
In preparation for writing expressions to inline function bodies, change the existing expression export code to use Export_function_body rather than Export. Adjust existing expression exporters accordingly. This is a refactoring that doesn't affect compiler output. Reviewed-on: https://go-review.googlesource.com/c/150063 From-SVN: r266523
17010 lines
468 KiB
C++
17010 lines
468 KiB
C++
// expressions.cc -- Go frontend expression handling.
|
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "go-system.h"
|
|
|
|
#include <algorithm>
|
|
|
|
#include "go-c.h"
|
|
#include "gogo.h"
|
|
#include "go-diagnostics.h"
|
|
#include "go-encode-id.h"
|
|
#include "types.h"
|
|
#include "export.h"
|
|
#include "import.h"
|
|
#include "statements.h"
|
|
#include "lex.h"
|
|
#include "runtime.h"
|
|
#include "backend.h"
|
|
#include "expressions.h"
|
|
#include "ast-dump.h"
|
|
|
|
// Class Expression.
|
|
|
|
Expression::Expression(Expression_classification classification,
|
|
Location location)
|
|
: classification_(classification), location_(location)
|
|
{
|
|
}
|
|
|
|
Expression::~Expression()
|
|
{
|
|
}
|
|
|
|
// Traverse the expressions.
|
|
|
|
int
|
|
Expression::traverse(Expression** pexpr, Traverse* traverse)
|
|
{
|
|
Expression* expr = *pexpr;
|
|
if ((traverse->traverse_mask() & Traverse::traverse_expressions) != 0)
|
|
{
|
|
int t = traverse->expression(pexpr);
|
|
if (t == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
else if (t == TRAVERSE_SKIP_COMPONENTS)
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
return expr->do_traverse(traverse);
|
|
}
|
|
|
|
// Traverse subexpressions of this expression.
|
|
|
|
int
|
|
Expression::traverse_subexpressions(Traverse* traverse)
|
|
{
|
|
return this->do_traverse(traverse);
|
|
}
|
|
|
|
// Default implementation for do_traverse for child classes.
|
|
|
|
int
|
|
Expression::do_traverse(Traverse*)
|
|
{
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// This virtual function is called by the parser if the value of this
|
|
// expression is being discarded. By default, we give an error.
|
|
// Expressions with side effects override.
|
|
|
|
bool
|
|
Expression::do_discarding_value()
|
|
{
|
|
this->unused_value_error();
|
|
return false;
|
|
}
|
|
|
|
// This virtual function is called to export expressions. This will
|
|
// only be used by expressions which may be constant.
|
|
|
|
void
|
|
Expression::do_export(Export_function_body*) const
|
|
{
|
|
go_unreachable();
|
|
}
|
|
|
|
// Give an error saying that the value of the expression is not used.
|
|
|
|
void
|
|
Expression::unused_value_error()
|
|
{
|
|
this->report_error(_("value computed is not used"));
|
|
}
|
|
|
|
// Note that this expression is an error. This is called by children
|
|
// when they discover an error.
|
|
|
|
void
|
|
Expression::set_is_error()
|
|
{
|
|
this->classification_ = EXPRESSION_ERROR;
|
|
}
|
|
|
|
// For children to call to report an error conveniently.
|
|
|
|
void
|
|
Expression::report_error(const char* msg)
|
|
{
|
|
go_error_at(this->location_, "%s", msg);
|
|
this->set_is_error();
|
|
}
|
|
|
|
// Set types of variables and constants. This is implemented by the
|
|
// child class.
|
|
|
|
void
|
|
Expression::determine_type(const Type_context* context)
|
|
{
|
|
this->do_determine_type(context);
|
|
}
|
|
|
|
// Set types when there is no context.
|
|
|
|
void
|
|
Expression::determine_type_no_context()
|
|
{
|
|
Type_context context;
|
|
this->do_determine_type(&context);
|
|
}
|
|
|
|
// Return true if two expressions refer to the same variable or struct
|
|
// field. This can only be true when there are no side effects.
|
|
|
|
bool
|
|
Expression::is_same_variable(Expression* a, Expression* b)
|
|
{
|
|
if (a->classification() != b->classification())
|
|
return false;
|
|
|
|
Var_expression* av = a->var_expression();
|
|
if (av != NULL)
|
|
return av->named_object() == b->var_expression()->named_object();
|
|
|
|
Field_reference_expression* af = a->field_reference_expression();
|
|
if (af != NULL)
|
|
{
|
|
Field_reference_expression* bf = b->field_reference_expression();
|
|
return (af->field_index() == bf->field_index()
|
|
&& Expression::is_same_variable(af->expr(), bf->expr()));
|
|
}
|
|
|
|
Unary_expression* au = a->unary_expression();
|
|
if (au != NULL)
|
|
{
|
|
Unary_expression* bu = b->unary_expression();
|
|
return (au->op() == OPERATOR_MULT
|
|
&& bu->op() == OPERATOR_MULT
|
|
&& Expression::is_same_variable(au->operand(),
|
|
bu->operand()));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return an expression handling any conversions which must be done during
|
|
// assignment.
|
|
|
|
Expression*
|
|
Expression::convert_for_assignment(Gogo*, Type* lhs_type,
|
|
Expression* rhs, Location location)
|
|
{
|
|
Type* rhs_type = rhs->type();
|
|
if (lhs_type->is_error()
|
|
|| rhs_type->is_error()
|
|
|| rhs->is_error_expression())
|
|
return Expression::make_error(location);
|
|
|
|
bool are_identical = Type::are_identical(lhs_type, rhs_type,
|
|
(Type::COMPARE_ERRORS
|
|
| Type::COMPARE_TAGS),
|
|
NULL);
|
|
if (!are_identical && lhs_type->interface_type() != NULL)
|
|
{
|
|
if (rhs_type->interface_type() == NULL)
|
|
return Expression::convert_type_to_interface(lhs_type, rhs, location);
|
|
else
|
|
return Expression::convert_interface_to_interface(lhs_type, rhs, false,
|
|
location);
|
|
}
|
|
else if (!are_identical && rhs_type->interface_type() != NULL)
|
|
return Expression::convert_interface_to_type(lhs_type, rhs, location);
|
|
else if (lhs_type->is_slice_type() && rhs_type->is_nil_type())
|
|
{
|
|
// Assigning nil to a slice.
|
|
Expression* nil = Expression::make_nil(location);
|
|
Expression* zero = Expression::make_integer_ul(0, NULL, location);
|
|
return Expression::make_slice_value(lhs_type, nil, zero, zero, location);
|
|
}
|
|
else if (rhs_type->is_nil_type())
|
|
return Expression::make_nil(location);
|
|
else if (are_identical)
|
|
{
|
|
if (lhs_type->forwarded() != rhs_type->forwarded())
|
|
{
|
|
// Different but identical types require an explicit
|
|
// conversion. This happens with type aliases.
|
|
return Expression::make_cast(lhs_type, rhs, location);
|
|
}
|
|
|
|
// No conversion is needed.
|
|
return rhs;
|
|
}
|
|
else if (lhs_type->points_to() != NULL)
|
|
return Expression::make_unsafe_cast(lhs_type, rhs, location);
|
|
else if (lhs_type->is_numeric_type())
|
|
return Expression::make_cast(lhs_type, rhs, location);
|
|
else if ((lhs_type->struct_type() != NULL
|
|
&& rhs_type->struct_type() != NULL)
|
|
|| (lhs_type->array_type() != NULL
|
|
&& rhs_type->array_type() != NULL))
|
|
{
|
|
// This conversion must be permitted by Go, or we wouldn't have
|
|
// gotten here.
|
|
return Expression::make_unsafe_cast(lhs_type, rhs, location);
|
|
}
|
|
else
|
|
return rhs;
|
|
}
|
|
|
|
// Return an expression for a conversion from a non-interface type to an
|
|
// interface type.
|
|
|
|
Expression*
|
|
Expression::convert_type_to_interface(Type* lhs_type, Expression* rhs,
|
|
Location location)
|
|
{
|
|
Interface_type* lhs_interface_type = lhs_type->interface_type();
|
|
bool lhs_is_empty = lhs_interface_type->is_empty();
|
|
|
|
// Since RHS_TYPE is a static type, we can create the interface
|
|
// method table at compile time.
