||
|
||
case LSHIFTRT:
|
||
/* Here we can only do something if the shift count is a constant,
|
||
this shift constant is valid for the host, and we can do arithmetic
|
||
in OP_MODE. */
|
||
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& HWI_COMPUTABLE_MODE_P (op_mode))
|
||
{
|
||
rtx inner = XEXP (x, 0);
|
||
unsigned HOST_WIDE_INT inner_mask;
|
||
|
||
/* Select the mask of the bits we need for the shift operand. */
|
||
inner_mask = mask << INTVAL (XEXP (x, 1));
|
||
|
||
/* We can only change the mode of the shift if we can do arithmetic
|
||
in the mode of the shift and INNER_MASK is no wider than the
|
||
width of X's mode. */
|
||
if ((inner_mask & ~GET_MODE_MASK (xmode)) != 0)
|
||
op_mode = xmode;
|
||
|
||
inner = force_to_mode (inner, op_mode, inner_mask, next_select);
|
||
|
||
if (xmode != op_mode || inner != XEXP (x, 0))
|
||
{
|
||
x = simplify_gen_binary (LSHIFTRT, op_mode, inner, XEXP (x, 1));
|
||
xmode = op_mode;
|
||
}
|
||
}
|
||
|
||
/* If we have (and (lshiftrt FOO C1) C2) where the combination of the
|
||
shift and AND produces only copies of the sign bit (C2 is one less
|
||
than a power of two), we can do this with just a shift. */
|
||
|
||
if (GET_CODE (x) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
/* The shift puts one of the sign bit copies in the least significant
|
||
bit. */
|
||
&& ((INTVAL (XEXP (x, 1))
|
||
+ num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0))))
|
||
>= GET_MODE_PRECISION (xmode))
|
||
&& pow2p_hwi (mask + 1)
|
||
/* Number of bits left after the shift must be more than the mask
|
||
needs. */
|
||
&& ((INTVAL (XEXP (x, 1)) + exact_log2 (mask + 1))
|
||
<= GET_MODE_PRECISION (xmode))
|
||
/* Must be more sign bit copies than the mask needs. */
|
||
&& ((int) num_sign_bit_copies (XEXP (x, 0), GET_MODE (XEXP (x, 0)))
|
||
>= exact_log2 (mask + 1)))
|
||
{
|
||
int nbits = GET_MODE_PRECISION (xmode) - exact_log2 (mask + 1);
|
||
x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0),
|
||
gen_int_shift_amount (xmode, nbits));
|
||
}
|
||
goto shiftrt;
|
||
|
||
case ASHIFTRT:
|
||
/* If we are just looking for the sign bit, we don't need this shift at
|
||
all, even if it has a variable count. */
|
||
if (val_signbit_p (xmode, mask))
|
||
return force_to_mode (XEXP (x, 0), mode, mask, next_select);
|
||
|
||
/* If this is a shift by a constant, get a mask that contains those bits
|
||
that are not copies of the sign bit. We then have two cases: If
|
||
MASK only includes those bits, this can be a logical shift, which may
|
||
allow simplifications. If MASK is a single-bit field not within
|
||
those bits, we are requesting a copy of the sign bit and hence can
|
||
shift the sign bit to the appropriate location. */
|
||
|
||
if (CONST_INT_P (XEXP (x, 1)) && INTVAL (XEXP (x, 1)) >= 0
|
||
&& INTVAL (XEXP (x, 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero;
|
||
int i;
|
||
|
||
/* If the considered data is wider than HOST_WIDE_INT, we can't
|
||
represent a mask for all its bits in a single scalar.
|
||
But we only care about the lower bits, so calculate these. */
|
||
|
||
if (GET_MODE_PRECISION (xmode) > HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
nonzero = HOST_WIDE_INT_M1U;
|
||
|
||
/* GET_MODE_PRECISION (GET_MODE (x)) - INTVAL (XEXP (x, 1))
|
||
is the number of bits a full-width mask would have set.
|
||
We need only shift if these are fewer than nonzero can
|
||
hold. If not, we must keep all bits set in nonzero. */
|
||
|
||
if (GET_MODE_PRECISION (xmode) - INTVAL (XEXP (x, 1))
|
||
< HOST_BITS_PER_WIDE_INT)
|
||
nonzero >>= INTVAL (XEXP (x, 1))
|
||
+ HOST_BITS_PER_WIDE_INT
|
||
- GET_MODE_PRECISION (xmode);
|
||
}
|
||
else
|
||
{
|
||
nonzero = GET_MODE_MASK (xmode);
|
||
nonzero >>= INTVAL (XEXP (x, 1));
|
||
}
|
||
|
||
if ((mask & ~nonzero) == 0)
|
||
{
|
||
x = simplify_shift_const (NULL_RTX, LSHIFTRT, xmode,
|
||
XEXP (x, 0), INTVAL (XEXP (x, 1)));
|
||
if (GET_CODE (x) != ASHIFTRT)
|
||
return force_to_mode (x, mode, mask, next_select);
|
||
}
|
||
|
||
else if ((i = exact_log2 (mask)) >= 0)
|
||
{
|
||
x = simplify_shift_const
|
||
(NULL_RTX, LSHIFTRT, xmode, XEXP (x, 0),
|
||
GET_MODE_PRECISION (xmode) - 1 - i);
|
||
|
||
if (GET_CODE (x) != ASHIFTRT)
|
||
return force_to_mode (x, mode, mask, next_select);
|
||
}
|
||
}
|
||
|
||
/* If MASK is 1, convert this to an LSHIFTRT. This can be done
|
||
even if the shift count isn't a constant. */
|
||
if (mask == 1)
|
||
x = simplify_gen_binary (LSHIFTRT, xmode, XEXP (x, 0), XEXP (x, 1));
|
||
|
||
shiftrt:
|
||
|
||
/* If this is a zero- or sign-extension operation that just affects bits
|
||
we don't care about, remove it. Be sure the call above returned
|
||
something that is still a shift. */
|
||
|
||
if ((GET_CODE (x) == LSHIFTRT || GET_CODE (x) == ASHIFTRT)
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= 0
|
||
&& (INTVAL (XEXP (x, 1))
|
||
<= GET_MODE_PRECISION (xmode) - (floor_log2 (mask) + 1))
|
||
&& GET_CODE (XEXP (x, 0)) == ASHIFT
|
||
&& XEXP (XEXP (x, 0), 1) == XEXP (x, 1))
|
||
return force_to_mode (XEXP (XEXP (x, 0), 0), mode, mask,
|
||
next_select);
|
||
|
||
break;
|
||
|
||
case ROTATE:
|
||
case ROTATERT:
|
||
/* If the shift count is constant and we can do computations
|
||
in the mode of X, compute where the bits we care about are.
|
||
Otherwise, we can't do anything. Don't change the mode of
|
||
the shift or propagate MODE into the shift, though. */
|
||
if (CONST_INT_P (XEXP (x, 1))
|
||
&& INTVAL (XEXP (x, 1)) >= 0)
|
||
{
|
||
temp = simplify_binary_operation (code == ROTATE ? ROTATERT : ROTATE,
|
||
xmode, gen_int_mode (mask, xmode),
|
||
XEXP (x, 1));
|
||
if (temp && CONST_INT_P (temp))
|
||
x = simplify_gen_binary (code, xmode,
|
||
force_to_mode (XEXP (x, 0), xmode,
|
||
INTVAL (temp), next_select),
|
||
XEXP (x, 1));
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* If we just want the low-order bit, the NEG isn't needed since it
|
||
won't change the low-order bit. */
|
||
if (mask == 1)
|
||
return force_to_mode (XEXP (x, 0), mode, mask, just_select);
|
||
|
||
/* We need any bits less significant than the most significant bit in
|
||
MASK since carries from those bits will affect the bits we are
|
||
interested in. */
|
||
mask = fuller_mask;
|
||
goto unop;
|
||
|
||
case NOT:
|
||
/* (not FOO) is (xor FOO CONST), so if FOO is an LSHIFTRT, we can do the
|
||
same as the XOR case above. Ensure that the constant we form is not
|
||
wider than the mode of X. */
|
||
|
||
if (GET_CODE (XEXP (x, 0)) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (XEXP (x, 0), 1))
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) >= 0
|
||
&& (INTVAL (XEXP (XEXP (x, 0), 1)) + floor_log2 (mask)
|
||
< GET_MODE_PRECISION (xmode))
|
||
&& INTVAL (XEXP (XEXP (x, 0), 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
temp = gen_int_mode (mask << INTVAL (XEXP (XEXP (x, 0), 1)), xmode);
|
||
temp = simplify_gen_binary (XOR, xmode, XEXP (XEXP (x, 0), 0), temp);
|
||
x = simplify_gen_binary (LSHIFTRT, xmode,
|
||
temp, XEXP (XEXP (x, 0), 1));
|
||
|
||
return force_to_mode (x, mode, mask, next_select);
|
||
}
|
||
|
||
/* (and (not FOO) CONST) is (not (or FOO (not CONST))), so we must
|
||
use the full mask inside the NOT. */
|
||
mask = fuller_mask;
|
||
|
||
unop:
|
||
op0 = gen_lowpart_or_truncate (op_mode,
|
||
force_to_mode (XEXP (x, 0), mode, mask,
|
||
next_select));
|
||
if (op_mode != xmode || op0 != XEXP (x, 0))
|
||
{
|
||
x = simplify_gen_unary (code, op_mode, op0, op_mode);
|
||
xmode = op_mode;
|
||
}
|
||
break;
|
||
|
||
case NE:
|
||
/* (and (ne FOO 0) CONST) can be (and FOO CONST) if CONST is included
|
||
in STORE_FLAG_VALUE and FOO has a single bit that might be nonzero,
|
||
which is equal to STORE_FLAG_VALUE. */
|
||
if ((mask & ~STORE_FLAG_VALUE) == 0
|
||
&& XEXP (x, 1) == const0_rtx
|
||
&& GET_MODE (XEXP (x, 0)) == mode
|
||
&& pow2p_hwi (nonzero_bits (XEXP (x, 0), mode))
|
||
&& (nonzero_bits (XEXP (x, 0), mode)
|
||
== (unsigned HOST_WIDE_INT) STORE_FLAG_VALUE))
|
||
return force_to_mode (XEXP (x, 0), mode, mask, next_select);
|
||
|
||
break;
|
||
|
||
case IF_THEN_ELSE:
|
||
/* We have no way of knowing if the IF_THEN_ELSE can itself be
|
||
written in a narrower mode. We play it safe and do not do so. */
|
||
|
||
op0 = gen_lowpart_or_truncate (xmode,
|
||
force_to_mode (XEXP (x, 1), mode,
|
||
mask, next_select));
|
||
op1 = gen_lowpart_or_truncate (xmode,
|
||
force_to_mode (XEXP (x, 2), mode,
|
||
mask, next_select));
|
||
if (op0 != XEXP (x, 1) || op1 != XEXP (x, 2))
|
||
x = simplify_gen_ternary (IF_THEN_ELSE, xmode,
|
||
GET_MODE (XEXP (x, 0)), XEXP (x, 0),
|
||
op0, op1);
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Ensure we return a value of the proper mode. */
|
||
return gen_lowpart_or_truncate (mode, x);
|
||
}
|
||
|
||
/* Return nonzero if X is an expression that has one of two values depending on
|
||
whether some other value is zero or nonzero. In that case, we return the
|
||
value that is being tested, *PTRUE is set to the value if the rtx being
|
||
returned has a nonzero value, and *PFALSE is set to the other alternative.
|
||
|
||
If we return zero, we set *PTRUE and *PFALSE to X. */
|
||
|
||
static rtx
|
||
if_then_else_cond (rtx x, rtx *ptrue, rtx *pfalse)
|
||
{
|
||
machine_mode mode = GET_MODE (x);
|
||
enum rtx_code code = GET_CODE (x);
|
||
rtx cond0, cond1, true0, true1, false0, false1;
|
||
unsigned HOST_WIDE_INT nz;
|
||
scalar_int_mode int_mode;
|
||
|
||
/* If we are comparing a value against zero, we are done. */
|
||
if ((code == NE || code == EQ)
|
||
&& XEXP (x, 1) == const0_rtx)
|
||
{
|
||
*ptrue = (code == NE) ? const_true_rtx : const0_rtx;
|
||
*pfalse = (code == NE) ? const0_rtx : const_true_rtx;
|
||
return XEXP (x, 0);
|
||
}
|
||
|
||
/* If this is a unary operation whose operand has one of two values, apply
|
||
our opcode to compute those values. */
|
||
else if (UNARY_P (x)
|
||
&& (cond0 = if_then_else_cond (XEXP (x, 0), &true0, &false0)) != 0)
|
||
{
|
||
*ptrue = simplify_gen_unary (code, mode, true0, GET_MODE (XEXP (x, 0)));
|
||
*pfalse = simplify_gen_unary (code, mode, false0,
|
||
GET_MODE (XEXP (x, 0)));
|
||
return cond0;
|
||
}
|
||
|
||
/* If this is a COMPARE, do nothing, since the IF_THEN_ELSE we would
|
||
make can't possibly match and would suppress other optimizations. */
|
||
else if (code == COMPARE)
|
||
;
|
||
|
||
/* If this is a binary operation, see if either side has only one of two
|
||
values. If either one does or if both do and they are conditional on
|
||
the same value, compute the new true and false values. */
|
||
else if (BINARY_P (x))
|
||
{
|
||
rtx op0 = XEXP (x, 0);
|
||
rtx op1 = XEXP (x, 1);
|
||
cond0 = if_then_else_cond (op0, &true0, &false0);
|
||
cond1 = if_then_else_cond (op1, &true1, &false1);
|
||
|
||
if ((cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1))
|
||
&& (REG_P (op0) || REG_P (op1)))
|
||
{
|
||
/* Try to enable a simplification by undoing work done by
|
||
if_then_else_cond if it converted a REG into something more
|
||
complex. */
|
||
if (REG_P (op0))
|
||
{
|
||
cond0 = 0;
|
||
true0 = false0 = op0;
|
||
}
|
||
else
|
||
{
|
||
cond1 = 0;
|
||
true1 = false1 = op1;
|
||
}
|
||
}
|
||
|
||
if ((cond0 != 0 || cond1 != 0)
|
||
&& ! (cond0 != 0 && cond1 != 0 && !rtx_equal_p (cond0, cond1)))
|
||
{
|
||
/* If if_then_else_cond returned zero, then true/false are the
|
||
same rtl. We must copy one of them to prevent invalid rtl
|
||
sharing. */
|
||
if (cond0 == 0)
|
||
true0 = copy_rtx (true0);
|
||
else if (cond1 == 0)
|
||
true1 = copy_rtx (true1);
|
||
|
||
if (COMPARISON_P (x))
|
||
{
|
||
*ptrue = simplify_gen_relational (code, mode, VOIDmode,
|
||
true0, true1);
|
||
*pfalse = simplify_gen_relational (code, mode, VOIDmode,
|
||
false0, false1);
|
||
}
|
||
else
|
||
{
|
||
*ptrue = simplify_gen_binary (code, mode, true0, true1);
|
||
*pfalse = simplify_gen_binary (code, mode, false0, false1);
|
||
}
|
||
|
||
return cond0 ? cond0 : cond1;
|
||
}
|
||
|
||
/* See if we have PLUS, IOR, XOR, MINUS or UMAX, where one of the
|
||
operands is zero when the other is nonzero, and vice-versa,
|
||
and STORE_FLAG_VALUE is 1 or -1. */
|
||
|
||
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
&& (code == PLUS || code == IOR || code == XOR || code == MINUS
|
||
|| code == UMAX)
|
||
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
|
||
{
|
||
rtx op0 = XEXP (XEXP (x, 0), 1);
|
||
rtx op1 = XEXP (XEXP (x, 1), 1);
|
||
|
||
cond0 = XEXP (XEXP (x, 0), 0);
|
||
cond1 = XEXP (XEXP (x, 1), 0);
|
||
|
||
if (COMPARISON_P (cond0)
|
||
&& COMPARISON_P (cond1)
|
||
&& SCALAR_INT_MODE_P (mode)
|
||
&& ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|
||
|| ((swap_condition (GET_CODE (cond0))
|
||
== reversed_comparison_code (cond1, NULL))
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
|
||
&& ! side_effects_p (x))
|
||
{
|
||
*ptrue = simplify_gen_binary (MULT, mode, op0, const_true_rtx);
|
||
*pfalse = simplify_gen_binary (MULT, mode,
|
||
(code == MINUS
|
||
? simplify_gen_unary (NEG, mode,
|
||
op1, mode)
|
||
: op1),
|
||
const_true_rtx);
|
||
return cond0;
|
||
}
|
||
}
|
||
|
||
/* Similarly for MULT, AND and UMIN, except that for these the result
|
||
is always zero. */
|
||
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
&& (code == MULT || code == AND || code == UMIN)
|
||
&& GET_CODE (XEXP (x, 0)) == MULT && GET_CODE (XEXP (x, 1)) == MULT)
|
||
{
|
||
cond0 = XEXP (XEXP (x, 0), 0);
|
||
cond1 = XEXP (XEXP (x, 1), 0);
|
||
|
||
if (COMPARISON_P (cond0)
|
||
&& COMPARISON_P (cond1)
|
||
&& ((GET_CODE (cond0) == reversed_comparison_code (cond1, NULL)
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 0))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 1)))
|
||
|| ((swap_condition (GET_CODE (cond0))
|
||
== reversed_comparison_code (cond1, NULL))
|
||
&& rtx_equal_p (XEXP (cond0, 0), XEXP (cond1, 1))
|
||
&& rtx_equal_p (XEXP (cond0, 1), XEXP (cond1, 0))))
|
||
&& ! side_effects_p (x))
|
||
{
|
||
*ptrue = *pfalse = const0_rtx;
|
||
return cond0;
|
||
}
|
||
}
|
||
}
|
||
|
||
else if (code == IF_THEN_ELSE)
|
||
{
|
||
/* If we have IF_THEN_ELSE already, extract the condition and
|
||
canonicalize it if it is NE or EQ. */
|
||
cond0 = XEXP (x, 0);
|
||
*ptrue = XEXP (x, 1), *pfalse = XEXP (x, 2);
|
||
if (GET_CODE (cond0) == NE && XEXP (cond0, 1) == const0_rtx)
|
||
return XEXP (cond0, 0);
|
||
else if (GET_CODE (cond0) == EQ && XEXP (cond0, 1) == const0_rtx)
|
||
{
|
||
*ptrue = XEXP (x, 2), *pfalse = XEXP (x, 1);
|
||
return XEXP (cond0, 0);
|
||
}
|
||
else
|
||
return cond0;
|
||
}
|
||
|
||
/* If X is a SUBREG, we can narrow both the true and false values
|
||
if the inner expression, if there is a condition. */
|
||
else if (code == SUBREG
|
||
&& (cond0 = if_then_else_cond (SUBREG_REG (x), &true0,
|
||
&false0)) != 0)
|
||
{
|
||
true0 = simplify_gen_subreg (mode, true0,
|
||
GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
|
||
false0 = simplify_gen_subreg (mode, false0,
|
||
GET_MODE (SUBREG_REG (x)), SUBREG_BYTE (x));
|
||
if (true0 && false0)
|
||
{
|
||
*ptrue = true0;
|
||
*pfalse = false0;
|
||
return cond0;
|
||
}
|
||
}
|
||
|
||
/* If X is a constant, this isn't special and will cause confusions
|
||
if we treat it as such. Likewise if it is equivalent to a constant. */
|
||
else if (CONSTANT_P (x)
|
||
|| ((cond0 = get_last_value (x)) != 0 && CONSTANT_P (cond0)))
|
||
;
|
||
|
||
/* If we're in BImode, canonicalize on 0 and STORE_FLAG_VALUE, as that
|
||
will be least confusing to the rest of the compiler. */
|
||
else if (mode == BImode)
|
||
{
|
||
*ptrue = GEN_INT (STORE_FLAG_VALUE), *pfalse = const0_rtx;
|
||
return x;
|
||
}
|
||
|
||
/* If X is known to be either 0 or -1, those are the true and
|
||
false values when testing X. */
|
||
else if (x == constm1_rtx || x == const0_rtx
|
||
|| (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& (num_sign_bit_copies (x, int_mode)
|
||
== GET_MODE_PRECISION (int_mode))))
|
||
{
|
||
*ptrue = constm1_rtx, *pfalse = const0_rtx;
|
||
return x;
|
||
}
|
||
|
||
/* Likewise for 0 or a single bit. */
|
||
else if (HWI_COMPUTABLE_MODE_P (mode)
|
||
&& pow2p_hwi (nz = nonzero_bits (x, mode)))
|
||
{
|
||
*ptrue = gen_int_mode (nz, mode), *pfalse = const0_rtx;
|
||
return x;
|
||
}
|
||
|
||
/* Otherwise fail; show no condition with true and false values the same. */
|
||
*ptrue = *pfalse = x;
|
||
return 0;
|
||
}
|
||
|
||
/* Return the value of expression X given the fact that condition COND
|
||
is known to be true when applied to REG as its first operand and VAL
|
||
as its second. X is known to not be shared and so can be modified in
|
||
place.
|
||
|
||
We only handle the simplest cases, and specifically those cases that
|
||
arise with IF_THEN_ELSE expressions. */
|
||
|
||
static rtx
|
||
known_cond (rtx x, enum rtx_code cond, rtx reg, rtx val)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *fmt;
|
||
int i, j;
|
||
|
||
if (side_effects_p (x))
|
||
return x;
|
||
|
||
/* If either operand of the condition is a floating point value,
|
||
then we have to avoid collapsing an EQ comparison. */
|
||
if (cond == EQ
|
||
&& rtx_equal_p (x, reg)
|
||
&& ! FLOAT_MODE_P (GET_MODE (x))
|
||
&& ! FLOAT_MODE_P (GET_MODE (val)))
|
||
return val;
|
||
|
||
if (cond == UNEQ && rtx_equal_p (x, reg))
|
||
return val;
|
||
|
||
/* If X is (abs REG) and we know something about REG's relationship
|
||
with zero, we may be able to simplify this. */
|
||
|
||
if (code == ABS && rtx_equal_p (XEXP (x, 0), reg) && val == const0_rtx)
|
||
switch (cond)
|
||
{
|
||
case GE: case GT: case EQ:
|
||
return XEXP (x, 0);
|
||
case LT: case LE:
|
||
return simplify_gen_unary (NEG, GET_MODE (XEXP (x, 0)),
|
||
XEXP (x, 0),
|
||
GET_MODE (XEXP (x, 0)));
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* The only other cases we handle are MIN, MAX, and comparisons if the
|
||
operands are the same as REG and VAL. */
|
||
|
||
else if (COMPARISON_P (x) || COMMUTATIVE_ARITH_P (x))
|
||
{
|
||
if (rtx_equal_p (XEXP (x, 0), val))
|
||
{
|
||
std::swap (val, reg);
|
||
cond = swap_condition (cond);
|
||
}
|
||
|
||
if (rtx_equal_p (XEXP (x, 0), reg) && rtx_equal_p (XEXP (x, 1), val))
|
||
{
|
||
if (COMPARISON_P (x))
|
||
{
|
||
if (comparison_dominates_p (cond, code))
|
||
return VECTOR_MODE_P (GET_MODE (x)) ? x : const_true_rtx;
|
||
|
||
code = reversed_comparison_code (x, NULL);
|
||
if (code != UNKNOWN
|
||
&& comparison_dominates_p (cond, code))
|
||
return CONST0_RTX (GET_MODE (x));
|
||
else
|
||
return x;
|
||
}
|
||
else if (code == SMAX || code == SMIN
|
||
|| code == UMIN || code == UMAX)
|
||
{
|
||
int unsignedp = (code == UMIN || code == UMAX);
|
||
|
||
/* Do not reverse the condition when it is NE or EQ.
|
||
This is because we cannot conclude anything about
|
||
the value of 'SMAX (x, y)' when x is not equal to y,
|
||
but we can when x equals y. */
|
||
if ((code == SMAX || code == UMAX)
|
||
&& ! (cond == EQ || cond == NE))
|
||
cond = reverse_condition (cond);
|
||
|
||
switch (cond)
|
||
{
|
||
case GE: case GT:
|
||
return unsignedp ? x : XEXP (x, 1);
|
||
case LE: case LT:
|
||
return unsignedp ? x : XEXP (x, 0);
|
||
case GEU: case GTU:
|
||
return unsignedp ? XEXP (x, 1) : x;
|
||
case LEU: case LTU:
|
||
return unsignedp ? XEXP (x, 0) : x;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
else if (code == SUBREG)
|
||
{
|
||
machine_mode inner_mode = GET_MODE (SUBREG_REG (x));
|
||
rtx new_rtx, r = known_cond (SUBREG_REG (x), cond, reg, val);
|
||
|
||
if (SUBREG_REG (x) != r)
|
||
{
|
||
/* We must simplify subreg here, before we lose track of the
|
||
original inner_mode. */
|
||
new_rtx = simplify_subreg (GET_MODE (x), r,
|
||
inner_mode, SUBREG_BYTE (x));
|
||
if (new_rtx)
|
||
return new_rtx;
|
||
else
|
||
SUBST (SUBREG_REG (x), r);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
/* We don't have to handle SIGN_EXTEND here, because even in the
|
||
case of replacing something with a modeless CONST_INT, a
|
||
CONST_INT is already (supposed to be) a valid sign extension for
|
||
its narrower mode, which implies it's already properly
|
||
sign-extended for the wider mode. Now, for ZERO_EXTEND, the
|
||
story is different. */
|
||
else if (code == ZERO_EXTEND)
|
||
{
|
||
machine_mode inner_mode = GET_MODE (XEXP (x, 0));
|
||
rtx new_rtx, r = known_cond (XEXP (x, 0), cond, reg, val);
|
||
|
||
if (XEXP (x, 0) != r)
|
||
{
|
||
/* We must simplify the zero_extend here, before we lose
|
||
track of the original inner_mode. */
|
||
new_rtx = simplify_unary_operation (ZERO_EXTEND, GET_MODE (x),
|
||
r, inner_mode);
|
||
if (new_rtx)
|
||
return new_rtx;
|
||
else
|
||
SUBST (XEXP (x, 0), r);
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
SUBST (XEXP (x, i), known_cond (XEXP (x, i), cond, reg, val));
|
||
else if (fmt[i] == 'E')
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
SUBST (XVECEXP (x, i, j), known_cond (XVECEXP (x, i, j),
|
||
cond, reg, val));
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* See if X and Y are equal for the purposes of seeing if we can rewrite an
|
||
assignment as a field assignment. */
|
||
|
||
static int
|
||
rtx_equal_for_field_assignment_p (rtx x, rtx y, bool widen_x)
|
||
{
|
||
if (widen_x && GET_MODE (x) != GET_MODE (y))
|
||
{
|
||
if (paradoxical_subreg_p (GET_MODE (x), GET_MODE (y)))
|
||
return 0;
|
||
if (BYTES_BIG_ENDIAN != WORDS_BIG_ENDIAN)
|
||
return 0;
|
||
x = adjust_address_nv (x, GET_MODE (y),
|
||
byte_lowpart_offset (GET_MODE (y),
|
||
GET_MODE (x)));
|
||
}
|
||
|
||
if (x == y || rtx_equal_p (x, y))
|
||
return 1;
|
||
|
||
if (x == 0 || y == 0 || GET_MODE (x) != GET_MODE (y))
|
||
return 0;
|
||
|
||
/* Check for a paradoxical SUBREG of a MEM compared with the MEM.
|
||
Note that all SUBREGs of MEM are paradoxical; otherwise they
|
||
would have been rewritten. */
|
||
if (MEM_P (x) && GET_CODE (y) == SUBREG
|
||
&& MEM_P (SUBREG_REG (y))
|
||
&& rtx_equal_p (SUBREG_REG (y),
|
||
gen_lowpart (GET_MODE (SUBREG_REG (y)), x)))
|
||
return 1;
|
||
|
||
if (MEM_P (y) && GET_CODE (x) == SUBREG
|
||
&& MEM_P (SUBREG_REG (x))
|
||
&& rtx_equal_p (SUBREG_REG (x),
|
||
gen_lowpart (GET_MODE (SUBREG_REG (x)), y)))
|
||
return 1;
|
||
|
||
/* We used to see if get_last_value of X and Y were the same but that's
|
||
not correct. In one direction, we'll cause the assignment to have
|
||
the wrong destination and in the case, we'll import a register into this
|
||
insn that might have already have been dead. So fail if none of the
|
||
above cases are true. */
|
||
return 0;
|
||
}
|
||
|
||
/* See if X, a SET operation, can be rewritten as a bit-field assignment.
|
||
Return that assignment if so.
