
2006-08-14 Mark Wielaard <mark@klomp.org> Imported GNU Classpath 0.92 * HACKING: Add more importing hints. Update automake version requirement. * configure.ac (gconf-peer): New enable AC argument. Add --disable-gconf-peer and --enable-default-preferences-peer to classpath configure when gconf is disabled. * scripts/makemake.tcl: Set gnu/java/util/prefs/gconf and gnu/java/awt/dnd/peer/gtk to bc. Classify gnu/java/security/Configuration.java as generated source file. * gnu/java/lang/management/VMGarbageCollectorMXBeanImpl.java, gnu/java/lang/management/VMMemoryPoolMXBeanImpl.java, gnu/java/lang/management/VMClassLoadingMXBeanImpl.java, gnu/java/lang/management/VMRuntimeMXBeanImpl.java, gnu/java/lang/management/VMMemoryManagerMXBeanImpl.java, gnu/java/lang/management/VMThreadMXBeanImpl.java, gnu/java/lang/management/VMMemoryMXBeanImpl.java, gnu/java/lang/management/VMCompilationMXBeanImpl.java: New VM stub classes. * java/lang/management/VMManagementFactory.java: Likewise. * java/net/VMURLConnection.java: Likewise. * gnu/java/nio/VMChannel.java: Likewise. * java/lang/Thread.java (getState): Add stub implementation. * java/lang/Class.java (isEnum): Likewise. * java/lang/Class.h (isEnum): Likewise. * gnu/awt/xlib/XToolkit.java (getClasspathTextLayoutPeer): Removed. * javax/naming/spi/NamingManager.java: New override for StackWalker functionality. * configure, sources.am, Makefile.in, gcj/Makefile.in, include/Makefile.in, testsuite/Makefile.in: Regenerated. From-SVN: r116139
758 lines
24 KiB
Java
758 lines
24 KiB
Java
/* UHash32.java --
|
|
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
|
|
|
|
This file is a part of GNU Classpath.
|
|
|
|
GNU Classpath is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 2 of the License, or (at
|
|
your option) any later version.
|
|
|
|
GNU Classpath is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GNU Classpath; if not, write to the Free Software
|
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
|
|
USA
|
|
|
|
Linking this library statically or dynamically with other modules is
|
|
making a combined work based on this library. Thus, the terms and
|
|
conditions of the GNU General Public License cover the whole
|
|
combination.
|
|
|
|
As a special exception, the copyright holders of this library give you
|
|
permission to link this library with independent modules to produce an
|
|
executable, regardless of the license terms of these independent
|
|
modules, and to copy and distribute the resulting executable under
|
|
terms of your choice, provided that you also meet, for each linked
|
|
independent module, the terms and conditions of the license of that
|
|
module. An independent module is a module which is not derived from
|
|
or based on this library. If you modify this library, you may extend
|
|
this exception to your version of the library, but you are not
|
|
obligated to do so. If you do not wish to do so, delete this
|
|
exception statement from your version. */
|
|
|
|
|
|
package gnu.javax.crypto.mac;
|
|
|
|
import gnu.java.security.prng.IRandom;
|
|
import gnu.java.security.prng.LimitReachedException;
|
|
import gnu.javax.crypto.cipher.IBlockCipher;
|
|
import gnu.javax.crypto.prng.UMacGenerator;
|
|
|
|
import java.io.ByteArrayOutputStream;
|
|
import java.math.BigInteger;
|
|
import java.security.InvalidKeyException;
|
|
import java.util.HashMap;
|
|
import java.util.Map;
|
|
|
|
/**
|
|
* <i>UHASH</i> is a keyed hash function, which takes as input a string of
|
|
* arbitrary length, and produces as output a string of fixed length (such as 8
|
|
* bytes). The actual output length depends on the parameter UMAC-OUTPUT-LEN.
|
|
* <p>
|
|
* <i>UHASH</i> has been shown to be <i>epsilon-ASU</i> ("Almost Strongly
|
|
* Universal"), where epsilon is a small (parameter-dependent) real number.