|
|
|
|
// When setting an interface to nil, we just set both fields to
|
|
// NULL.
|
|
Type* rhs_type = rhs->type();
|
|
if (rhs_type->is_nil_type())
|
|
{
|
|
Expression* nil = Expression::make_nil(location);
|
|
return Expression::make_interface_value(lhs_type, nil, nil, location);
|
|
}
|
|
|
|
// This should have been checked already.
|
|
if (!lhs_interface_type->implements_interface(rhs_type, NULL))
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
// An interface is a tuple. If LHS_TYPE is an empty interface type,
|
|
// then the first field is the type descriptor for RHS_TYPE.
|
|
// Otherwise it is the interface method table for RHS_TYPE.
|
|
Expression* first_field;
|
|
if (lhs_is_empty)
|
|
first_field = Expression::make_type_descriptor(rhs_type, location);
|
|
else
|
|
{
|
|
// Build the interface method table for this interface and this
|
|
// object type: a list of function pointers for each interface
|
|
// method.
|
|
Named_type* rhs_named_type = rhs_type->named_type();
|
|
Struct_type* rhs_struct_type = rhs_type->struct_type();
|
|
bool is_pointer = false;
|
|
if (rhs_named_type == NULL && rhs_struct_type == NULL)
|
|
{
|
|
rhs_named_type = rhs_type->deref()->named_type();
|
|
rhs_struct_type = rhs_type->deref()->struct_type();
|
|
is_pointer = true;
|
|
}
|
|
if (rhs_named_type != NULL)
|
|
first_field =
|
|
rhs_named_type->interface_method_table(lhs_interface_type,
|
|
is_pointer);
|
|
else if (rhs_struct_type != NULL)
|
|
first_field =
|
|
rhs_struct_type->interface_method_table(lhs_interface_type,
|
|
is_pointer);
|
|
else
|
|
first_field = Expression::make_nil(location);
|
|
}
|
|
|
|
Expression* obj;
|
|
if (rhs_type->points_to() != NULL)
|
|
{
|
|
// We are assigning a pointer to the interface; the interface
|
|
// holds the pointer itself.
|
|
obj = rhs;
|
|
}
|
|
else
|
|
{
|
|
// We are assigning a non-pointer value to the interface; the
|
|
// interface gets a copy of the value in the heap if it escapes.
|
|
// TODO(cmang): Associate escape state state of RHS with newly
|
|
// created OBJ.
|
|
obj = Expression::make_heap_expression(rhs, location);
|
|
}
|
|
|
|
return Expression::make_interface_value(lhs_type, first_field, obj, location);
|
|
}
|
|
|
|
// Return an expression for the type descriptor of RHS.
|
|
|
|
Expression*
|
|
Expression::get_interface_type_descriptor(Expression* rhs)
|
|
{
|
|
go_assert(rhs->type()->interface_type() != NULL);
|
|
Location location = rhs->location();
|
|
|
|
// The type descriptor is the first field of an empty interface.
|
|
if (rhs->type()->interface_type()->is_empty())
|
|
return Expression::make_interface_info(rhs, INTERFACE_INFO_TYPE_DESCRIPTOR,
|
|
location);
|
|
|
|
Expression* mtable =
|
|
Expression::make_interface_info(rhs, INTERFACE_INFO_METHODS, location);
|
|
|
|
Expression* descriptor =
|
|
Expression::make_dereference(mtable, NIL_CHECK_NOT_NEEDED, location);
|
|
descriptor = Expression::make_field_reference(descriptor, 0, location);
|
|
Expression* nil = Expression::make_nil(location);
|
|
|
|
Expression* eq =
|
|
Expression::make_binary(OPERATOR_EQEQ, mtable, nil, location);
|
|
return Expression::make_conditional(eq, nil, descriptor, location);
|
|
}
|
|
|
|
// Return an expression for the conversion of an interface type to an
|
|
// interface type.
|
|
|
|
Expression*
|
|
Expression::convert_interface_to_interface(Type *lhs_type, Expression* rhs,
|
|
bool for_type_guard,
|
|
Location location)
|
|
{
|
|
if (Type::are_identical(lhs_type, rhs->type(),
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
return rhs;
|
|
|
|
Interface_type* lhs_interface_type = lhs_type->interface_type();
|
|
bool lhs_is_empty = lhs_interface_type->is_empty();
|
|
|
|
// In the general case this requires runtime examination of the type
|
|
// method table to match it up with the interface methods.
|
|
|
|
// FIXME: If all of the methods in the right hand side interface
|
|
// also appear in the left hand side interface, then we don't need
|
|
// to do a runtime check, although we still need to build a new
|
|
// method table.
|
|
|
|
// We are going to evaluate RHS multiple times.
|
|
go_assert(rhs->is_variable());
|
|
|
|
// Get the type descriptor for the right hand side. This will be
|
|
// NULL for a nil interface.
|
|
Expression* rhs_type_expr = Expression::get_interface_type_descriptor(rhs);
|
|
Expression* lhs_type_expr =
|
|
Expression::make_type_descriptor(lhs_type, location);
|
|
|
|
Expression* first_field;
|
|
if (for_type_guard)
|
|
{
|
|
// A type assertion fails when converting a nil interface.
|
|
first_field = Runtime::make_call(Runtime::ASSERTITAB, location, 2,
|
|
lhs_type_expr, rhs_type_expr);
|
|
}
|
|
else if (lhs_is_empty)
|
|
{
|
|
// A conversion to an empty interface always succeeds, and the
|
|
// first field is just the type descriptor of the object.
|
|
first_field = rhs_type_expr;
|
|
}
|
|
else
|
|
{
|
|
// A conversion to a non-empty interface may fail, but unlike a
|
|
// type assertion converting nil will always succeed.
|
|
first_field = Runtime::make_call(Runtime::REQUIREITAB, location, 2,
|
|
lhs_type_expr, rhs_type_expr);
|
|
}
|
|
|
|
// The second field is simply the object pointer.
|
|
Expression* obj =
|
|
Expression::make_interface_info(rhs, INTERFACE_INFO_OBJECT, location);
|
|
return Expression::make_interface_value(lhs_type, first_field, obj, location);
|
|
}
|
|
|
|
// Return an expression for the conversion of an interface type to a
|
|
// non-interface type.
|
|
|
|
Expression*
|
|
Expression::convert_interface_to_type(Type *lhs_type, Expression* rhs,
|
|
Location location)
|
|
{
|
|
// We are going to evaluate RHS multiple times.
|
|
go_assert(rhs->is_variable());
|
|
|
|
// Call a function to check that the type is valid. The function
|
|
// will panic with an appropriate runtime type error if the type is
|
|
// not valid.
|
|
Expression* lhs_type_expr = Expression::make_type_descriptor(lhs_type,
|
|
location);
|
|
Expression* rhs_descriptor =
|
|
Expression::get_interface_type_descriptor(rhs);
|
|
|
|
Type* rhs_type = rhs->type();
|
|
Expression* rhs_inter_expr = Expression::make_type_descriptor(rhs_type,
|
|
location);
|
|
|
|
Expression* check_iface = Runtime::make_call(Runtime::ASSERTI2T,
|
|
location, 3, lhs_type_expr,
|
|
rhs_descriptor, rhs_inter_expr);
|
|
|
|
// If the call succeeds, pull out the value.
|
|
Expression* obj = Expression::make_interface_info(rhs, INTERFACE_INFO_OBJECT,
|
|
location);
|
|
|
|
// If the value is a pointer, then it is the value we want.
|
|
// Otherwise it points to the value.
|
|
if (lhs_type->points_to() == NULL)
|
|
{
|
|
obj = Expression::make_unsafe_cast(Type::make_pointer_type(lhs_type), obj,
|
|
location);
|
|
obj = Expression::make_dereference(obj, NIL_CHECK_NOT_NEEDED,
|
|
location);
|
|
}
|
|
return Expression::make_compound(check_iface, obj, location);
|
|
}
|
|
|
|
// Convert an expression to its backend representation. This is implemented by
|
|
// the child class. Not that it is not in general safe to call this multiple
|
|
// times for a single expression, but that we don't catch such errors.