|
||
|
||
We only handle the most common cases. */
|
||
|
||
static rtx
|
||
make_field_assignment (rtx x)
|
||
{
|
||
rtx dest = SET_DEST (x);
|
||
rtx src = SET_SRC (x);
|
||
rtx assign;
|
||
rtx rhs, lhs;
|
||
HOST_WIDE_INT c1;
|
||
HOST_WIDE_INT pos;
|
||
unsigned HOST_WIDE_INT len;
|
||
rtx other;
|
||
|
||
/* All the rules in this function are specific to scalar integers. */
|
||
scalar_int_mode mode;
|
||
if (!is_a <scalar_int_mode> (GET_MODE (dest), &mode))
|
||
return x;
|
||
|
||
/* If SRC was (and (not (ashift (const_int 1) POS)) DEST), this is
|
||
a clear of a one-bit field. We will have changed it to
|
||
(and (rotate (const_int -2) POS) DEST), so check for that. Also check
|
||
for a SUBREG. */
|
||
|
||
if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == ROTATE
|
||
&& CONST_INT_P (XEXP (XEXP (src, 0), 0))
|
||
&& INTVAL (XEXP (XEXP (src, 0), 0)) == -2
|
||
&& rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
|
||
{
|
||
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
|
||
1, 1, 1, 0);
|
||
if (assign != 0)
|
||
return gen_rtx_SET (assign, const0_rtx);
|
||
return x;
|
||
}
|
||
|
||
if (GET_CODE (src) == AND && GET_CODE (XEXP (src, 0)) == SUBREG
|
||
&& subreg_lowpart_p (XEXP (src, 0))
|
||
&& partial_subreg_p (XEXP (src, 0))
|
||
&& GET_CODE (SUBREG_REG (XEXP (src, 0))) == ROTATE
|
||
&& CONST_INT_P (XEXP (SUBREG_REG (XEXP (src, 0)), 0))
|
||
&& INTVAL (XEXP (SUBREG_REG (XEXP (src, 0)), 0)) == -2
|
||
&& rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
|
||
{
|
||
assign = make_extraction (VOIDmode, dest, 0,
|
||
XEXP (SUBREG_REG (XEXP (src, 0)), 1),
|
||
1, 1, 1, 0);
|
||
if (assign != 0)
|
||
return gen_rtx_SET (assign, const0_rtx);
|
||
return x;
|
||
}
|
||
|
||
/* If SRC is (ior (ashift (const_int 1) POS) DEST), this is a set of a
|
||
one-bit field. */
|
||
if (GET_CODE (src) == IOR && GET_CODE (XEXP (src, 0)) == ASHIFT
|
||
&& XEXP (XEXP (src, 0), 0) == const1_rtx
|
||
&& rtx_equal_for_field_assignment_p (dest, XEXP (src, 1)))
|
||
{
|
||
assign = make_extraction (VOIDmode, dest, 0, XEXP (XEXP (src, 0), 1),
|
||
1, 1, 1, 0);
|
||
if (assign != 0)
|
||
return gen_rtx_SET (assign, const1_rtx);
|
||
return x;
|
||
}
|
||
|
||
/* If DEST is already a field assignment, i.e. ZERO_EXTRACT, and the
|
||
SRC is an AND with all bits of that field set, then we can discard
|
||
the AND. */
|
||
if (GET_CODE (dest) == ZERO_EXTRACT
|
||
&& CONST_INT_P (XEXP (dest, 1))
|
||
&& GET_CODE (src) == AND
|
||
&& CONST_INT_P (XEXP (src, 1)))
|
||
{
|
||
HOST_WIDE_INT width = INTVAL (XEXP (dest, 1));
|
||
unsigned HOST_WIDE_INT and_mask = INTVAL (XEXP (src, 1));
|
||
unsigned HOST_WIDE_INT ze_mask;
|
||
|
||
if (width >= HOST_BITS_PER_WIDE_INT)
|
||
ze_mask = -1;
|
||
else
|
||
ze_mask = ((unsigned HOST_WIDE_INT)1 << width) - 1;
|
||
|
||
/* Complete overlap. We can remove the source AND. */
|
||
if ((and_mask & ze_mask) == ze_mask)
|
||
return gen_rtx_SET (dest, XEXP (src, 0));
|
||
|
||
/* Partial overlap. We can reduce the source AND. */
|
||
if ((and_mask & ze_mask) != and_mask)
|
||
{
|
||
src = gen_rtx_AND (mode, XEXP (src, 0),
|
||
gen_int_mode (and_mask & ze_mask, mode));
|
||
return gen_rtx_SET (dest, src);
|
||
}
|
||
}
|
||
|
||
/* The other case we handle is assignments into a constant-position
|
||
field. They look like (ior/xor (and DEST C1) OTHER). If C1 represents
|
||
a mask that has all one bits except for a group of zero bits and
|
||
OTHER is known to have zeros where C1 has ones, this is such an
|
||
assignment. Compute the position and length from C1. Shift OTHER
|
||
to the appropriate position, force it to the required mode, and
|
||
make the extraction. Check for the AND in both operands. */
|
||
|
||
/* One or more SUBREGs might obscure the constant-position field
|
||
assignment. The first one we are likely to encounter is an outer
|
||
narrowing SUBREG, which we can just strip for the purposes of
|
||
identifying the constant-field assignment. */
|
||
scalar_int_mode src_mode = mode;
|
||
if (GET_CODE (src) == SUBREG
|
||
&& subreg_lowpart_p (src)
|
||
&& is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (src)), &src_mode))
|
||
src = SUBREG_REG (src);
|
||
|
||
if (GET_CODE (src) != IOR && GET_CODE (src) != XOR)
|
||
return x;
|
||
|
||
rhs = expand_compound_operation (XEXP (src, 0));
|
||
lhs = expand_compound_operation (XEXP (src, 1));
|
||
|
||
if (GET_CODE (rhs) == AND
|
||
&& CONST_INT_P (XEXP (rhs, 1))
|
||
&& rtx_equal_for_field_assignment_p (XEXP (rhs, 0), dest))
|
||
c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
|
||
/* The second SUBREG that might get in the way is a paradoxical
|
||
SUBREG around the first operand of the AND. We want to
|
||
pretend the operand is as wide as the destination here. We
|
||
do this by adjusting the MEM to wider mode for the sole
|
||
purpose of the call to rtx_equal_for_field_assignment_p. Also
|
||
note this trick only works for MEMs. */
|
||
else if (GET_CODE (rhs) == AND
|
||
&& paradoxical_subreg_p (XEXP (rhs, 0))
|
||
&& MEM_P (SUBREG_REG (XEXP (rhs, 0)))
|
||
&& CONST_INT_P (XEXP (rhs, 1))
|
||
&& rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (rhs, 0)),
|
||
dest, true))
|
||
c1 = INTVAL (XEXP (rhs, 1)), other = lhs;
|
||
else if (GET_CODE (lhs) == AND
|
||
&& CONST_INT_P (XEXP (lhs, 1))
|
||
&& rtx_equal_for_field_assignment_p (XEXP (lhs, 0), dest))
|
||
c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
|
||
/* The second SUBREG that might get in the way is a paradoxical
|
||
SUBREG around the first operand of the AND. We want to
|
||
pretend the operand is as wide as the destination here. We
|
||
do this by adjusting the MEM to wider mode for the sole
|
||
purpose of the call to rtx_equal_for_field_assignment_p. Also
|
||
note this trick only works for MEMs. */
|
||
else if (GET_CODE (lhs) == AND
|
||
&& paradoxical_subreg_p (XEXP (lhs, 0))
|
||
&& MEM_P (SUBREG_REG (XEXP (lhs, 0)))
|
||
&& CONST_INT_P (XEXP (lhs, 1))
|
||
&& rtx_equal_for_field_assignment_p (SUBREG_REG (XEXP (lhs, 0)),
|
||
dest, true))
|
||
c1 = INTVAL (XEXP (lhs, 1)), other = rhs;
|
||
else
|
||
return x;
|
||
|
||
pos = get_pos_from_mask ((~c1) & GET_MODE_MASK (mode), &len);
|
||
if (pos < 0
|
||
|| pos + len > GET_MODE_PRECISION (mode)
|
||
|| GET_MODE_PRECISION (mode) > HOST_BITS_PER_WIDE_INT
|
||
|| (c1 & nonzero_bits (other, mode)) != 0)
|
||
return x;
|
||
|
||
assign = make_extraction (VOIDmode, dest, pos, NULL_RTX, len, 1, 1, 0);
|
||
if (assign == 0)
|
||
return x;
|
||
|
||
/* The mode to use for the source is the mode of the assignment, or of
|
||
what is inside a possible STRICT_LOW_PART. */
|
||
machine_mode new_mode = (GET_CODE (assign) == STRICT_LOW_PART
|
||
? GET_MODE (XEXP (assign, 0)) : GET_MODE (assign));
|
||
|
||
/* Shift OTHER right POS places and make it the source, restricting it
|
||
to the proper length and mode. */
|
||
|
||
src = canon_reg_for_combine (simplify_shift_const (NULL_RTX, LSHIFTRT,
|
||
src_mode, other, pos),
|
||
dest);
|
||
src = force_to_mode (src, new_mode,
|
||
len >= HOST_BITS_PER_WIDE_INT
|
||
? HOST_WIDE_INT_M1U
|
||
: (HOST_WIDE_INT_1U << len) - 1,
|
||
0);
|
||
|
||
/* If SRC is masked by an AND that does not make a difference in
|
||
the value being stored, strip it. */
|
||
if (GET_CODE (assign) == ZERO_EXTRACT
|
||
&& CONST_INT_P (XEXP (assign, 1))
|
||
&& INTVAL (XEXP (assign, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& GET_CODE (src) == AND
|
||
&& CONST_INT_P (XEXP (src, 1))
|
||
&& UINTVAL (XEXP (src, 1))
|
||
== (HOST_WIDE_INT_1U << INTVAL (XEXP (assign, 1))) - 1)
|
||
src = XEXP (src, 0);
|
||
|
||
return gen_rtx_SET (assign, src);
|
||
}
|
||
|
||
/* See if X is of the form (+ (* a c) (* b c)) and convert to (* (+ a b) c)
|
||
if so. */
|
||
|
||
static rtx
|
||
apply_distributive_law (rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
enum rtx_code inner_code;
|
||
rtx lhs, rhs, other;
|
||
rtx tem;
|
||
|
||
/* Distributivity is not true for floating point as it can change the
|
||
value. So we don't do it unless -funsafe-math-optimizations. */
|
||
if (FLOAT_MODE_P (GET_MODE (x))
|
||
&& ! flag_unsafe_math_optimizations)
|
||
return x;
|
||
|
||
/* The outer operation can only be one of the following: */
|
||
if (code != IOR && code != AND && code != XOR
|
||
&& code != PLUS && code != MINUS)
|
||
return x;
|
||
|
||
lhs = XEXP (x, 0);
|
||
rhs = XEXP (x, 1);
|
||
|
||
/* If either operand is a primitive we can't do anything, so get out
|
||
fast. */
|
||
if (OBJECT_P (lhs) || OBJECT_P (rhs))
|
||
return x;
|
||
|
||
lhs = expand_compound_operation (lhs);
|
||
rhs = expand_compound_operation (rhs);
|
||
inner_code = GET_CODE (lhs);
|
||
if (inner_code != GET_CODE (rhs))
|
||
return x;
|
||
|
||
/* See if the inner and outer operations distribute. */
|
||
switch (inner_code)
|
||
{
|
||
case LSHIFTRT:
|
||
case ASHIFTRT:
|
||
case AND:
|
||
case IOR:
|
||
/* These all distribute except over PLUS. */
|
||
if (code == PLUS || code == MINUS)
|
||
return x;
|
||
break;
|
||
|
||
case MULT:
|
||
if (code != PLUS && code != MINUS)
|
||
return x;
|
||
break;
|
||
|
||
case ASHIFT:
|
||
/* This is also a multiply, so it distributes over everything. */
|
||
break;
|
||
|
||
/* This used to handle SUBREG, but this turned out to be counter-
|
||
productive, since (subreg (op ...)) usually is not handled by
|
||
insn patterns, and this "optimization" therefore transformed
|
||
recognizable patterns into unrecognizable ones. Therefore the
|
||
SUBREG case was removed from here.
|
||
|
||
It is possible that distributing SUBREG over arithmetic operations
|
||
leads to an intermediate result than can then be optimized further,
|
||
e.g. by moving the outer SUBREG to the other side of a SET as done
|
||
in simplify_set. This seems to have been the original intent of
|
||
handling SUBREGs here.
|
||
|
||
However, with current GCC this does not appear to actually happen,
|
||
at least on major platforms. If some case is found where removing
|
||
the SUBREG case here prevents follow-on optimizations, distributing
|
||
SUBREGs ought to be re-added at that place, e.g. in simplify_set. */
|
||
|
||
default:
|
||
return x;
|
||
}
|
||
|
||
/* Set LHS and RHS to the inner operands (A and B in the example
|
||
above) and set OTHER to the common operand (C in the example).
|
||
There is only one way to do this unless the inner operation is
|
||
commutative. */
|
||
if (COMMUTATIVE_ARITH_P (lhs)
|
||
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 0)))
|
||
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 1);
|
||
else if (COMMUTATIVE_ARITH_P (lhs)
|
||
&& rtx_equal_p (XEXP (lhs, 0), XEXP (rhs, 1)))
|
||
other = XEXP (lhs, 0), lhs = XEXP (lhs, 1), rhs = XEXP (rhs, 0);
|
||
else if (COMMUTATIVE_ARITH_P (lhs)
|
||
&& rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 0)))
|
||
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 1);
|
||
else if (rtx_equal_p (XEXP (lhs, 1), XEXP (rhs, 1)))
|
||
other = XEXP (lhs, 1), lhs = XEXP (lhs, 0), rhs = XEXP (rhs, 0);
|
||
else
|
||
return x;
|
||
|
||
/* Form the new inner operation, seeing if it simplifies first. */
|
||
tem = simplify_gen_binary (code, GET_MODE (x), lhs, rhs);
|
||
|
||
/* There is one exception to the general way of distributing:
|
||
(a | c) ^ (b | c) -> (a ^ b) & ~c */
|
||
if (code == XOR && inner_code == IOR)
|
||
{
|
||
inner_code = AND;
|
||
other = simplify_gen_unary (NOT, GET_MODE (x), other, GET_MODE (x));
|
||
}
|
||
|
||
/* We may be able to continuing distributing the result, so call
|
||
ourselves recursively on the inner operation before forming the
|
||
outer operation, which we return. */
|
||
return simplify_gen_binary (inner_code, GET_MODE (x),
|
||
apply_distributive_law (tem), other);
|
||
}
|
||
|
||
/* See if X is of the form (* (+ A B) C), and if so convert to
|
||
(+ (* A C) (* B C)) and try to simplify.
|
||
|
||
Most of the time, this results in no change. However, if some of
|
||
the operands are the same or inverses of each other, simplifications
|
||
will result.
|
||
|
||
For example, (and (ior A B) (not B)) can occur as the result of
|
||
expanding a bit field assignment. When we apply the distributive
|
||
law to this, we get (ior (and (A (not B))) (and (B (not B)))),
|
||
which then simplifies to (and (A (not B))).
|
||
|
||
Note that no checks happen on the validity of applying the inverse
|
||
distributive law. This is pointless since we can do it in the
|
||
few places where this routine is called.
|
||
|
||
N is the index of the term that is decomposed (the arithmetic operation,
|
||
i.e. (+ A B) in the first example above). !N is the index of the term that
|
||
is distributed, i.e. of C in the first example above. */
|
||
static rtx
|
||
distribute_and_simplify_rtx (rtx x, int n)
|
||
{
|
||
machine_mode mode;
|
||
enum rtx_code outer_code, inner_code;
|
||
rtx decomposed, distributed, inner_op0, inner_op1, new_op0, new_op1, tmp;
|
||
|
||
/* Distributivity is not true for floating point as it can change the
|
||
value. So we don't do it unless -funsafe-math-optimizations. */
|
||
if (FLOAT_MODE_P (GET_MODE (x))
|
||
&& ! flag_unsafe_math_optimizations)
|
||
return NULL_RTX;
|
||
|
||
decomposed = XEXP (x, n);
|
||
if (!ARITHMETIC_P (decomposed))
|
||
return NULL_RTX;
|
||
|
||
mode = GET_MODE (x);
|
||
outer_code = GET_CODE (x);
|
||
distributed = XEXP (x, !n);
|
||
|
||
inner_code = GET_CODE (decomposed);
|
||
inner_op0 = XEXP (decomposed, 0);
|
||
inner_op1 = XEXP (decomposed, 1);
|
||
|
||
/* Special case (and (xor B C) (not A)), which is equivalent to
|
||
(xor (ior A B) (ior A C)) */
|
||
if (outer_code == AND && inner_code == XOR && GET_CODE (distributed) == NOT)
|
||
{
|
||
distributed = XEXP (distributed, 0);
|
||
outer_code = IOR;
|
||
}
|
||
|
||
if (n == 0)
|
||
{
|
||
/* Distribute the second term. */
|
||
new_op0 = simplify_gen_binary (outer_code, mode, inner_op0, distributed);
|
||
new_op1 = simplify_gen_binary (outer_code, mode, inner_op1, distributed);
|
||
}
|
||
else
|
||
{
|
||
/* Distribute the first term. */
|
||
new_op0 = simplify_gen_binary (outer_code, mode, distributed, inner_op0);
|
||
new_op1 = simplify_gen_binary (outer_code, mode, distributed, inner_op1);
|
||
}
|
||
|
||
tmp = apply_distributive_law (simplify_gen_binary (inner_code, mode,
|
||
new_op0, new_op1));
|
||
if (GET_CODE (tmp) != outer_code
|
||
&& (set_src_cost (tmp, mode, optimize_this_for_speed_p)
|
||
< set_src_cost (x, mode, optimize_this_for_speed_p)))
|
||
return tmp;
|
||
|
||
return NULL_RTX;
|
||
}
|
||
|
||
/* Simplify a logical `and' of VAROP with the constant CONSTOP, to be done
|
||
in MODE. Return an equivalent form, if different from (and VAROP
|
||
(const_int CONSTOP)). Otherwise, return NULL_RTX. */
|
||
|
||
static rtx
|
||
simplify_and_const_int_1 (scalar_int_mode mode, rtx varop,
|
||
unsigned HOST_WIDE_INT constop)
|
||
{
|
||
unsigned HOST_WIDE_INT nonzero;
|
||
unsigned HOST_WIDE_INT orig_constop;
|
||
rtx orig_varop;
|
||
int i;
|
||
|
||
orig_varop = varop;
|
||
orig_constop = constop;
|
||
if (GET_CODE (varop) == CLOBBER)
|
||
return NULL_RTX;
|
||
|
||
/* Simplify VAROP knowing that we will be only looking at some of the
|
||
bits in it.
|
||
|
||
Note by passing in CONSTOP, we guarantee that the bits not set in
|
||
CONSTOP are not significant and will never be examined. We must
|
||
ensure that is the case by explicitly masking out those bits
|
||
before returning. */
|
||
varop = force_to_mode (varop, mode, constop, 0);
|
||
|
||
/* If VAROP is a CLOBBER, we will fail so return it. */
|
||
if (GET_CODE (varop) == CLOBBER)
|
||
return varop;
|
||
|
||
/* If VAROP is a CONST_INT, then we need to apply the mask in CONSTOP
|
||
to VAROP and return the new constant. */
|
||
if (CONST_INT_P (varop))
|
||
return gen_int_mode (INTVAL (varop) & constop, mode);
|
||
|
||
/* See what bits may be nonzero in VAROP. Unlike the general case of
|
||
a call to nonzero_bits, here we don't care about bits outside
|
||
MODE. */
|
||
|
||
nonzero = nonzero_bits (varop, mode) & GET_MODE_MASK (mode);
|
||
|
||
/* Turn off all bits in the constant that are known to already be zero.
|
||
Thus, if the AND isn't needed at all, we will have CONSTOP == NONZERO_BITS
|
||
which is tested below. */
|
||
|
||
constop &= nonzero;
|
||
|
||
/* If we don't have any bits left, return zero. */
|
||
if (constop == 0)
|
||
return const0_rtx;
|
||
|
||
/* If VAROP is a NEG of something known to be zero or 1 and CONSTOP is
|
||
a power of two, we can replace this with an ASHIFT. */
|
||
if (GET_CODE (varop) == NEG && nonzero_bits (XEXP (varop, 0), mode) == 1
|
||
&& (i = exact_log2 (constop)) >= 0)
|
||
return simplify_shift_const (NULL_RTX, ASHIFT, mode, XEXP (varop, 0), i);
|
||
|
||
/* If VAROP is an IOR or XOR, apply the AND to both branches of the IOR
|
||
or XOR, then try to apply the distributive law. This may eliminate
|
||
operations if either branch can be simplified because of the AND.
|
||
It may also make some cases more complex, but those cases probably
|
||
won't match a pattern either with or without this. */
|
||
|
||
if (GET_CODE (varop) == IOR || GET_CODE (varop) == XOR)
|
||
{
|
||
scalar_int_mode varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
|
||
return
|
||
gen_lowpart
|
||
(mode,
|
||
apply_distributive_law
|
||
(simplify_gen_binary (GET_CODE (varop), varop_mode,
|
||
simplify_and_const_int (NULL_RTX, varop_mode,
|
||
XEXP (varop, 0),
|
||
constop),
|
||
simplify_and_const_int (NULL_RTX, varop_mode,
|
||
XEXP (varop, 1),
|
||
constop))));
|
||
}
|
||
|
||
/* If VAROP is PLUS, and the constant is a mask of low bits, distribute
|
||
the AND and see if one of the operands simplifies to zero. If so, we
|
||
may eliminate it. */
|
||
|
||
if (GET_CODE (varop) == PLUS
|
||
&& pow2p_hwi (constop + 1))
|
||
{
|
||
rtx o0, o1;
|
||
|
||
o0 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 0), constop);
|
||
o1 = simplify_and_const_int (NULL_RTX, mode, XEXP (varop, 1), constop);
|
||
if (o0 == const0_rtx)
|
||
return o1;
|
||
if (o1 == const0_rtx)
|
||
return o0;
|
||
}
|
||
|
||
/* Make a SUBREG if necessary. If we can't make it, fail. */
|
||
varop = gen_lowpart (mode, varop);
|
||
if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
|
||
return NULL_RTX;
|
||
|
||
/* If we are only masking insignificant bits, return VAROP. */
|
||
if (constop == nonzero)
|
||
return varop;
|
||
|
||
if (varop == orig_varop && constop == orig_constop)
|
||
return NULL_RTX;
|
||
|
||
/* Otherwise, return an AND. */
|
||
return simplify_gen_binary (AND, mode, varop, gen_int_mode (constop, mode));
|
||
}
|
||
|
||
|
||
/* We have X, a logical `and' of VAROP with the constant CONSTOP, to be done
|
||
in MODE.
|
||
|
||
Return an equivalent form, if different from X. Otherwise, return X. If
|
||
X is zero, we are to always construct the equivalent form. */
|
||
|
||
static rtx
|
||
simplify_and_const_int (rtx x, scalar_int_mode mode, rtx varop,
|
||
unsigned HOST_WIDE_INT constop)
|
||
{
|
||
rtx tem = simplify_and_const_int_1 (mode, varop, constop);
|
||
if (tem)
|
||
return tem;
|
||
|
||
if (!x)
|
||
x = simplify_gen_binary (AND, GET_MODE (varop), varop,
|
||
gen_int_mode (constop, mode));
|
||
if (GET_MODE (x) != mode)
|
||
x = gen_lowpart (mode, x);
|
||
return x;
|
||
}
|
||
|
||
/* Given a REG X of mode XMODE, compute which bits in X can be nonzero.
|
||
We don't care about bits outside of those defined in MODE.
|
||
We DO care about all the bits in MODE, even if XMODE is smaller than MODE.
|
||
|
||
For most X this is simply GET_MODE_MASK (GET_MODE (MODE)), but if X is
|
||
a shift, AND, or zero_extract, we can do better. */
|
||
|
||
static rtx
|
||
reg_nonzero_bits_for_combine (const_rtx x, scalar_int_mode xmode,
|
||
scalar_int_mode mode,
|
||
unsigned HOST_WIDE_INT *nonzero)
|
||
{
|
||
rtx tem;
|
||
reg_stat_type *rsp;
|
||
|
||
/* If X is a register whose nonzero bits value is current, use it.
|
||
Otherwise, if X is a register whose value we can find, use that
|
||
value. Otherwise, use the previously-computed global nonzero bits
|
||
for this register. */
|
||
|
||
rsp = ®_stat[REGNO (x)];
|
||
if (rsp->last_set_value != 0
|
||
&& (rsp->last_set_mode == mode
|
||
|| (REGNO (x) >= FIRST_PSEUDO_REGISTER
|
||
&& GET_MODE_CLASS (rsp->last_set_mode) == MODE_INT
|
||
&& GET_MODE_CLASS (mode) == MODE_INT))
|
||
&& ((rsp->last_set_label >= label_tick_ebb_start
|
||
&& rsp->last_set_label < label_tick)
|
||
|| (rsp->last_set_label == label_tick
|
||
&& DF_INSN_LUID (rsp->last_set) < subst_low_luid)
|
||
|| (REGNO (x) >= FIRST_PSEUDO_REGISTER
|
||
&& REGNO (x) < reg_n_sets_max
|
||
&& REG_N_SETS (REGNO (x)) == 1
|
||
&& !REGNO_REG_SET_P
|
||
(DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
|
||
REGNO (x)))))
|
||
{
|
||
/* Note that, even if the precision of last_set_mode is lower than that
|
||
of mode, record_value_for_reg invoked nonzero_bits on the register
|
||
with nonzero_bits_mode (because last_set_mode is necessarily integral
|
||
and HWI_COMPUTABLE_MODE_P in this case) so bits in nonzero_bits_mode
|
||
are all valid, hence in mode too since nonzero_bits_mode is defined
|
||
to the largest HWI_COMPUTABLE_MODE_P mode. */
|
||
*nonzero &= rsp->last_set_nonzero_bits;
|
||
return NULL;
|
||
}
|
||
|
||
tem = get_last_value (x);
|
||
if (tem)
|
||
{
|
||
if (SHORT_IMMEDIATES_SIGN_EXTEND)
|
||
tem = sign_extend_short_imm (tem, xmode, GET_MODE_PRECISION (mode));
|
||
|
||
return tem;
|
||
}
|
||
|
||
if (nonzero_sign_valid && rsp->nonzero_bits)
|
||
{
|
||
unsigned HOST_WIDE_INT mask = rsp->nonzero_bits;
|
||
|
||
if (GET_MODE_PRECISION (xmode) < GET_MODE_PRECISION (mode))
|
||
/* We don't know anything about the upper bits. */
|
||
mask |= GET_MODE_MASK (mode) ^ GET_MODE_MASK (xmode);
|
||
|
||
*nonzero &= mask;
|
||
}
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Given a reg X of mode XMODE, return the number of bits at the high-order
|
||
end of X that are known to be equal to the sign bit. X will be used
|
||
in mode MODE; the returned value will always be between 1 and the
|
||
number of bits in MODE. */
|
||
|
||
static rtx
|
||
reg_num_sign_bit_copies_for_combine (const_rtx x, scalar_int_mode xmode,
|
||
scalar_int_mode mode,
|
||
unsigned int *result)
|
||
{
|
||
rtx tem;
|
||
reg_stat_type *rsp;
|
||
|
||
rsp = ®_stat[REGNO (x)];
|
||
if (rsp->last_set_value != 0
|
||
&& rsp->last_set_mode == mode
|
||
&& ((rsp->last_set_label >= label_tick_ebb_start
|
||
&& rsp->last_set_label < label_tick)
|
||
|| (rsp->last_set_label == label_tick
|
||
&& DF_INSN_LUID (rsp->last_set) < subst_low_luid)
|
||
|| (REGNO (x) >= FIRST_PSEUDO_REGISTER
|
||
&& REGNO (x) < reg_n_sets_max
|
||
&& REG_N_SETS (REGNO (x)) == 1
|
||
&& !REGNO_REG_SET_P
|
||
(DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
|
||
REGNO (x)))))
|
||
{
|
||
*result = rsp->last_set_sign_bit_copies;
|
||
return NULL;
|
||
}
|
||
|
||
tem = get_last_value (x);
|
||
if (tem != 0)
|
||
return tem;
|
||
|
||
if (nonzero_sign_valid && rsp->sign_bit_copies != 0
|
||
&& GET_MODE_PRECISION (xmode) == GET_MODE_PRECISION (mode))
|
||
*result = rsp->sign_bit_copies;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
/* Return the number of "extended" bits there are in X, when interpreted
|
||
as a quantity in MODE whose signedness is indicated by UNSIGNEDP. For
|
||
unsigned quantities, this is the number of high-order zero bits.
|
||
For signed quantities, this is the number of copies of the sign bit
|
||
minus 1. In both case, this function returns the number of "spare"
|
||
bits. For example, if two quantities for which this function returns
|
||
at least 1 are added, the addition is known not to overflow.
|
||
|
||
This function will always return 0 unless called during combine, which
|
||
implies that it must be called from a define_split. */
|
||
|
||
unsigned int
|
||
extended_count (const_rtx x, machine_mode mode, int unsignedp)
|
||
{
|
||
if (nonzero_sign_valid == 0)
|
||
return 0;
|
||
|
||
scalar_int_mode int_mode;
|
||
return (unsignedp
|
||
? (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& HWI_COMPUTABLE_MODE_P (int_mode)
|
||
? (unsigned int) (GET_MODE_PRECISION (int_mode) - 1
|
||
- floor_log2 (nonzero_bits (x, int_mode)))
|
||
: 0)
|
||
: num_sign_bit_copies (x, mode) - 1);
|
||
}
|
||
|
||
/* This function is called from `simplify_shift_const' to merge two
|
||
outer operations. Specifically, we have already found that we need
|
||
to perform operation *POP0 with constant *PCONST0 at the outermost
|
||
position. We would now like to also perform OP1 with constant CONST1
|
||
(with *POP0 being done last).
|
||
|
||
Return 1 if we can do the operation and update *POP0 and *PCONST0 with
|
||
the resulting operation. *PCOMP_P is set to 1 if we would need to
|
||
complement the innermost operand, otherwise it is unchanged.
|
||
|
||
MODE is the mode in which the operation will be done. No bits outside
|
||
the width of this mode matter. It is assumed that the width of this mode
|
||
is smaller than or equal to HOST_BITS_PER_WIDE_INT.
|
||
|
||
If *POP0 or OP1 are UNKNOWN, it means no operation is required. Only NEG, PLUS,
|
||
IOR, XOR, and AND are supported. We may set *POP0 to SET if the proper
|
||
result is simply *PCONST0.