|
|
* Informally, saying that a keyed hash function is <i>epsilon-ASU</i> means
|
|
* that for any two distinct fixed input strings, the two outputs of the hash
|
|
* function with a random key "look almost like a pair of random strings". The
|
|
* number epsilon measures how non-random the output strings may be.
|
|
* <p>
|
|
* <i>UHASH</i> has been designed to be fast by exploiting several
|
|
* architectural features of modern commodity processors. It was specifically
|
|
* designed for use in <i>UMAC</i>. But <i>UHASH</i> is useful beyond that
|
|
* domain, and can be easily adopted for other purposes.
|
|
* <p>
|
|
* <i>UHASH</i> does its work in three layers. First, a hash function called
|
|
* <code>NH</code> is used to compress input messages into strings which are
|
|
* typically many times smaller than the input message. Second, the compressed
|
|
* message is hashed with an optimized <i>polynomial hash function</i> into a
|
|
* fixed-length 16-byte string. Finally, the 16-byte string is hashed using an
|
|
* <i>inner-product hash</i> into a string of length WORD-LEN bytes. These
|
|
* three layers are repeated (with a modified key) until the outputs total
|
|
* UMAC-OUTPUT-LEN bytes.
|
|
* <p>
|
|
* References:
|
|
* <ol>
|
|
* <li><a href="http://www.ietf.org/internet-drafts/draft-krovetz-umac-01.txt">
|
|
* UMAC</a>: Message Authentication Code using Universal Hashing.<br>
|
|
* T. Krovetz, J. Black, S. Halevi, A. Hevia, H. Krawczyk, and P. Rogaway.</li>
|
|
* </ol>
|
|
*/
|
|
public class UHash32
|
|
extends BaseMac
|
|
{
|
|
// UMAC prime values
|
|
private static final BigInteger PRIME_19 = BigInteger.valueOf(0x7FFFFL);
|
|
private static final BigInteger PRIME_32 = BigInteger.valueOf(0xFFFFFFFBL);
|
|
private static final BigInteger PRIME_36 = BigInteger.valueOf(0xFFFFFFFFBL);
|
|
private static final BigInteger PRIME_64 = new BigInteger(1, new byte[] {
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xC5 });
|
|
private static final BigInteger PRIME_128 = new BigInteger(1, new byte[] {
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0xFF,
|
|
(byte) 0xFF, (byte) 0xFF, (byte) 0xFF, (byte) 0x61 });
|
|
static final BigInteger TWO = BigInteger.valueOf(2L);
|
|
static final long BOUNDARY = TWO.shiftLeft(17).longValue();
|
|
// 2**64 - 2**32
|
|
static final BigInteger LOWER_RANGE = TWO.pow(64).subtract(TWO.pow(32));
|
|
// 2**128 - 2**96
|
|
static final BigInteger UPPER_RANGE = TWO.pow(128).subtract(TWO.pow(96));
|
|
static final byte[] ALL_ZEROES = new byte[32];
|
|
int streams;
|
|
L1Hash32[] l1hash;
|
|
|
|
/** Trivial 0-arguments constructor. */
|
|
public UHash32()
|
|
{
|
|
super("uhash32");
|
|
}
|
|
|
|
/**
|
|
* Private constructor for cloning purposes.
|
|
*
|
|
* @param that the instance to clone.