|
|
|
|
Bexpression*
|
|
Expression::get_backend(Translate_context* context)
|
|
{
|
|
// The child may have marked this expression as having an error.
|
|
if (this->classification_ == EXPRESSION_ERROR)
|
|
return context->backend()->error_expression();
|
|
|
|
return this->do_get_backend(context);
|
|
}
|
|
|
|
// Return a backend expression for VAL.
|
|
Bexpression*
|
|
Expression::backend_numeric_constant_expression(Translate_context* context,
|
|
Numeric_constant* val)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Type* type = val->type();
|
|
if (type == NULL)
|
|
return gogo->backend()->error_expression();
|
|
|
|
Btype* btype = type->get_backend(gogo);
|
|
Bexpression* ret;
|
|
if (type->integer_type() != NULL)
|
|
{
|
|
mpz_t ival;
|
|
if (!val->to_int(&ival))
|
|
{
|
|
go_assert(saw_errors());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
ret = gogo->backend()->integer_constant_expression(btype, ival);
|
|
mpz_clear(ival);
|
|
}
|
|
else if (type->float_type() != NULL)
|
|
{
|
|
mpfr_t fval;
|
|
if (!val->to_float(&fval))
|
|
{
|
|
go_assert(saw_errors());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
ret = gogo->backend()->float_constant_expression(btype, fval);
|
|
mpfr_clear(fval);
|
|
}
|
|
else if (type->complex_type() != NULL)
|
|
{
|
|
mpc_t cval;
|
|
if (!val->to_complex(&cval))
|
|
{
|
|
go_assert(saw_errors());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
ret = gogo->backend()->complex_constant_expression(btype, cval);
|
|
mpc_clear(cval);
|
|
}
|
|
else
|
|
go_unreachable();
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Return an expression which evaluates to true if VAL, of arbitrary integer
|
|
// type, is negative or is more than the maximum value of the Go type "int".
|
|
|
|
Expression*
|
|
Expression::check_bounds(Expression* val, Location loc)
|
|
{
|
|
Type* val_type = val->type();
|
|
Type* bound_type = Type::lookup_integer_type("int");
|
|
|
|
int val_type_size;
|
|
bool val_is_unsigned = false;
|
|
if (val_type->integer_type() != NULL)
|
|
{
|
|
val_type_size = val_type->integer_type()->bits();
|
|
val_is_unsigned = val_type->integer_type()->is_unsigned();
|
|
}
|
|
else
|
|
{
|
|
if (!val_type->is_numeric_type()
|
|
|| !Type::are_convertible(bound_type, val_type, NULL))
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_boolean(true, loc);
|
|
}
|
|
|
|
if (val_type->complex_type() != NULL)
|
|
val_type_size = val_type->complex_type()->bits();
|
|
else
|
|
val_type_size = val_type->float_type()->bits();
|
|
}
|
|
|
|
Expression* negative_index = Expression::make_boolean(false, loc);
|
|
Expression* index_overflows = Expression::make_boolean(false, loc);
|
|
if (!val_is_unsigned)
|
|
{
|
|
Expression* zero = Expression::make_integer_ul(0, val_type, loc);
|
|
negative_index = Expression::make_binary(OPERATOR_LT, val, zero, loc);
|
|
}
|
|
|
|
int bound_type_size = bound_type->integer_type()->bits();
|
|
if (val_type_size > bound_type_size
|
|
|| (val_type_size == bound_type_size
|
|
&& val_is_unsigned))
|
|
{
|
|
mpz_t one;
|
|
mpz_init_set_ui(one, 1UL);
|
|
|
|
// maxval = 2^(bound_type_size - 1) - 1
|
|
mpz_t maxval;
|
|
mpz_init(maxval);
|
|
mpz_mul_2exp(maxval, one, bound_type_size - 1);
|
|
mpz_sub_ui(maxval, maxval, 1);
|
|
Expression* max = Expression::make_integer_z(&maxval, val_type, loc);
|
|
mpz_clear(one);
|
|
mpz_clear(maxval);
|
|
|
|
index_overflows = Expression::make_binary(OPERATOR_GT, val, max, loc);
|
|
}
|
|
|
|
return Expression::make_binary(OPERATOR_OROR, negative_index, index_overflows,
|
|
loc);
|
|
}
|
|
|
|
void
|
|
Expression::dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
this->do_dump_expression(ast_dump_context);
|
|
}
|
|
|
|
// Error expressions. This are used to avoid cascading errors.
|
|
|
|
class Error_expression : public Expression
|
|
{
|
|
public:
|
|
Error_expression(Location location)
|
|
: Expression(EXPRESSION_ERROR, location)
|
|
{ }
|
|
|
|
protected:
|
|
bool
|
|
do_is_constant() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
nc->set_unsigned_long(NULL, 0);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
do_discarding_value()
|
|
{ return true; }
|
|
|
|
Type*
|
|
do_type()
|
|
{ return Type::make_error_type(); }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
bool
|
|
do_is_addressable() const
|
|
{ return true; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context)
|
|
{ return context->backend()->error_expression(); }
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
};
|
|
|
|
// Dump the ast representation for an error expression to a dump context.
|
|
|
|
void
|
|
Error_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "_Error_" ;
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_error(Location location)
|
|
{
|
|
return new Error_expression(location);
|
|
}
|
|
|
|
// An expression which is really a type. This is used during parsing.
|
|
// It is an error if these survive after lowering.
|
|
|
|
class
|
|
Type_expression : public Expression
|
|
{
|
|
public:
|
|
Type_expression(Type* type, Location location)
|
|
: Expression(EXPRESSION_TYPE, location),
|
|
type_(type)
|
|
{ }
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse* traverse)
|
|
{ return Type::traverse(this->type_, traverse); }
|
|
|
|
Type*
|
|
do_type()
|
|
{ return this->type_; }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
void
|
|
do_check_types(Gogo*)
|
|
{ this->report_error(_("invalid use of type")); }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context*)
|
|
{ go_unreachable(); }
|
|
|
|
void do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type which we are representing as an expression.
|
|
Type* type_;
|
|
};
|
|
|
|
void
|
|
Type_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->dump_type(this->type_);
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_type(Type* type, Location location)
|
|
{
|
|
return new Type_expression(type, location);
|
|
}
|
|
|
|
// Class Parser_expression.
|
|
|
|
Type*
|
|
Parser_expression::do_type()
|
|
{
|
|
// We should never really ask for the type of a Parser_expression.
|
|
// However, it can happen, at least when we have an invalid const
|
|
// whose initializer refers to the const itself. In that case we
|
|
// may ask for the type when lowering the const itself.
|
|
go_assert(saw_errors());
|
|
return Type::make_error_type();
|
|
}
|
|
|
|
// Class Var_expression.
|
|
|
|
// Lower a variable expression. Here we just make sure that the
|
|
// initialization expression of the variable has been lowered. This
|
|
// ensures that we will be able to determine the type of the variable
|
|
// if necessary.
|
|
|
|
Expression*
|
|
Var_expression::do_lower(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter, int)
|
|
{
|
|
if (this->variable_->is_variable())
|
|
{
|
|
Variable* var = this->variable_->var_value();
|
|
// This is either a local variable or a global variable. A
|
|
// reference to a variable which is local to an enclosing
|
|
// function will be a reference to a field in a closure.
|
|
if (var->is_global())
|
|
{
|
|
function = NULL;
|
|
inserter = NULL;
|
|
}
|
|
var->lower_init_expression(gogo, function, inserter);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Return the type of a reference to a variable.
|
|
|
|
Type*
|
|
Var_expression::do_type()
|
|
{
|
|
if (this->variable_->is_variable())
|
|
return this->variable_->var_value()->type();
|
|
else if (this->variable_->is_result_variable())
|
|
return this->variable_->result_var_value()->type();
|
|
else
|
|
go_unreachable();
|
|
}
|
|
|
|
// Determine the type of a reference to a variable.