|
||
|
||
If the resulting operation cannot be expressed as one operation, we
|
||
return 0 and do not change *POP0, *PCONST0, and *PCOMP_P. */
|
||
|
||
static int
|
||
merge_outer_ops (enum rtx_code *pop0, HOST_WIDE_INT *pconst0, enum rtx_code op1, HOST_WIDE_INT const1, machine_mode mode, int *pcomp_p)
|
||
{
|
||
enum rtx_code op0 = *pop0;
|
||
HOST_WIDE_INT const0 = *pconst0;
|
||
|
||
const0 &= GET_MODE_MASK (mode);
|
||
const1 &= GET_MODE_MASK (mode);
|
||
|
||
/* If OP0 is an AND, clear unimportant bits in CONST1. */
|
||
if (op0 == AND)
|
||
const1 &= const0;
|
||
|
||
/* If OP0 or OP1 is UNKNOWN, this is easy. Similarly if they are the same or
|
||
if OP0 is SET. */
|
||
|
||
if (op1 == UNKNOWN || op0 == SET)
|
||
return 1;
|
||
|
||
else if (op0 == UNKNOWN)
|
||
op0 = op1, const0 = const1;
|
||
|
||
else if (op0 == op1)
|
||
{
|
||
switch (op0)
|
||
{
|
||
case AND:
|
||
const0 &= const1;
|
||
break;
|
||
case IOR:
|
||
const0 |= const1;
|
||
break;
|
||
case XOR:
|
||
const0 ^= const1;
|
||
break;
|
||
case PLUS:
|
||
const0 += const1;
|
||
break;
|
||
case NEG:
|
||
op0 = UNKNOWN;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Otherwise, if either is a PLUS or NEG, we can't do anything. */
|
||
else if (op0 == PLUS || op1 == PLUS || op0 == NEG || op1 == NEG)
|
||
return 0;
|
||
|
||
/* If the two constants aren't the same, we can't do anything. The
|
||
remaining six cases can all be done. */
|
||
else if (const0 != const1)
|
||
return 0;
|
||
|
||
else
|
||
switch (op0)
|
||
{
|
||
case IOR:
|
||
if (op1 == AND)
|
||
/* (a & b) | b == b */
|
||
op0 = SET;
|
||
else /* op1 == XOR */
|
||
/* (a ^ b) | b == a | b */
|
||
{;}
|
||
break;
|
||
|
||
case XOR:
|
||
if (op1 == AND)
|
||
/* (a & b) ^ b == (~a) & b */
|
||
op0 = AND, *pcomp_p = 1;
|
||
else /* op1 == IOR */
|
||
/* (a | b) ^ b == a & ~b */
|
||
op0 = AND, const0 = ~const0;
|
||
break;
|
||
|
||
case AND:
|
||
if (op1 == IOR)
|
||
/* (a | b) & b == b */
|
||
op0 = SET;
|
||
else /* op1 == XOR */
|
||
/* (a ^ b) & b) == (~a) & b */
|
||
*pcomp_p = 1;
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Check for NO-OP cases. */
|
||
const0 &= GET_MODE_MASK (mode);
|
||
if (const0 == 0
|
||
&& (op0 == IOR || op0 == XOR || op0 == PLUS))
|
||
op0 = UNKNOWN;
|
||
else if (const0 == 0 && op0 == AND)
|
||
op0 = SET;
|
||
else if ((unsigned HOST_WIDE_INT) const0 == GET_MODE_MASK (mode)
|
||
&& op0 == AND)
|
||
op0 = UNKNOWN;
|
||
|
||
*pop0 = op0;
|
||
|
||
/* ??? Slightly redundant with the above mask, but not entirely.
|
||
Moving this above means we'd have to sign-extend the mode mask
|
||
for the final test. */
|
||
if (op0 != UNKNOWN && op0 != NEG)
|
||
*pconst0 = trunc_int_for_mode (const0, mode);
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* A helper to simplify_shift_const_1 to determine the mode we can perform
|
||
the shift in. The original shift operation CODE is performed on OP in
|
||
ORIG_MODE. Return the wider mode MODE if we can perform the operation
|
||
in that mode. Return ORIG_MODE otherwise. We can also assume that the
|
||
result of the shift is subject to operation OUTER_CODE with operand
|
||
OUTER_CONST. */
|
||
|
||
static scalar_int_mode
|
||
try_widen_shift_mode (enum rtx_code code, rtx op, int count,
|
||
scalar_int_mode orig_mode, scalar_int_mode mode,
|
||
enum rtx_code outer_code, HOST_WIDE_INT outer_const)
|
||
{
|
||
gcc_assert (GET_MODE_PRECISION (mode) > GET_MODE_PRECISION (orig_mode));
|
||
|
||
/* In general we can't perform in wider mode for right shift and rotate. */
|
||
switch (code)
|
||
{
|
||
case ASHIFTRT:
|
||
/* We can still widen if the bits brought in from the left are identical
|
||
to the sign bit of ORIG_MODE. */
|
||
if (num_sign_bit_copies (op, mode)
|
||
> (unsigned) (GET_MODE_PRECISION (mode)
|
||
- GET_MODE_PRECISION (orig_mode)))
|
||
return mode;
|
||
return orig_mode;
|
||
|
||
case LSHIFTRT:
|
||
/* Similarly here but with zero bits. */
|
||
if (HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (nonzero_bits (op, mode) & ~GET_MODE_MASK (orig_mode)) == 0)
|
||
return mode;
|
||
|
||
/* We can also widen if the bits brought in will be masked off. This
|
||
operation is performed in ORIG_MODE. */
|
||
if (outer_code == AND)
|
||
{
|
||
int care_bits = low_bitmask_len (orig_mode, outer_const);
|
||
|
||
if (care_bits >= 0
|
||
&& GET_MODE_PRECISION (orig_mode) - care_bits >= count)
|
||
return mode;
|
||
}
|
||
/* fall through */
|
||
|
||
case ROTATE:
|
||
return orig_mode;
|
||
|
||
case ROTATERT:
|
||
gcc_unreachable ();
|
||
|
||
default:
|
||
return mode;
|
||
}
|
||
}
|
||
|
||
/* Simplify a shift of VAROP by ORIG_COUNT bits. CODE says what kind
|
||
of shift. The result of the shift is RESULT_MODE. Return NULL_RTX
|
||
if we cannot simplify it. Otherwise, return a simplified value.
|
||
|
||
The shift is normally computed in the widest mode we find in VAROP, as
|
||
long as it isn't a different number of words than RESULT_MODE. Exceptions
|
||
are ASHIFTRT and ROTATE, which are always done in their original mode. */
|
||
|
||
static rtx
|
||
simplify_shift_const_1 (enum rtx_code code, machine_mode result_mode,
|
||
rtx varop, int orig_count)
|
||
{
|
||
enum rtx_code orig_code = code;
|
||
rtx orig_varop = varop;
|
||
int count, log2;
|
||
machine_mode mode = result_mode;
|
||
machine_mode shift_mode;
|
||
scalar_int_mode tmode, inner_mode, int_mode, int_varop_mode, int_result_mode;
|
||
/* We form (outer_op (code varop count) (outer_const)). */
|
||
enum rtx_code outer_op = UNKNOWN;
|
||
HOST_WIDE_INT outer_const = 0;
|
||
int complement_p = 0;
|
||
rtx new_rtx, x;
|
||
|
||
/* Make sure and truncate the "natural" shift on the way in. We don't
|
||
want to do this inside the loop as it makes it more difficult to
|
||
combine shifts. */
|
||
if (SHIFT_COUNT_TRUNCATED)
|
||
orig_count &= GET_MODE_UNIT_BITSIZE (mode) - 1;
|
||
|
||
/* If we were given an invalid count, don't do anything except exactly
|
||
what was requested. */
|
||
|
||
if (orig_count < 0 || orig_count >= (int) GET_MODE_UNIT_PRECISION (mode))
|
||
return NULL_RTX;
|
||
|
||
count = orig_count;
|
||
|
||
/* Unless one of the branches of the `if' in this loop does a `continue',
|
||
we will `break' the loop after the `if'. */
|
||
|
||
while (count != 0)
|
||
{
|
||
/* If we have an operand of (clobber (const_int 0)), fail. */
|
||
if (GET_CODE (varop) == CLOBBER)
|
||
return NULL_RTX;
|
||
|
||
/* Convert ROTATERT to ROTATE. */
|
||
if (code == ROTATERT)
|
||
{
|
||
unsigned int bitsize = GET_MODE_UNIT_PRECISION (result_mode);
|
||
code = ROTATE;
|
||
count = bitsize - count;
|
||
}
|
||
|
||
shift_mode = result_mode;
|
||
if (shift_mode != mode)
|
||
{
|
||
/* We only change the modes of scalar shifts. */
|
||
int_mode = as_a <scalar_int_mode> (mode);
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
shift_mode = try_widen_shift_mode (code, varop, count,
|
||
int_result_mode, int_mode,
|
||
outer_op, outer_const);
|
||
}
|
||
|
||
scalar_int_mode shift_unit_mode
|
||
= as_a <scalar_int_mode> (GET_MODE_INNER (shift_mode));
|
||
|
||
/* Handle cases where the count is greater than the size of the mode
|
||
minus 1. For ASHIFT, use the size minus one as the count (this can
|
||
occur when simplifying (lshiftrt (ashiftrt ..))). For rotates,
|
||
take the count modulo the size. For other shifts, the result is
|
||
zero.
|
||
|
||
Since these shifts are being produced by the compiler by combining
|
||
multiple operations, each of which are defined, we know what the
|
||
result is supposed to be. */
|
||
|
||
if (count > (GET_MODE_PRECISION (shift_unit_mode) - 1))
|
||
{
|
||
if (code == ASHIFTRT)
|
||
count = GET_MODE_PRECISION (shift_unit_mode) - 1;
|
||
else if (code == ROTATE || code == ROTATERT)
|
||
count %= GET_MODE_PRECISION (shift_unit_mode);
|
||
else
|
||
{
|
||
/* We can't simply return zero because there may be an
|
||
outer op. */
|
||
varop = const0_rtx;
|
||
count = 0;
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* If we discovered we had to complement VAROP, leave. Making a NOT
|
||
here would cause an infinite loop. */
|
||
if (complement_p)
|
||
break;
|
||
|
||
if (shift_mode == shift_unit_mode)
|
||
{
|
||
/* An arithmetic right shift of a quantity known to be -1 or 0
|
||
is a no-op. */
|
||
if (code == ASHIFTRT
|
||
&& (num_sign_bit_copies (varop, shift_unit_mode)
|
||
== GET_MODE_PRECISION (shift_unit_mode)))
|
||
{
|
||
count = 0;
|
||
break;
|
||
}
|
||
|
||
/* If we are doing an arithmetic right shift and discarding all but
|
||
the sign bit copies, this is equivalent to doing a shift by the
|
||
bitsize minus one. Convert it into that shift because it will
|
||
often allow other simplifications. */
|
||
|
||
if (code == ASHIFTRT
|
||
&& (count + num_sign_bit_copies (varop, shift_unit_mode)
|
||
>= GET_MODE_PRECISION (shift_unit_mode)))
|
||
count = GET_MODE_PRECISION (shift_unit_mode) - 1;
|
||
|
||
/* We simplify the tests below and elsewhere by converting
|
||
ASHIFTRT to LSHIFTRT if we know the sign bit is clear.
|
||
`make_compound_operation' will convert it to an ASHIFTRT for
|
||
those machines (such as VAX) that don't have an LSHIFTRT. */
|
||
if (code == ASHIFTRT
|
||
&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
|
||
&& val_signbit_known_clear_p (shift_unit_mode,
|
||
nonzero_bits (varop,
|
||
shift_unit_mode)))
|
||
code = LSHIFTRT;
|
||
|
||
if (((code == LSHIFTRT
|
||
&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
|
||
&& !(nonzero_bits (varop, shift_unit_mode) >> count))
|
||
|| (code == ASHIFT
|
||
&& HWI_COMPUTABLE_MODE_P (shift_unit_mode)
|
||
&& !((nonzero_bits (varop, shift_unit_mode) << count)
|
||
& GET_MODE_MASK (shift_unit_mode))))
|
||
&& !side_effects_p (varop))
|
||
varop = const0_rtx;
|
||
}
|
||
|
||
switch (GET_CODE (varop))
|
||
{
|
||
case SIGN_EXTEND:
|
||
case ZERO_EXTEND:
|
||
case SIGN_EXTRACT:
|
||
case ZERO_EXTRACT:
|
||
new_rtx = expand_compound_operation (varop);
|
||
if (new_rtx != varop)
|
||
{
|
||
varop = new_rtx;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case MEM:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_mode = as_a <scalar_int_mode> (mode);
|
||
|
||
/* If we have (xshiftrt (mem ...) C) and C is MODE_WIDTH
|
||
minus the width of a smaller mode, we can do this with a
|
||
SIGN_EXTEND or ZERO_EXTEND from the narrower memory location. */
|
||
if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
&& ! mode_dependent_address_p (XEXP (varop, 0),
|
||
MEM_ADDR_SPACE (varop))
|
||
&& ! MEM_VOLATILE_P (varop)
|
||
&& (int_mode_for_size (GET_MODE_BITSIZE (int_mode) - count, 1)
|
||
.exists (&tmode)))
|
||
{
|
||
new_rtx = adjust_address_nv (varop, tmode,
|
||
BYTES_BIG_ENDIAN ? 0
|
||
: count / BITS_PER_UNIT);
|
||
|
||
varop = gen_rtx_fmt_e (code == ASHIFTRT ? SIGN_EXTEND
|
||
: ZERO_EXTEND, int_mode, new_rtx);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_mode = as_a <scalar_int_mode> (mode);
|
||
int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
|
||
|
||
/* If VAROP is a SUBREG, strip it as long as the inner operand has
|
||
the same number of words as what we've seen so far. Then store
|
||
the widest mode in MODE. */
|
||
if (subreg_lowpart_p (varop)
|
||
&& is_int_mode (GET_MODE (SUBREG_REG (varop)), &inner_mode)
|
||
&& GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_varop_mode)
|
||
&& (CEIL (GET_MODE_SIZE (inner_mode), UNITS_PER_WORD)
|
||
== CEIL (GET_MODE_SIZE (int_mode), UNITS_PER_WORD))
|
||
&& GET_MODE_CLASS (int_varop_mode) == MODE_INT)
|
||
{
|
||
varop = SUBREG_REG (varop);
|
||
if (GET_MODE_SIZE (inner_mode) > GET_MODE_SIZE (int_mode))
|
||
mode = inner_mode;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case MULT:
|
||
/* Some machines use MULT instead of ASHIFT because MULT
|
||
is cheaper. But it is still better on those machines to
|
||
merge two shifts into one. */
|
||
if (CONST_INT_P (XEXP (varop, 1))
|
||
&& (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
|
||
{
|
||
rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
|
||
varop = simplify_gen_binary (ASHIFT, GET_MODE (varop),
|
||
XEXP (varop, 0), log2_rtx);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case UDIV:
|
||
/* Similar, for when divides are cheaper. */
|
||
if (CONST_INT_P (XEXP (varop, 1))
|
||
&& (log2 = exact_log2 (UINTVAL (XEXP (varop, 1)))) >= 0)
|
||
{
|
||
rtx log2_rtx = gen_int_shift_amount (GET_MODE (varop), log2);
|
||
varop = simplify_gen_binary (LSHIFTRT, GET_MODE (varop),
|
||
XEXP (varop, 0), log2_rtx);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
/* If we are extracting just the sign bit of an arithmetic
|
||
right shift, that shift is not needed. However, the sign
|
||
bit of a wider mode may be different from what would be
|
||
interpreted as the sign bit in a narrower mode, so, if
|
||
the result is narrower, don't discard the shift. */
|
||
if (code == LSHIFTRT
|
||
&& count == (GET_MODE_UNIT_BITSIZE (result_mode) - 1)
|
||
&& (GET_MODE_UNIT_BITSIZE (result_mode)
|
||
>= GET_MODE_UNIT_BITSIZE (GET_MODE (varop))))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* fall through */
|
||
|
||
case LSHIFTRT:
|
||
case ASHIFT:
|
||
case ROTATE:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_mode = as_a <scalar_int_mode> (mode);
|
||
int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
|
||
/* Here we have two nested shifts. The result is usually the
|
||
AND of a new shift with a mask. We compute the result below. */
|
||
if (CONST_INT_P (XEXP (varop, 1))
|
||
&& INTVAL (XEXP (varop, 1)) >= 0
|
||
&& INTVAL (XEXP (varop, 1)) < GET_MODE_PRECISION (int_varop_mode)
|
||
&& HWI_COMPUTABLE_MODE_P (int_result_mode)
|
||
&& HWI_COMPUTABLE_MODE_P (int_mode))
|
||
{
|
||
enum rtx_code first_code = GET_CODE (varop);
|
||
unsigned int first_count = INTVAL (XEXP (varop, 1));
|
||
unsigned HOST_WIDE_INT mask;
|
||
rtx mask_rtx;
|
||
|
||
/* We have one common special case. We can't do any merging if
|
||
the inner code is an ASHIFTRT of a smaller mode. However, if
|
||
we have (ashift:M1 (subreg:M1 (ashiftrt:M2 FOO C1) 0) C2)
|
||
with C2 == GET_MODE_BITSIZE (M1) - GET_MODE_BITSIZE (M2),
|
||
we can convert it to
|
||
(ashiftrt:M1 (ashift:M1 (and:M1 (subreg:M1 FOO 0) C3) C2) C1).
|
||
This simplifies certain SIGN_EXTEND operations. */
|
||
if (code == ASHIFT && first_code == ASHIFTRT
|
||
&& count == (GET_MODE_PRECISION (int_result_mode)
|
||
- GET_MODE_PRECISION (int_varop_mode)))
|
||
{
|
||
/* C3 has the low-order C1 bits zero. */
|
||
|
||
mask = GET_MODE_MASK (int_mode)
|
||
& ~((HOST_WIDE_INT_1U << first_count) - 1);
|
||
|
||
varop = simplify_and_const_int (NULL_RTX, int_result_mode,
|
||
XEXP (varop, 0), mask);
|
||
varop = simplify_shift_const (NULL_RTX, ASHIFT,
|
||
int_result_mode, varop, count);
|
||
count = first_count;
|
||
code = ASHIFTRT;
|
||
continue;
|
||
}
|
||
|
||
/* If this was (ashiftrt (ashift foo C1) C2) and FOO has more
|
||
than C1 high-order bits equal to the sign bit, we can convert
|
||
this to either an ASHIFT or an ASHIFTRT depending on the
|
||
two counts.
|
||
|
||
We cannot do this if VAROP's mode is not SHIFT_UNIT_MODE. */
|
||
|
||
if (code == ASHIFTRT && first_code == ASHIFT
|
||
&& int_varop_mode == shift_unit_mode
|
||
&& (num_sign_bit_copies (XEXP (varop, 0), shift_unit_mode)
|
||
> first_count))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
count -= first_count;
|
||
if (count < 0)
|
||
{
|
||
count = -count;
|
||
code = ASHIFT;
|
||
}
|
||
|
||
continue;
|
||
}
|
||
|
||
/* There are some cases we can't do. If CODE is ASHIFTRT,
|
||
we can only do this if FIRST_CODE is also ASHIFTRT.
|
||
|
||
We can't do the case when CODE is ROTATE and FIRST_CODE is
|
||
ASHIFTRT.
|
||
|
||
If the mode of this shift is not the mode of the outer shift,
|
||
we can't do this if either shift is a right shift or ROTATE.
|
||
|
||
Finally, we can't do any of these if the mode is too wide
|
||
unless the codes are the same.
|
||
|
||
Handle the case where the shift codes are the same
|
||
first. */
|
||
|
||
if (code == first_code)
|
||
{
|
||
if (int_varop_mode != int_result_mode
|
||
&& (code == ASHIFTRT || code == LSHIFTRT
|
||
|| code == ROTATE))
|
||
break;
|
||
|
||
count += first_count;
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
if (code == ASHIFTRT
|
||
|| (code == ROTATE && first_code == ASHIFTRT)
|
||
|| GET_MODE_PRECISION (int_mode) > HOST_BITS_PER_WIDE_INT
|
||
|| (int_varop_mode != int_result_mode
|
||
&& (first_code == ASHIFTRT || first_code == LSHIFTRT
|
||
|| first_code == ROTATE
|
||
|| code == ROTATE)))
|
||
break;
|
||
|
||
/* To compute the mask to apply after the shift, shift the
|
||
nonzero bits of the inner shift the same way the
|
||
outer shift will. */
|
||
|
||
mask_rtx = gen_int_mode (nonzero_bits (varop, int_varop_mode),
|
||
int_result_mode);
|
||
rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
|
||
mask_rtx
|
||
= simplify_const_binary_operation (code, int_result_mode,
|
||
mask_rtx, count_rtx);
|
||
|
||
/* Give up if we can't compute an outer operation to use. */
|
||
if (mask_rtx == 0
|
||
|| !CONST_INT_P (mask_rtx)
|
||
|| ! merge_outer_ops (&outer_op, &outer_const, AND,
|
||
INTVAL (mask_rtx),
|
||
int_result_mode, &complement_p))
|
||
break;
|
||
|
||
/* If the shifts are in the same direction, we add the
|
||
counts. Otherwise, we subtract them. */
|
||
if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
== (first_code == ASHIFTRT || first_code == LSHIFTRT))
|
||
count += first_count;
|
||
else
|
||
count -= first_count;
|
||
|
||
/* If COUNT is positive, the new shift is usually CODE,
|
||
except for the two exceptions below, in which case it is
|
||
FIRST_CODE. If the count is negative, FIRST_CODE should
|
||
always be used */
|
||
if (count > 0
|
||
&& ((first_code == ROTATE && code == ASHIFT)
|
||
|| (first_code == ASHIFTRT && code == LSHIFTRT)))
|
||
code = first_code;
|
||
else if (count < 0)
|
||
code = first_code, count = -count;
|
||
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we have (A << B << C) for any shift, we can convert this to
|
||
(A << C << B). This wins if A is a constant. Only try this if
|
||
B is not a constant. */
|
||
|
||
else if (GET_CODE (varop) == code
|
||
&& CONST_INT_P (XEXP (varop, 0))
|
||
&& !CONST_INT_P (XEXP (varop, 1)))
|
||
{
|
||
/* For ((unsigned) (cstULL >> count)) >> cst2 we have to make
|
||
sure the result will be masked. See PR70222. */
|
||
if (code == LSHIFTRT
|
||
&& int_mode != int_result_mode
|
||
&& !merge_outer_ops (&outer_op, &outer_const, AND,
|
||
GET_MODE_MASK (int_result_mode)
|
||
>> orig_count, int_result_mode,
|
||
&complement_p))
|
||
break;
|
||
/* For ((int) (cstLL >> count)) >> cst2 just give up. Queuing
|
||
up outer sign extension (often left and right shift) is
|
||
hardly more efficient than the original. See PR70429. */
|
||
if (code == ASHIFTRT && int_mode != int_result_mode)
|
||
break;
|
||
|
||
rtx count_rtx = gen_int_shift_amount (int_result_mode, count);
|
||
rtx new_rtx = simplify_const_binary_operation (code, int_mode,
|
||
XEXP (varop, 0),
|
||
count_rtx);
|
||
varop = gen_rtx_fmt_ee (code, int_mode, new_rtx, XEXP (varop, 1));
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
|
||
/* Make this fit the case below. */
|
||
varop = gen_rtx_XOR (mode, XEXP (varop, 0), constm1_rtx);
|
||
continue;
|
||
|
||
case IOR:
|
||
case AND:
|
||
case XOR:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
|
||
/* If we have (xshiftrt (ior (plus X (const_int -1)) X) C)
|
||
with C the size of VAROP - 1 and the shift is logical if
|
||
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
|
||
we have an (le X 0) operation. If we have an arithmetic shift
|
||
and STORE_FLAG_VALUE is 1 or we have a logical shift with
|
||
STORE_FLAG_VALUE of -1, we have a (neg (le X 0)) operation. */
|
||
|
||
if (GET_CODE (varop) == IOR && GET_CODE (XEXP (varop, 0)) == PLUS
|
||
&& XEXP (XEXP (varop, 0), 1) == constm1_rtx
|
||
&& (STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
&& (code == LSHIFTRT || code == ASHIFTRT)
|
||
&& count == (GET_MODE_PRECISION (int_varop_mode) - 1)
|
||
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
|
||
{
|
||
count = 0;
|
||
varop = gen_rtx_LE (int_varop_mode, XEXP (varop, 1),
|
||
const0_rtx);
|
||
|
||
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
|
||
varop = gen_rtx_NEG (int_varop_mode, varop);
|
||
|
||
continue;
|
||
}
|
||
|
||
/* If we have (shift (logical)), move the logical to the outside
|
||
to allow it to possibly combine with another logical and the
|
||
shift to combine with another shift. This also canonicalizes to
|
||
what a ZERO_EXTRACT looks like. Also, some machines have
|
||
(and (shift)) insns. */
|
||
|
||
if (CONST_INT_P (XEXP (varop, 1))
|
||
/* We can't do this if we have (ashiftrt (xor)) and the
|
||
constant has its sign bit set in shift_unit_mode with
|
||
shift_unit_mode wider than result_mode. */
|
||
&& !(code == ASHIFTRT && GET_CODE (varop) == XOR
|
||
&& int_result_mode != shift_unit_mode
|
||
&& trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
|
||
shift_unit_mode) < 0)
|
||
&& (new_rtx = simplify_const_binary_operation
|
||
(code, int_result_mode,
|
||
gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
|
||
gen_int_shift_amount (int_result_mode, count))) != 0
|
||
&& CONST_INT_P (new_rtx)
|
||
&& merge_outer_ops (&outer_op, &outer_const, GET_CODE (varop),
|
||
INTVAL (new_rtx), int_result_mode,
|
||
&complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we can't do that, try to simplify the shift in each arm of the
|
||
logical expression, make a new logical expression, and apply
|
||
the inverse distributive law. This also can't be done for
|
||
(ashiftrt (xor)) where we've widened the shift and the constant
|
||
changes the sign bit. */
|
||
if (CONST_INT_P (XEXP (varop, 1))
|
||
&& !(code == ASHIFTRT && GET_CODE (varop) == XOR
|
||
&& int_result_mode != shift_unit_mode
|
||
&& trunc_int_for_mode (INTVAL (XEXP (varop, 1)),
|
||
shift_unit_mode) < 0))
|
||
{
|
||
rtx lhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
|
||
XEXP (varop, 0), count);
|
||
rtx rhs = simplify_shift_const (NULL_RTX, code, shift_unit_mode,
|
||
XEXP (varop, 1), count);
|
||
|
||
varop = simplify_gen_binary (GET_CODE (varop), shift_unit_mode,
|
||
lhs, rhs);
|
||
varop = apply_distributive_law (varop);
|
||
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case EQ:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
|
||
/* Convert (lshiftrt (eq FOO 0) C) to (xor FOO 1) if STORE_FLAG_VALUE
|
||
says that the sign bit can be tested, FOO has mode MODE, C is
|
||
GET_MODE_PRECISION (MODE) - 1, and FOO has only its low-order bit
|
||
that may be nonzero. */
|
||
if (code == LSHIFTRT
|
||
&& XEXP (varop, 1) == const0_rtx
|
||
&& GET_MODE (XEXP (varop, 0)) == int_result_mode
|
||
&& count == (GET_MODE_PRECISION (int_result_mode) - 1)
|
||
&& HWI_COMPUTABLE_MODE_P (int_result_mode)
|
||
&& STORE_FLAG_VALUE == -1
|
||
&& nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
|
||
&& merge_outer_ops (&outer_op, &outer_const, XOR, 1,
|
||
int_result_mode, &complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
|
||
/* (lshiftrt (neg A) C) where A is either 0 or 1 and C is one less
|
||
than the number of bits in the mode is equivalent to A. */
|
||
if (code == LSHIFTRT
|
||
&& count == (GET_MODE_PRECISION (int_result_mode) - 1)
|
||
&& nonzero_bits (XEXP (varop, 0), int_result_mode) == 1)
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
|
||
/* NEG commutes with ASHIFT since it is multiplication. Move the
|
||
NEG outside to allow shifts to combine. */
|
||
if (code == ASHIFT
|
||
&& merge_outer_ops (&outer_op, &outer_const, NEG, 0,
|
||
int_result_mode, &complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
|
||
/* (lshiftrt (plus A -1) C) where A is either 0 or 1 and C
|
||
is one less than the number of bits in the mode is
|
||
equivalent to (xor A 1). */
|
||
if (code == LSHIFTRT
|
||
&& count == (GET_MODE_PRECISION (int_result_mode) - 1)
|
||
&& XEXP (varop, 1) == constm1_rtx
|
||
&& nonzero_bits (XEXP (varop, 0), int_result_mode) == 1
|
||
&& merge_outer_ops (&outer_op, &outer_const, XOR, 1,
|
||
int_result_mode, &complement_p))
|
||
{
|
||
count = 0;
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we have (xshiftrt (plus FOO BAR) C), and the only bits
|
||
that might be nonzero in BAR are those being shifted out and those
|
||
bits are known zero in FOO, we can replace the PLUS with FOO.