|
|
*/
|
|
private UHash32(UHash32 that)
|
|
{
|
|
this();
|
|
|
|
this.streams = that.streams;
|
|
if (that.l1hash != null)
|
|
{
|
|
this.l1hash = new L1Hash32[that.streams];
|
|
for (int i = 0; i < that.streams; i++)
|
|
if (that.l1hash[i] != null)
|
|
this.l1hash[i] = (L1Hash32) that.l1hash[i].clone();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* The prime numbers used in UMAC are:
|
|
* <pre>
|
|
* +-----+--------------------+---------------------------------------+
|
|
* | x | prime(x) [Decimal] | prime(x) [Hexadecimal] |
|
|
* +-----+--------------------+---------------------------------------+
|
|
* | 19 | 2^19 - 1 | 0x0007FFFF |
|
|
* | 32 | 2^32 - 5 | 0xFFFFFFFB |
|
|
* | 36 | 2^36 - 5 | 0x0000000F FFFFFFFB |
|
|
* | 64 | 2^64 - 59 | 0xFFFFFFFF FFFFFFC5 |
|
|
* | 128 | 2^128 - 159 | 0xFFFFFFFF FFFFFFFF FFFFFFFF FFFFFF61 |
|
|
* +-----+--------------------+---------------------------------------+
|
|
*</pre>
|
|
*
|
|
* @param n a number of bits.
|
|
* @return the largest prime number less than 2**n.
|
|
*/
|
|
static final BigInteger prime(int n)
|
|
{
|
|
switch (n)
|
|
{
|
|
case 19:
|
|
return PRIME_19;
|
|
case 32:
|
|
return PRIME_32;
|
|
case 36:
|
|
return PRIME_36;
|
|
case 64:
|
|
return PRIME_64;
|
|
case 128:
|
|
return PRIME_128;
|
|
default:
|
|
throw new IllegalArgumentException("Undefined prime("
|
|
+ String.valueOf(n) + ")");
|
|
}
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
return new UHash32(this);
|
|
}
|
|
|
|
public int macSize()
|
|
{
|
|
return UMac32.OUTPUT_LEN;
|
|
}
|
|
|
|
public void init(Map attributes) throws InvalidKeyException,
|
|
IllegalStateException
|
|
{
|
|
byte[] K = (byte[]) attributes.get(MAC_KEY_MATERIAL);
|
|
if (K == null)
|
|
throw new InvalidKeyException("Null Key");
|
|
if (K.length != UMac32.KEY_LEN)
|
|
throw new InvalidKeyException("Invalid Key length: "
|
|
+ String.valueOf(K.length));
|
|
// Calculate iterations needed to make UMAC-OUTPUT-LEN bytes
|
|
streams = (UMac32.OUTPUT_LEN + 3) / 4;
|
|
// Define total key needed for all iterations using UMacGenerator.
|
|
// L1Key and L3Key1 both reuse most key between iterations.
|
|
IRandom kdf1 = new UMacGenerator();
|
|
IRandom kdf2 = new UMacGenerator();
|
|
IRandom kdf3 = new UMacGenerator();
|
|
IRandom kdf4 = new UMacGenerator();
|
|
Map map = new HashMap();
|
|
map.put(IBlockCipher.KEY_MATERIAL, K);
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(0));
|
|
kdf1.init(map);
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(1));
|
|
kdf2.init(map);
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(2));
|
|
kdf3.init(map);
|
|
map.put(UMacGenerator.INDEX, Integer.valueOf(3));
|
|
kdf4.init(map);
|
|
// need to generate all bytes for use later in a Toepliz construction
|
|
byte[] L1Key = new byte[UMac32.L1_KEY_LEN + (streams - 1) * 16];
|
|
try
|
|
{
|
|
kdf1.nextBytes(L1Key, 0, L1Key.length);
|
|
}
|
|
catch (LimitReachedException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException("KDF for L1Key reached limit");
|
|
}
|
|
|
|
l1hash = new L1Hash32[streams];
|
|
for (int i = 0; i < streams; i++)
|
|
{
|
|
byte[] k1 = new byte[UMac32.L1_KEY_LEN];
|
|
System.arraycopy(L1Key, i * 16, k1, 0, UMac32.L1_KEY_LEN);
|
|
byte[] k2 = new byte[24];
|
|
try
|
|
{
|
|
kdf2.nextBytes(k2, 0, 24);
|
|
}
|
|