|
|
|
|
void
|
|
Var_expression::do_determine_type(const Type_context*)
|
|
{
|
|
if (this->variable_->is_variable())
|
|
this->variable_->var_value()->determine_type();
|
|
}
|
|
|
|
// Something takes the address of this variable. This means that we
|
|
// may want to move the variable onto the heap.
|
|
|
|
void
|
|
Var_expression::do_address_taken(bool escapes)
|
|
{
|
|
if (!escapes)
|
|
{
|
|
if (this->variable_->is_variable())
|
|
this->variable_->var_value()->set_non_escaping_address_taken();
|
|
else if (this->variable_->is_result_variable())
|
|
this->variable_->result_var_value()->set_non_escaping_address_taken();
|
|
else
|
|
go_unreachable();
|
|
}
|
|
else
|
|
{
|
|
if (this->variable_->is_variable())
|
|
this->variable_->var_value()->set_address_taken();
|
|
else if (this->variable_->is_result_variable())
|
|
this->variable_->result_var_value()->set_address_taken();
|
|
else
|
|
go_unreachable();
|
|
}
|
|
|
|
if (this->variable_->is_variable()
|
|
&& this->variable_->var_value()->is_in_heap())
|
|
{
|
|
Node::make_node(this)->set_encoding(Node::ESCAPE_HEAP);
|
|
Node::make_node(this->variable_)->set_encoding(Node::ESCAPE_HEAP);
|
|
}
|
|
}
|
|
|
|
// Get the backend representation for a reference to a variable.
|
|
|
|
Bexpression*
|
|
Var_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Bvariable* bvar = this->variable_->get_backend_variable(context->gogo(),
|
|
context->function());
|
|
bool is_in_heap;
|
|
Location loc = this->location();
|
|
Btype* btype;
|
|
Gogo* gogo = context->gogo();
|
|
if (this->variable_->is_variable())
|
|
{
|
|
is_in_heap = this->variable_->var_value()->is_in_heap();
|
|
btype = this->variable_->var_value()->type()->get_backend(gogo);
|
|
}
|
|
else if (this->variable_->is_result_variable())
|
|
{
|
|
is_in_heap = this->variable_->result_var_value()->is_in_heap();
|
|
btype = this->variable_->result_var_value()->type()->get_backend(gogo);
|
|
}
|
|
else
|
|
go_unreachable();
|
|
|
|
Bexpression* ret =
|
|
context->backend()->var_expression(bvar, loc);
|
|
if (is_in_heap)
|
|
ret = context->backend()->indirect_expression(btype, ret, true, loc);
|
|
return ret;
|
|
}
|
|
|
|
// Ast dump for variable expression.
|
|
|
|
void
|
|
Var_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << this->variable_->message_name() ;
|
|
}
|
|
|
|
// Make a reference to a variable in an expression.
|
|
|
|
Expression*
|
|
Expression::make_var_reference(Named_object* var, Location location)
|
|
{
|
|
if (var->is_sink())
|
|
return Expression::make_sink(location);
|
|
|
|
// FIXME: Creating a new object for each reference to a variable is
|
|
// wasteful.
|
|
return new Var_expression(var, location);
|
|
}
|
|
|
|
// Class Enclosed_var_expression.
|
|
|
|
int
|
|
Enclosed_var_expression::do_traverse(Traverse*)
|
|
{
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Lower the reference to the enclosed variable.
|
|
|
|
Expression*
|
|
Enclosed_var_expression::do_lower(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter, int)
|
|
{
|
|
gogo->lower_expression(function, inserter, &this->reference_);
|
|
return this;
|
|
}
|
|
|
|
// Flatten the reference to the enclosed variable.
|
|
|
|
Expression*
|
|
Enclosed_var_expression::do_flatten(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter)
|
|
{
|
|
gogo->flatten_expression(function, inserter, &this->reference_);
|
|
return this;
|
|
}
|
|
|
|
void
|
|
Enclosed_var_expression::do_address_taken(bool escapes)
|
|
{
|
|
if (!escapes)
|
|
{
|
|
if (this->variable_->is_variable())
|
|
this->variable_->var_value()->set_non_escaping_address_taken();
|
|
else if (this->variable_->is_result_variable())
|
|
this->variable_->result_var_value()->set_non_escaping_address_taken();
|
|
else
|
|
go_unreachable();
|
|
}
|
|
else
|
|
{
|
|
if (this->variable_->is_variable())
|
|
this->variable_->var_value()->set_address_taken();
|
|
else if (this->variable_->is_result_variable())
|
|
this->variable_->result_var_value()->set_address_taken();
|
|
else
|
|
go_unreachable();
|
|
}
|
|
|
|
if (this->variable_->is_variable()
|
|
&& this->variable_->var_value()->is_in_heap())
|
|
Node::make_node(this->variable_)->set_encoding(Node::ESCAPE_HEAP);
|
|
}
|
|
|
|
// Ast dump for enclosed variable expression.
|
|
|
|
void
|
|
Enclosed_var_expression::do_dump_expression(Ast_dump_context* adc) const
|
|
{
|
|
adc->ostream() << this->variable_->message_name();
|
|
}
|
|
|
|
// Make a reference to a variable within an enclosing function.
|
|
|
|
Expression*
|
|
Expression::make_enclosing_var_reference(Expression* reference,
|
|
Named_object* var, Location location)
|
|
{
|
|
return new Enclosed_var_expression(reference, var, location);
|
|
}
|
|
|
|
// Class Temporary_reference_expression.
|
|
|
|
// The type.
|
|
|
|
Type*
|
|
Temporary_reference_expression::do_type()
|
|
{
|
|
return this->statement_->type();
|
|
}
|
|
|
|
// Called if something takes the address of this temporary variable.
|
|
// We never have to move temporary variables to the heap, but we do
|
|
// need to know that they must live in the stack rather than in a
|
|
// register.
|
|
|
|
void
|
|
Temporary_reference_expression::do_address_taken(bool)
|
|
{
|
|
this->statement_->set_is_address_taken();
|
|
}
|
|
|
|
// Get a backend expression referring to the variable.
|
|
|
|
Bexpression*
|
|
Temporary_reference_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Bvariable* bvar = this->statement_->get_backend_variable(context);
|
|
Bexpression* ret = gogo->backend()->var_expression(bvar, this->location());
|
|
|
|
// The backend can't always represent the same set of recursive types
|
|
// that the Go frontend can. In some cases this means that a
|
|
// temporary variable won't have the right backend type. Correct
|
|
// that here by adding a type cast. We need to use base() to push
|
|
// the circularity down one level.
|
|
Type* stype = this->statement_->type();
|
|
if (!this->is_lvalue_
|
|
&& stype->points_to() != NULL
|
|
&& stype->points_to()->is_void_type())
|
|
{
|
|
Btype* btype = this->type()->base()->get_backend(gogo);
|
|
ret = gogo->backend()->convert_expression(btype, ret, this->location());
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Ast dump for temporary reference.
|
|
|
|
void
|
|
Temporary_reference_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->dump_temp_variable_name(this->statement_);
|
|
}
|
|
|
|
// Make a reference to a temporary variable.
|
|
|
|
Temporary_reference_expression*
|
|
Expression::make_temporary_reference(Temporary_statement* statement,
|
|
Location location)
|
|
{
|
|
return new Temporary_reference_expression(statement, location);
|
|
}
|
|
|
|
// Class Set_and_use_temporary_expression.
|
|
|
|
// Return the type.
|
|
|
|
Type*
|
|
Set_and_use_temporary_expression::do_type()
|
|
{
|
|
return this->statement_->type();
|
|
}
|
|
|
|
// Determine the type of the expression.
|
|
|
|
void
|
|
Set_and_use_temporary_expression::do_determine_type(
|
|
const Type_context* context)
|
|
{
|
|
this->expr_->determine_type(context);
|
|
}
|
|
|
|
// Take the address.
|
|
|
|
void
|
|
Set_and_use_temporary_expression::do_address_taken(bool)
|
|
{
|
|
this->statement_->set_is_address_taken();
|
|
}
|
|
|
|
// Return the backend representation.