|
||
Similarly in the other operand order. This code occurs when
|
||
we are computing the size of a variable-size array. */
|
||
|
||
if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
&& count < HOST_BITS_PER_WIDE_INT
|
||
&& nonzero_bits (XEXP (varop, 1), int_result_mode) >> count == 0
|
||
&& (nonzero_bits (XEXP (varop, 1), int_result_mode)
|
||
& nonzero_bits (XEXP (varop, 0), int_result_mode)) == 0)
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
else if ((code == ASHIFTRT || code == LSHIFTRT)
|
||
&& count < HOST_BITS_PER_WIDE_INT
|
||
&& HWI_COMPUTABLE_MODE_P (int_result_mode)
|
||
&& (nonzero_bits (XEXP (varop, 0), int_result_mode)
|
||
>> count) == 0
|
||
&& (nonzero_bits (XEXP (varop, 0), int_result_mode)
|
||
& nonzero_bits (XEXP (varop, 1), int_result_mode)) == 0)
|
||
{
|
||
varop = XEXP (varop, 1);
|
||
continue;
|
||
}
|
||
|
||
/* (ashift (plus foo C) N) is (plus (ashift foo N) C'). */
|
||
if (code == ASHIFT
|
||
&& CONST_INT_P (XEXP (varop, 1))
|
||
&& (new_rtx = simplify_const_binary_operation
|
||
(ASHIFT, int_result_mode,
|
||
gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
|
||
gen_int_shift_amount (int_result_mode, count))) != 0
|
||
&& CONST_INT_P (new_rtx)
|
||
&& merge_outer_ops (&outer_op, &outer_const, PLUS,
|
||
INTVAL (new_rtx), int_result_mode,
|
||
&complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
/* Check for 'PLUS signbit', which is the canonical form of 'XOR
|
||
signbit', and attempt to change the PLUS to an XOR and move it to
|
||
the outer operation as is done above in the AND/IOR/XOR case
|
||
leg for shift(logical). See details in logical handling above
|
||
for reasoning in doing so. */
|
||
if (code == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (varop, 1))
|
||
&& mode_signbit_p (int_result_mode, XEXP (varop, 1))
|
||
&& (new_rtx = simplify_const_binary_operation
|
||
(code, int_result_mode,
|
||
gen_int_mode (INTVAL (XEXP (varop, 1)), int_result_mode),
|
||
gen_int_shift_amount (int_result_mode, count))) != 0
|
||
&& CONST_INT_P (new_rtx)
|
||
&& merge_outer_ops (&outer_op, &outer_const, XOR,
|
||
INTVAL (new_rtx), int_result_mode,
|
||
&complement_p))
|
||
{
|
||
varop = XEXP (varop, 0);
|
||
continue;
|
||
}
|
||
|
||
break;
|
||
|
||
case MINUS:
|
||
/* The following rules apply only to scalars. */
|
||
if (shift_mode != shift_unit_mode)
|
||
break;
|
||
int_varop_mode = as_a <scalar_int_mode> (GET_MODE (varop));
|
||
|
||
/* If we have (xshiftrt (minus (ashiftrt X C)) X) C)
|
||
with C the size of VAROP - 1 and the shift is logical if
|
||
STORE_FLAG_VALUE is 1 and arithmetic if STORE_FLAG_VALUE is -1,
|
||
we have a (gt X 0) operation. If the shift is arithmetic with
|
||
STORE_FLAG_VALUE of 1 or logical with STORE_FLAG_VALUE == -1,
|
||
we have a (neg (gt X 0)) operation. */
|
||
|
||
if ((STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1)
|
||
&& GET_CODE (XEXP (varop, 0)) == ASHIFTRT
|
||
&& count == (GET_MODE_PRECISION (int_varop_mode) - 1)
|
||
&& (code == LSHIFTRT || code == ASHIFTRT)
|
||
&& CONST_INT_P (XEXP (XEXP (varop, 0), 1))
|
||
&& INTVAL (XEXP (XEXP (varop, 0), 1)) == count
|
||
&& rtx_equal_p (XEXP (XEXP (varop, 0), 0), XEXP (varop, 1)))
|
||
{
|
||
count = 0;
|
||
varop = gen_rtx_GT (int_varop_mode, XEXP (varop, 1),
|
||
const0_rtx);
|
||
|
||
if (STORE_FLAG_VALUE == 1 ? code == ASHIFTRT : code == LSHIFTRT)
|
||
varop = gen_rtx_NEG (int_varop_mode, varop);
|
||
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case TRUNCATE:
|
||
/* Change (lshiftrt (truncate (lshiftrt))) to (truncate (lshiftrt))
|
||
if the truncate does not affect the value. */
|
||
if (code == LSHIFTRT
|
||
&& GET_CODE (XEXP (varop, 0)) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (XEXP (varop, 0), 1))
|
||
&& (INTVAL (XEXP (XEXP (varop, 0), 1))
|
||
>= (GET_MODE_UNIT_PRECISION (GET_MODE (XEXP (varop, 0)))
|
||
- GET_MODE_UNIT_PRECISION (GET_MODE (varop)))))
|
||
{
|
||
rtx varop_inner = XEXP (varop, 0);
|
||
int new_count = count + INTVAL (XEXP (varop_inner, 1));
|
||
rtx new_count_rtx = gen_int_shift_amount (GET_MODE (varop_inner),
|
||
new_count);
|
||
varop_inner = gen_rtx_LSHIFTRT (GET_MODE (varop_inner),
|
||
XEXP (varop_inner, 0),
|
||
new_count_rtx);
|
||
varop = gen_rtx_TRUNCATE (GET_MODE (varop), varop_inner);
|
||
count = 0;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
shift_mode = result_mode;
|
||
if (shift_mode != mode)
|
||
{
|
||
/* We only change the modes of scalar shifts. */
|
||
int_mode = as_a <scalar_int_mode> (mode);
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
shift_mode = try_widen_shift_mode (code, varop, count, int_result_mode,
|
||
int_mode, outer_op, outer_const);
|
||
}
|
||
|
||
/* We have now finished analyzing the shift. The result should be
|
||
a shift of type CODE with SHIFT_MODE shifting VAROP COUNT places. If
|
||
OUTER_OP is non-UNKNOWN, it is an operation that needs to be applied
|
||
to the result of the shift. OUTER_CONST is the relevant constant,
|
||
but we must turn off all bits turned off in the shift. */
|
||
|
||
if (outer_op == UNKNOWN
|
||
&& orig_code == code && orig_count == count
|
||
&& varop == orig_varop
|
||
&& shift_mode == GET_MODE (varop))
|
||
return NULL_RTX;
|
||
|
||
/* Make a SUBREG if necessary. If we can't make it, fail. */
|
||
varop = gen_lowpart (shift_mode, varop);
|
||
if (varop == NULL_RTX || GET_CODE (varop) == CLOBBER)
|
||
return NULL_RTX;
|
||
|
||
/* If we have an outer operation and we just made a shift, it is
|
||
possible that we could have simplified the shift were it not
|
||
for the outer operation. So try to do the simplification
|
||
recursively. */
|
||
|
||
if (outer_op != UNKNOWN)
|
||
x = simplify_shift_const_1 (code, shift_mode, varop, count);
|
||
else
|
||
x = NULL_RTX;
|
||
|
||
if (x == NULL_RTX)
|
||
x = simplify_gen_binary (code, shift_mode, varop,
|
||
gen_int_shift_amount (shift_mode, count));
|
||
|
||
/* If we were doing an LSHIFTRT in a wider mode than it was originally,
|
||
turn off all the bits that the shift would have turned off. */
|
||
if (orig_code == LSHIFTRT && result_mode != shift_mode)
|
||
/* We only change the modes of scalar shifts. */
|
||
x = simplify_and_const_int (NULL_RTX, as_a <scalar_int_mode> (shift_mode),
|
||
x, GET_MODE_MASK (result_mode) >> orig_count);
|
||
|
||
/* Do the remainder of the processing in RESULT_MODE. */
|
||
x = gen_lowpart_or_truncate (result_mode, x);
|
||
|
||
/* If COMPLEMENT_P is set, we have to complement X before doing the outer
|
||
operation. */
|
||
if (complement_p)
|
||
x = simplify_gen_unary (NOT, result_mode, x, result_mode);
|
||
|
||
if (outer_op != UNKNOWN)
|
||
{
|
||
int_result_mode = as_a <scalar_int_mode> (result_mode);
|
||
|
||
if (GET_RTX_CLASS (outer_op) != RTX_UNARY
|
||
&& GET_MODE_PRECISION (int_result_mode) < HOST_BITS_PER_WIDE_INT)
|
||
outer_const = trunc_int_for_mode (outer_const, int_result_mode);
|
||
|
||
if (outer_op == AND)
|
||
x = simplify_and_const_int (NULL_RTX, int_result_mode, x, outer_const);
|
||
else if (outer_op == SET)
|
||
{
|
||
/* This means that we have determined that the result is
|
||
equivalent to a constant. This should be rare. */
|
||
if (!side_effects_p (x))
|
||
x = GEN_INT (outer_const);
|
||
}
|
||
else if (GET_RTX_CLASS (outer_op) == RTX_UNARY)
|
||
x = simplify_gen_unary (outer_op, int_result_mode, x, int_result_mode);
|
||
else
|
||
x = simplify_gen_binary (outer_op, int_result_mode, x,
|
||
GEN_INT (outer_const));
|
||
}
|
||
|
||
return x;
|
||
}
|
||
|
||
/* Simplify a shift of VAROP by COUNT bits. CODE says what kind of shift.
|
||
The result of the shift is RESULT_MODE. If we cannot simplify it,
|
||
return X or, if it is NULL, synthesize the expression with
|
||
simplify_gen_binary. Otherwise, return a simplified value.
|
||
|
||
The shift is normally computed in the widest mode we find in VAROP, as
|
||
long as it isn't a different number of words than RESULT_MODE. Exceptions
|
||
are ASHIFTRT and ROTATE, which are always done in their original mode. */
|
||
|
||
static rtx
|
||
simplify_shift_const (rtx x, enum rtx_code code, machine_mode result_mode,
|
||
rtx varop, int count)
|
||
{
|
||
rtx tem = simplify_shift_const_1 (code, result_mode, varop, count);
|
||
if (tem)
|
||
return tem;
|
||
|
||
if (!x)
|
||
x = simplify_gen_binary (code, GET_MODE (varop), varop,
|
||
gen_int_shift_amount (GET_MODE (varop), count));
|
||
if (GET_MODE (x) != result_mode)
|
||
x = gen_lowpart (result_mode, x);
|
||
return x;
|
||
}
|
||
|
||
|
||
/* A subroutine of recog_for_combine. See there for arguments and
|
||
return value. */
|
||
|
||
static int
|
||
recog_for_combine_1 (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
|
||
{
|
||
rtx pat = *pnewpat;
|
||
rtx pat_without_clobbers;
|
||
int insn_code_number;
|
||
int num_clobbers_to_add = 0;
|
||
int i;
|
||
rtx notes = NULL_RTX;
|
||
rtx old_notes, old_pat;
|
||
int old_icode;
|
||
|
||
/* If PAT is a PARALLEL, check to see if it contains the CLOBBER
|
||
we use to indicate that something didn't match. If we find such a
|
||
thing, force rejection. */
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) == CLOBBER
|
||
&& XEXP (XVECEXP (pat, 0, i), 0) == const0_rtx)
|
||
return -1;
|
||
|
||
old_pat = PATTERN (insn);
|
||
old_notes = REG_NOTES (insn);
|
||
PATTERN (insn) = pat;
|
||
REG_NOTES (insn) = NULL_RTX;
|
||
|
||
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
if (insn_code_number < 0)
|
||
fputs ("Failed to match this instruction:\n", dump_file);
|
||
else
|
||
fputs ("Successfully matched this instruction:\n", dump_file);
|
||
print_rtl_single (dump_file, pat);
|
||
}
|
||
|
||
/* If it isn't, there is the possibility that we previously had an insn
|
||
that clobbered some register as a side effect, but the combined
|
||
insn doesn't need to do that. So try once more without the clobbers
|
||
unless this represents an ASM insn. */
|
||
|
||
if (insn_code_number < 0 && ! check_asm_operands (pat)
|
||
&& GET_CODE (pat) == PARALLEL)
|
||
{
|
||
int pos;
|
||
|
||
for (pos = 0, i = 0; i < XVECLEN (pat, 0); i++)
|
||
if (GET_CODE (XVECEXP (pat, 0, i)) != CLOBBER)
|
||
{
|
||
if (i != pos)
|
||
SUBST (XVECEXP (pat, 0, pos), XVECEXP (pat, 0, i));
|
||
pos++;
|
||
}
|
||
|
||
SUBST_INT (XVECLEN (pat, 0), pos);
|
||
|
||
if (pos == 1)
|
||
pat = XVECEXP (pat, 0, 0);
|
||
|
||
PATTERN (insn) = pat;
|
||
insn_code_number = recog (pat, insn, &num_clobbers_to_add);
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
{
|
||
if (insn_code_number < 0)
|
||
fputs ("Failed to match this instruction:\n", dump_file);
|
||
else
|
||
fputs ("Successfully matched this instruction:\n", dump_file);
|
||
print_rtl_single (dump_file, pat);
|
||
}
|
||
}
|
||
|
||
pat_without_clobbers = pat;
|
||
|
||
PATTERN (insn) = old_pat;
|
||
REG_NOTES (insn) = old_notes;
|
||
|
||
/* Recognize all noop sets, these will be killed by followup pass. */
|
||
if (insn_code_number < 0 && GET_CODE (pat) == SET && set_noop_p (pat))
|
||
insn_code_number = NOOP_MOVE_INSN_CODE, num_clobbers_to_add = 0;
|
||
|
||
/* If we had any clobbers to add, make a new pattern than contains
|
||
them. Then check to make sure that all of them are dead. */
|
||
if (num_clobbers_to_add)
|
||
{
|
||
rtx newpat = gen_rtx_PARALLEL (VOIDmode,
|
||
rtvec_alloc (GET_CODE (pat) == PARALLEL
|
||
? (XVECLEN (pat, 0)
|
||
+ num_clobbers_to_add)
|
||
: num_clobbers_to_add + 1));
|
||
|
||
if (GET_CODE (pat) == PARALLEL)
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
XVECEXP (newpat, 0, i) = XVECEXP (pat, 0, i);
|
||
else
|
||
XVECEXP (newpat, 0, 0) = pat;
|
||
|
||
add_clobbers (newpat, insn_code_number);
|
||
|
||
for (i = XVECLEN (newpat, 0) - num_clobbers_to_add;
|
||
i < XVECLEN (newpat, 0); i++)
|
||
{
|
||
if (REG_P (XEXP (XVECEXP (newpat, 0, i), 0))
|
||
&& ! reg_dead_at_p (XEXP (XVECEXP (newpat, 0, i), 0), insn))
|
||
return -1;
|
||
if (GET_CODE (XEXP (XVECEXP (newpat, 0, i), 0)) != SCRATCH)
|
||
{
|
||
gcc_assert (REG_P (XEXP (XVECEXP (newpat, 0, i), 0)));
|
||
notes = alloc_reg_note (REG_UNUSED,
|
||
XEXP (XVECEXP (newpat, 0, i), 0), notes);
|
||
}
|
||
}
|
||
pat = newpat;
|
||
}
|
||
|
||
if (insn_code_number >= 0
|
||
&& insn_code_number != NOOP_MOVE_INSN_CODE)
|
||
{
|
||
old_pat = PATTERN (insn);
|
||
old_notes = REG_NOTES (insn);
|
||
old_icode = INSN_CODE (insn);
|
||
PATTERN (insn) = pat;
|
||
REG_NOTES (insn) = notes;
|
||
INSN_CODE (insn) = insn_code_number;
|
||
|
||
/* Allow targets to reject combined insn. */
|
||
if (!targetm.legitimate_combined_insn (insn))
|
||
{
|
||
if (dump_file && (dump_flags & TDF_DETAILS))
|
||
fputs ("Instruction not appropriate for target.",
|
||
dump_file);
|
||
|
||
/* Callers expect recog_for_combine to strip
|
||
clobbers from the pattern on failure. */
|
||
pat = pat_without_clobbers;
|
||
notes = NULL_RTX;
|
||
|
||
insn_code_number = -1;
|
||
}
|
||
|
||
PATTERN (insn) = old_pat;
|
||
REG_NOTES (insn) = old_notes;
|
||
INSN_CODE (insn) = old_icode;
|
||
}
|
||
|
||
*pnewpat = pat;
|
||
*pnotes = notes;
|
||
|
||
return insn_code_number;
|
||
}
|
||
|
||
/* Change every ZERO_EXTRACT and ZERO_EXTEND of a SUBREG that can be
|
||
expressed as an AND and maybe an LSHIFTRT, to that formulation.
|
||
Return whether anything was so changed. */
|
||
|
||
static bool
|
||
change_zero_ext (rtx pat)
|
||
{
|
||
bool changed = false;
|
||
rtx *src = &SET_SRC (pat);
|
||
|
||
subrtx_ptr_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
|
||
{
|
||
rtx x = **iter;
|
||
scalar_int_mode mode, inner_mode;
|
||
if (!is_a <scalar_int_mode> (GET_MODE (x), &mode))
|
||
continue;
|
||
int size;
|
||
|
||
if (GET_CODE (x) == ZERO_EXTRACT
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& CONST_INT_P (XEXP (x, 2))
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)), &inner_mode)
|
||
&& GET_MODE_PRECISION (inner_mode) <= GET_MODE_PRECISION (mode))
|
||
{
|
||
size = INTVAL (XEXP (x, 1));
|
||
|
||
int start = INTVAL (XEXP (x, 2));
|
||
if (BITS_BIG_ENDIAN)
|
||
start = GET_MODE_PRECISION (inner_mode) - size - start;
|
||
|
||
if (start != 0)
|
||
x = gen_rtx_LSHIFTRT (inner_mode, XEXP (x, 0),
|
||
gen_int_shift_amount (inner_mode, start));
|
||
else
|
||
x = XEXP (x, 0);
|
||
|
||
if (mode != inner_mode)
|
||
{
|
||
if (REG_P (x) && HARD_REGISTER_P (x)
|
||
&& !can_change_dest_mode (x, 0, mode))
|
||
continue;
|
||
|
||
x = gen_lowpart_SUBREG (mode, x);
|
||
}
|
||
}
|
||
else if (GET_CODE (x) == ZERO_EXTEND
|
||
&& GET_CODE (XEXP (x, 0)) == SUBREG
|
||
&& SCALAR_INT_MODE_P (GET_MODE (SUBREG_REG (XEXP (x, 0))))
|
||
&& !paradoxical_subreg_p (XEXP (x, 0))
|
||
&& subreg_lowpart_p (XEXP (x, 0)))
|
||
{
|
||
inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
|
||
size = GET_MODE_PRECISION (inner_mode);
|
||
x = SUBREG_REG (XEXP (x, 0));
|
||
if (GET_MODE (x) != mode)
|
||
{
|
||
if (REG_P (x) && HARD_REGISTER_P (x)
|
||
&& !can_change_dest_mode (x, 0, mode))
|
||
continue;
|
||
|
||
x = gen_lowpart_SUBREG (mode, x);
|
||
}
|
||
}
|
||
else if (GET_CODE (x) == ZERO_EXTEND
|
||
&& REG_P (XEXP (x, 0))
|
||
&& HARD_REGISTER_P (XEXP (x, 0))
|
||
&& can_change_dest_mode (XEXP (x, 0), 0, mode))
|
||
{
|
||
inner_mode = as_a <scalar_int_mode> (GET_MODE (XEXP (x, 0)));
|
||
size = GET_MODE_PRECISION (inner_mode);
|
||
x = gen_rtx_REG (mode, REGNO (XEXP (x, 0)));
|
||
}
|
||
else
|
||
continue;
|
||
|
||
if (!(GET_CODE (x) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (x, 1))
|
||
&& size + INTVAL (XEXP (x, 1)) == GET_MODE_PRECISION (mode)))
|
||
{
|
||
wide_int mask = wi::mask (size, false, GET_MODE_PRECISION (mode));
|
||
x = gen_rtx_AND (mode, x, immed_wide_int_const (mask, mode));
|
||
}
|
||
|
||
SUBST (**iter, x);
|
||
changed = true;
|
||
}
|
||
|
||
if (changed)
|
||
FOR_EACH_SUBRTX_PTR (iter, array, src, NONCONST)
|
||
maybe_swap_commutative_operands (**iter);
|
||
|
||
rtx *dst = &SET_DEST (pat);
|
||
scalar_int_mode mode;
|
||
if (GET_CODE (*dst) == ZERO_EXTRACT
|
||
&& REG_P (XEXP (*dst, 0))
|
||
&& is_a <scalar_int_mode> (GET_MODE (XEXP (*dst, 0)), &mode)
|
||
&& CONST_INT_P (XEXP (*dst, 1))
|
||
&& CONST_INT_P (XEXP (*dst, 2)))
|
||
{
|
||
rtx reg = XEXP (*dst, 0);
|
||
int width = INTVAL (XEXP (*dst, 1));
|
||
int offset = INTVAL (XEXP (*dst, 2));
|
||
int reg_width = GET_MODE_PRECISION (mode);
|
||
if (BITS_BIG_ENDIAN)
|
||
offset = reg_width - width - offset;
|
||
|
||
rtx x, y, z, w;
|
||
wide_int mask = wi::shifted_mask (offset, width, true, reg_width);
|
||
wide_int mask2 = wi::shifted_mask (offset, width, false, reg_width);
|
||
x = gen_rtx_AND (mode, reg, immed_wide_int_const (mask, mode));
|
||
if (offset)
|
||
y = gen_rtx_ASHIFT (mode, SET_SRC (pat), GEN_INT (offset));
|
||
else
|
||
y = SET_SRC (pat);
|
||
z = gen_rtx_AND (mode, y, immed_wide_int_const (mask2, mode));
|
||
w = gen_rtx_IOR (mode, x, z);
|
||
SUBST (SET_DEST (pat), reg);
|
||
SUBST (SET_SRC (pat), w);
|
||
|
||
changed = true;
|
||
}
|
||
|
||
return changed;
|
||
}
|
||
|
||
/* Like recog, but we receive the address of a pointer to a new pattern.
|
||
We try to match the rtx that the pointer points to.
|
||
If that fails, we may try to modify or replace the pattern,
|
||
storing the replacement into the same pointer object.
|
||
|
||
Modifications include deletion or addition of CLOBBERs. If the
|
||
instruction will still not match, we change ZERO_EXTEND and ZERO_EXTRACT
|
||
to the equivalent AND and perhaps LSHIFTRT patterns, and try with that
|
||
(and undo if that fails).
|
||
|
||
PNOTES is a pointer to a location where any REG_UNUSED notes added for
|
||
the CLOBBERs are placed.
|
||
|
||
The value is the final insn code from the pattern ultimately matched,
|
||
or -1. */
|
||
|
||
static int
|
||
recog_for_combine (rtx *pnewpat, rtx_insn *insn, rtx *pnotes)
|
||
{
|
||
rtx pat = *pnewpat;
|
||
int insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
|
||
if (insn_code_number >= 0 || check_asm_operands (pat))
|
||
return insn_code_number;
|
||
|
||
void *marker = get_undo_marker ();
|
||
bool changed = false;
|
||
|
||
if (GET_CODE (pat) == SET)
|
||
changed = change_zero_ext (pat);
|
||
else if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
int i;
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
rtx set = XVECEXP (pat, 0, i);
|
||
if (GET_CODE (set) == SET)
|
||
changed |= change_zero_ext (set);
|
||
}
|
||
}
|
||
|
||
if (changed)
|
||
{
|
||
insn_code_number = recog_for_combine_1 (pnewpat, insn, pnotes);
|
||
|
||
if (insn_code_number < 0)
|
||
undo_to_marker (marker);
|
||
}
|
||
|
||
return insn_code_number;
|
||
}
|
||
|
||
/* Like gen_lowpart_general but for use by combine. In combine it
|
||
is not possible to create any new pseudoregs. However, it is
|
||
safe to create invalid memory addresses, because combine will
|
||
try to recognize them and all they will do is make the combine
|
||
attempt fail.
|
||
|
||
If for some reason this cannot do its job, an rtx
|
||
(clobber (const_int 0)) is returned.
|
||
An insn containing that will not be recognized. */
|
||
|
||
static rtx
|
||
gen_lowpart_for_combine (machine_mode omode, rtx x)
|
||
{
|
||
machine_mode imode = GET_MODE (x);
|
||
rtx result;
|
||
|
||
if (omode == imode)
|
||
return x;
|
||
|
||
/* We can only support MODE being wider than a word if X is a
|
||
constant integer or has a mode the same size. */
|
||
if (maybe_gt (GET_MODE_SIZE (omode), UNITS_PER_WORD)
|
||
&& ! (CONST_SCALAR_INT_P (x)
|
||
|| known_eq (GET_MODE_SIZE (imode), GET_MODE_SIZE (omode))))
|
||
goto fail;
|
||
|
||
/* X might be a paradoxical (subreg (mem)). In that case, gen_lowpart
|
||
won't know what to do. So we will strip off the SUBREG here and
|
||
process normally. */
|
||
if (GET_CODE (x) == SUBREG && MEM_P (SUBREG_REG (x)))
|
||
{
|
||
x = SUBREG_REG (x);
|
||
|
||
/* For use in case we fall down into the address adjustments
|
||
further below, we need to adjust the known mode and size of
|
||
x; imode and isize, since we just adjusted x. */
|
||
imode = GET_MODE (x);
|
||
|
||
if (imode == omode)
|
||
return x;
|
||
}
|
||
|
||
result = gen_lowpart_common (omode, x);
|
||
|
||
if (result)
|
||
return result;
|
||
|
||
if (MEM_P (x))
|
||
{
|
||
/* Refuse to work on a volatile memory ref or one with a mode-dependent
|
||
address. */
|
||
if (MEM_VOLATILE_P (x)
|
||
|| mode_dependent_address_p (XEXP (x, 0), MEM_ADDR_SPACE (x)))
|
||
goto fail;
|
||
|
||
/* If we want to refer to something bigger than the original memref,
|
||
generate a paradoxical subreg instead. That will force a reload
|
||
of the original memref X. */
|
||
if (paradoxical_subreg_p (omode, imode))
|
||
return gen_rtx_SUBREG (omode, x, 0);
|
||
|
||
poly_int64 offset = byte_lowpart_offset (omode, imode);
|
||
return adjust_address_nv (x, omode, offset);
|
||
}
|
||
|
||
/* If X is a comparison operator, rewrite it in a new mode. This
|
||
probably won't match, but may allow further simplifications. */
|
||
else if (COMPARISON_P (x)
|
||
&& SCALAR_INT_MODE_P (imode)
|
||
&& SCALAR_INT_MODE_P (omode))
|
||
return gen_rtx_fmt_ee (GET_CODE (x), omode, XEXP (x, 0), XEXP (x, 1));
|
||
|
||
/* If we couldn't simplify X any other way, just enclose it in a
|
||
SUBREG. Normally, this SUBREG won't match, but some patterns may
|
||
include an explicit SUBREG or we may simplify it further in combine. */
|
||
else
|
||
{
|
||
rtx res;
|
||
|
||
if (imode == VOIDmode)
|
||
{
|
||
imode = int_mode_for_mode (omode).require ();
|
||
x = gen_lowpart_common (imode, x);
|
||
if (x == NULL)
|
||
goto fail;
|
||
}
|
||
res = lowpart_subreg (omode, x, imode);
|
||
if (res)
|
||
return res;
|
||
}
|
||
|
||
fail:
|
||
return gen_rtx_CLOBBER (omode, const0_rtx);
|
||
}
|
||
|
||
/* Try to simplify a comparison between OP0 and a constant OP1,
|
||
where CODE is the comparison code that will be tested, into a
|
||
(CODE OP0 const0_rtx) form.
|
||
|
||
The result is a possibly different comparison code to use.
|
||
*POP1 may be updated. */
|
||
|
||
static enum rtx_code
|
||
simplify_compare_const (enum rtx_code code, machine_mode mode,
|
||
rtx op0, rtx *pop1)
|
||
{
|
||
scalar_int_mode int_mode;
|
||
HOST_WIDE_INT const_op = INTVAL (*pop1);
|
||
|
||
/* Get the constant we are comparing against and turn off all bits
|
||
not on in our mode. */
|
||
if (mode != VOIDmode)
|
||
const_op = trunc_int_for_mode (const_op, mode);
|
||
|
||
/* If we are comparing against a constant power of two and the value
|
||
being compared can only have that single bit nonzero (e.g., it was
|
||
`and'ed with that bit), we can replace this with a comparison
|
||
with zero. */
|
||
if (const_op
|
||
&& (code == EQ || code == NE || code == GE || code == GEU
|
||
|| code == LT || code == LTU)
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
|
||
&& pow2p_hwi (const_op & GET_MODE_MASK (int_mode))
|
||
&& (nonzero_bits (op0, int_mode)
|
||
== (unsigned HOST_WIDE_INT) (const_op & GET_MODE_MASK (int_mode))))
|
||
{
|
||
code = (code == EQ || code == GE || code == GEU ? NE : EQ);
|
||
const_op = 0;
|
||
}
|
||
|
||
/* Similarly, if we are comparing a value known to be either -1 or
|
||
0 with -1, change it to the opposite comparison against zero. */
|
||
if (const_op == -1
|
||
&& (code == EQ || code == NE || code == GT || code == LE
|
||
|| code == GEU || code == LTU)
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& num_sign_bit_copies (op0, int_mode) == GET_MODE_PRECISION (int_mode))
|
||
{
|
||
code = (code == EQ || code == LE || code == GEU ? NE : EQ);
|
||
const_op = 0;
|
||
}
|
||
|
||
/* Do some canonicalizations based on the comparison code. We prefer
|
||
comparisons against zero and then prefer equality comparisons.
|
||
If we can reduce the size of a constant, we will do that too. */
|
||
switch (code)
|
||
{
|
||
case LT:
|
||
/* < C is equivalent to <= (C - 1) */
|
||
if (const_op > 0)
|
||
{
|
||
const_op -= 1;
|
||
code = LE;
|
||
/* ... fall through to LE case below. */
|
||
gcc_fallthrough ();
|
||
}
|
||
else
|
||
break;
|
||
|
||
case LE:
|
||
/* <= C is equivalent to < (C + 1); we do this for C < 0 */
|
||
if (const_op < 0)
|
||
{
|
||
const_op += 1;
|
||
code = LT;
|
||
}
|
||
|
||
/* If we are doing a <= 0 comparison on a value known to have
|
||
a zero sign bit, we can replace this with == 0. */
|
||
else if (const_op == 0
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (op0, int_mode)
|
||
& (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
|
||
== 0)
|
||
code = EQ;
|
||
break;
|
||
|
||
case GE:
|
||
/* >= C is equivalent to > (C - 1). */
|
||
if (const_op > 0)
|
||
{
|
||
const_op -= 1;
|
||
code = GT;
|
||
/* ... fall through to GT below. */
|
||
gcc_fallthrough ();
|
||
}
|
||
else
|
||
break;
|
||
|
||
case GT:
|
||
/* > C is equivalent to >= (C + 1); we do this for C < 0. */
|
||
if (const_op < 0)
|
||
{
|
||
const_op += 1;
|
||
code = GE;
|
||
}
|
||
|
||
/* If we are doing a > 0 comparison on a value known to have
|
||
a zero sign bit, we can replace this with != 0. */
|
||
else if (const_op == 0
|
||
&& is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (op0, int_mode)
|
||
& (HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
|
||
== 0)
|
||
code = NE;
|
||
break;
|
||
|
||
case LTU:
|
||
/* < C is equivalent to <= (C - 1). */
|
||
if (const_op > 0)
|
||
{
|
||
const_op -= 1;
|
||
code = LEU;
|
||
/* ... fall through ... */
|
||
gcc_fallthrough ();
|
||
}
|
||
/* (unsigned) < 0x80000000 is equivalent to >= 0. */
|
||
else if (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
|
||
&& ((unsigned HOST_WIDE_INT) const_op
|
||
== HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
|
||
{
|
||
const_op = 0;
|
||
code = GE;
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case LEU:
|
||
/* unsigned <= 0 is equivalent to == 0 */
|
||
if (const_op == 0)
|
||
code = EQ;
|
||
/* (unsigned) <= 0x7fffffff is equivalent to >= 0. */
|
||
else if (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
|
||
&& ((unsigned HOST_WIDE_INT) const_op
|
||
== ((HOST_WIDE_INT_1U
|
||
<< (GET_MODE_PRECISION (int_mode) - 1)) - 1)))
|
||
{
|
||
const_op = 0;
|
||
code = GE;
|
||
}
|
||
break;
|
||
|
||
case GEU:
|
||
/* >= C is equivalent to > (C - 1). */
|
||
if (const_op > 1)
|
||
{
|
||
const_op -= 1;
|
||
code = GTU;
|
||
/* ... fall through ... */
|
||
gcc_fallthrough ();
|
||
}
|
||
|
||
/* (unsigned) >= 0x80000000 is equivalent to < 0. */
|
||
else if (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
|
||
&& ((unsigned HOST_WIDE_INT) const_op
|
||
== HOST_WIDE_INT_1U << (GET_MODE_PRECISION (int_mode) - 1)))
|
||
{
|
||
const_op = 0;
|
||
code = LT;
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
|
||
case GTU:
|
||
/* unsigned > 0 is equivalent to != 0 */
|
||
if (const_op == 0)
|
||
code = NE;
|
||
/* (unsigned) > 0x7fffffff is equivalent to < 0. */
|
||
else if (is_a <scalar_int_mode> (mode, &int_mode)
|
||
&& GET_MODE_PRECISION (int_mode) - 1 < HOST_BITS_PER_WIDE_INT
|
||
&& ((unsigned HOST_WIDE_INT) const_op
|
||
== (HOST_WIDE_INT_1U
|
||
<< (GET_MODE_PRECISION (int_mode) - 1)) - 1))
|
||
{
|
||
const_op = 0;
|
||
code = LT;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
*pop1 = GEN_INT (const_op);
|
||
return code;
|
||
}
|
||
|
||
/* Simplify a comparison between *POP0 and *POP1 where CODE is the
|
||
comparison code that will be tested.