catch (LimitReachedException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException("KDF for L2Key reached limit");
|
|
}
|
|
byte[] k31 = new byte[64];
|
|
try
|
|
{
|
|
kdf3.nextBytes(k31, 0, 64);
|
|
}
|
|
catch (LimitReachedException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException("KDF for L3Key1 reached limit");
|
|
}
|
|
byte[] k32 = new byte[4];
|
|
try
|
|
{
|
|
kdf4.nextBytes(k32, 0, 4);
|
|
}
|
|
catch (LimitReachedException x)
|
|
{
|
|
x.printStackTrace(System.err);
|
|
throw new RuntimeException("KDF for L3Key2 reached limit");
|
|
}
|
|
L1Hash32 mac = new L1Hash32();
|
|
mac.init(k1, k2, k31, k32);
|
|
l1hash[i] = mac;
|
|
}
|
|
}
|
|
|
|
public void update(byte b)
|
|
{
|
|
for (int i = 0; i < streams; i++)
|
|
l1hash[i].update(b);
|
|
}
|
|
|
|
public void update(byte[] b, int offset, int len)
|
|
{
|
|
for (int i = 0; i < len; i++)
|
|
this.update(b[offset + i]);
|
|
}
|
|
|
|
public byte[] digest()
|
|
{
|
|
byte[] result = new byte[UMac32.OUTPUT_LEN];
|
|
for (int i = 0; i < streams; i++)
|
|
{
|
|
byte[] partialResult = l1hash[i].digest();
|
|
System.arraycopy(partialResult, 0, result, 4 * i, 4);
|
|
}
|
|
reset();
|
|
return result;
|
|
}
|
|
|
|
public void reset()
|
|
{
|
|
for (int i = 0; i < streams; i++)
|
|
l1hash[i].reset();
|
|
}
|
|
|
|
public boolean selfTest()
|
|
{
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* First hash stage of the UHash32 algorithm.
|
|
*/
|
|
class L1Hash32
|
|
implements Cloneable
|
|
{
|
|
private int[] key; // key material as an array of 32-bit ints
|
|
private byte[] buffer; // work buffer L1_KEY_LEN long
|
|
private int count; // meaningful bytes in buffer
|
|
private ByteArrayOutputStream Y;
|
|
private long totalCount;
|
|
private L2Hash32 l2hash;
|
|
private L3Hash32 l3hash;
|
|
|
|
/** Trivial 0-arguments constructor. */
|
|
L1Hash32()
|
|
{
|
|
super();
|
|
|
|
key = new int[UMac32.L1_KEY_LEN / 4];
|
|
buffer = new byte[UMac32.L1_KEY_LEN];
|
|
count = 0;
|
|
Y = new ByteArrayOutputStream();
|
|
totalCount = 0L;
|
|
}
|
|
|
|
/**
|
|
* Private constructor for cloning purposes.
|
|
*
|
|
* @param that the instance to clone.
|
|
*/
|
|
private L1Hash32(L1Hash32 that)
|
|
{
|
|
this();
|
|
|
|
System.arraycopy(that.key, 0, this.key, 0, that.key.length);
|
|
System.arraycopy(that.buffer, 0, this.buffer, 0, that.count);
|
|
this.count = that.count;
|
|
byte[] otherY = that.Y.toByteArray();
|
|
this.Y.write(otherY, 0, otherY.length);
|
|
this.totalCount = that.totalCount;
|
|
if (that.l2hash != null)
|
|
this.l2hash = (L2Hash32) that.l2hash.clone();
|
|
if (that.l3hash != null)
|
|
this.l3hash = (L3Hash32) that.l3hash.clone();
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
return new L1Hash32(this);
|
|
}
|
|
|
|
public void init(byte[] k1, byte[] k2, byte[] k31, byte[] k32)
|
|
{
|
|
for (int i = 0, j = 0; i < (UMac32.L1_KEY_LEN / 4); i++)
|
|
key[i] = k1[j++] << 24
|
|
| (k1[j++] & 0xFF) << 16
|
|
| (k1[j++] & 0xFF) << 8
|
|
| (k1[j++] & 0xFF);
|
|
l2hash = new L2Hash32(k2);
|
|
l3hash = new L3Hash32(k31, k32);
|
|
}
|
|
|
|
public void update(byte b)
|
|
{
|
|
// Break M into L1_KEY_LEN byte chunks (final chunk may be shorter)
|
|
|
|
// Let M_1, M_2, ..., M_t be strings so that M = M_1 || M_2 || .. ||
|
|
// M_t, and length(M_i) = L1_KEY_LEN for all 0 < i < t.