|
|
|
|
Bexpression*
|
|
Set_and_use_temporary_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Location loc = this->location();
|
|
Gogo* gogo = context->gogo();
|
|
Bvariable* bvar = this->statement_->get_backend_variable(context);
|
|
Bexpression* lvar_ref = gogo->backend()->var_expression(bvar, loc);
|
|
|
|
Named_object* fn = context->function();
|
|
go_assert(fn != NULL);
|
|
Bfunction* bfn = fn->func_value()->get_or_make_decl(gogo, fn);
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
Bstatement* set = gogo->backend()->assignment_statement(bfn, lvar_ref,
|
|
bexpr, loc);
|
|
Bexpression* var_ref = gogo->backend()->var_expression(bvar, loc);
|
|
Bexpression* ret = gogo->backend()->compound_expression(set, var_ref, loc);
|
|
return ret;
|
|
}
|
|
|
|
// Dump.
|
|
|
|
void
|
|
Set_and_use_temporary_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << '(';
|
|
ast_dump_context->dump_temp_variable_name(this->statement_);
|
|
ast_dump_context->ostream() << " = ";
|
|
this->expr_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ')';
|
|
}
|
|
|
|
// Make a set-and-use temporary.
|
|
|
|
Set_and_use_temporary_expression*
|
|
Expression::make_set_and_use_temporary(Temporary_statement* statement,
|
|
Expression* expr, Location location)
|
|
{
|
|
return new Set_and_use_temporary_expression(statement, expr, location);
|
|
}
|
|
|
|
// A sink expression--a use of the blank identifier _.
|
|
|
|
class Sink_expression : public Expression
|
|
{
|
|
public:
|
|
Sink_expression(Location location)
|
|
: Expression(EXPRESSION_SINK, location),
|
|
type_(NULL), bvar_(NULL)
|
|
{ }
|
|
|
|
protected:
|
|
bool
|
|
do_discarding_value()
|
|
{ return true; }
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*);
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return new Sink_expression(this->location()); }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context*);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type of this sink variable.
|
|
Type* type_;
|
|
// The temporary variable we generate.
|
|
Bvariable* bvar_;
|
|
};
|
|
|
|
// Return the type of a sink expression.
|
|
|
|
Type*
|
|
Sink_expression::do_type()
|
|
{
|
|
if (this->type_ == NULL)
|
|
return Type::make_sink_type();
|
|
return this->type_;
|
|
}
|
|
|
|
// Determine the type of a sink expression.
|
|
|
|
void
|
|
Sink_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
if (context->type != NULL)
|
|
this->type_ = context->type;
|
|
}
|
|
|
|
// Return a temporary variable for a sink expression. This will
|
|
// presumably be a write-only variable which the middle-end will drop.
|
|
|
|
Bexpression*
|
|
Sink_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Location loc = this->location();
|
|
Gogo* gogo = context->gogo();
|
|
if (this->bvar_ == NULL)
|
|
{
|
|
go_assert(this->type_ != NULL && !this->type_->is_sink_type());
|
|
Named_object* fn = context->function();
|
|
go_assert(fn != NULL);
|
|
Bfunction* fn_ctx = fn->func_value()->get_or_make_decl(gogo, fn);
|
|
Btype* bt = this->type_->get_backend(context->gogo());
|
|
Bstatement* decl;
|
|
this->bvar_ =
|
|
gogo->backend()->temporary_variable(fn_ctx, context->bblock(), bt, NULL,
|
|
false, loc, &decl);
|
|
Bexpression* var_ref =
|
|
gogo->backend()->var_expression(this->bvar_, loc);
|
|
var_ref = gogo->backend()->compound_expression(decl, var_ref, loc);
|
|
return var_ref;
|
|
}
|
|
return gogo->backend()->var_expression(this->bvar_, loc);
|
|
}
|
|
|
|
// Ast dump for sink expression.
|
|
|
|
void
|
|
Sink_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "_" ;
|
|
}
|
|
|
|
// Make a sink expression.
|
|
|
|
Expression*
|
|
Expression::make_sink(Location location)
|
|
{
|
|
return new Sink_expression(location);
|
|
}
|
|
|
|
// Class Func_expression.
|
|
|
|
// FIXME: Can a function expression appear in a constant expression?
|
|
// The value is unchanging. Initializing a constant to the address of
|
|
// a function seems like it could work, though there might be little
|
|
// point to it.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Func_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
return (this->closure_ == NULL
|
|
? TRAVERSE_CONTINUE
|
|
: Expression::traverse(&this->closure_, traverse));
|
|
}
|
|
|
|
// Return the type of a function expression.
|
|
|
|
Type*
|
|
Func_expression::do_type()
|
|
{
|
|
if (this->function_->is_function())
|
|
return this->function_->func_value()->type();
|
|
else if (this->function_->is_function_declaration())
|
|
return this->function_->func_declaration_value()->type();
|
|
else
|
|
go_unreachable();
|
|
}
|
|
|
|
// Get the backend representation for the code of a function expression.
|
|
|
|
Bexpression*
|
|
Func_expression::get_code_pointer(Gogo* gogo, Named_object* no, Location loc)
|
|
{
|
|
Function_type* fntype;
|
|
if (no->is_function())
|
|
fntype = no->func_value()->type();
|
|
else if (no->is_function_declaration())
|
|
fntype = no->func_declaration_value()->type();
|
|
else
|
|
go_unreachable();
|
|
|
|
// Builtin functions are handled specially by Call_expression. We
|
|
// can't take their address.
|
|
if (fntype->is_builtin())
|
|
{
|
|
go_error_at(loc,
|
|
"invalid use of special builtin function %qs; must be called",
|
|
no->message_name().c_str());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
|
|
Bfunction* fndecl;
|
|
if (no->is_function())
|
|
fndecl = no->func_value()->get_or_make_decl(gogo, no);
|
|
else if (no->is_function_declaration())
|
|
fndecl = no->func_declaration_value()->get_or_make_decl(gogo, no);
|
|
else
|
|
go_unreachable();
|
|
|
|
return gogo->backend()->function_code_expression(fndecl, loc);
|
|
}
|
|
|
|
// Get the backend representation for a function expression. This is used when
|
|
// we take the address of a function rather than simply calling it. A func
|
|
// value is represented as a pointer to a block of memory. The first
|
|
// word of that memory is a pointer to the function code. The
|
|
// remaining parts of that memory are the addresses of variables that
|
|
// the function closes over.
|
|
|
|
Bexpression*
|
|
Func_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
// If there is no closure, just use the function descriptor.
|
|
if (this->closure_ == NULL)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Named_object* no = this->function_;
|
|
Expression* descriptor;
|
|
if (no->is_function())
|
|
descriptor = no->func_value()->descriptor(gogo, no);
|
|
else if (no->is_function_declaration())
|
|
{
|
|
if (no->func_declaration_value()->type()->is_builtin())
|
|
{
|
|
go_error_at(this->location(),
|
|
("invalid use of special builtin function %qs; "
|
|
"must be called"),
|
|
no->message_name().c_str());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
descriptor = no->func_declaration_value()->descriptor(gogo, no);
|
|
}
|
|
else
|
|
go_unreachable();
|
|
|
|
Bexpression* bdesc = descriptor->get_backend(context);
|
|
return gogo->backend()->address_expression(bdesc, this->location());
|
|
}
|
|
|
|
go_assert(this->function_->func_value()->enclosing() != NULL);
|
|
|
|
// If there is a closure, then the closure is itself the function
|
|
// expression. It is a pointer to a struct whose first field points
|
|
// to the function code and whose remaining fields are the addresses
|
|
// of the closed-over variables.
|
|
Bexpression *bexpr = this->closure_->get_backend(context);
|
|
|
|
// Introduce a backend type conversion, to account for any differences
|
|
// between the argument type (function descriptor, struct with a
|
|
// single field) and the closure (struct with multiple fields).