|
||
|
||
The result is a possibly different comparison code to use. *POP0 and
|
||
*POP1 may be updated.
|
||
|
||
It is possible that we might detect that a comparison is either always
|
||
true or always false. However, we do not perform general constant
|
||
folding in combine, so this knowledge isn't useful. Such tautologies
|
||
should have been detected earlier. Hence we ignore all such cases. */
|
||
|
||
static enum rtx_code
|
||
simplify_comparison (enum rtx_code code, rtx *pop0, rtx *pop1)
|
||
{
|
||
rtx op0 = *pop0;
|
||
rtx op1 = *pop1;
|
||
rtx tem, tem1;
|
||
int i;
|
||
scalar_int_mode mode, inner_mode, tmode;
|
||
opt_scalar_int_mode tmode_iter;
|
||
|
||
/* Try a few ways of applying the same transformation to both operands. */
|
||
while (1)
|
||
{
|
||
/* The test below this one won't handle SIGN_EXTENDs on these machines,
|
||
so check specially. */
|
||
if (!WORD_REGISTER_OPERATIONS
|
||
&& code != GTU && code != GEU && code != LTU && code != LEU
|
||
&& GET_CODE (op0) == ASHIFTRT && GET_CODE (op1) == ASHIFTRT
|
||
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
|
||
&& GET_CODE (XEXP (op1, 0)) == ASHIFT
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 0)) == SUBREG
|
||
&& GET_CODE (XEXP (XEXP (op1, 0), 0)) == SUBREG
|
||
&& is_a <scalar_int_mode> (GET_MODE (op0), &mode)
|
||
&& (is_a <scalar_int_mode>
|
||
(GET_MODE (SUBREG_REG (XEXP (XEXP (op0, 0), 0))), &inner_mode))
|
||
&& inner_mode == GET_MODE (SUBREG_REG (XEXP (XEXP (op1, 0), 0)))
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& XEXP (op0, 1) == XEXP (op1, 1)
|
||
&& XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
|
||
&& XEXP (op0, 1) == XEXP (XEXP (op1, 0), 1)
|
||
&& (INTVAL (XEXP (op0, 1))
|
||
== (GET_MODE_PRECISION (mode)
|
||
- GET_MODE_PRECISION (inner_mode))))
|
||
{
|
||
op0 = SUBREG_REG (XEXP (XEXP (op0, 0), 0));
|
||
op1 = SUBREG_REG (XEXP (XEXP (op1, 0), 0));
|
||
}
|
||
|
||
/* If both operands are the same constant shift, see if we can ignore the
|
||
shift. We can if the shift is a rotate or if the bits shifted out of
|
||
this shift are known to be zero for both inputs and if the type of
|
||
comparison is compatible with the shift. */
|
||
if (GET_CODE (op0) == GET_CODE (op1)
|
||
&& HWI_COMPUTABLE_MODE_P (GET_MODE (op0))
|
||
&& ((GET_CODE (op0) == ROTATE && (code == NE || code == EQ))
|
||
|| ((GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFT)
|
||
&& (code != GT && code != LT && code != GE && code != LE))
|
||
|| (GET_CODE (op0) == ASHIFTRT
|
||
&& (code != GTU && code != LTU
|
||
&& code != GEU && code != LEU)))
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& INTVAL (XEXP (op0, 1)) >= 0
|
||
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& XEXP (op0, 1) == XEXP (op1, 1))
|
||
{
|
||
machine_mode mode = GET_MODE (op0);
|
||
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
||
int shift_count = INTVAL (XEXP (op0, 1));
|
||
|
||
if (GET_CODE (op0) == LSHIFTRT || GET_CODE (op0) == ASHIFTRT)
|
||
mask &= (mask >> shift_count) << shift_count;
|
||
else if (GET_CODE (op0) == ASHIFT)
|
||
mask = (mask & (mask << shift_count)) >> shift_count;
|
||
|
||
if ((nonzero_bits (XEXP (op0, 0), mode) & ~mask) == 0
|
||
&& (nonzero_bits (XEXP (op1, 0), mode) & ~mask) == 0)
|
||
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0);
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* If both operands are AND's of a paradoxical SUBREG by constant, the
|
||
SUBREGs are of the same mode, and, in both cases, the AND would
|
||
be redundant if the comparison was done in the narrower mode,
|
||
do the comparison in the narrower mode (e.g., we are AND'ing with 1
|
||
and the operand's possibly nonzero bits are 0xffffff01; in that case
|
||
if we only care about QImode, we don't need the AND). This case
|
||
occurs if the output mode of an scc insn is not SImode and
|
||
STORE_FLAG_VALUE == 1 (e.g., the 386).
|
||
|
||
Similarly, check for a case where the AND's are ZERO_EXTEND
|
||
operations from some narrower mode even though a SUBREG is not
|
||
present. */
|
||
|
||
else if (GET_CODE (op0) == AND && GET_CODE (op1) == AND
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& CONST_INT_P (XEXP (op1, 1)))
|
||
{
|
||
rtx inner_op0 = XEXP (op0, 0);
|
||
rtx inner_op1 = XEXP (op1, 0);
|
||
HOST_WIDE_INT c0 = INTVAL (XEXP (op0, 1));
|
||
HOST_WIDE_INT c1 = INTVAL (XEXP (op1, 1));
|
||
int changed = 0;
|
||
|
||
if (paradoxical_subreg_p (inner_op0)
|
||
&& GET_CODE (inner_op1) == SUBREG
|
||
&& HWI_COMPUTABLE_MODE_P (GET_MODE (SUBREG_REG (inner_op0)))
|
||
&& (GET_MODE (SUBREG_REG (inner_op0))
|
||
== GET_MODE (SUBREG_REG (inner_op1)))
|
||
&& ((~c0) & nonzero_bits (SUBREG_REG (inner_op0),
|
||
GET_MODE (SUBREG_REG (inner_op0)))) == 0
|
||
&& ((~c1) & nonzero_bits (SUBREG_REG (inner_op1),
|
||
GET_MODE (SUBREG_REG (inner_op1)))) == 0)
|
||
{
|
||
op0 = SUBREG_REG (inner_op0);
|
||
op1 = SUBREG_REG (inner_op1);
|
||
|
||
/* The resulting comparison is always unsigned since we masked
|
||
off the original sign bit. */
|
||
code = unsigned_condition (code);
|
||
|
||
changed = 1;
|
||
}
|
||
|
||
else if (c0 == c1)
|
||
FOR_EACH_MODE_UNTIL (tmode,
|
||
as_a <scalar_int_mode> (GET_MODE (op0)))
|
||
if ((unsigned HOST_WIDE_INT) c0 == GET_MODE_MASK (tmode))
|
||
{
|
||
op0 = gen_lowpart_or_truncate (tmode, inner_op0);
|
||
op1 = gen_lowpart_or_truncate (tmode, inner_op1);
|
||
code = unsigned_condition (code);
|
||
changed = 1;
|
||
break;
|
||
}
|
||
|
||
if (! changed)
|
||
break;
|
||
}
|
||
|
||
/* If both operands are NOT, we can strip off the outer operation
|
||
and adjust the comparison code for swapped operands; similarly for
|
||
NEG, except that this must be an equality comparison. */
|
||
else if ((GET_CODE (op0) == NOT && GET_CODE (op1) == NOT)
|
||
|| (GET_CODE (op0) == NEG && GET_CODE (op1) == NEG
|
||
&& (code == EQ || code == NE)))
|
||
op0 = XEXP (op0, 0), op1 = XEXP (op1, 0), code = swap_condition (code);
|
||
|
||
else
|
||
break;
|
||
}
|
||
|
||
/* If the first operand is a constant, swap the operands and adjust the
|
||
comparison code appropriately, but don't do this if the second operand
|
||
is already a constant integer. */
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
std::swap (op0, op1);
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* We now enter a loop during which we will try to simplify the comparison.
|
||
For the most part, we only are concerned with comparisons with zero,
|
||
but some things may really be comparisons with zero but not start
|
||
out looking that way. */
|
||
|
||
while (CONST_INT_P (op1))
|
||
{
|
||
machine_mode raw_mode = GET_MODE (op0);
|
||
scalar_int_mode int_mode;
|
||
int equality_comparison_p;
|
||
int sign_bit_comparison_p;
|
||
int unsigned_comparison_p;
|
||
HOST_WIDE_INT const_op;
|
||
|
||
/* We only want to handle integral modes. This catches VOIDmode,
|
||
CCmode, and the floating-point modes. An exception is that we
|
||
can handle VOIDmode if OP0 is a COMPARE or a comparison
|
||
operation. */
|
||
|
||
if (GET_MODE_CLASS (raw_mode) != MODE_INT
|
||
&& ! (raw_mode == VOIDmode
|
||
&& (GET_CODE (op0) == COMPARE || COMPARISON_P (op0))))
|
||
break;
|
||
|
||
/* Try to simplify the compare to constant, possibly changing the
|
||
comparison op, and/or changing op1 to zero. */
|
||
code = simplify_compare_const (code, raw_mode, op0, &op1);
|
||
const_op = INTVAL (op1);
|
||
|
||
/* Compute some predicates to simplify code below. */
|
||
|
||
equality_comparison_p = (code == EQ || code == NE);
|
||
sign_bit_comparison_p = ((code == LT || code == GE) && const_op == 0);
|
||
unsigned_comparison_p = (code == LTU || code == LEU || code == GTU
|
||
|| code == GEU);
|
||
|
||
/* If this is a sign bit comparison and we can do arithmetic in
|
||
MODE, say that we will only be needing the sign bit of OP0. */
|
||
if (sign_bit_comparison_p
|
||
&& is_a <scalar_int_mode> (raw_mode, &int_mode)
|
||
&& HWI_COMPUTABLE_MODE_P (int_mode))
|
||
op0 = force_to_mode (op0, int_mode,
|
||
HOST_WIDE_INT_1U
|
||
<< (GET_MODE_PRECISION (int_mode) - 1),
|
||
0);
|
||
|
||
if (COMPARISON_P (op0))
|
||
{
|
||
/* We can't do anything if OP0 is a condition code value, rather
|
||
than an actual data value. */
|
||
if (const_op != 0
|
||
|| CC0_P (XEXP (op0, 0))
|
||
|| GET_MODE_CLASS (GET_MODE (XEXP (op0, 0))) == MODE_CC)
|
||
break;
|
||
|
||
/* Get the two operands being compared. */
|
||
if (GET_CODE (XEXP (op0, 0)) == COMPARE)
|
||
tem = XEXP (XEXP (op0, 0), 0), tem1 = XEXP (XEXP (op0, 0), 1);
|
||
else
|
||
tem = XEXP (op0, 0), tem1 = XEXP (op0, 1);
|
||
|
||
/* Check for the cases where we simply want the result of the
|
||
earlier test or the opposite of that result. */
|
||
if (code == NE || code == EQ
|
||
|| (val_signbit_known_set_p (raw_mode, STORE_FLAG_VALUE)
|
||
&& (code == LT || code == GE)))
|
||
{
|
||
enum rtx_code new_code;
|
||
if (code == LT || code == NE)
|
||
new_code = GET_CODE (op0);
|
||
else
|
||
new_code = reversed_comparison_code (op0, NULL);
|
||
|
||
if (new_code != UNKNOWN)
|
||
{
|
||
code = new_code;
|
||
op0 = tem;
|
||
op1 = tem1;
|
||
continue;
|
||
}
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (raw_mode == VOIDmode)
|
||
break;
|
||
scalar_int_mode mode = as_a <scalar_int_mode> (raw_mode);
|
||
|
||
/* Now try cases based on the opcode of OP0. If none of the cases
|
||
does a "continue", we exit this loop immediately after the
|
||
switch. */
|
||
|
||
unsigned int mode_width = GET_MODE_PRECISION (mode);
|
||
unsigned HOST_WIDE_INT mask = GET_MODE_MASK (mode);
|
||
switch (GET_CODE (op0))
|
||
{
|
||
case ZERO_EXTRACT:
|
||
/* If we are extracting a single bit from a variable position in
|
||
a constant that has only a single bit set and are comparing it
|
||
with zero, we can convert this into an equality comparison
|
||
between the position and the location of the single bit. */
|
||
/* Except we can't if SHIFT_COUNT_TRUNCATED is set, since we might
|
||
have already reduced the shift count modulo the word size. */
|
||
if (!SHIFT_COUNT_TRUNCATED
|
||
&& CONST_INT_P (XEXP (op0, 0))
|
||
&& XEXP (op0, 1) == const1_rtx
|
||
&& equality_comparison_p && const_op == 0
|
||
&& (i = exact_log2 (UINTVAL (XEXP (op0, 0)))) >= 0)
|
||
{
|
||
if (BITS_BIG_ENDIAN)
|
||
i = BITS_PER_WORD - 1 - i;
|
||
|
||
op0 = XEXP (op0, 2);
|
||
op1 = GEN_INT (i);
|
||
const_op = i;
|
||
|
||
/* Result is nonzero iff shift count is equal to I. */
|
||
code = reverse_condition (code);
|
||
continue;
|
||
}
|
||
|
||
/* fall through */
|
||
|
||
case SIGN_EXTRACT:
|
||
tem = expand_compound_operation (op0);
|
||
if (tem != op0)
|
||
{
|
||
op0 = tem;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NOT:
|
||
/* If testing for equality, we can take the NOT of the constant. */
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_unary_operation (NOT, mode, op1, mode)) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* If just looking at the sign bit, reverse the sense of the
|
||
comparison. */
|
||
if (sign_bit_comparison_p)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == GE ? LT : GE);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case NEG:
|
||
/* If testing for equality, we can take the NEG of the constant. */
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_unary_operation (NEG, mode, op1, mode)) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* The remaining cases only apply to comparisons with zero. */
|
||
if (const_op != 0)
|
||
break;
|
||
|
||
/* When X is ABS or is known positive,
|
||
(neg X) is < 0 if and only if X != 0. */
|
||
|
||
if (sign_bit_comparison_p
|
||
&& (GET_CODE (XEXP (op0, 0)) == ABS
|
||
|| (mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (op0, 0), mode)
|
||
& (HOST_WIDE_INT_1U << (mode_width - 1)))
|
||
== 0)))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == LT ? NE : EQ);
|
||
continue;
|
||
}
|
||
|
||
/* If we have NEG of something whose two high-order bits are the
|
||
same, we know that "(-a) < 0" is equivalent to "a > 0". */
|
||
if (num_sign_bit_copies (op0, mode) >= 2)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = swap_condition (code);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case ROTATE:
|
||
/* If we are testing equality and our count is a constant, we
|
||
can perform the inverse operation on our RHS. */
|
||
if (equality_comparison_p && CONST_INT_P (XEXP (op0, 1))
|
||
&& (tem = simplify_binary_operation (ROTATERT, mode,
|
||
op1, XEXP (op0, 1))) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* If we are doing a < 0 or >= 0 comparison, it means we are testing
|
||
a particular bit. Convert it to an AND of a constant of that
|
||
bit. This will be converted into a ZERO_EXTRACT. */
|
||
if (const_op == 0 && sign_bit_comparison_p
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& UINTVAL (XEXP (op0, 1)) < mode_width)
|
||
{
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
|
||
(HOST_WIDE_INT_1U
|
||
<< (mode_width - 1
|
||
- INTVAL (XEXP (op0, 1)))));
|
||
code = (code == LT ? NE : EQ);
|
||
continue;
|
||
}
|
||
|
||
/* Fall through. */
|
||
|
||
case ABS:
|
||
/* ABS is ignorable inside an equality comparison with zero. */
|
||
if (const_op == 0 && equality_comparison_p)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case SIGN_EXTEND:
|
||
/* Can simplify (compare (zero/sign_extend FOO) CONST) to
|
||
(compare FOO CONST) if CONST fits in FOO's mode and we
|
||
are either testing inequality or have an unsigned
|
||
comparison with ZERO_EXTEND or a signed comparison with
|
||
SIGN_EXTEND. But don't do it if we don't have a compare
|
||
insn of the given mode, since we'd have to revert it
|
||
later on, and then we wouldn't know whether to sign- or
|
||
zero-extend. */
|
||
if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
|
||
&& ! unsigned_comparison_p
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& trunc_int_for_mode (const_op, mode) == const_op
|
||
&& have_insn_for (COMPARE, mode))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case SUBREG:
|
||
/* Check for the case where we are comparing A - C1 with C2, that is
|
||
|
||
(subreg:MODE (plus (A) (-C1))) op (C2)
|
||
|
||
with C1 a constant, and try to lift the SUBREG, i.e. to do the
|
||
comparison in the wider mode. One of the following two conditions
|
||
must be true in order for this to be valid:
|
||
|
||
1. The mode extension results in the same bit pattern being added
|
||
on both sides and the comparison is equality or unsigned. As
|
||
C2 has been truncated to fit in MODE, the pattern can only be
|
||
all 0s or all 1s.
|
||
|
||
2. The mode extension results in the sign bit being copied on
|
||
each side.
|
||
|
||
The difficulty here is that we have predicates for A but not for
|
||
(A - C1) so we need to check that C1 is within proper bounds so
|
||
as to perturbate A as little as possible. */
|
||
|
||
if (mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& subreg_lowpart_p (op0)
|
||
&& is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (op0)),
|
||
&inner_mode)
|
||
&& GET_MODE_PRECISION (inner_mode) > mode_width
|
||
&& GET_CODE (SUBREG_REG (op0)) == PLUS
|
||
&& CONST_INT_P (XEXP (SUBREG_REG (op0), 1)))
|
||
{
|
||
rtx a = XEXP (SUBREG_REG (op0), 0);
|
||
HOST_WIDE_INT c1 = -INTVAL (XEXP (SUBREG_REG (op0), 1));
|
||
|
||
if ((c1 > 0
|
||
&& (unsigned HOST_WIDE_INT) c1
|
||
< HOST_WIDE_INT_1U << (mode_width - 1)
|
||
&& (equality_comparison_p || unsigned_comparison_p)
|
||
/* (A - C1) zero-extends if it is positive and sign-extends
|
||
if it is negative, C2 both zero- and sign-extends. */
|
||
&& (((nonzero_bits (a, inner_mode)
|
||
& ~GET_MODE_MASK (mode)) == 0
|
||
&& const_op >= 0)
|
||
/* (A - C1) sign-extends if it is positive and 1-extends
|
||
if it is negative, C2 both sign- and 1-extends. */
|
||
|| (num_sign_bit_copies (a, inner_mode)
|
||
> (unsigned int) (GET_MODE_PRECISION (inner_mode)
|
||
- mode_width)
|
||
&& const_op < 0)))
|
||
|| ((unsigned HOST_WIDE_INT) c1
|
||
< HOST_WIDE_INT_1U << (mode_width - 2)
|
||
/* (A - C1) always sign-extends, like C2. */
|
||
&& num_sign_bit_copies (a, inner_mode)
|
||
> (unsigned int) (GET_MODE_PRECISION (inner_mode)
|
||
- (mode_width - 1))))
|
||
{
|
||
op0 = SUBREG_REG (op0);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If the inner mode is narrower and we are extracting the low part,
|
||
we can treat the SUBREG as if it were a ZERO_EXTEND. */
|
||
if (paradoxical_subreg_p (op0))
|
||
;
|
||
else if (subreg_lowpart_p (op0)
|
||
&& GET_MODE_CLASS (mode) == MODE_INT
|
||
&& is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
|
||
&& (code == NE || code == EQ)
|
||
&& GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& !paradoxical_subreg_p (op0)
|
||
&& (nonzero_bits (SUBREG_REG (op0), inner_mode)
|
||
& ~GET_MODE_MASK (mode)) == 0)
|
||
{
|
||
/* Remove outer subregs that don't do anything. */
|
||
tem = gen_lowpart (inner_mode, op1);
|
||
|
||
if ((nonzero_bits (tem, inner_mode)
|
||
& ~GET_MODE_MASK (mode)) == 0)
|
||
{
|
||
op0 = SUBREG_REG (op0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
else
|
||
break;
|
||
|
||
/* FALLTHROUGH */
|
||
|
||
case ZERO_EXTEND:
|
||
if (is_int_mode (GET_MODE (XEXP (op0, 0)), &mode)
|
||
&& (unsigned_comparison_p || equality_comparison_p)
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (unsigned HOST_WIDE_INT) const_op <= GET_MODE_MASK (mode)
|
||
&& const_op >= 0
|
||
&& have_insn_for (COMPARE, mode))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case PLUS:
|
||
/* (eq (plus X A) B) -> (eq X (minus B A)). We can only do
|
||
this for equality comparisons due to pathological cases involving
|
||
overflows. */
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_binary_operation (MINUS, mode,
|
||
op1, XEXP (op0, 1))) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* (plus (abs X) (const_int -1)) is < 0 if and only if X == 0. */
|
||
if (const_op == 0 && XEXP (op0, 1) == constm1_rtx
|
||
&& GET_CODE (XEXP (op0, 0)) == ABS && sign_bit_comparison_p)
|
||
{
|
||
op0 = XEXP (XEXP (op0, 0), 0);
|
||
code = (code == LT ? EQ : NE);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case MINUS:
|
||
/* We used to optimize signed comparisons against zero, but that
|
||
was incorrect. Unsigned comparisons against zero (GTU, LEU)
|
||
arrive here as equality comparisons, or (GEU, LTU) are
|
||
optimized away. No need to special-case them. */
|
||
|
||
/* (eq (minus A B) C) -> (eq A (plus B C)) or
|
||
(eq B (minus A C)), whichever simplifies. We can only do
|
||
this for equality comparisons due to pathological cases involving
|
||
overflows. */
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_binary_operation (PLUS, mode,
|
||
XEXP (op0, 1), op1)) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_binary_operation (MINUS, mode,
|
||
XEXP (op0, 0), op1)) != 0)
|
||
{
|
||
op0 = XEXP (op0, 1);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
|
||
/* The sign bit of (minus (ashiftrt X C) X), where C is the number
|
||
of bits in X minus 1, is one iff X > 0. */
|
||
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == ASHIFTRT
|
||
&& CONST_INT_P (XEXP (XEXP (op0, 0), 1))
|
||
&& UINTVAL (XEXP (XEXP (op0, 0), 1)) == mode_width - 1
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
|
||
{
|
||
op0 = XEXP (op0, 1);
|
||
code = (code == GE ? LE : GT);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case XOR:
|
||
/* (eq (xor A B) C) -> (eq A (xor B C)). This is a simplification
|
||
if C is zero or B is a constant. */
|
||
if (equality_comparison_p
|
||
&& (tem = simplify_binary_operation (XOR, mode,
|
||
XEXP (op0, 1), op1)) != 0)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
op1 = tem;
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
|
||
case IOR:
|
||
/* The sign bit of (ior (plus X (const_int -1)) X) is nonzero
|
||
iff X <= 0. */
|
||
if (sign_bit_comparison_p && GET_CODE (XEXP (op0, 0)) == PLUS
|
||
&& XEXP (XEXP (op0, 0), 1) == constm1_rtx
|
||
&& rtx_equal_p (XEXP (XEXP (op0, 0), 0), XEXP (op0, 1)))
|
||
{
|
||
op0 = XEXP (op0, 1);
|
||
code = (code == GE ? GT : LE);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case AND:
|
||
/* Convert (and (xshift 1 X) Y) to (and (lshiftrt Y X) 1). This
|
||
will be converted to a ZERO_EXTRACT later. */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
|
||
&& XEXP (XEXP (op0, 0), 0) == const1_rtx)
|
||
{
|
||
op0 = gen_rtx_LSHIFTRT (mode, XEXP (op0, 1),
|
||
XEXP (XEXP (op0, 0), 1));
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
|
||
continue;
|
||
}
|
||
|
||
/* If we are comparing (and (lshiftrt X C1) C2) for equality with
|
||
zero and X is a comparison and C1 and C2 describe only bits set
|
||
in STORE_FLAG_VALUE, we can compare with X. */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& GET_CODE (XEXP (op0, 0)) == LSHIFTRT
|
||
&& CONST_INT_P (XEXP (XEXP (op0, 0), 1))
|
||
&& INTVAL (XEXP (XEXP (op0, 0), 1)) >= 0
|
||
&& INTVAL (XEXP (XEXP (op0, 0), 1)) < HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
mask = ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
|
||
<< INTVAL (XEXP (XEXP (op0, 0), 1)));
|
||
if ((~STORE_FLAG_VALUE & mask) == 0
|
||
&& (COMPARISON_P (XEXP (XEXP (op0, 0), 0))
|
||
|| ((tem = get_last_value (XEXP (XEXP (op0, 0), 0))) != 0
|
||
&& COMPARISON_P (tem))))
|
||
{
|
||
op0 = XEXP (XEXP (op0, 0), 0);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If we are doing an equality comparison of an AND of a bit equal
|
||
to the sign bit, replace this with a LT or GE comparison of
|
||
the underlying value. */
|
||
if (equality_comparison_p
|
||
&& const_op == 0
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& ((INTVAL (XEXP (op0, 1)) & GET_MODE_MASK (mode))
|
||
== HOST_WIDE_INT_1U << (mode_width - 1)))
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == EQ ? GE : LT);
|
||
continue;
|
||
}
|
||
|
||
/* If this AND operation is really a ZERO_EXTEND from a narrower
|
||
mode, the constant fits within that mode, and this is either an
|
||
equality or unsigned comparison, try to do this comparison in
|
||
the narrower mode.
|
||
|
||
Note that in:
|
||
|
||
(ne:DI (and:DI (reg:DI 4) (const_int 0xffffffff)) (const_int 0))
|
||
-> (ne:DI (reg:SI 4) (const_int 0))
|
||
|
||
unless TARGET_TRULY_NOOP_TRUNCATION allows it or the register is
|
||
known to hold a value of the required mode the
|
||
transformation is invalid. */
|
||
if ((equality_comparison_p || unsigned_comparison_p)
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& (i = exact_log2 ((UINTVAL (XEXP (op0, 1))
|
||
& GET_MODE_MASK (mode))
|
||
+ 1)) >= 0
|
||
&& const_op >> i == 0
|
||
&& int_mode_for_size (i, 1).exists (&tmode))
|
||
{
|
||
op0 = gen_lowpart_or_truncate (tmode, XEXP (op0, 0));
|
||
continue;
|
||
}
|
||
|
||
/* If this is (and:M1 (subreg:M1 X:M2 0) (const_int C1)) where C1
|
||
fits in both M1 and M2 and the SUBREG is either paradoxical
|
||
or represents the low part, permute the SUBREG and the AND
|
||
and try again. */
|
||
if (GET_CODE (XEXP (op0, 0)) == SUBREG
|
||
&& CONST_INT_P (XEXP (op0, 1)))
|
||
{
|
||
unsigned HOST_WIDE_INT c1 = INTVAL (XEXP (op0, 1));
|
||
/* Require an integral mode, to avoid creating something like
|
||
(AND:SF ...). */
|
||
if ((is_a <scalar_int_mode>
|
||
(GET_MODE (SUBREG_REG (XEXP (op0, 0))), &tmode))
|
||
/* It is unsafe to commute the AND into the SUBREG if the
|
||
SUBREG is paradoxical and WORD_REGISTER_OPERATIONS is
|
||
not defined. As originally written the upper bits
|
||
have a defined value due to the AND operation.
|
||
However, if we commute the AND inside the SUBREG then
|
||
they no longer have defined values and the meaning of
|
||
the code has been changed.
|
||
Also C1 should not change value in the smaller mode,
|
||
see PR67028 (a positive C1 can become negative in the
|
||
smaller mode, so that the AND does no longer mask the
|
||
upper bits). */
|
||
&& ((WORD_REGISTER_OPERATIONS
|
||
&& mode_width > GET_MODE_PRECISION (tmode)
|
||
&& mode_width <= BITS_PER_WORD
|
||
&& trunc_int_for_mode (c1, tmode) == (HOST_WIDE_INT) c1)
|
||
|| (mode_width <= GET_MODE_PRECISION (tmode)
|
||
&& subreg_lowpart_p (XEXP (op0, 0))))
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& HWI_COMPUTABLE_MODE_P (tmode)
|
||
&& (c1 & ~mask) == 0
|
||
&& (c1 & ~GET_MODE_MASK (tmode)) == 0
|
||
&& c1 != mask
|
||
&& c1 != GET_MODE_MASK (tmode))
|
||
{
|
||
op0 = simplify_gen_binary (AND, tmode,
|
||
SUBREG_REG (XEXP (op0, 0)),
|
||
gen_int_mode (c1, tmode));
|
||
op0 = gen_lowpart (mode, op0);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* Convert (ne (and (not X) 1) 0) to (eq (and X 1) 0). */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& XEXP (op0, 1) == const1_rtx
|
||
&& GET_CODE (XEXP (op0, 0)) == NOT)
|
||
{
|
||
op0 = simplify_and_const_int (NULL_RTX, mode,
|
||
XEXP (XEXP (op0, 0), 0), 1);
|
||
code = (code == NE ? EQ : NE);
|
||
continue;
|
||
}
|
||
|
||
/* Convert (ne (and (lshiftrt (not X)) 1) 0) to
|
||
(eq (and (lshiftrt X) 1) 0).