|
|
|
|
// For each chunk, except the last: endian-adjust, NH hash
|
|
// and add bit-length. Use results to build Y.
|
|
buffer[count] = b;
|
|
count++;
|
|
totalCount++;
|
|
if (count >= UMac32.L1_KEY_LEN)
|
|
{
|
|
byte[] y = nh32(UMac32.L1_KEY_LEN);
|
|
Y.write(y, 0, 8);
|
|
|
|
count = 0;
|
|
|
|
// For each iteration, extract key and three-layer hash.
|
|
// If length(M) <= L1_KEY_LEN, then skip L2-HASH.
|
|
if (Y.size() == 16) // we already hashed twice L1_KEY_LEN
|
|
{
|
|
byte[] A = Y.toByteArray();
|
|
Y.reset();
|
|
l2hash.update(A, 0, 16);
|
|
}
|
|
}
|
|
}
|
|
|
|
public byte[] digest()
|
|
{
|
|
// For the last chunk: pad to 32-byte boundary, endian-adjust,
|
|
// NH hash and add bit-length. Concatenate the result to Y.
|
|
if (count != 0)
|
|
{
|
|
if (count % 32 != 0)
|
|
{
|
|
int limit = 32 * ((count + 31) / 32);
|
|
System.arraycopy(ALL_ZEROES, 0, buffer, count, limit - count);
|
|
count += limit - count;
|
|
}
|
|
byte[] y = nh32(count);
|
|
Y.write(y, 0, 8);
|
|
}
|
|
byte[] A = Y.toByteArray();
|
|
Y.reset();
|
|
byte[] B;
|
|
if (totalCount <= UMac32.L1_KEY_LEN)
|
|
{
|
|
// we might have 'update'd the bytes already. check
|
|
if (A.length == 0) // we did
|
|
B = l2hash.digest();
|
|
else // did not
|
|
{
|
|
B = new byte[16];
|
|
System.arraycopy(A, 0, B, 8, 8);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (A.length != 0)
|
|
l2hash.update(A, 0, A.length);
|
|
B = l2hash.digest();
|
|
}
|
|
byte[] result = l3hash.digest(B);
|
|
reset();
|
|
return result;
|
|
}
|
|
|
|
public void reset()
|
|
{
|
|
count = 0;
|
|
Y.reset();
|
|
totalCount = 0L;
|
|
if (l2hash != null)
|
|
l2hash.reset();
|
|
}
|
|
|
|
/**
|
|
* 5.1 NH-32: NH hashing with a 32-bit word size.
|
|
*
|
|
* @param len count of bytes, divisible by 32, in buffer to process
|
|
* @return Y, string of length 8 bytes.
|
|
*/
|
|
private byte[] nh32(int len)
|
|
{
|
|
// Break M and K into 4-byte chunks
|
|
int t = len / 4;
|
|
// Let M_1, M_2, ..., M_t be 4-byte strings
|
|
// so that M = M_1 || M_2 || .. || M_t.
|
|
// Let K_1, K_2, ..., K_t be 4-byte strings
|
|
// so that K_1 || K_2 || .. || K_t is a prefix of K.
|
|
int[] m = new int[t];
|
|
int i;
|
|
int j = 0;
|
|
for (i = 0, j = 0; i < t; i++)
|
|
m[i] = buffer[j++] << 24
|
|
| (buffer[j++] & 0xFF) << 16
|
|
| (buffer[j++] & 0xFF) << 8
|
|
| (buffer[j++] & 0xFF);
|
|
// Perform NH hash on the chunks, pairing words for multiplication
|
|
// which are 4 apart to accommodate vector-parallelism.