|
|
Gogo* gogo = context->gogo();
|
|
Btype *btype = this->type()->get_backend(gogo);
|
|
return gogo->backend()->convert_expression(btype, bexpr, this->location());
|
|
}
|
|
|
|
// Ast dump for function.
|
|
|
|
void
|
|
Func_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << this->function_->name();
|
|
if (this->closure_ != NULL)
|
|
{
|
|
ast_dump_context->ostream() << " {closure = ";
|
|
this->closure_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << "}";
|
|
}
|
|
}
|
|
|
|
// Make a reference to a function in an expression.
|
|
|
|
Expression*
|
|
Expression::make_func_reference(Named_object* function, Expression* closure,
|
|
Location location)
|
|
{
|
|
Func_expression* fe = new Func_expression(function, closure, location);
|
|
|
|
// Detect references to builtin functions and set the runtime code if
|
|
// appropriate.
|
|
if (function->is_function_declaration())
|
|
fe->set_runtime_code(Runtime::name_to_code(function->name()));
|
|
return fe;
|
|
}
|
|
|
|
// Class Func_descriptor_expression.
|
|
|
|
// Constructor.
|
|
|
|
Func_descriptor_expression::Func_descriptor_expression(Named_object* fn)
|
|
: Expression(EXPRESSION_FUNC_DESCRIPTOR, fn->location()),
|
|
fn_(fn), dvar_(NULL)
|
|
{
|
|
go_assert(!fn->is_function() || !fn->func_value()->needs_closure());
|
|
}
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Func_descriptor_expression::do_traverse(Traverse*)
|
|
{
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// All function descriptors have the same type.
|
|
|
|
Type* Func_descriptor_expression::descriptor_type;
|
|
|
|
void
|
|
Func_descriptor_expression::make_func_descriptor_type()
|
|
{
|
|
if (Func_descriptor_expression::descriptor_type != NULL)
|
|
return;
|
|
Type* uintptr_type = Type::lookup_integer_type("uintptr");
|
|
Type* struct_type = Type::make_builtin_struct_type(1, "code", uintptr_type);
|
|
Func_descriptor_expression::descriptor_type =
|
|
Type::make_builtin_named_type("functionDescriptor", struct_type);
|
|
}
|
|
|
|
Type*
|
|
Func_descriptor_expression::do_type()
|
|
{
|
|
Func_descriptor_expression::make_func_descriptor_type();
|
|
return Func_descriptor_expression::descriptor_type;
|
|
}
|
|
|
|
// The backend representation for a function descriptor.
|
|
|
|
Bexpression*
|
|
Func_descriptor_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Named_object* no = this->fn_;
|
|
Location loc = no->location();
|
|
if (this->dvar_ != NULL)
|
|
return context->backend()->var_expression(this->dvar_, loc);
|
|
|
|
Gogo* gogo = context->gogo();
|
|
std::string var_name(gogo->function_descriptor_name(no));
|
|
bool is_descriptor = false;
|
|
if (no->is_function_declaration()
|
|
&& !no->func_declaration_value()->asm_name().empty()
|
|
&& Linemap::is_predeclared_location(no->location()))
|
|
is_descriptor = true;
|
|
|
|
// The runtime package implements some functions defined in the
|
|
// syscall package. Let the syscall package define the descriptor
|
|
// in this case.
|
|
if (gogo->compiling_runtime()
|
|
&& gogo->package_name() == "runtime"
|
|
&& no->is_function()
|
|
&& !no->func_value()->asm_name().empty()
|
|
&& no->func_value()->asm_name().compare(0, 8, "syscall.") == 0)
|
|
is_descriptor = true;
|
|
|
|
Btype* btype = this->type()->get_backend(gogo);
|
|
|
|
Bvariable* bvar;
|
|
std::string asm_name(go_selectively_encode_id(var_name));
|
|
if (no->package() != NULL || is_descriptor)
|
|
bvar = context->backend()->immutable_struct_reference(var_name, asm_name,
|
|
btype, loc);
|
|
else
|
|
{
|
|
Location bloc = Linemap::predeclared_location();
|
|
|
|
// The runtime package has hash/equality functions that are
|
|
// referenced by type descriptors outside of the runtime, so the
|
|
// function descriptors must be visible even though they are not
|
|
// exported.
|
|
bool is_exported_runtime = false;
|
|
if (gogo->compiling_runtime()
|
|
&& gogo->package_name() == "runtime"
|
|
&& (no->name().find("hash") != std::string::npos
|
|
|| no->name().find("equal") != std::string::npos))
|
|
is_exported_runtime = true;
|
|
|
|
bool is_hidden = ((no->is_function()
|
|
&& no->func_value()->enclosing() != NULL)
|
|
|| (Gogo::is_hidden_name(no->name())
|
|
&& !is_exported_runtime)
|
|
|| Gogo::is_thunk(no));
|
|
|
|
bvar = context->backend()->immutable_struct(var_name, asm_name,
|
|
is_hidden, false,
|
|
btype, bloc);
|
|
Expression_list* vals = new Expression_list();
|
|
vals->push_back(Expression::make_func_code_reference(this->fn_, bloc));
|
|
Expression* init =
|
|
Expression::make_struct_composite_literal(this->type(), vals, bloc);
|
|
Translate_context bcontext(gogo, NULL, NULL, NULL);
|
|
bcontext.set_is_const();
|
|
Bexpression* binit = init->get_backend(&bcontext);
|
|
context->backend()->immutable_struct_set_init(bvar, var_name, is_hidden,
|
|
false, btype, bloc, binit);
|
|
}
|
|
|
|
this->dvar_ = bvar;
|
|
return gogo->backend()->var_expression(bvar, loc);
|
|
}
|
|
|
|
// Print a function descriptor expression.
|
|
|
|
void
|
|
Func_descriptor_expression::do_dump_expression(Ast_dump_context* context) const
|
|
{
|
|
context->ostream() << "[descriptor " << this->fn_->name() << "]";
|
|
}
|
|
|
|
// Make a function descriptor expression.
|
|
|
|
Func_descriptor_expression*
|
|
Expression::make_func_descriptor(Named_object* fn)
|
|
{
|
|
return new Func_descriptor_expression(fn);
|
|
}
|
|
|
|
// Make the function descriptor type, so that it can be converted.
|
|
|
|
void
|
|
Expression::make_func_descriptor_type()
|
|
{
|
|
Func_descriptor_expression::make_func_descriptor_type();
|
|
}
|
|
|
|
// A reference to just the code of a function.
|
|
|
|
class Func_code_reference_expression : public Expression
|
|
{
|
|
public:
|
|
Func_code_reference_expression(Named_object* function, Location location)
|
|
: Expression(EXPRESSION_FUNC_CODE_REFERENCE, location),
|
|
function_(function)
|
|
{ }
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse*)
|
|
{ return TRAVERSE_CONTINUE; }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
Type*
|
|
do_type()
|
|
{ return Type::make_pointer_type(Type::make_void_type()); }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return Expression::make_func_code_reference(this->function_,
|
|
this->location());
|
|
}
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context*);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context* context) const
|
|
{ context->ostream() << "[raw " << this->function_->name() << "]" ; }
|
|
|
|
private:
|
|
// The function.
|
|
Named_object* function_;
|
|
};
|
|
|
|
// Get the backend representation for a reference to function code.
|
|
|
|
Bexpression*
|
|
Func_code_reference_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
return Func_expression::get_code_pointer(context->gogo(), this->function_,
|
|
this->location());
|
|
}
|
|
|
|
// Make a reference to the code of a function.
|
|
|
|
Expression*
|
|
Expression::make_func_code_reference(Named_object* function, Location location)
|
|
{
|
|
return new Func_code_reference_expression(function, location);
|
|
}
|
|
|
|
// Class Unknown_expression.
|
|
|
|
// Return the name of an unknown expression.
|
|
|
|
const std::string&
|
|
Unknown_expression::name() const
|
|
{
|
|
return this->named_object_->name();
|
|
}
|
|
|
|
// Lower a reference to an unknown name.