|
||
Also handle the case where (not X) is expressed using xor. */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& XEXP (op0, 1) == const1_rtx
|
||
&& GET_CODE (XEXP (op0, 0)) == LSHIFTRT)
|
||
{
|
||
rtx shift_op = XEXP (XEXP (op0, 0), 0);
|
||
rtx shift_count = XEXP (XEXP (op0, 0), 1);
|
||
|
||
if (GET_CODE (shift_op) == NOT
|
||
|| (GET_CODE (shift_op) == XOR
|
||
&& CONST_INT_P (XEXP (shift_op, 1))
|
||
&& CONST_INT_P (shift_count)
|
||
&& HWI_COMPUTABLE_MODE_P (mode)
|
||
&& (UINTVAL (XEXP (shift_op, 1))
|
||
== HOST_WIDE_INT_1U
|
||
<< INTVAL (shift_count))))
|
||
{
|
||
op0
|
||
= gen_rtx_LSHIFTRT (mode, XEXP (shift_op, 0), shift_count);
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, op0, 1);
|
||
code = (code == NE ? EQ : NE);
|
||
continue;
|
||
}
|
||
}
|
||
break;
|
||
|
||
case ASHIFT:
|
||
/* If we have (compare (ashift FOO N) (const_int C)) and
|
||
the high order N bits of FOO (N+1 if an inequality comparison)
|
||
are known to be zero, we can do this by comparing FOO with C
|
||
shifted right N bits so long as the low-order N bits of C are
|
||
zero. */
|
||
if (CONST_INT_P (XEXP (op0, 1))
|
||
&& INTVAL (XEXP (op0, 1)) >= 0
|
||
&& ((INTVAL (XEXP (op0, 1)) + ! equality_comparison_p)
|
||
< HOST_BITS_PER_WIDE_INT)
|
||
&& (((unsigned HOST_WIDE_INT) const_op
|
||
& ((HOST_WIDE_INT_1U << INTVAL (XEXP (op0, 1)))
|
||
- 1)) == 0)
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (XEXP (op0, 0), mode)
|
||
& ~(mask >> (INTVAL (XEXP (op0, 1))
|
||
+ ! equality_comparison_p))) == 0)
|
||
{
|
||
/* We must perform a logical shift, not an arithmetic one,
|
||
as we want the top N bits of C to be zero. */
|
||
unsigned HOST_WIDE_INT temp = const_op & GET_MODE_MASK (mode);
|
||
|
||
temp >>= INTVAL (XEXP (op0, 1));
|
||
op1 = gen_int_mode (temp, mode);
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
|
||
/* If we are doing a sign bit comparison, it means we are testing
|
||
a particular bit. Convert it to the appropriate AND. */
|
||
if (sign_bit_comparison_p && CONST_INT_P (XEXP (op0, 1))
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT)
|
||
{
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0),
|
||
(HOST_WIDE_INT_1U
|
||
<< (mode_width - 1
|
||
- INTVAL (XEXP (op0, 1)))));
|
||
code = (code == LT ? NE : EQ);
|
||
continue;
|
||
}
|
||
|
||
/* If this an equality comparison with zero and we are shifting
|
||
the low bit to the sign bit, we can convert this to an AND of the
|
||
low-order bit. */
|
||
if (const_op == 0 && equality_comparison_p
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& UINTVAL (XEXP (op0, 1)) == mode_width - 1)
|
||
{
|
||
op0 = simplify_and_const_int (NULL_RTX, mode, XEXP (op0, 0), 1);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
case ASHIFTRT:
|
||
/* If this is an equality comparison with zero, we can do this
|
||
as a logical shift, which might be much simpler. */
|
||
if (equality_comparison_p && const_op == 0
|
||
&& CONST_INT_P (XEXP (op0, 1)))
|
||
{
|
||
op0 = simplify_shift_const (NULL_RTX, LSHIFTRT, mode,
|
||
XEXP (op0, 0),
|
||
INTVAL (XEXP (op0, 1)));
|
||
continue;
|
||
}
|
||
|
||
/* If OP0 is a sign extension and CODE is not an unsigned comparison,
|
||
do the comparison in a narrower mode. */
|
||
if (! unsigned_comparison_p
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& GET_CODE (XEXP (op0, 0)) == ASHIFT
|
||
&& XEXP (op0, 1) == XEXP (XEXP (op0, 0), 1)
|
||
&& (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
|
||
.exists (&tmode))
|
||
&& (((unsigned HOST_WIDE_INT) const_op
|
||
+ (GET_MODE_MASK (tmode) >> 1) + 1)
|
||
<= GET_MODE_MASK (tmode)))
|
||
{
|
||
op0 = gen_lowpart (tmode, XEXP (XEXP (op0, 0), 0));
|
||
continue;
|
||
}
|
||
|
||
/* Likewise if OP0 is a PLUS of a sign extension with a
|
||
constant, which is usually represented with the PLUS
|
||
between the shifts. */
|
||
if (! unsigned_comparison_p
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& GET_CODE (XEXP (op0, 0)) == PLUS
|
||
&& CONST_INT_P (XEXP (XEXP (op0, 0), 1))
|
||
&& GET_CODE (XEXP (XEXP (op0, 0), 0)) == ASHIFT
|
||
&& XEXP (op0, 1) == XEXP (XEXP (XEXP (op0, 0), 0), 1)
|
||
&& (int_mode_for_size (mode_width - INTVAL (XEXP (op0, 1)), 1)
|
||
.exists (&tmode))
|
||
&& (((unsigned HOST_WIDE_INT) const_op
|
||
+ (GET_MODE_MASK (tmode) >> 1) + 1)
|
||
<= GET_MODE_MASK (tmode)))
|
||
{
|
||
rtx inner = XEXP (XEXP (XEXP (op0, 0), 0), 0);
|
||
rtx add_const = XEXP (XEXP (op0, 0), 1);
|
||
rtx new_const = simplify_gen_binary (ASHIFTRT, mode,
|
||
add_const, XEXP (op0, 1));
|
||
|
||
op0 = simplify_gen_binary (PLUS, tmode,
|
||
gen_lowpart (tmode, inner),
|
||
new_const);
|
||
continue;
|
||
}
|
||
|
||
/* FALLTHROUGH */
|
||
case LSHIFTRT:
|
||
/* If we have (compare (xshiftrt FOO N) (const_int C)) and
|
||
the low order N bits of FOO are known to be zero, we can do this
|
||
by comparing FOO with C shifted left N bits so long as no
|
||
overflow occurs. Even if the low order N bits of FOO aren't known
|
||
to be zero, if the comparison is >= or < we can use the same
|
||
optimization and for > or <= by setting all the low
|
||
order N bits in the comparison constant. */
|
||
if (CONST_INT_P (XEXP (op0, 1))
|
||
&& INTVAL (XEXP (op0, 1)) > 0
|
||
&& INTVAL (XEXP (op0, 1)) < HOST_BITS_PER_WIDE_INT
|
||
&& mode_width <= HOST_BITS_PER_WIDE_INT
|
||
&& (((unsigned HOST_WIDE_INT) const_op
|
||
+ (GET_CODE (op0) != LSHIFTRT
|
||
? ((GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1)) >> 1)
|
||
+ 1)
|
||
: 0))
|
||
<= GET_MODE_MASK (mode) >> INTVAL (XEXP (op0, 1))))
|
||
{
|
||
unsigned HOST_WIDE_INT low_bits
|
||
= (nonzero_bits (XEXP (op0, 0), mode)
|
||
& ((HOST_WIDE_INT_1U
|
||
<< INTVAL (XEXP (op0, 1))) - 1));
|
||
if (low_bits == 0 || !equality_comparison_p)
|
||
{
|
||
/* If the shift was logical, then we must make the condition
|
||
unsigned. */
|
||
if (GET_CODE (op0) == LSHIFTRT)
|
||
code = unsigned_condition (code);
|
||
|
||
const_op = (unsigned HOST_WIDE_INT) const_op
|
||
<< INTVAL (XEXP (op0, 1));
|
||
if (low_bits != 0
|
||
&& (code == GT || code == GTU
|
||
|| code == LE || code == LEU))
|
||
const_op
|
||
|= ((HOST_WIDE_INT_1 << INTVAL (XEXP (op0, 1))) - 1);
|
||
op1 = GEN_INT (const_op);
|
||
op0 = XEXP (op0, 0);
|
||
continue;
|
||
}
|
||
}
|
||
|
||
/* If we are using this shift to extract just the sign bit, we
|
||
can replace this with an LT or GE comparison. */
|
||
if (const_op == 0
|
||
&& (equality_comparison_p || sign_bit_comparison_p)
|
||
&& CONST_INT_P (XEXP (op0, 1))
|
||
&& UINTVAL (XEXP (op0, 1)) == mode_width - 1)
|
||
{
|
||
op0 = XEXP (op0, 0);
|
||
code = (code == NE || code == GT ? LT : GE);
|
||
continue;
|
||
}
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
break;
|
||
}
|
||
|
||
/* Now make any compound operations involved in this comparison. Then,
|
||
check for an outmost SUBREG on OP0 that is not doing anything or is
|
||
paradoxical. The latter transformation must only be performed when
|
||
it is known that the "extra" bits will be the same in op0 and op1 or
|
||
that they don't matter. There are three cases to consider:
|
||
|
||
1. SUBREG_REG (op0) is a register. In this case the bits are don't
|
||
care bits and we can assume they have any convenient value. So
|
||
making the transformation is safe.
|
||
|
||
2. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is UNKNOWN.
|
||
In this case the upper bits of op0 are undefined. We should not make
|
||
the simplification in that case as we do not know the contents of
|
||
those bits.
|
||
|
||
3. SUBREG_REG (op0) is a memory and LOAD_EXTEND_OP is not UNKNOWN.
|
||
In that case we know those bits are zeros or ones. We must also be
|
||
sure that they are the same as the upper bits of op1.
|
||
|
||
We can never remove a SUBREG for a non-equality comparison because
|
||
the sign bit is in a different place in the underlying object. */
|
||
|
||
rtx_code op0_mco_code = SET;
|
||
if (op1 == const0_rtx)
|
||
op0_mco_code = code == NE || code == EQ ? EQ : COMPARE;
|
||
|
||
op0 = make_compound_operation (op0, op0_mco_code);
|
||
op1 = make_compound_operation (op1, SET);
|
||
|
||
if (GET_CODE (op0) == SUBREG && subreg_lowpart_p (op0)
|
||
&& is_int_mode (GET_MODE (op0), &mode)
|
||
&& is_int_mode (GET_MODE (SUBREG_REG (op0)), &inner_mode)
|
||
&& (code == NE || code == EQ))
|
||
{
|
||
if (paradoxical_subreg_p (op0))
|
||
{
|
||
/* For paradoxical subregs, allow case 1 as above. Case 3 isn't
|
||
implemented. */
|
||
if (REG_P (SUBREG_REG (op0)))
|
||
{
|
||
op0 = SUBREG_REG (op0);
|
||
op1 = gen_lowpart (inner_mode, op1);
|
||
}
|
||
}
|
||
else if (GET_MODE_PRECISION (inner_mode) <= HOST_BITS_PER_WIDE_INT
|
||
&& (nonzero_bits (SUBREG_REG (op0), inner_mode)
|
||
& ~GET_MODE_MASK (mode)) == 0)
|
||
{
|
||
tem = gen_lowpart (inner_mode, op1);
|
||
|
||
if ((nonzero_bits (tem, inner_mode) & ~GET_MODE_MASK (mode)) == 0)
|
||
op0 = SUBREG_REG (op0), op1 = tem;
|
||
}
|
||
}
|
||
|
||
/* We now do the opposite procedure: Some machines don't have compare
|
||
insns in all modes. If OP0's mode is an integer mode smaller than a
|
||
word and we can't do a compare in that mode, see if there is a larger
|
||
mode for which we can do the compare. There are a number of cases in
|
||
which we can use the wider mode. */
|
||
|
||
if (is_int_mode (GET_MODE (op0), &mode)
|
||
&& GET_MODE_SIZE (mode) < UNITS_PER_WORD
|
||
&& ! have_insn_for (COMPARE, mode))
|
||
FOR_EACH_WIDER_MODE (tmode_iter, mode)
|
||
{
|
||
tmode = tmode_iter.require ();
|
||
if (!HWI_COMPUTABLE_MODE_P (tmode))
|
||
break;
|
||
if (have_insn_for (COMPARE, tmode))
|
||
{
|
||
int zero_extended;
|
||
|
||
/* If this is a test for negative, we can make an explicit
|
||
test of the sign bit. Test this first so we can use
|
||
a paradoxical subreg to extend OP0. */
|
||
|
||
if (op1 == const0_rtx && (code == LT || code == GE)
|
||
&& HWI_COMPUTABLE_MODE_P (mode))
|
||
{
|
||
unsigned HOST_WIDE_INT sign
|
||
= HOST_WIDE_INT_1U << (GET_MODE_BITSIZE (mode) - 1);
|
||
op0 = simplify_gen_binary (AND, tmode,
|
||
gen_lowpart (tmode, op0),
|
||
gen_int_mode (sign, tmode));
|
||
code = (code == LT) ? NE : EQ;
|
||
break;
|
||
}
|
||
|
||
/* If the only nonzero bits in OP0 and OP1 are those in the
|
||
narrower mode and this is an equality or unsigned comparison,
|
||
we can use the wider mode. Similarly for sign-extended
|
||
values, in which case it is true for all comparisons. */
|
||
zero_extended = ((code == EQ || code == NE
|
||
|| code == GEU || code == GTU
|
||
|| code == LEU || code == LTU)
|
||
&& (nonzero_bits (op0, tmode)
|
||
& ~GET_MODE_MASK (mode)) == 0
|
||
&& ((CONST_INT_P (op1)
|
||
|| (nonzero_bits (op1, tmode)
|
||
& ~GET_MODE_MASK (mode)) == 0)));
|
||
|
||
if (zero_extended
|
||
|| ((num_sign_bit_copies (op0, tmode)
|
||
> (unsigned int) (GET_MODE_PRECISION (tmode)
|
||
- GET_MODE_PRECISION (mode)))
|
||
&& (num_sign_bit_copies (op1, tmode)
|
||
> (unsigned int) (GET_MODE_PRECISION (tmode)
|
||
- GET_MODE_PRECISION (mode)))))
|
||
{
|
||
/* If OP0 is an AND and we don't have an AND in MODE either,
|
||
make a new AND in the proper mode. */
|
||
if (GET_CODE (op0) == AND
|
||
&& !have_insn_for (AND, mode))
|
||
op0 = simplify_gen_binary (AND, tmode,
|
||
gen_lowpart (tmode,
|
||
XEXP (op0, 0)),
|
||
gen_lowpart (tmode,
|
||
XEXP (op0, 1)));
|
||
else
|
||
{
|
||
if (zero_extended)
|
||
{
|
||
op0 = simplify_gen_unary (ZERO_EXTEND, tmode,
|
||
op0, mode);
|
||
op1 = simplify_gen_unary (ZERO_EXTEND, tmode,
|
||
op1, mode);
|
||
}
|
||
else
|
||
{
|
||
op0 = simplify_gen_unary (SIGN_EXTEND, tmode,
|
||
op0, mode);
|
||
op1 = simplify_gen_unary (SIGN_EXTEND, tmode,
|
||
op1, mode);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* We may have changed the comparison operands. Re-canonicalize. */
|
||
if (swap_commutative_operands_p (op0, op1))
|
||
{
|
||
std::swap (op0, op1);
|
||
code = swap_condition (code);
|
||
}
|
||
|
||
/* If this machine only supports a subset of valid comparisons, see if we
|
||
can convert an unsupported one into a supported one. */
|
||
target_canonicalize_comparison (&code, &op0, &op1, 0);
|
||
|
||
*pop0 = op0;
|
||
*pop1 = op1;
|
||
|
||
return code;
|
||
}
|
||
|
||
/* Utility function for record_value_for_reg. Count number of
|
||
rtxs in X. */
|
||
static int
|
||
count_rtxs (rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *fmt;
|
||
int i, j, ret = 1;
|
||
|
||
if (GET_RTX_CLASS (code) == RTX_BIN_ARITH
|
||
|| GET_RTX_CLASS (code) == RTX_COMM_ARITH)
|
||
{
|
||
rtx x0 = XEXP (x, 0);
|
||
rtx x1 = XEXP (x, 1);
|
||
|
||
if (x0 == x1)
|
||
return 1 + 2 * count_rtxs (x0);
|
||
|
||
if ((GET_RTX_CLASS (GET_CODE (x1)) == RTX_BIN_ARITH
|
||
|| GET_RTX_CLASS (GET_CODE (x1)) == RTX_COMM_ARITH)
|
||
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
|
||
return 2 + 2 * count_rtxs (x0)
|
||
+ count_rtxs (x == XEXP (x1, 0)
|
||
? XEXP (x1, 1) : XEXP (x1, 0));
|
||
|
||
if ((GET_RTX_CLASS (GET_CODE (x0)) == RTX_BIN_ARITH
|
||
|| GET_RTX_CLASS (GET_CODE (x0)) == RTX_COMM_ARITH)
|
||
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
|
||
return 2 + 2 * count_rtxs (x1)
|
||
+ count_rtxs (x == XEXP (x0, 0)
|
||
? XEXP (x0, 1) : XEXP (x0, 0));
|
||
}
|
||
|
||
fmt = GET_RTX_FORMAT (code);
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
ret += count_rtxs (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
ret += count_rtxs (XVECEXP (x, i, j));
|
||
|
||
return ret;
|
||
}
|
||
|
||
/* Utility function for following routine. Called when X is part of a value
|
||
being stored into last_set_value. Sets last_set_table_tick
|
||
for each register mentioned. Similar to mention_regs in cse.c */
|
||
|
||
static void
|
||
update_table_tick (rtx x)
|
||
{
|
||
enum rtx_code code = GET_CODE (x);
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
int i, j;
|
||
|
||
if (code == REG)
|
||
{
|
||
unsigned int regno = REGNO (x);
|
||
unsigned int endregno = END_REGNO (x);
|
||
unsigned int r;
|
||
|
||
for (r = regno; r < endregno; r++)
|
||
{
|
||
reg_stat_type *rsp = ®_stat[r];
|
||
rsp->last_set_table_tick = label_tick;
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
if (fmt[i] == 'e')
|
||
{
|
||
/* Check for identical subexpressions. If x contains
|
||
identical subexpression we only have to traverse one of
|
||
them. */
|
||
if (i == 0 && ARITHMETIC_P (x))
|
||
{
|
||
/* Note that at this point x1 has already been
|
||
processed. */
|
||
rtx x0 = XEXP (x, 0);
|
||
rtx x1 = XEXP (x, 1);
|
||
|
||
/* If x0 and x1 are identical then there is no need to
|
||
process x0. */
|
||
if (x0 == x1)
|
||
break;
|
||
|
||
/* If x0 is identical to a subexpression of x1 then while
|
||
processing x1, x0 has already been processed. Thus we
|
||
are done with x. */
|
||
if (ARITHMETIC_P (x1)
|
||
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
|
||
break;
|
||
|
||
/* If x1 is identical to a subexpression of x0 then we
|
||
still have to process the rest of x0. */
|
||
if (ARITHMETIC_P (x0)
|
||
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
|
||
{
|
||
update_table_tick (XEXP (x0, x1 == XEXP (x0, 0) ? 1 : 0));
|
||
break;
|
||
}
|
||
}
|
||
|
||
update_table_tick (XEXP (x, i));
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
update_table_tick (XVECEXP (x, i, j));
|
||
}
|
||
|
||
/* Record that REG is set to VALUE in insn INSN. If VALUE is zero, we
|
||
are saying that the register is clobbered and we no longer know its
|
||
value. If INSN is zero, don't update reg_stat[].last_set; this is
|
||
only permitted with VALUE also zero and is used to invalidate the
|
||
register. */
|
||
|
||
static void
|
||
record_value_for_reg (rtx reg, rtx_insn *insn, rtx value)
|
||
{
|
||
unsigned int regno = REGNO (reg);
|
||
unsigned int endregno = END_REGNO (reg);
|
||
unsigned int i;
|
||
reg_stat_type *rsp;
|
||
|
||
/* If VALUE contains REG and we have a previous value for REG, substitute
|
||
the previous value. */
|
||
if (value && insn && reg_overlap_mentioned_p (reg, value))
|
||
{
|
||
rtx tem;
|
||
|
||
/* Set things up so get_last_value is allowed to see anything set up to
|
||
our insn. */
|
||
subst_low_luid = DF_INSN_LUID (insn);
|
||
tem = get_last_value (reg);
|
||
|
||
/* If TEM is simply a binary operation with two CLOBBERs as operands,
|
||
it isn't going to be useful and will take a lot of time to process,
|
||
so just use the CLOBBER. */
|
||
|
||
if (tem)
|
||
{
|
||
if (ARITHMETIC_P (tem)
|
||
&& GET_CODE (XEXP (tem, 0)) == CLOBBER
|
||
&& GET_CODE (XEXP (tem, 1)) == CLOBBER)
|
||
tem = XEXP (tem, 0);
|
||
else if (count_occurrences (value, reg, 1) >= 2)
|
||
{
|
||
/* If there are two or more occurrences of REG in VALUE,
|
||
prevent the value from growing too much. */
|
||
if (count_rtxs (tem) > param_max_last_value_rtl)
|
||
tem = gen_rtx_CLOBBER (GET_MODE (tem), const0_rtx);
|
||
}
|
||
|
||
value = replace_rtx (copy_rtx (value), reg, tem);
|
||
}
|
||
}
|
||
|
||
/* For each register modified, show we don't know its value, that
|
||
we don't know about its bitwise content, that its value has been
|
||
updated, and that we don't know the location of the death of the
|
||
register. */
|
||
for (i = regno; i < endregno; i++)
|
||
{
|
||
rsp = ®_stat[i];
|
||
|
||
if (insn)
|
||
rsp->last_set = insn;
|
||
|
||
rsp->last_set_value = 0;
|
||
rsp->last_set_mode = VOIDmode;
|
||
rsp->last_set_nonzero_bits = 0;
|
||
rsp->last_set_sign_bit_copies = 0;
|
||
rsp->last_death = 0;
|
||
rsp->truncated_to_mode = VOIDmode;
|
||
}
|
||
|
||
/* Mark registers that are being referenced in this value. */
|
||
if (value)
|
||
update_table_tick (value);
|
||
|
||
/* Now update the status of each register being set.
|
||
If someone is using this register in this block, set this register
|
||
to invalid since we will get confused between the two lives in this
|
||
basic block. This makes using this register always invalid. In cse, we
|
||
scan the table to invalidate all entries using this register, but this
|
||
is too much work for us. */
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
{
|
||
rsp = ®_stat[i];
|
||
rsp->last_set_label = label_tick;
|
||
if (!insn
|
||
|| (value && rsp->last_set_table_tick >= label_tick_ebb_start))
|
||
rsp->last_set_invalid = 1;
|
||
else
|
||
rsp->last_set_invalid = 0;
|
||
}
|
||
|
||
/* The value being assigned might refer to X (like in "x++;"). In that
|
||
case, we must replace it with (clobber (const_int 0)) to prevent
|
||
infinite loops. */
|
||
rsp = ®_stat[regno];
|
||
if (value && !get_last_value_validate (&value, insn, label_tick, 0))
|
||
{
|
||
value = copy_rtx (value);
|
||
if (!get_last_value_validate (&value, insn, label_tick, 1))
|
||
value = 0;
|
||
}
|
||
|
||
/* For the main register being modified, update the value, the mode, the
|
||
nonzero bits, and the number of sign bit copies. */
|
||
|
||
rsp->last_set_value = value;
|
||
|
||
if (value)
|
||
{
|
||
machine_mode mode = GET_MODE (reg);
|
||
subst_low_luid = DF_INSN_LUID (insn);
|
||
rsp->last_set_mode = mode;
|
||
if (GET_MODE_CLASS (mode) == MODE_INT
|
||
&& HWI_COMPUTABLE_MODE_P (mode))
|
||
mode = nonzero_bits_mode;
|
||
rsp->last_set_nonzero_bits = nonzero_bits (value, mode);
|
||
rsp->last_set_sign_bit_copies
|
||
= num_sign_bit_copies (value, GET_MODE (reg));
|
||
}
|
||
}
|
||
|
||
/* Called via note_stores from record_dead_and_set_regs to handle one
|
||
SET or CLOBBER in an insn. DATA is the instruction in which the
|
||
set is occurring. */
|
||
|
||
static void
|
||
record_dead_and_set_regs_1 (rtx dest, const_rtx setter, void *data)
|
||
{
|
||
rtx_insn *record_dead_insn = (rtx_insn *) data;
|
||
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
if (!record_dead_insn)
|
||
{
|
||
if (REG_P (dest))
|
||
record_value_for_reg (dest, NULL, NULL_RTX);
|
||
return;
|
||
}
|
||
|
||
if (REG_P (dest))
|
||
{
|
||
/* If we are setting the whole register, we know its value. Otherwise
|
||
show that we don't know the value. We can handle a SUBREG if it's
|
||
the low part, but we must be careful with paradoxical SUBREGs on
|
||
RISC architectures because we cannot strip e.g. an extension around
|
||
a load and record the naked load since the RTL middle-end considers
|
||
that the upper bits are defined according to LOAD_EXTEND_OP. */
|
||
if (GET_CODE (setter) == SET && dest == SET_DEST (setter))
|
||
record_value_for_reg (dest, record_dead_insn, SET_SRC (setter));
|
||
else if (GET_CODE (setter) == SET
|
||
&& GET_CODE (SET_DEST (setter)) == SUBREG
|
||
&& SUBREG_REG (SET_DEST (setter)) == dest
|
||
&& known_le (GET_MODE_PRECISION (GET_MODE (dest)),
|
||
BITS_PER_WORD)
|
||
&& subreg_lowpart_p (SET_DEST (setter)))
|
||
record_value_for_reg (dest, record_dead_insn,
|
||
WORD_REGISTER_OPERATIONS
|
||
&& word_register_operation_p (SET_SRC (setter))
|
||
&& paradoxical_subreg_p (SET_DEST (setter))
|
||
? SET_SRC (setter)
|
||
: gen_lowpart (GET_MODE (dest),
|
||
SET_SRC (setter)));
|
||
else
|
||
record_value_for_reg (dest, record_dead_insn, NULL_RTX);
|
||
}
|
||
else if (MEM_P (dest)
|
||
/* Ignore pushes, they clobber nothing. */
|
||
&& ! push_operand (dest, GET_MODE (dest)))
|
||
mem_last_set = DF_INSN_LUID (record_dead_insn);
|
||
}
|
||
|
||
/* Update the records of when each REG was most recently set or killed
|
||
for the things done by INSN. This is the last thing done in processing
|
||
INSN in the combiner loop.
|
||
|
||
We update reg_stat[], in particular fields last_set, last_set_value,
|
||
last_set_mode, last_set_nonzero_bits, last_set_sign_bit_copies,
|
||
last_death, and also the similar information mem_last_set (which insn
|
||
most recently modified memory) and last_call_luid (which insn was the
|
||
most recent subroutine call). */
|
||
|
||
static void
|
||
record_dead_and_set_regs (rtx_insn *insn)
|
||
{
|
||
rtx link;
|
||
unsigned int i;
|
||
|
||
for (link = REG_NOTES (insn); link; link = XEXP (link, 1))
|
||
{
|
||
if (REG_NOTE_KIND (link) == REG_DEAD
|
||
&& REG_P (XEXP (link, 0)))
|
||
{
|
||
unsigned int regno = REGNO (XEXP (link, 0));
|
||
unsigned int endregno = END_REGNO (XEXP (link, 0));
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
{
|
||
reg_stat_type *rsp;
|
||
|
||
rsp = ®_stat[i];
|
||
rsp->last_death = insn;
|
||
}
|
||
}
|
||
else if (REG_NOTE_KIND (link) == REG_INC)
|
||
record_value_for_reg (XEXP (link, 0), insn, NULL_RTX);
|
||
}
|
||
|
||
if (CALL_P (insn))
|
||
{
|
||
HARD_REG_SET callee_clobbers
|
||
= insn_callee_abi (insn).full_and_partial_reg_clobbers ();
|
||
hard_reg_set_iterator hrsi;
|
||
EXECUTE_IF_SET_IN_HARD_REG_SET (callee_clobbers, 0, i, hrsi)
|
||
{
|
||
reg_stat_type *rsp;
|
||
|
||
/* ??? We could try to preserve some information from the last
|
||
set of register I if the call doesn't actually clobber
|
||
(reg:last_set_mode I), which might be true for ABIs with
|
||
partial clobbers. However, it would be difficult to
|
||
update last_set_nonzero_bits and last_sign_bit_copies
|
||
to account for the part of I that actually was clobbered.
|
||
It wouldn't help much anyway, since we rarely see this
|
||
situation before RA. */
|
||
rsp = ®_stat[i];
|
||
rsp->last_set_invalid = 1;
|
||
rsp->last_set = insn;
|
||
rsp->last_set_value = 0;
|
||
rsp->last_set_mode = VOIDmode;
|
||
rsp->last_set_nonzero_bits = 0;
|
||
rsp->last_set_sign_bit_copies = 0;
|
||
rsp->last_death = 0;
|
||
rsp->truncated_to_mode = VOIDmode;
|
||
}
|
||
|
||
last_call_luid = mem_last_set = DF_INSN_LUID (insn);
|
||
|
||
/* We can't combine into a call pattern. Remember, though, that
|
||
the return value register is set at this LUID. We could
|
||
still replace a register with the return value from the
|
||
wrong subroutine call! */
|
||
note_stores (insn, record_dead_and_set_regs_1, NULL_RTX);
|
||
}
|
||
else
|
||
note_stores (insn, record_dead_and_set_regs_1, insn);
|
||
}
|
||
|
||
/* If a SUBREG has the promoted bit set, it is in fact a property of the
|
||
register present in the SUBREG, so for each such SUBREG go back and
|
||
adjust nonzero and sign bit information of the registers that are
|
||
known to have some zero/sign bits set.