|
|
long result = len * 8L;
|
|
for (i = 0; i < t; i += 8)
|
|
{
|
|
result += ((m[i + 0] + key[i + 0]) & 0xFFFFFFFFL)
|
|
* ((m[i + 4] + key[i + 4]) & 0xFFFFFFFFL);
|
|
result += ((m[i + 1] + key[i + 1]) & 0xFFFFFFFFL)
|
|
* ((m[i + 5] + key[i + 5]) & 0xFFFFFFFFL);
|
|
result += ((m[i + 2] + key[i + 2]) & 0xFFFFFFFFL)
|
|
* ((m[i + 6] + key[i + 6]) & 0xFFFFFFFFL);
|
|
result += ((m[i + 3] + key[i + 3]) & 0xFFFFFFFFL)
|
|
* ((m[i + 7] + key[i + 7]) & 0xFFFFFFFFL);
|
|
}
|
|
return new byte[] {
|
|
(byte)(result >>> 56), (byte)(result >>> 48),
|
|
(byte)(result >>> 40), (byte)(result >>> 32),
|
|
(byte)(result >>> 24), (byte)(result >>> 16),
|
|
(byte)(result >>> 8), (byte) result };
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Second hash stage of the UHash32 algorithm.
|
|
* <p>
|
|
* 5.4 L2-HASH-32: Second-layer hash.
|
|
* <ul>
|
|
* <li>Input:<br>
|
|
* K string of length 24 bytes.<br>
|
|
* M string of length less than 2^64 bytes.</li>
|
|
* <li>Returns:<br>
|
|
* Y, string of length 16 bytes.</li>
|
|
* </ul>
|
|
*/
|
|
class L2Hash32
|
|
implements Cloneable
|
|
{
|
|
private BigInteger k64, k128;
|
|
private BigInteger y;
|
|
private boolean highBound;
|
|
private long bytesSoFar;
|
|
private ByteArrayOutputStream buffer;
|
|
|
|
L2Hash32(byte[] K)
|
|
{
|
|
super();
|
|
|
|
if (K.length != 24)
|
|
throw new ExceptionInInitializerError("K length is not 24");
|
|
// Extract keys and restrict to special key-sets
|
|
// Mask64 = uint2str(0x01FFFFFF01FFFFFF, 8);
|
|
// Mask128 = uint2str(0x01FFFFFF01FFFFFF01FFFFFF01FFFFFF, 16);
|
|
// k64 = str2uint(K[1..8] and Mask64);
|
|
// k128 = str2uint(K[9..24] and Mask128);
|
|
int i = 0;
|
|
k64 = new BigInteger(1, new byte[] {
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF) });
|
|
k128 = new BigInteger(1, new byte[] {
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0x01), (byte)(K[i++] & 0xFF),
|
|
(byte)(K[i++] & 0xFF), (byte)(K[i++] & 0xFF) });
|
|
y = BigInteger.ONE;
|
|
highBound = false;
|
|
bytesSoFar = 0L;
|
|
}
|
|
|
|
private L2Hash32(L2Hash32 that)
|
|
{
|
|
super();
|
|
|
|
this.k64 = that.k64;
|
|
this.k128 = that.k128;
|
|
this.y = that.y;
|
|
this.highBound = that.highBound;
|
|
this.bytesSoFar = that.bytesSoFar;
|
|
if (that.buffer != null)
|
|
{
|
|
byte[] thatbuffer = that.buffer.toByteArray();
|
|
this.buffer = new ByteArrayOutputStream();
|
|
this.buffer.write(thatbuffer, 0, thatbuffer.length);
|
|
}
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
return new L2Hash32(this);
|
|
}
|
|
|
|
// this is called with either 8-bytes or 16-bytes
|
|
void update(byte[] b, int offset, int len)
|
|
{
|
|
if (len == 0)
|
|
return;
|
|
|
|
if (! highBound) // do the first (only?) 8-bytes
|
|
{
|
|
poly(64, LOWER_RANGE, k64, b, offset, 8);
|
|
bytesSoFar += 8L;
|
|
highBound = (bytesSoFar > BOUNDARY);
|
|
if (highBound) // if we just crossed the limit then process y
|
|
{
|
|
poly(128, UPPER_RANGE, k128, yTo16bytes(), 0, 16);
|
|
buffer = new ByteArrayOutputStream();
|
|
}
|
|
// do the rest if any
|
|
update(b, offset + 8, len - 8);
|
|
}
|
|
else
|
|
{ // we're already beyond the 2**17 bytes size limit
|
|
// process in chuncks of 16
|
|
buffer.write(b, offset, len);
|
|
if (buffer.size() > 16)
|
|
{
|
|
byte[] bb = buffer.toByteArray();
|
|
poly(128, UPPER_RANGE, k128, bb, 0, 16);
|
|
if (bb.length > 16)
|
|
buffer.write(bb, 16, bb.length - 16);
|
|
}
|
|
}
|
|
}
|
|
|
|
byte[] digest()
|
|
{
|
|
// If M no more than 2^17 bytes, hash under 64-bit prime,
|
|
// otherwise, hash first 2^17 bytes under 64-bit prime and
|
|
// remainder under 128-bit prime.