|
|
|
|
Expression*
|
|
Unknown_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
|
|
{
|
|
Location location = this->location();
|
|
Named_object* no = this->named_object_;
|
|
Named_object* real;
|
|
if (!no->is_unknown())
|
|
real = no;
|
|
else
|
|
{
|
|
real = no->unknown_value()->real_named_object();
|
|
if (real == NULL)
|
|
{
|
|
if (this->is_composite_literal_key_)
|
|
return this;
|
|
if (!this->no_error_message_)
|
|
go_error_at(location, "reference to undefined name %qs",
|
|
this->named_object_->message_name().c_str());
|
|
return Expression::make_error(location);
|
|
}
|
|
}
|
|
switch (real->classification())
|
|
{
|
|
case Named_object::NAMED_OBJECT_CONST:
|
|
return Expression::make_const_reference(real, location);
|
|
case Named_object::NAMED_OBJECT_TYPE:
|
|
return Expression::make_type(real->type_value(), location);
|
|
case Named_object::NAMED_OBJECT_TYPE_DECLARATION:
|
|
if (this->is_composite_literal_key_)
|
|
return this;
|
|
if (!this->no_error_message_)
|
|
go_error_at(location, "reference to undefined type %qs",
|
|
real->message_name().c_str());
|
|
return Expression::make_error(location);
|
|
case Named_object::NAMED_OBJECT_VAR:
|
|
real->var_value()->set_is_used();
|
|
return Expression::make_var_reference(real, location);
|
|
case Named_object::NAMED_OBJECT_FUNC:
|
|
case Named_object::NAMED_OBJECT_FUNC_DECLARATION:
|
|
return Expression::make_func_reference(real, NULL, location);
|
|
case Named_object::NAMED_OBJECT_PACKAGE:
|
|
if (this->is_composite_literal_key_)
|
|
return this;
|
|
if (!this->no_error_message_)
|
|
go_error_at(location, "unexpected reference to package");
|
|
return Expression::make_error(location);
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Dump the ast representation for an unknown expression to a dump context.
|
|
|
|
void
|
|
Unknown_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "_Unknown_(" << this->named_object_->name()
|
|
<< ")";
|
|
}
|
|
|
|
// Make a reference to an unknown name.
|
|
|
|
Unknown_expression*
|
|
Expression::make_unknown_reference(Named_object* no, Location location)
|
|
{
|
|
return new Unknown_expression(no, location);
|
|
}
|
|
|
|
// A boolean expression.
|
|
|
|
class Boolean_expression : public Expression
|
|
{
|
|
public:
|
|
Boolean_expression(bool val, Location location)
|
|
: Expression(EXPRESSION_BOOLEAN, location),
|
|
val_(val), type_(NULL)
|
|
{ }
|
|
|
|
static Expression*
|
|
do_import(Import*);
|
|
|
|
protected:
|
|
bool
|
|
do_is_constant() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*);
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context)
|
|
{ return context->backend()->boolean_constant_expression(this->val_); }
|
|
|
|
void
|
|
do_export(Export_function_body* efb) const
|
|
{ efb->write_c_string(this->val_ ? "true" : "false"); }
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{ ast_dump_context->ostream() << (this->val_ ? "true" : "false"); }
|
|
|
|
private:
|
|
// The constant.
|
|
bool val_;
|
|
// The type as determined by context.
|
|
Type* type_;
|
|
};
|
|
|
|
// Get the type.
|
|
|
|
Type*
|
|
Boolean_expression::do_type()
|
|
{
|
|
if (this->type_ == NULL)
|
|
this->type_ = Type::make_boolean_type();
|
|
return this->type_;
|
|
}
|
|
|
|
// Set the type from the context.
|
|
|
|
void
|
|
Boolean_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
;
|
|
else if (context->type != NULL && context->type->is_boolean_type())
|
|
this->type_ = context->type;
|
|
else if (!context->may_be_abstract)
|
|
this->type_ = Type::lookup_bool_type();
|
|
}
|
|
|
|
// Import a boolean constant.
|
|
|
|
Expression*
|
|
Boolean_expression::do_import(Import* imp)
|
|
{
|
|
if (imp->peek_char() == 't')
|
|
{
|
|
imp->require_c_string("true");
|
|
return Expression::make_boolean(true, imp->location());
|
|
}
|
|
else
|
|
{
|
|
imp->require_c_string("false");
|
|
return Expression::make_boolean(false, imp->location());
|
|
}
|
|
}
|
|
|
|
// Make a boolean expression.
|
|
|
|
Expression*
|
|
Expression::make_boolean(bool val, Location location)
|
|
{
|
|
return new Boolean_expression(val, location);
|
|
}
|
|
|
|
// Class String_expression.
|
|
|
|
// Get the type.
|
|
|
|
Type*
|
|
String_expression::do_type()
|
|
{
|
|
if (this->type_ == NULL)
|
|
this->type_ = Type::make_string_type();
|
|
return this->type_;
|
|
}
|
|
|
|
// Set the type from the context.
|
|
|
|
void
|
|
String_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
;
|
|
else if (context->type != NULL && context->type->is_string_type())
|
|
this->type_ = context->type;
|
|
else if (!context->may_be_abstract)
|
|
this->type_ = Type::lookup_string_type();
|
|
}
|
|
|
|
// Build a string constant.
|
|
|
|
Bexpression*
|
|
String_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = Type::make_string_type()->get_backend(gogo);
|
|
|
|
Location loc = this->location();
|
|
std::vector<Bexpression*> init(2);
|
|
Bexpression* str_cst =
|
|
gogo->backend()->string_constant_expression(this->val_);
|
|
init[0] = gogo->backend()->address_expression(str_cst, loc);
|
|
|
|
Btype* int_btype = Type::lookup_integer_type("int")->get_backend(gogo);
|
|
mpz_t lenval;
|
|
mpz_init_set_ui(lenval, this->val_.length());
|
|
init[1] = gogo->backend()->integer_constant_expression(int_btype, lenval);
|
|
mpz_clear(lenval);
|
|
|
|
return gogo->backend()->constructor_expression(btype, init, loc);
|
|
}
|
|
|
|
// Write string literal to string dump.
|
|
|
|
void
|
|
String_expression::export_string(String_dump* exp,
|
|
const String_expression* str)
|
|
{
|
|
std::string s;
|
|
s.reserve(str->val_.length() * 4 + 2);
|
|
s += '"';
|
|
for (std::string::const_iterator p = str->val_.begin();
|
|
p != str->val_.end();
|
|
++p)
|
|
{
|
|
if (*p == '\\' || *p == '"')
|
|
{
|
|
s += '\\';
|
|
s += *p;
|
|
}
|
|
else if (*p >= 0x20 && *p < 0x7f)
|
|
s += *p;
|
|
else if (*p == '\n')
|
|
s += "\\n";
|
|
else if (*p == '\t')
|
|
s += "\\t";
|
|
else
|
|
{
|
|
s += "\\x";
|
|
unsigned char c = *p;
|
|
unsigned int dig = c >> 4;
|
|
s += dig < 10 ? '0' + dig : 'A' + dig - 10;
|
|
dig = c & 0xf;
|
|
s += dig < 10 ? '0' + dig : 'A' + dig - 10;
|
|
}
|
|
}
|
|
s += '"';
|
|
exp->write_string(s);
|
|
}
|
|
|
|
// Export a string expression.
|
|
|
|
void
|
|
String_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
String_expression::export_string(efb, this);
|
|
}
|
|
|
|
// Import a string expression.
|
|
|
|
Expression*
|
|
String_expression::do_import(Import* imp)
|
|
{
|
|
imp->require_c_string("\"");
|
|
std::string val;
|
|
while (true)
|
|
{
|
|
int c = imp->get_char();
|
|
if (c == '"' || c == -1)
|
|
break;
|
|
if (c != '\\')
|
|
val += static_cast<char>(c);
|
|
else
|
|
{
|
|
c = imp->get_char();
|
|
if (c == '\\' || c == '"')
|
|
val += static_cast<char>(c);
|
|
else if (c == 'n')
|
|
val += '\n';
|
|
else if (c == 't')
|
|
val += '\t';
|
|
else if (c == 'x')
|
|
{
|
|
c = imp->get_char();
|
|
unsigned int vh = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
|
|
c = imp->get_char();
|
|
unsigned int vl = c >= '0' && c <= '9' ? c - '0' : c - 'A' + 10;
|
|
char v = (vh << 4) | vl;
|
|
val += v;
|
|
}
|
|
else
|
|
{
|
|
go_error_at(imp->location(), "bad string constant");
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
}
|
|
}
|
|
return Expression::make_string(val, imp->location());
|
|
}
|
|
|
|
// Ast dump for string expression.