|
||
|
||
This is needed because when combine blows the SUBREGs away, the
|
||
information on zero/sign bits is lost and further combines can be
|
||
missed because of that. */
|
||
|
||
static void
|
||
record_promoted_value (rtx_insn *insn, rtx subreg)
|
||
{
|
||
struct insn_link *links;
|
||
rtx set;
|
||
unsigned int regno = REGNO (SUBREG_REG (subreg));
|
||
machine_mode mode = GET_MODE (subreg);
|
||
|
||
if (!HWI_COMPUTABLE_MODE_P (mode))
|
||
return;
|
||
|
||
for (links = LOG_LINKS (insn); links;)
|
||
{
|
||
reg_stat_type *rsp;
|
||
|
||
insn = links->insn;
|
||
set = single_set (insn);
|
||
|
||
if (! set || !REG_P (SET_DEST (set))
|
||
|| REGNO (SET_DEST (set)) != regno
|
||
|| GET_MODE (SET_DEST (set)) != GET_MODE (SUBREG_REG (subreg)))
|
||
{
|
||
links = links->next;
|
||
continue;
|
||
}
|
||
|
||
rsp = ®_stat[regno];
|
||
if (rsp->last_set == insn)
|
||
{
|
||
if (SUBREG_PROMOTED_UNSIGNED_P (subreg))
|
||
rsp->last_set_nonzero_bits &= GET_MODE_MASK (mode);
|
||
}
|
||
|
||
if (REG_P (SET_SRC (set)))
|
||
{
|
||
regno = REGNO (SET_SRC (set));
|
||
links = LOG_LINKS (insn);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
}
|
||
|
||
/* Check if X, a register, is known to contain a value already
|
||
truncated to MODE. In this case we can use a subreg to refer to
|
||
the truncated value even though in the generic case we would need
|
||
an explicit truncation. */
|
||
|
||
static bool
|
||
reg_truncated_to_mode (machine_mode mode, const_rtx x)
|
||
{
|
||
reg_stat_type *rsp = ®_stat[REGNO (x)];
|
||
machine_mode truncated = rsp->truncated_to_mode;
|
||
|
||
if (truncated == 0
|
||
|| rsp->truncation_label < label_tick_ebb_start)
|
||
return false;
|
||
if (!partial_subreg_p (mode, truncated))
|
||
return true;
|
||
if (TRULY_NOOP_TRUNCATION_MODES_P (mode, truncated))
|
||
return true;
|
||
return false;
|
||
}
|
||
|
||
/* If X is a hard reg or a subreg record the mode that the register is
|
||
accessed in. For non-TARGET_TRULY_NOOP_TRUNCATION targets we might be
|
||
able to turn a truncate into a subreg using this information. Return true
|
||
if traversing X is complete. */
|
||
|
||
static bool
|
||
record_truncated_value (rtx x)
|
||
{
|
||
machine_mode truncated_mode;
|
||
reg_stat_type *rsp;
|
||
|
||
if (GET_CODE (x) == SUBREG && REG_P (SUBREG_REG (x)))
|
||
{
|
||
machine_mode original_mode = GET_MODE (SUBREG_REG (x));
|
||
truncated_mode = GET_MODE (x);
|
||
|
||
if (!partial_subreg_p (truncated_mode, original_mode))
|
||
return true;
|
||
|
||
truncated_mode = GET_MODE (x);
|
||
if (TRULY_NOOP_TRUNCATION_MODES_P (truncated_mode, original_mode))
|
||
return true;
|
||
|
||
x = SUBREG_REG (x);
|
||
}
|
||
/* ??? For hard-regs we now record everything. We might be able to
|
||
optimize this using last_set_mode. */
|
||
else if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
|
||
truncated_mode = GET_MODE (x);
|
||
else
|
||
return false;
|
||
|
||
rsp = ®_stat[REGNO (x)];
|
||
if (rsp->truncated_to_mode == 0
|
||
|| rsp->truncation_label < label_tick_ebb_start
|
||
|| partial_subreg_p (truncated_mode, rsp->truncated_to_mode))
|
||
{
|
||
rsp->truncated_to_mode = truncated_mode;
|
||
rsp->truncation_label = label_tick;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
|
||
/* Callback for note_uses. Find hardregs and subregs of pseudos and
|
||
the modes they are used in. This can help truning TRUNCATEs into
|
||
SUBREGs. */
|
||
|
||
static void
|
||
record_truncated_values (rtx *loc, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
subrtx_var_iterator::array_type array;
|
||
FOR_EACH_SUBRTX_VAR (iter, array, *loc, NONCONST)
|
||
if (record_truncated_value (*iter))
|
||
iter.skip_subrtxes ();
|
||
}
|
||
|
||
/* Scan X for promoted SUBREGs. For each one found,
|
||
note what it implies to the registers used in it. */
|
||
|
||
static void
|
||
check_promoted_subreg (rtx_insn *insn, rtx x)
|
||
{
|
||
if (GET_CODE (x) == SUBREG
|
||
&& SUBREG_PROMOTED_VAR_P (x)
|
||
&& REG_P (SUBREG_REG (x)))
|
||
record_promoted_value (insn, x);
|
||
else
|
||
{
|
||
const char *format = GET_RTX_FORMAT (GET_CODE (x));
|
||
int i, j;
|
||
|
||
for (i = 0; i < GET_RTX_LENGTH (GET_CODE (x)); i++)
|
||
switch (format[i])
|
||
{
|
||
case 'e':
|
||
check_promoted_subreg (insn, XEXP (x, i));
|
||
break;
|
||
case 'V':
|
||
case 'E':
|
||
if (XVEC (x, i) != 0)
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
check_promoted_subreg (insn, XVECEXP (x, i, j));
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Verify that all the registers and memory references mentioned in *LOC are
|
||
still valid. *LOC was part of a value set in INSN when label_tick was
|
||
equal to TICK. Return 0 if some are not. If REPLACE is nonzero, replace
|
||
the invalid references with (clobber (const_int 0)) and return 1. This
|
||
replacement is useful because we often can get useful information about
|
||
the form of a value (e.g., if it was produced by a shift that always
|
||
produces -1 or 0) even though we don't know exactly what registers it
|
||
was produced from. */
|
||
|
||
static int
|
||
get_last_value_validate (rtx *loc, rtx_insn *insn, int tick, int replace)
|
||
{
|
||
rtx x = *loc;
|
||
const char *fmt = GET_RTX_FORMAT (GET_CODE (x));
|
||
int len = GET_RTX_LENGTH (GET_CODE (x));
|
||
int i, j;
|
||
|
||
if (REG_P (x))
|
||
{
|
||
unsigned int regno = REGNO (x);
|
||
unsigned int endregno = END_REGNO (x);
|
||
unsigned int j;
|
||
|
||
for (j = regno; j < endregno; j++)
|
||
{
|
||
reg_stat_type *rsp = ®_stat[j];
|
||
if (rsp->last_set_invalid
|
||
/* If this is a pseudo-register that was only set once and not
|
||
live at the beginning of the function, it is always valid. */
|
||
|| (! (regno >= FIRST_PSEUDO_REGISTER
|
||
&& regno < reg_n_sets_max
|
||
&& REG_N_SETS (regno) == 1
|
||
&& (!REGNO_REG_SET_P
|
||
(DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb),
|
||
regno)))
|
||
&& rsp->last_set_label > tick))
|
||
{
|
||
if (replace)
|
||
*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
||
return replace;
|
||
}
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
/* If this is a memory reference, make sure that there were no stores after
|
||
it that might have clobbered the value. We don't have alias info, so we
|
||
assume any store invalidates it. Moreover, we only have local UIDs, so
|
||
we also assume that there were stores in the intervening basic blocks. */
|
||
else if (MEM_P (x) && !MEM_READONLY_P (x)
|
||
&& (tick != label_tick || DF_INSN_LUID (insn) <= mem_last_set))
|
||
{
|
||
if (replace)
|
||
*loc = gen_rtx_CLOBBER (GET_MODE (x), const0_rtx);
|
||
return replace;
|
||
}
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
{
|
||
/* Check for identical subexpressions. If x contains
|
||
identical subexpression we only have to traverse one of
|
||
them. */
|
||
if (i == 1 && ARITHMETIC_P (x))
|
||
{
|
||
/* Note that at this point x0 has already been checked
|
||
and found valid. */
|
||
rtx x0 = XEXP (x, 0);
|
||
rtx x1 = XEXP (x, 1);
|
||
|
||
/* If x0 and x1 are identical then x is also valid. */
|
||
if (x0 == x1)
|
||
return 1;
|
||
|
||
/* If x1 is identical to a subexpression of x0 then
|
||
while checking x0, x1 has already been checked. Thus
|
||
it is valid and so as x. */
|
||
if (ARITHMETIC_P (x0)
|
||
&& (x1 == XEXP (x0, 0) || x1 == XEXP (x0, 1)))
|
||
return 1;
|
||
|
||
/* If x0 is identical to a subexpression of x1 then x is
|
||
valid iff the rest of x1 is valid. */
|
||
if (ARITHMETIC_P (x1)
|
||
&& (x0 == XEXP (x1, 0) || x0 == XEXP (x1, 1)))
|
||
return
|
||
get_last_value_validate (&XEXP (x1,
|
||
x0 == XEXP (x1, 0) ? 1 : 0),
|
||
insn, tick, replace);
|
||
}
|
||
|
||
if (get_last_value_validate (&XEXP (x, i), insn, tick,
|
||
replace) == 0)
|
||
return 0;
|
||
}
|
||
else if (fmt[i] == 'E')
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
if (get_last_value_validate (&XVECEXP (x, i, j),
|
||
insn, tick, replace) == 0)
|
||
return 0;
|
||
}
|
||
|
||
/* If we haven't found a reason for it to be invalid, it is valid. */
|
||
return 1;
|
||
}
|
||
|
||
/* Get the last value assigned to X, if known. Some registers
|
||
in the value may be replaced with (clobber (const_int 0)) if their value
|
||
is known longer known reliably. */
|
||
|
||
static rtx
|
||
get_last_value (const_rtx x)
|
||
{
|
||
unsigned int regno;
|
||
rtx value;
|
||
reg_stat_type *rsp;
|
||
|
||
/* If this is a non-paradoxical SUBREG, get the value of its operand and
|
||
then convert it to the desired mode. If this is a paradoxical SUBREG,
|
||
we cannot predict what values the "extra" bits might have. */
|
||
if (GET_CODE (x) == SUBREG
|
||
&& subreg_lowpart_p (x)
|
||
&& !paradoxical_subreg_p (x)
|
||
&& (value = get_last_value (SUBREG_REG (x))) != 0)
|
||
return gen_lowpart (GET_MODE (x), value);
|
||
|
||
if (!REG_P (x))
|
||
return 0;
|
||
|
||
regno = REGNO (x);
|
||
rsp = ®_stat[regno];
|
||
value = rsp->last_set_value;
|
||
|
||
/* If we don't have a value, or if it isn't for this basic block and
|
||
it's either a hard register, set more than once, or it's a live
|
||
at the beginning of the function, return 0.
|
||
|
||
Because if it's not live at the beginning of the function then the reg
|
||
is always set before being used (is never used without being set).
|
||
And, if it's set only once, and it's always set before use, then all
|
||
uses must have the same last value, even if it's not from this basic
|
||
block. */
|
||
|
||
if (value == 0
|
||
|| (rsp->last_set_label < label_tick_ebb_start
|
||
&& (regno < FIRST_PSEUDO_REGISTER
|
||
|| regno >= reg_n_sets_max
|
||
|| REG_N_SETS (regno) != 1
|
||
|| REGNO_REG_SET_P
|
||
(DF_LR_IN (ENTRY_BLOCK_PTR_FOR_FN (cfun)->next_bb), regno))))
|
||
return 0;
|
||
|
||
/* If the value was set in a later insn than the ones we are processing,
|
||
we can't use it even if the register was only set once. */
|
||
if (rsp->last_set_label == label_tick
|
||
&& DF_INSN_LUID (rsp->last_set) >= subst_low_luid)
|
||
return 0;
|
||
|
||
/* If fewer bits were set than what we are asked for now, we cannot use
|
||
the value. */
|
||
if (maybe_lt (GET_MODE_PRECISION (rsp->last_set_mode),
|
||
GET_MODE_PRECISION (GET_MODE (x))))
|
||
return 0;
|
||
|
||
/* If the value has all its registers valid, return it. */
|
||
if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 0))
|
||
return value;
|
||
|
||
/* Otherwise, make a copy and replace any invalid register with
|
||
(clobber (const_int 0)). If that fails for some reason, return 0. */
|
||
|
||
value = copy_rtx (value);
|
||
if (get_last_value_validate (&value, rsp->last_set, rsp->last_set_label, 1))
|
||
return value;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Define three variables used for communication between the following
|
||
routines. */
|
||
|
||
static unsigned int reg_dead_regno, reg_dead_endregno;
|
||
static int reg_dead_flag;
|
||
rtx reg_dead_reg;
|
||
|
||
/* Function called via note_stores from reg_dead_at_p.
|
||
|
||
If DEST is within [reg_dead_regno, reg_dead_endregno), set
|
||
reg_dead_flag to 1 if X is a CLOBBER and to -1 it is a SET. */
|
||
|
||
static void
|
||
reg_dead_at_p_1 (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
|
||
{
|
||
unsigned int regno, endregno;
|
||
|
||
if (!REG_P (dest))
|
||
return;
|
||
|
||
regno = REGNO (dest);
|
||
endregno = END_REGNO (dest);
|
||
if (reg_dead_endregno > regno && reg_dead_regno < endregno)
|
||
reg_dead_flag = (GET_CODE (x) == CLOBBER) ? 1 : -1;
|
||
}
|
||
|
||
/* Return nonzero if REG is known to be dead at INSN.
|
||
|
||
We scan backwards from INSN. If we hit a REG_DEAD note or a CLOBBER
|
||
referencing REG, it is dead. If we hit a SET referencing REG, it is
|
||
live. Otherwise, see if it is live or dead at the start of the basic
|
||
block we are in. Hard regs marked as being live in NEWPAT_USED_REGS
|
||
must be assumed to be always live. */
|
||
|
||
static int
|
||
reg_dead_at_p (rtx reg, rtx_insn *insn)
|
||
{
|
||
basic_block block;
|
||
unsigned int i;
|
||
|
||
/* Set variables for reg_dead_at_p_1. */
|
||
reg_dead_regno = REGNO (reg);
|
||
reg_dead_endregno = END_REGNO (reg);
|
||
reg_dead_reg = reg;
|
||
|
||
reg_dead_flag = 0;
|
||
|
||
/* Check that reg isn't mentioned in NEWPAT_USED_REGS. For fixed registers
|
||
we allow the machine description to decide whether use-and-clobber
|
||
patterns are OK. */
|
||
if (reg_dead_regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
|
||
if (!fixed_regs[i] && TEST_HARD_REG_BIT (newpat_used_regs, i))
|
||
return 0;
|
||
}
|
||
|
||
/* Scan backwards until we find a REG_DEAD note, SET, CLOBBER, or
|
||
beginning of basic block. */
|
||
block = BLOCK_FOR_INSN (insn);
|
||
for (;;)
|
||
{
|
||
if (INSN_P (insn))
|
||
{
|
||
if (find_regno_note (insn, REG_UNUSED, reg_dead_regno))
|
||
return 1;
|
||
|
||
note_stores (insn, reg_dead_at_p_1, NULL);
|
||
if (reg_dead_flag)
|
||
return reg_dead_flag == 1 ? 1 : 0;
|
||
|
||
if (find_regno_note (insn, REG_DEAD, reg_dead_regno))
|
||
return 1;
|
||
}
|
||
|
||
if (insn == BB_HEAD (block))
|
||
break;
|
||
|
||
insn = PREV_INSN (insn);
|
||
}
|
||
|
||
/* Look at live-in sets for the basic block that we were in. */
|
||
for (i = reg_dead_regno; i < reg_dead_endregno; i++)
|
||
if (REGNO_REG_SET_P (df_get_live_in (block), i))
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
/* Note hard registers in X that are used. */
|
||
|
||
static void
|
||
mark_used_regs_combine (rtx x)
|
||
{
|
||
RTX_CODE code = GET_CODE (x);
|
||
unsigned int regno;
|
||
int i;
|
||
|
||
switch (code)
|
||
{
|
||
case LABEL_REF:
|
||
case SYMBOL_REF:
|
||
case CONST:
|
||
CASE_CONST_ANY:
|
||
case PC:
|
||
case ADDR_VEC:
|
||
case ADDR_DIFF_VEC:
|
||
case ASM_INPUT:
|
||
/* CC0 must die in the insn after it is set, so we don't need to take
|
||
special note of it here. */
|
||
case CC0:
|
||
return;
|
||
|
||
case CLOBBER:
|
||
/* If we are clobbering a MEM, mark any hard registers inside the
|
||
address as used. */
|
||
if (MEM_P (XEXP (x, 0)))
|
||
mark_used_regs_combine (XEXP (XEXP (x, 0), 0));
|
||
return;
|
||
|
||
case REG:
|
||
regno = REGNO (x);
|
||
/* A hard reg in a wide mode may really be multiple registers.
|
||
If so, mark all of them just like the first. */
|
||
if (regno < FIRST_PSEUDO_REGISTER)
|
||
{
|
||
/* None of this applies to the stack, frame or arg pointers. */
|
||
if (regno == STACK_POINTER_REGNUM
|
||
|| (!HARD_FRAME_POINTER_IS_FRAME_POINTER
|
||
&& regno == HARD_FRAME_POINTER_REGNUM)
|
||
|| (FRAME_POINTER_REGNUM != ARG_POINTER_REGNUM
|
||
&& regno == ARG_POINTER_REGNUM && fixed_regs[regno])
|
||
|| regno == FRAME_POINTER_REGNUM)
|
||
return;
|
||
|
||
add_to_hard_reg_set (&newpat_used_regs, GET_MODE (x), regno);
|
||
}
|
||
return;
|
||
|
||
case SET:
|
||
{
|
||
/* If setting a MEM, or a SUBREG of a MEM, then note any hard regs in
|
||
the address. */
|
||
rtx testreg = SET_DEST (x);
|
||
|
||
while (GET_CODE (testreg) == SUBREG
|
||
|| GET_CODE (testreg) == ZERO_EXTRACT
|
||
|| GET_CODE (testreg) == STRICT_LOW_PART)
|
||
testreg = XEXP (testreg, 0);
|
||
|
||
if (MEM_P (testreg))
|
||
mark_used_regs_combine (XEXP (testreg, 0));
|
||
|
||
mark_used_regs_combine (SET_SRC (x));
|
||
}
|
||
return;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
|
||
/* Recursively scan the operands of this expression. */
|
||
|
||
{
|
||
const char *fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
|
||
{
|
||
if (fmt[i] == 'e')
|
||
mark_used_regs_combine (XEXP (x, i));
|
||
else if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
|
||
for (j = 0; j < XVECLEN (x, i); j++)
|
||
mark_used_regs_combine (XVECEXP (x, i, j));
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Remove register number REGNO from the dead registers list of INSN.
|
||
|
||
Return the note used to record the death, if there was one. */
|
||
|
||
rtx
|
||
remove_death (unsigned int regno, rtx_insn *insn)
|
||
{
|
||
rtx note = find_regno_note (insn, REG_DEAD, regno);
|
||
|
||
if (note)
|
||
remove_note (insn, note);
|
||
|
||
return note;
|
||
}
|
||
|
||
/* For each register (hardware or pseudo) used within expression X, if its
|
||
death is in an instruction with luid between FROM_LUID (inclusive) and
|
||
TO_INSN (exclusive), put a REG_DEAD note for that register in the
|
||
list headed by PNOTES.
|
||
|
||
That said, don't move registers killed by maybe_kill_insn.
|
||
|
||
This is done when X is being merged by combination into TO_INSN. These
|
||
notes will then be distributed as needed. */
|
||
|
||
static void
|
||
move_deaths (rtx x, rtx maybe_kill_insn, int from_luid, rtx_insn *to_insn,
|
||
rtx *pnotes)
|
||
{
|
||
const char *fmt;
|
||
int len, i;
|
||
enum rtx_code code = GET_CODE (x);
|
||
|
||
if (code == REG)
|
||
{
|
||
unsigned int regno = REGNO (x);
|
||
rtx_insn *where_dead = reg_stat[regno].last_death;
|
||
|
||
/* If we do not know where the register died, it may still die between
|
||
FROM_LUID and TO_INSN. If so, find it. This is PR83304. */
|
||
if (!where_dead || DF_INSN_LUID (where_dead) >= DF_INSN_LUID (to_insn))
|
||
{
|
||
rtx_insn *insn = prev_real_nondebug_insn (to_insn);
|
||
while (insn
|
||
&& BLOCK_FOR_INSN (insn) == BLOCK_FOR_INSN (to_insn)
|
||
&& DF_INSN_LUID (insn) >= from_luid)
|
||
{
|
||
if (dead_or_set_regno_p (insn, regno))
|
||
{
|
||
if (find_regno_note (insn, REG_DEAD, regno))
|
||
where_dead = insn;
|
||
break;
|
||
}
|
||
|
||
insn = prev_real_nondebug_insn (insn);
|
||
}
|
||
}
|
||
|
||
/* Don't move the register if it gets killed in between from and to. */
|
||
if (maybe_kill_insn && reg_set_p (x, maybe_kill_insn)
|
||
&& ! reg_referenced_p (x, maybe_kill_insn))
|
||
return;
|
||
|
||
if (where_dead
|
||
&& BLOCK_FOR_INSN (where_dead) == BLOCK_FOR_INSN (to_insn)
|
||
&& DF_INSN_LUID (where_dead) >= from_luid
|
||
&& DF_INSN_LUID (where_dead) < DF_INSN_LUID (to_insn))
|
||
{
|
||
rtx note = remove_death (regno, where_dead);
|
||
|
||
/* It is possible for the call above to return 0. This can occur
|
||
when last_death points to I2 or I1 that we combined with.
|
||
In that case make a new note.
|
||
|
||
We must also check for the case where X is a hard register
|
||
and NOTE is a death note for a range of hard registers
|
||
including X. In that case, we must put REG_DEAD notes for
|
||
the remaining registers in place of NOTE. */
|
||
|
||
if (note != 0 && regno < FIRST_PSEUDO_REGISTER
|
||
&& partial_subreg_p (GET_MODE (x), GET_MODE (XEXP (note, 0))))
|
||
{
|
||
unsigned int deadregno = REGNO (XEXP (note, 0));
|
||
unsigned int deadend = END_REGNO (XEXP (note, 0));
|
||
unsigned int ourend = END_REGNO (x);
|
||
unsigned int i;
|
||
|
||
for (i = deadregno; i < deadend; i++)
|
||
if (i < regno || i >= ourend)
|
||
add_reg_note (where_dead, REG_DEAD, regno_reg_rtx[i]);
|
||
}
|
||
|
||
/* If we didn't find any note, or if we found a REG_DEAD note that
|
||
covers only part of the given reg, and we have a multi-reg hard
|
||
register, then to be safe we must check for REG_DEAD notes
|
||
for each register other than the first. They could have
|
||
their own REG_DEAD notes lying around. */
|
||
else if ((note == 0
|
||
|| (note != 0
|
||
&& partial_subreg_p (GET_MODE (XEXP (note, 0)),
|
||
GET_MODE (x))))
|
||
&& regno < FIRST_PSEUDO_REGISTER
|
||
&& REG_NREGS (x) > 1)
|
||
{
|
||
unsigned int ourend = END_REGNO (x);
|
||
unsigned int i, offset;
|
||
rtx oldnotes = 0;
|
||
|
||
if (note)
|
||
offset = hard_regno_nregs (regno, GET_MODE (XEXP (note, 0)));
|
||
else
|
||
offset = 1;
|
||
|
||
for (i = regno + offset; i < ourend; i++)
|
||
move_deaths (regno_reg_rtx[i],
|
||
maybe_kill_insn, from_luid, to_insn, &oldnotes);
|
||
}
|
||
|
||
if (note != 0 && GET_MODE (XEXP (note, 0)) == GET_MODE (x))
|
||
{
|
||
XEXP (note, 1) = *pnotes;
|
||
*pnotes = note;
|
||
}
|
||
else
|
||
*pnotes = alloc_reg_note (REG_DEAD, x, *pnotes);
|
||
}
|
||
|
||
return;
|
||
}
|
||
|
||
else if (GET_CODE (x) == SET)
|
||
{
|
||
rtx dest = SET_DEST (x);
|
||
|
||
move_deaths (SET_SRC (x), maybe_kill_insn, from_luid, to_insn, pnotes);
|
||
|
||
/* In the case of a ZERO_EXTRACT, a STRICT_LOW_PART, or a SUBREG
|
||
that accesses one word of a multi-word item, some
|
||
piece of everything register in the expression is used by
|
||
this insn, so remove any old death. */
|
||
/* ??? So why do we test for equality of the sizes? */
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT
|
||
|| GET_CODE (dest) == STRICT_LOW_PART
|
||
|| (GET_CODE (dest) == SUBREG
|
||
&& !read_modify_subreg_p (dest)))
|
||
{
|
||
move_deaths (dest, maybe_kill_insn, from_luid, to_insn, pnotes);
|
||
return;
|
||
}
|
||
|
||
/* If this is some other SUBREG, we know it replaces the entire
|
||
value, so use that as the destination. */
|
||
if (GET_CODE (dest) == SUBREG)
|
||
dest = SUBREG_REG (dest);
|
||
|
||
/* If this is a MEM, adjust deaths of anything used in the address.
|
||
For a REG (the only other possibility), the entire value is
|
||
being replaced so the old value is not used in this insn. */
|
||
|
||
if (MEM_P (dest))
|
||
move_deaths (XEXP (dest, 0), maybe_kill_insn, from_luid,
|
||
to_insn, pnotes);
|
||
return;
|
||
}
|
||
|
||
else if (GET_CODE (x) == CLOBBER)
|
||
return;
|
||
|
||
len = GET_RTX_LENGTH (code);
|
||
fmt = GET_RTX_FORMAT (code);
|
||
|
||
for (i = 0; i < len; i++)
|
||
{
|
||
if (fmt[i] == 'E')
|
||
{
|
||
int j;
|
||
for (j = XVECLEN (x, i) - 1; j >= 0; j--)
|
||
move_deaths (XVECEXP (x, i, j), maybe_kill_insn, from_luid,
|
||
to_insn, pnotes);
|
||
}
|
||
else if (fmt[i] == 'e')
|
||
move_deaths (XEXP (x, i), maybe_kill_insn, from_luid, to_insn, pnotes);
|
||
}
|
||
}
|
||
|
||
/* Return 1 if X is the target of a bit-field assignment in BODY, the
|
||
pattern of an insn. X must be a REG. */
|
||
|
||
static int
|
||
reg_bitfield_target_p (rtx x, rtx body)
|
||
{
|
||
int i;
|
||
|
||
if (GET_CODE (body) == SET)
|
||
{
|
||
rtx dest = SET_DEST (body);
|
||
rtx target;
|
||
unsigned int regno, tregno, endregno, endtregno;
|
||
|
||
if (GET_CODE (dest) == ZERO_EXTRACT)
|
||
target = XEXP (dest, 0);
|
||
else if (GET_CODE (dest) == STRICT_LOW_PART)
|
||
target = SUBREG_REG (XEXP (dest, 0));
|
||
else
|
||
return 0;
|
||
|
||
if (GET_CODE (target) == SUBREG)
|
||
target = SUBREG_REG (target);
|
||
|
||
if (!REG_P (target))
|
||
return 0;
|
||
|
||
tregno = REGNO (target), regno = REGNO (x);
|
||
if (tregno >= FIRST_PSEUDO_REGISTER || regno >= FIRST_PSEUDO_REGISTER)
|
||
return target == x;
|
||
|
||
endtregno = end_hard_regno (GET_MODE (target), tregno);
|
||
endregno = end_hard_regno (GET_MODE (x), regno);
|
||
|
||
return endregno > tregno && regno < endtregno;
|
||
}
|
||
|
||
else if (GET_CODE (body) == PARALLEL)
|
||
for (i = XVECLEN (body, 0) - 1; i >= 0; i--)
|
||
if (reg_bitfield_target_p (x, XVECEXP (body, 0, i)))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Given a chain of REG_NOTES originally from FROM_INSN, try to place them
|
||
as appropriate. I3 and I2 are the insns resulting from the combination
|
||
insns including FROM (I2 may be zero).
|
||
|
||
ELIM_I2 and ELIM_I1 are either zero or registers that we know will
|
||
not need REG_DEAD notes because they are being substituted for. This
|
||
saves searching in the most common cases.
|
||
|
||
Each note in the list is either ignored or placed on some insns, depending
|
||
on the type of note. */
|
||
|
||
static void
|
||
distribute_notes (rtx notes, rtx_insn *from_insn, rtx_insn *i3, rtx_insn *i2,
|
||
rtx elim_i2, rtx elim_i1, rtx elim_i0)
|
||
{
|
||
rtx note, next_note;
|
||
rtx tem_note;
|
||
rtx_insn *tem_insn;
|
||
|
||
for (note = notes; note; note = next_note)
|
||
{
|
||
rtx_insn *place = 0, *place2 = 0;
|
||
|
||
next_note = XEXP (note, 1);
|
||
switch (REG_NOTE_KIND (note))
|
||
{
|
||
case REG_BR_PROB:
|
||
case REG_BR_PRED:
|
||
/* Doesn't matter much where we put this, as long as it's somewhere.
|
||
It is preferable to keep these notes on branches, which is most
|
||
likely to be i3. */
|
||
place = i3;
|
||
break;
|
||
|
||
case REG_NON_LOCAL_GOTO:
|
||
if (JUMP_P (i3))
|
||
place = i3;
|
||
else
|
||
{
|
||
gcc_assert (i2 && JUMP_P (i2));
|
||
place = i2;
|
||
}
|
||
break;
|
||
|
||
case REG_EH_REGION:
|
||
/* These notes must remain with the call or trapping instruction. */
|
||
if (CALL_P (i3))
|
||
place = i3;
|
||
else if (i2 && CALL_P (i2))
|
||
place = i2;
|
||
else
|
||
{
|
||
gcc_assert (cfun->can_throw_non_call_exceptions);
|
||
if (may_trap_p (i3))
|
||
place = i3;
|
||
else if (i2 && may_trap_p (i2))
|
||
place = i2;
|
||
/* ??? Otherwise assume we've combined things such that we
|
||
can now prove that the instructions can't trap. Drop the
|
||
note in this case. */
|
||
}
|
||
break;
|
||
|
||
case REG_ARGS_SIZE:
|
||
/* ??? How to distribute between i3-i1. Assume i3 contains the
|
||
entire adjustment. Assert i3 contains at least some adjust. */
|
||
if (!noop_move_p (i3))
|
||
{
|
||
poly_int64 old_size, args_size = get_args_size (note);
|
||
/* fixup_args_size_notes looks at REG_NORETURN note,
|
||
so ensure the note is placed there first. */
|
||
if (CALL_P (i3))
|
||
{
|
||
rtx *np;
|
||
for (np = &next_note; *np; np = &XEXP (*np, 1))
|
||
if (REG_NOTE_KIND (*np) == REG_NORETURN)
|
||
{
|
||
rtx n = *np;
|
||
*np = XEXP (n, 1);
|
||
XEXP (n, 1) = REG_NOTES (i3);
|
||
REG_NOTES (i3) = n;
|
||
break;
|
||
}
|
||
}
|
||
old_size = fixup_args_size_notes (PREV_INSN (i3), i3, args_size);
|
||
/* emit_call_1 adds for !ACCUMULATE_OUTGOING_ARGS
|
||
REG_ARGS_SIZE note to all noreturn calls, allow that here. */
|
||
gcc_assert (maybe_ne (old_size, args_size)
|
||
|| (CALL_P (i3)
|
||
&& !ACCUMULATE_OUTGOING_ARGS
|
||
&& find_reg_note (i3, REG_NORETURN, NULL_RTX)));
|
||
}
|
||
break;
|
||
|
||
case REG_NORETURN:
|
||
case REG_SETJMP:
|
||
case REG_TM:
|
||
case REG_CALL_DECL:
|
||
case REG_CALL_NOCF_CHECK:
|
||
/* These notes must remain with the call. It should not be
|
||
possible for both I2 and I3 to be a call. */
|
||
if (CALL_P (i3))
|
||
place = i3;
|
||
else
|
||
{
|
||
gcc_assert (i2 && CALL_P (i2));
|
||
place = i2;
|
||
}
|
||
break;
|
||
|
||
case REG_UNUSED:
|
||
/* Any clobbers for i3 may still exist, and so we must process
|
||
REG_UNUSED notes from that insn.