|
|
if (! highBound) // y is up-to-date
|
|
{
|
|
// do nothing
|
|
}
|
|
else // we may have some bytes in buffer
|
|
{
|
|
byte[] bb = buffer.toByteArray();
|
|
byte[] lastBlock = new byte[16];
|
|
System.arraycopy(bb, 0, lastBlock, 0, bb.length);
|
|
lastBlock[bb.length] = (byte) 0x80;
|
|
poly(128, UPPER_RANGE, k128, lastBlock, 0, 16);
|
|
}
|
|
byte[] result = yTo16bytes();
|
|
reset();
|
|
return result;
|
|
}
|
|
|
|
void reset()
|
|
{
|
|
y = BigInteger.ONE;
|
|
highBound = false;
|
|
bytesSoFar = 0L;
|
|
if (buffer != null)
|
|
buffer.reset();
|
|
}
|
|
|
|
private byte[] yTo16bytes()
|
|
{
|
|
byte[] yy = y.toByteArray();
|
|
byte[] result = new byte[16];
|
|
if (yy.length > 16)
|
|
System.arraycopy(yy, yy.length - 16, result, 0, 16);
|
|
else
|
|
System.arraycopy(yy, 0, result, 16 - yy.length, yy.length);
|
|
|
|
return result;
|
|
}
|
|
|
|
/**
|
|
* 5.3 POLY: Polynomial hash Function Name: POLY
|
|
*
|
|
* @param wordbits positive integer divisible by 8: called with 64 or 128.
|
|
* @param maxwordrange positive integer less than 2**wordbits.
|
|
* @param k integer in the range 0 .. prime(wordbits) - 1.
|
|
* @param M string with length divisible by (wordbits / 8) bytes. return y,
|
|
* integer in the range 0 .. prime(wordbits) - 1.
|
|
*/
|
|
private void poly(int wordbits, BigInteger maxwordrange, BigInteger k,
|
|
byte[] M, int off, int len)
|
|
{
|
|
byte[] mag = new byte[len];
|
|
System.arraycopy(M, off, mag, 0, len);
|
|
// Define constants used for fixing out-of-range words
|
|
BigInteger p = prime(wordbits);
|
|
BigInteger offset = TWO.pow(wordbits).subtract(p); // 2^wordbits - p;
|
|
BigInteger marker = p.subtract(BigInteger.ONE);
|
|
// Break M into chunks of length wordbytes bytes
|
|
// long n = M.length / wordbytes;
|
|
// Let M_1, M_2, ..., M_n be strings of length wordbytes bytes
|
|
// so that M = M_1 || M_2 || .. || M_n
|
|
|
|
// For each input word, compare it with maxwordrange. If larger
|
|
// then hash the words 'marker' and (m - offset), both in range.