|
||
|
||
Any clobbers from i2 or i1 can only exist if they were added by
|
||
recog_for_combine. In that case, recog_for_combine created the
|
||
necessary REG_UNUSED notes. Trying to keep any original
|
||
REG_UNUSED notes from these insns can cause incorrect output
|
||
if it is for the same register as the original i3 dest.
|
||
In that case, we will notice that the register is set in i3,
|
||
and then add a REG_UNUSED note for the destination of i3, which
|
||
is wrong. However, it is possible to have REG_UNUSED notes from
|
||
i2 or i1 for register which were both used and clobbered, so
|
||
we keep notes from i2 or i1 if they will turn into REG_DEAD
|
||
notes. */
|
||
|
||
/* If this register is set or clobbered in I3, put the note there
|
||
unless there is one already. */
|
||
if (reg_set_p (XEXP (note, 0), PATTERN (i3)))
|
||
{
|
||
if (from_insn != i3)
|
||
break;
|
||
|
||
if (! (REG_P (XEXP (note, 0))
|
||
? find_regno_note (i3, REG_UNUSED, REGNO (XEXP (note, 0)))
|
||
: find_reg_note (i3, REG_UNUSED, XEXP (note, 0))))
|
||
place = i3;
|
||
}
|
||
/* Otherwise, if this register is used by I3, then this register
|
||
now dies here, so we must put a REG_DEAD note here unless there
|
||
is one already. */
|
||
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3))
|
||
&& ! (REG_P (XEXP (note, 0))
|
||
? find_regno_note (i3, REG_DEAD,
|
||
REGNO (XEXP (note, 0)))
|
||
: find_reg_note (i3, REG_DEAD, XEXP (note, 0))))
|
||
{
|
||
PUT_REG_NOTE_KIND (note, REG_DEAD);
|
||
place = i3;
|
||
}
|
||
|
||
/* A SET or CLOBBER of the REG_UNUSED reg has been removed,
|
||
but we can't tell which at this point. We must reset any
|
||
expectations we had about the value that was previously
|
||
stored in the reg. ??? Ideally, we'd adjust REG_N_SETS
|
||
and, if appropriate, restore its previous value, but we
|
||
don't have enough information for that at this point. */
|
||
else
|
||
{
|
||
record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
|
||
|
||
/* Otherwise, if this register is now referenced in i2
|
||
then the register used to be modified in one of the
|
||
original insns. If it was i3 (say, in an unused
|
||
parallel), it's now completely gone, so the note can
|
||
be discarded. But if it was modified in i2, i1 or i0
|
||
and we still reference it in i2, then we're
|
||
referencing the previous value, and since the
|
||
register was modified and REG_UNUSED, we know that
|
||
the previous value is now dead. So, if we only
|
||
reference the register in i2, we change the note to
|
||
REG_DEAD, to reflect the previous value. However, if
|
||
we're also setting or clobbering the register as
|
||
scratch, we know (because the register was not
|
||
referenced in i3) that it's unused, just as it was
|
||
unused before, and we place the note in i2. */
|
||
if (from_insn != i3 && i2 && INSN_P (i2)
|
||
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
|
||
{
|
||
if (!reg_set_p (XEXP (note, 0), PATTERN (i2)))
|
||
PUT_REG_NOTE_KIND (note, REG_DEAD);
|
||
if (! (REG_P (XEXP (note, 0))
|
||
? find_regno_note (i2, REG_NOTE_KIND (note),
|
||
REGNO (XEXP (note, 0)))
|
||
: find_reg_note (i2, REG_NOTE_KIND (note),
|
||
XEXP (note, 0))))
|
||
place = i2;
|
||
}
|
||
}
|
||
|
||
break;
|
||
|
||
case REG_EQUAL:
|
||
case REG_EQUIV:
|
||
case REG_NOALIAS:
|
||
/* These notes say something about results of an insn. We can
|
||
only support them if they used to be on I3 in which case they
|
||
remain on I3. Otherwise they are ignored.
|
||
|
||
If the note refers to an expression that is not a constant, we
|
||
must also ignore the note since we cannot tell whether the
|
||
equivalence is still true. It might be possible to do
|
||
slightly better than this (we only have a problem if I2DEST
|
||
or I1DEST is present in the expression), but it doesn't
|
||
seem worth the trouble. */
|
||
|
||
if (from_insn == i3
|
||
&& (XEXP (note, 0) == 0 || CONSTANT_P (XEXP (note, 0))))
|
||
place = i3;
|
||
break;
|
||
|
||
case REG_INC:
|
||
/* These notes say something about how a register is used. They must
|
||
be present on any use of the register in I2 or I3. */
|
||
if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3)))
|
||
place = i3;
|
||
|
||
if (i2 && reg_mentioned_p (XEXP (note, 0), PATTERN (i2)))
|
||
{
|
||
if (place)
|
||
place2 = i2;
|
||
else
|
||
place = i2;
|
||
}
|
||
break;
|
||
|
||
case REG_LABEL_TARGET:
|
||
case REG_LABEL_OPERAND:
|
||
/* This can show up in several ways -- either directly in the
|
||
pattern, or hidden off in the constant pool with (or without?)
|
||
a REG_EQUAL note. */
|
||
/* ??? Ignore the without-reg_equal-note problem for now. */
|
||
if (reg_mentioned_p (XEXP (note, 0), PATTERN (i3))
|
||
|| ((tem_note = find_reg_note (i3, REG_EQUAL, NULL_RTX))
|
||
&& GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
|
||
&& label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0)))
|
||
place = i3;
|
||
|
||
if (i2
|
||
&& (reg_mentioned_p (XEXP (note, 0), PATTERN (i2))
|
||
|| ((tem_note = find_reg_note (i2, REG_EQUAL, NULL_RTX))
|
||
&& GET_CODE (XEXP (tem_note, 0)) == LABEL_REF
|
||
&& label_ref_label (XEXP (tem_note, 0)) == XEXP (note, 0))))
|
||
{
|
||
if (place)
|
||
place2 = i2;
|
||
else
|
||
place = i2;
|
||
}
|
||
|
||
/* For REG_LABEL_TARGET on a JUMP_P, we prefer to put the note
|
||
as a JUMP_LABEL or decrement LABEL_NUSES if it's already
|
||
there. */
|
||
if (place && JUMP_P (place)
|
||
&& REG_NOTE_KIND (note) == REG_LABEL_TARGET
|
||
&& (JUMP_LABEL (place) == NULL
|
||
|| JUMP_LABEL (place) == XEXP (note, 0)))
|
||
{
|
||
rtx label = JUMP_LABEL (place);
|
||
|
||
if (!label)
|
||
JUMP_LABEL (place) = XEXP (note, 0);
|
||
else if (LABEL_P (label))
|
||
LABEL_NUSES (label)--;
|
||
}
|
||
|
||
if (place2 && JUMP_P (place2)
|
||
&& REG_NOTE_KIND (note) == REG_LABEL_TARGET
|
||
&& (JUMP_LABEL (place2) == NULL
|
||
|| JUMP_LABEL (place2) == XEXP (note, 0)))
|
||
{
|
||
rtx label = JUMP_LABEL (place2);
|
||
|
||
if (!label)
|
||
JUMP_LABEL (place2) = XEXP (note, 0);
|
||
else if (LABEL_P (label))
|
||
LABEL_NUSES (label)--;
|
||
place2 = 0;
|
||
}
|
||
break;
|
||
|
||
case REG_NONNEG:
|
||
/* This note says something about the value of a register prior
|
||
to the execution of an insn. It is too much trouble to see
|
||
if the note is still correct in all situations. It is better
|
||
to simply delete it. */
|
||
break;
|
||
|
||
case REG_DEAD:
|
||
/* If we replaced the right hand side of FROM_INSN with a
|
||
REG_EQUAL note, the original use of the dying register
|
||
will not have been combined into I3 and I2. In such cases,
|
||
FROM_INSN is guaranteed to be the first of the combined
|
||
instructions, so we simply need to search back before
|
||
FROM_INSN for the previous use or set of this register,
|
||
then alter the notes there appropriately.
|
||
|
||
If the register is used as an input in I3, it dies there.
|
||
Similarly for I2, if it is nonzero and adjacent to I3.
|
||
|
||
If the register is not used as an input in either I3 or I2
|
||
and it is not one of the registers we were supposed to eliminate,
|
||
there are two possibilities. We might have a non-adjacent I2
|
||
or we might have somehow eliminated an additional register
|
||
from a computation. For example, we might have had A & B where
|
||
we discover that B will always be zero. In this case we will
|
||
eliminate the reference to A.
|
||
|
||
In both cases, we must search to see if we can find a previous
|
||
use of A and put the death note there. */
|
||
|
||
if (from_insn
|
||
&& from_insn == i2mod
|
||
&& !reg_overlap_mentioned_p (XEXP (note, 0), i2mod_new_rhs))
|
||
tem_insn = from_insn;
|
||
else
|
||
{
|
||
if (from_insn
|
||
&& CALL_P (from_insn)
|
||
&& find_reg_fusage (from_insn, USE, XEXP (note, 0)))
|
||
place = from_insn;
|
||
else if (i2 && reg_set_p (XEXP (note, 0), PATTERN (i2)))
|
||
{
|
||
/* If the new I2 sets the same register that is marked
|
||
dead in the note, we do not in general know where to
|
||
put the note. One important case we _can_ handle is
|
||
when the note comes from I3. */
|
||
if (from_insn == i3)
|
||
place = i3;
|
||
else
|
||
break;
|
||
}
|
||
else if (reg_referenced_p (XEXP (note, 0), PATTERN (i3)))
|
||
place = i3;
|
||
else if (i2 != 0 && next_nonnote_nondebug_insn (i2) == i3
|
||
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
|
||
place = i2;
|
||
else if ((rtx_equal_p (XEXP (note, 0), elim_i2)
|
||
&& !(i2mod
|
||
&& reg_overlap_mentioned_p (XEXP (note, 0),
|
||
i2mod_old_rhs)))
|
||
|| rtx_equal_p (XEXP (note, 0), elim_i1)
|
||
|| rtx_equal_p (XEXP (note, 0), elim_i0))
|
||
break;
|
||
tem_insn = i3;
|
||
}
|
||
|
||
if (place == 0)
|
||
{
|
||
basic_block bb = this_basic_block;
|
||
|
||
for (tem_insn = PREV_INSN (tem_insn); place == 0; tem_insn = PREV_INSN (tem_insn))
|
||
{
|
||
if (!NONDEBUG_INSN_P (tem_insn))
|
||
{
|
||
if (tem_insn == BB_HEAD (bb))
|
||
break;
|
||
continue;
|
||
}
|
||
|
||
/* If the register is being set at TEM_INSN, see if that is all
|
||
TEM_INSN is doing. If so, delete TEM_INSN. Otherwise, make this
|
||
into a REG_UNUSED note instead. Don't delete sets to
|
||
global register vars. */
|
||
if ((REGNO (XEXP (note, 0)) >= FIRST_PSEUDO_REGISTER
|
||
|| !global_regs[REGNO (XEXP (note, 0))])
|
||
&& reg_set_p (XEXP (note, 0), PATTERN (tem_insn)))
|
||
{
|
||
rtx set = single_set (tem_insn);
|
||
rtx inner_dest = 0;
|
||
rtx_insn *cc0_setter = NULL;
|
||
|
||
if (set != 0)
|
||
for (inner_dest = SET_DEST (set);
|
||
(GET_CODE (inner_dest) == STRICT_LOW_PART
|
||
|| GET_CODE (inner_dest) == SUBREG
|
||
|| GET_CODE (inner_dest) == ZERO_EXTRACT);
|
||
inner_dest = XEXP (inner_dest, 0))
|
||
;
|
||
|
||
/* Verify that it was the set, and not a clobber that
|
||
modified the register.
|
||
|
||
CC0 targets must be careful to maintain setter/user
|
||
pairs. If we cannot delete the setter due to side
|
||
effects, mark the user with an UNUSED note instead
|
||
of deleting it. */
|
||
|
||
if (set != 0 && ! side_effects_p (SET_SRC (set))
|
||
&& rtx_equal_p (XEXP (note, 0), inner_dest)
|
||
&& (!HAVE_cc0
|
||
|| (! reg_mentioned_p (cc0_rtx, SET_SRC (set))
|
||
|| ((cc0_setter = prev_cc0_setter (tem_insn)) != NULL
|
||
&& sets_cc0_p (PATTERN (cc0_setter)) > 0))))
|
||
{
|
||
/* Move the notes and links of TEM_INSN elsewhere.
|
||
This might delete other dead insns recursively.
|
||
First set the pattern to something that won't use
|
||
any register. */
|
||
rtx old_notes = REG_NOTES (tem_insn);
|
||
|
||
PATTERN (tem_insn) = pc_rtx;
|
||
REG_NOTES (tem_insn) = NULL;
|
||
|
||
distribute_notes (old_notes, tem_insn, tem_insn, NULL,
|
||
NULL_RTX, NULL_RTX, NULL_RTX);
|
||
distribute_links (LOG_LINKS (tem_insn));
|
||
|
||
unsigned int regno = REGNO (XEXP (note, 0));
|
||
reg_stat_type *rsp = ®_stat[regno];
|
||
if (rsp->last_set == tem_insn)
|
||
record_value_for_reg (XEXP (note, 0), NULL, NULL_RTX);
|
||
|
||
SET_INSN_DELETED (tem_insn);
|
||
if (tem_insn == i2)
|
||
i2 = NULL;
|
||
|
||
/* Delete the setter too. */
|
||
if (cc0_setter)
|
||
{
|
||
PATTERN (cc0_setter) = pc_rtx;
|
||
old_notes = REG_NOTES (cc0_setter);
|
||
REG_NOTES (cc0_setter) = NULL;
|
||
|
||
distribute_notes (old_notes, cc0_setter,
|
||
cc0_setter, NULL,
|
||
NULL_RTX, NULL_RTX, NULL_RTX);
|
||
distribute_links (LOG_LINKS (cc0_setter));
|
||
|
||
SET_INSN_DELETED (cc0_setter);
|
||
if (cc0_setter == i2)
|
||
i2 = NULL;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
PUT_REG_NOTE_KIND (note, REG_UNUSED);
|
||
|
||
/* If there isn't already a REG_UNUSED note, put one
|
||
here. Do not place a REG_DEAD note, even if
|
||
the register is also used here; that would not
|
||
match the algorithm used in lifetime analysis
|
||
and can cause the consistency check in the
|
||
scheduler to fail. */
|
||
if (! find_regno_note (tem_insn, REG_UNUSED,
|
||
REGNO (XEXP (note, 0))))
|
||
place = tem_insn;
|
||
break;
|
||
}
|
||
}
|
||
else if (reg_referenced_p (XEXP (note, 0), PATTERN (tem_insn))
|
||
|| (CALL_P (tem_insn)
|
||
&& find_reg_fusage (tem_insn, USE, XEXP (note, 0))))
|
||
{
|
||
place = tem_insn;
|
||
|
||
/* If we are doing a 3->2 combination, and we have a
|
||
register which formerly died in i3 and was not used
|
||
by i2, which now no longer dies in i3 and is used in
|
||
i2 but does not die in i2, and place is between i2
|
||
and i3, then we may need to move a link from place to
|
||
i2. */
|
||
if (i2 && DF_INSN_LUID (place) > DF_INSN_LUID (i2)
|
||
&& from_insn
|
||
&& DF_INSN_LUID (from_insn) > DF_INSN_LUID (i2)
|
||
&& reg_referenced_p (XEXP (note, 0), PATTERN (i2)))
|
||
{
|
||
struct insn_link *links = LOG_LINKS (place);
|
||
LOG_LINKS (place) = NULL;
|
||
distribute_links (links);
|
||
}
|
||
break;
|
||
}
|
||
|
||
if (tem_insn == BB_HEAD (bb))
|
||
break;
|
||
}
|
||
|
||
}
|
||
|
||
/* If the register is set or already dead at PLACE, we needn't do
|
||
anything with this note if it is still a REG_DEAD note.
|
||
We check here if it is set at all, not if is it totally replaced,
|
||
which is what `dead_or_set_p' checks, so also check for it being
|
||
set partially. */
|
||
|
||
if (place && REG_NOTE_KIND (note) == REG_DEAD)
|
||
{
|
||
unsigned int regno = REGNO (XEXP (note, 0));
|
||
reg_stat_type *rsp = ®_stat[regno];
|
||
|
||
if (dead_or_set_p (place, XEXP (note, 0))
|
||
|| reg_bitfield_target_p (XEXP (note, 0), PATTERN (place)))
|
||
{
|
||
/* Unless the register previously died in PLACE, clear
|
||
last_death. [I no longer understand why this is
|
||
being done.] */
|
||
if (rsp->last_death != place)
|
||
rsp->last_death = 0;
|
||
place = 0;
|
||
}
|
||
else
|
||
rsp->last_death = place;
|
||
|
||
/* If this is a death note for a hard reg that is occupying
|
||
multiple registers, ensure that we are still using all
|
||
parts of the object. If we find a piece of the object
|
||
that is unused, we must arrange for an appropriate REG_DEAD
|
||
note to be added for it. However, we can't just emit a USE
|
||
and tag the note to it, since the register might actually
|
||
be dead; so we recourse, and the recursive call then finds
|
||
the previous insn that used this register. */
|
||
|
||
if (place && REG_NREGS (XEXP (note, 0)) > 1)
|
||
{
|
||
unsigned int endregno = END_REGNO (XEXP (note, 0));
|
||
bool all_used = true;
|
||
unsigned int i;
|
||
|
||
for (i = regno; i < endregno; i++)
|
||
if ((! refers_to_regno_p (i, PATTERN (place))
|
||
&& ! find_regno_fusage (place, USE, i))
|
||
|| dead_or_set_regno_p (place, i))
|
||
{
|
||
all_used = false;
|
||
break;
|
||
}
|
||
|
||
if (! all_used)
|
||
{
|
||
/* Put only REG_DEAD notes for pieces that are
|
||
not already dead or set. */
|
||
|
||
for (i = regno; i < endregno;
|
||
i += hard_regno_nregs (i, reg_raw_mode[i]))
|
||
{
|
||
rtx piece = regno_reg_rtx[i];
|
||
basic_block bb = this_basic_block;
|
||
|
||
if (! dead_or_set_p (place, piece)
|
||
&& ! reg_bitfield_target_p (piece,
|
||
PATTERN (place)))
|
||
{
|
||
rtx new_note = alloc_reg_note (REG_DEAD, piece,
|
||
NULL_RTX);
|
||
|
||
distribute_notes (new_note, place, place,
|
||
NULL, NULL_RTX, NULL_RTX,
|
||
NULL_RTX);
|
||
}
|
||
else if (! refers_to_regno_p (i, PATTERN (place))
|
||
&& ! find_regno_fusage (place, USE, i))
|
||
for (tem_insn = PREV_INSN (place); ;
|
||
tem_insn = PREV_INSN (tem_insn))
|
||
{
|
||
if (!NONDEBUG_INSN_P (tem_insn))
|
||
{
|
||
if (tem_insn == BB_HEAD (bb))
|
||
break;
|
||
continue;
|
||
}
|
||
if (dead_or_set_p (tem_insn, piece)
|
||
|| reg_bitfield_target_p (piece,
|
||
PATTERN (tem_insn)))
|
||
{
|
||
add_reg_note (tem_insn, REG_UNUSED, piece);
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
place = 0;
|
||
}
|
||
}
|
||
}
|
||
break;
|
||
|
||
default:
|
||
/* Any other notes should not be present at this point in the
|
||
compilation. */
|
||
gcc_unreachable ();
|
||
}
|
||
|
||
if (place)
|
||
{
|
||
XEXP (note, 1) = REG_NOTES (place);
|
||
REG_NOTES (place) = note;
|
||
|
||
/* Set added_notes_insn to the earliest insn we added a note to. */
|
||
if (added_notes_insn == 0
|
||
|| DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place))
|
||
added_notes_insn = place;
|
||
}
|
||
|
||
if (place2)
|
||
{
|
||
add_shallow_copy_of_reg_note (place2, note);
|
||
|
||
/* Set added_notes_insn to the earliest insn we added a note to. */
|
||
if (added_notes_insn == 0
|
||
|| DF_INSN_LUID (added_notes_insn) > DF_INSN_LUID (place2))
|
||
added_notes_insn = place2;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Similarly to above, distribute the LOG_LINKS that used to be present on
|
||
I3, I2, and I1 to new locations. This is also called to add a link
|
||
pointing at I3 when I3's destination is changed. */
|
||
|
||
static void
|
||
distribute_links (struct insn_link *links)
|
||
{
|
||
struct insn_link *link, *next_link;
|
||
|
||
for (link = links; link; link = next_link)
|
||
{
|
||
rtx_insn *place = 0;
|
||
rtx_insn *insn;
|
||
rtx set, reg;
|
||
|
||
next_link = link->next;
|
||
|
||
/* If the insn that this link points to is a NOTE, ignore it. */
|
||
if (NOTE_P (link->insn))
|
||
continue;
|
||
|
||
set = 0;
|
||
rtx pat = PATTERN (link->insn);
|
||
if (GET_CODE (pat) == SET)
|
||
set = pat;
|
||
else if (GET_CODE (pat) == PARALLEL)
|
||
{
|
||
int i;
|
||
for (i = 0; i < XVECLEN (pat, 0); i++)
|
||
{
|
||
set = XVECEXP (pat, 0, i);
|
||
if (GET_CODE (set) != SET)
|
||
continue;
|
||
|
||
reg = SET_DEST (set);
|
||
while (GET_CODE (reg) == ZERO_EXTRACT
|
||
|| GET_CODE (reg) == STRICT_LOW_PART
|
||
|| GET_CODE (reg) == SUBREG)
|
||
reg = XEXP (reg, 0);
|
||
|
||
if (!REG_P (reg))
|
||
continue;
|
||
|
||
if (REGNO (reg) == link->regno)
|
||
break;
|
||
}
|
||
if (i == XVECLEN (pat, 0))
|
||
continue;
|
||
}
|
||
else
|
||
continue;
|
||
|
||
reg = SET_DEST (set);
|
||
|
||
while (GET_CODE (reg) == ZERO_EXTRACT
|
||
|| GET_CODE (reg) == STRICT_LOW_PART
|
||
|| GET_CODE (reg) == SUBREG)
|
||
reg = XEXP (reg, 0);
|
||
|
||
if (reg == pc_rtx)
|
||
continue;
|
||
|
||
/* A LOG_LINK is defined as being placed on the first insn that uses
|
||
a register and points to the insn that sets the register. Start
|
||
searching at the next insn after the target of the link and stop
|
||
when we reach a set of the register or the end of the basic block.
|
||
|
||
Note that this correctly handles the link that used to point from
|
||
I3 to I2. Also note that not much searching is typically done here
|
||
since most links don't point very far away. */
|
||
|
||
for (insn = NEXT_INSN (link->insn);
|
||
(insn && (this_basic_block->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
|
||
|| BB_HEAD (this_basic_block->next_bb) != insn));
|
||
insn = NEXT_INSN (insn))
|
||
if (DEBUG_INSN_P (insn))
|
||
continue;
|
||
else if (INSN_P (insn) && reg_overlap_mentioned_p (reg, PATTERN (insn)))
|
||
{
|
||
if (reg_referenced_p (reg, PATTERN (insn)))
|
||
place = insn;
|
||
break;
|
||
}
|
||
else if (CALL_P (insn)
|
||
&& find_reg_fusage (insn, USE, reg))
|
||
{
|
||
place = insn;
|
||
break;
|
||
}
|
||
else if (INSN_P (insn) && reg_set_p (reg, insn))
|
||
break;
|
||
|
||
/* If we found a place to put the link, place it there unless there
|
||
is already a link to the same insn as LINK at that point. */
|
||
|
||
if (place)
|
||
{
|
||
struct insn_link *link2;
|
||
|
||
FOR_EACH_LOG_LINK (link2, place)
|
||
if (link2->insn == link->insn && link2->regno == link->regno)
|
||
break;
|
||
|
||
if (link2 == NULL)
|
||
{
|
||
link->next = LOG_LINKS (place);
|
||
LOG_LINKS (place) = link;
|
||
|
||
/* Set added_links_insn to the earliest insn we added a
|
||
link to. */
|
||
if (added_links_insn == 0
|
||
|| DF_INSN_LUID (added_links_insn) > DF_INSN_LUID (place))
|
||
added_links_insn = place;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Check for any register or memory mentioned in EQUIV that is not
|
||
mentioned in EXPR. This is used to restrict EQUIV to "specializations"
|
||
of EXPR where some registers may have been replaced by constants. */
|
||
|
||
static bool
|
||
unmentioned_reg_p (rtx equiv, rtx expr)
|
||
{
|
||
subrtx_iterator::array_type array;
|
||
FOR_EACH_SUBRTX (iter, array, equiv, NONCONST)
|
||
{
|
||
const_rtx x = *iter;
|
||
if ((REG_P (x) || MEM_P (x))
|
||
&& !reg_mentioned_p (x, expr))
|
||
return true;
|
||
}
|
||
return false;
|
||
}
|
||
|
||
DEBUG_FUNCTION void
|
||
dump_combine_stats (FILE *file)
|
||
{
|
||
fprintf
|
||
(file,
|
||
";; Combiner statistics: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n\n",
|
||
combine_attempts, combine_merges, combine_extras, combine_successes);
|
||
}
|
||
|
||
void
|
||
dump_combine_total_stats (FILE *file)
|
||
{
|
||
fprintf
|
||
(file,
|
||
"\n;; Combiner totals: %d attempts, %d substitutions (%d requiring new space),\n;; %d successes.\n",
|
||
total_attempts, total_merges, total_extras, total_successes);
|
||
}
|
||
|
||
/* Make pseudo-to-pseudo copies after every hard-reg-to-pseudo-copy, because
|
||
the reg-to-reg copy can usefully combine with later instructions, but we
|
||
do not want to combine the hard reg into later instructions, for that
|
||
restricts register allocation. */
|
||
static void
|
||
make_more_copies (void)
|
||
{
|
||
basic_block bb;
|
||
|
||
FOR_EACH_BB_FN (bb, cfun)
|
||
{
|
||
rtx_insn *insn;
|
||
|
||
FOR_BB_INSNS (bb, insn)
|
||
{
|
||
if (!NONDEBUG_INSN_P (insn))
|
||
continue;
|
||
|
||
rtx set = single_set (insn);
|
||
if (!set)
|
||
continue;
|
||
|
||
rtx dest = SET_DEST (set);
|
||
if (!(REG_P (dest) && !HARD_REGISTER_P (dest)))
|
||
continue;
|
||
|
||
rtx src = SET_SRC (set);
|
||
if (!(REG_P (src) && HARD_REGISTER_P (src)))
|
||
continue;
|
||
if (TEST_HARD_REG_BIT (fixed_reg_set, REGNO (src)))
|
||
continue;
|
||
|
||
rtx new_reg = gen_reg_rtx (GET_MODE (dest));
|
||
rtx_insn *new_insn = gen_move_insn (new_reg, src);
|
||
SET_SRC (set) = new_reg;
|
||
emit_insn_before (new_insn, insn);
|
||
df_insn_rescan (insn);
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Try combining insns through substitution. */
|
||
static unsigned int
|
||
rest_of_handle_combine (void)
|
||
{
|
||
make_more_copies ();
|
||
|
||
df_set_flags (DF_LR_RUN_DCE + DF_DEFER_INSN_RESCAN);
|
||
df_note_add_problem ();
|
||
df_analyze ();
|
||
|
||
regstat_init_n_sets_and_refs ();
|
||
reg_n_sets_max = max_reg_num ();
|
||
|
||
int rebuild_jump_labels_after_combine
|
||
= combine_instructions (get_insns (), max_reg_num ());
|
||
|
||
/* Combining insns may have turned an indirect jump into a
|
||
direct jump. Rebuild the JUMP_LABEL fields of jumping
|
||
instructions. */
|
||
if (rebuild_jump_labels_after_combine)
|
||
{
|
||
if (dom_info_available_p (CDI_DOMINATORS))
|
||
free_dominance_info (CDI_DOMINATORS);
|
||
timevar_push (TV_JUMP);
|
||
rebuild_jump_labels (get_insns ());
|
||
cleanup_cfg (0);
|
||
timevar_pop (TV_JUMP);
|
||
}
|
||
|
||
regstat_free_n_sets_and_refs ();
|
||
return 0;
|
||
}
|
||
|
||
namespace {
|
||
|
||
const pass_data pass_data_combine =
|
||
{
|
||
RTL_PASS, /* type */
|
||
"combine", /* name */
|
||
OPTGROUP_NONE, /* optinfo_flags */
|
||
TV_COMBINE, /* tv_id */
|
||
PROP_cfglayout, /* properties_required */
|
||
0, /* properties_provided */
|
||
0, /* properties_destroyed */
|
||
0, /* todo_flags_start */
|
||
TODO_df_finish, /* todo_flags_finish */
|
||
};
|
||
|
||
class pass_combine : public rtl_opt_pass
|
||
{
|
||
public:
|
||
pass_combine (gcc::context *ctxt)
|
||
: rtl_opt_pass (pass_data_combine, ctxt)
|
||
{}
|
||
|
||
/* opt_pass methods: */
|
||
virtual bool gate (function *) { return (optimize > 0); }
|
||
virtual unsigned int execute (function *)
|
||
{
|
||
return rest_of_handle_combine ();
|
||
}
|
||
|
||
}; // class pass_combine
|
||
|
||
} // anon namespace
|
||
|
||
rtl_opt_pass *
|
||
make_pass_combine (gcc::context *ctxt)
|
||
{
|
||
return new pass_combine (ctxt);
|
||
}
|