|
|
// for (int i = 0; i < n; i++) {
|
|
BigInteger m = new BigInteger(1, mag);
|
|
if (m.compareTo(maxwordrange) >= 0) // m >= maxwordrange
|
|
{
|
|
y = y.multiply(k).add(marker).mod(p); // (k * y + marker) % p;
|
|
y = y.multiply(k).add(m.subtract(offset)).mod(p); // (k * y + (m - offset)) % p;
|
|
}
|
|
else
|
|
y = y.multiply(k).add(m).mod(p); // (k * y + m) % p;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Third hash stage of the UHash32 algorithm.
|
|
* <ul>
|
|
* <li>Input:<br/>
|
|
* K1 string of length 64 bytes.<br/>
|
|
* K2 string of length 4 bytes.<br/>
|
|
* M string of length 16 bytes.</li>
|
|
* <li>Returns:<br/>
|
|
* Y, string of length 4 bytes.</li>
|
|
* </ul>
|
|
*/
|
|
class L3Hash32
|
|
implements Cloneable
|
|
{
|
|
private static final long PRIME_36 = 0x0000000FFFFFFFFBL;
|
|
private int[] k = new int[9];
|
|
|
|
/**
|
|
* @param K1 string of length 64 bytes.
|
|
* @param K2 string of length 4 bytes.
|
|
*/
|
|
L3Hash32(byte[] K1, byte[] K2)
|
|
{
|
|
super();
|
|
|
|
// pre-conditions
|
|
if (K1.length != 64)
|
|
throw new ExceptionInInitializerError("K1 length is not 64");
|
|
if (K2.length != 4)
|
|
throw new ExceptionInInitializerError("K2 length is not 4");
|
|
// Break K1 into 8 chunks and convert to integers
|
|
for (int i = 0, j = 0; i < 8; i++)
|
|
{
|
|
long kk = (K1[j++] & 0xFFL) << 56
|
|
| (K1[j++] & 0xFFL) << 48
|
|
| (K1[j++] & 0xFFL) << 40
|
|
| (K1[j++] & 0xFFL) << 32
|
|
| (K1[j++] & 0xFFL) << 24
|
|
| (K1[j++] & 0xFFL) << 16
|
|
| (K1[j++] & 0xFFL) << 8
|
|
| (K1[j++] & 0xFFL);
|
|
k[i] = (int)(kk % PRIME_36);
|
|
}
|
|
k[8] = K2[0] << 24
|
|
| (K2[1] & 0xFF) << 16
|
|
| (K2[2] & 0xFF) << 8
|
|
| (K2[3] & 0xFF);
|
|
}
|
|
|
|
private L3Hash32(int[] k)
|
|
{
|
|
super();
|
|
|
|
this.k = k;
|
|
}
|
|
|
|
public Object clone()
|
|
{
|
|
return new L3Hash32((int[]) k.clone());
|
|
}
|
|
|
|
/**
|
|
* @param M string of length 16 bytes.
|
|
* @return Y, string of length 4 bytes.
|
|
*/
|
|
byte[] digest(byte[] M)
|
|
{
|
|
if (M.length != 16)
|
|
throw new IllegalArgumentException("M length is not 16");
|
|
|
|
long m, y = 0L;
|
|
for (int i = 0, j = 0; i < 8; i++)
|
|
{
|
|
// Break M into 8 chunks and convert to integers
|
|
m = (M[j++] & 0xFFL) << 8 | (M[j++] & 0xFFL);
|
|
// Inner-product hash, extract last 32 bits and affine-translate
|
|
// y = (m_1 * k_1 + ... + m_8 * k_8) mod prime(36);
|
|
// y = y mod 2^32;
|
|
y += (m * (k[i] & 0xFFFFFFFFL)) % PRIME_36;
|
|
}
|
|
int Y = ((int) y) ^ k[8];
|
|
return new byte[] {
|
|
(byte)(Y >>> 24),
|
|
(byte)(Y >>> 16),
|
|
(byte)(Y >>> 8),
|
|
(byte) Y };
|
|
}
|
|
}
|
|
}
|