|
|
|
|
void
|
|
String_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
String_expression::export_string(ast_dump_context, this);
|
|
}
|
|
|
|
// Make a string expression.
|
|
|
|
Expression*
|
|
Expression::make_string(const std::string& val, Location location)
|
|
{
|
|
return new String_expression(val, location);
|
|
}
|
|
|
|
// An expression that evaluates to some characteristic of a string.
|
|
// This is used when indexing, bound-checking, or nil checking a string.
|
|
|
|
class String_info_expression : public Expression
|
|
{
|
|
public:
|
|
String_info_expression(Expression* string, String_info string_info,
|
|
Location location)
|
|
: Expression(EXPRESSION_STRING_INFO, location),
|
|
string_(string), string_info_(string_info)
|
|
{ }
|
|
|
|
protected:
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ go_unreachable(); }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return new String_info_expression(this->string_->copy(), this->string_info_,
|
|
this->location());
|
|
}
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
void
|
|
do_issue_nil_check()
|
|
{ this->string_->issue_nil_check(); }
|
|
|
|
private:
|
|
// The string for which we are getting information.
|
|
Expression* string_;
|
|
// What information we want.
|
|
String_info string_info_;
|
|
};
|
|
|
|
// Return the type of the string info.
|
|
|
|
Type*
|
|
String_info_expression::do_type()
|
|
{
|
|
switch (this->string_info_)
|
|
{
|
|
case STRING_INFO_DATA:
|
|
{
|
|
Type* byte_type = Type::lookup_integer_type("uint8");
|
|
return Type::make_pointer_type(byte_type);
|
|
}
|
|
case STRING_INFO_LENGTH:
|
|
return Type::lookup_integer_type("int");
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Return string information in GENERIC.
|
|
|
|
Bexpression*
|
|
String_info_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
|
|
Bexpression* bstring = this->string_->get_backend(context);
|
|
switch (this->string_info_)
|
|
{
|
|
case STRING_INFO_DATA:
|
|
case STRING_INFO_LENGTH:
|
|
return gogo->backend()->struct_field_expression(bstring,
|
|
this->string_info_,
|
|
this->location());
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Dump ast representation for a type info expression.
|
|
|
|
void
|
|
String_info_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "stringinfo(";
|
|
this->string_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ",";
|
|
ast_dump_context->ostream() <<
|
|
(this->string_info_ == STRING_INFO_DATA ? "data"
|
|
: this->string_info_ == STRING_INFO_LENGTH ? "length"
|
|
: "unknown");
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make a string info expression.
|
|
|
|
Expression*
|
|
Expression::make_string_info(Expression* string, String_info string_info,
|
|
Location location)
|
|
{
|
|
return new String_info_expression(string, string_info, location);
|
|
}
|
|
|
|
// Make an integer expression.
|
|
|
|
class Integer_expression : public Expression
|
|
{
|
|
public:
|
|
Integer_expression(const mpz_t* val, Type* type, bool is_character_constant,
|
|
Location location)
|
|
: Expression(EXPRESSION_INTEGER, location),
|
|
type_(type), is_character_constant_(is_character_constant)
|
|
{ mpz_init_set(this->val_, *val); }
|
|
|
|
static Expression*
|
|
do_import(Import*);
|
|
|
|
// Write VAL to string dump.
|
|
static void
|
|
export_integer(String_dump* exp, const mpz_t val);
|
|
|
|
// Write VAL to dump context.
|
|
static void
|
|
dump_integer(Ast_dump_context* ast_dump_context, const mpz_t val);
|
|
|
|
protected:
|
|
bool
|
|
do_is_constant() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_numeric_constant_value(Numeric_constant* nc) const;
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context* context);
|
|
|
|
void
|
|
do_check_types(Gogo*);
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context*);
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
if (this->is_character_constant_)
|
|
return Expression::make_character(&this->val_,
|
|
(this->type_ == NULL
|
|
? NULL
|
|
: this->type_->copy_expressions()),
|
|
this->location());
|
|
else
|
|
return Expression::make_integer_z(&this->val_,
|
|
(this->type_ == NULL
|
|
? NULL
|
|
: this->type_->copy_expressions()),
|
|
this->location());
|
|
}
|
|
|
|
void
|
|
do_export(Export_function_body*) const;
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The integer value.
|
|
mpz_t val_;
|
|
// The type so far.
|
|
Type* type_;
|
|
// Whether this is a character constant.
|
|
bool is_character_constant_;
|
|
};
|
|
|
|
// Return a numeric constant for this expression. We have to mark
|
|
// this as a character when appropriate.
|
|
|
|
bool
|
|
Integer_expression::do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
if (this->is_character_constant_)
|
|
nc->set_rune(this->type_, this->val_);
|
|
else
|
|
nc->set_int(this->type_, this->val_);
|
|
return true;
|
|
}
|
|
|
|
// Return the current type. If we haven't set the type yet, we return
|
|
// an abstract integer type.
|
|
|
|
Type*
|
|
Integer_expression::do_type()
|
|
{
|
|
if (this->type_ == NULL)
|
|
{
|
|
if (this->is_character_constant_)
|
|
this->type_ = Type::make_abstract_character_type();
|
|
else
|
|
this->type_ = Type::make_abstract_integer_type();
|
|
}
|
|
return this->type_;
|
|
}
|
|
|
|
// Set the type of the integer value. Here we may switch from an
|
|
// abstract type to a real type.
|
|
|
|
void
|
|
Integer_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
;
|
|
else if (context->type != NULL && context->type->is_numeric_type())
|
|
this->type_ = context->type;
|
|
else if (!context->may_be_abstract)
|
|
{
|
|
if (this->is_character_constant_)
|
|
this->type_ = Type::lookup_integer_type("int32");
|
|
else
|
|
this->type_ = Type::lookup_integer_type("int");
|
|
}
|
|
}
|
|
|
|
// Check the type of an integer constant.
|
|
|
|
void
|
|
Integer_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->type_;
|
|
if (type == NULL)
|
|
return;
|
|
Numeric_constant nc;
|
|
if (this->is_character_constant_)
|
|
nc.set_rune(NULL, this->val_);
|
|
else
|
|
nc.set_int(NULL, this->val_);
|
|
if (!nc.set_type(type, true, this->location()))
|
|
this->set_is_error();
|
|
}
|
|
|
|
// Get the backend representation for an integer constant.
|
|
|
|
Bexpression*
|
|
Integer_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
if (this->is_error_expression()
|
|
|| (this->type_ != NULL && this->type_->is_error_type()))
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->gogo()->backend()->error_expression();
|
|
}
|
|
|
|
Type* resolved_type = NULL;
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
resolved_type = this->type_;
|
|
else if (this->type_ != NULL && this->type_->float_type() != NULL)
|
|
{
|
|
// We are converting to an abstract floating point type.
|
|
resolved_type = Type::lookup_float_type("float64");
|
|
}
|
|
else if (this->type_ != NULL && this->type_->complex_type() != NULL)
|
|
{
|
|
// We are converting to an abstract complex type.
|
|
resolved_type = Type::lookup_complex_type("complex128");
|
|
}
|
|
else
|
|
{
|
|
// If we still have an abstract type here, then this is being
|
|
// used in a constant expression which didn't get reduced for
|
|
// some reason. Use a type which will fit the value. We use <,
|
|
// not <=, because we need an extra bit for the sign bit.
|
|
int bits = mpz_sizeinbase(this->val_, 2);
|
|
Type* int_type = Type::lookup_integer_type("int");
|
|
if (bits < int_type->integer_type()->bits())
|
|
resolved_type = int_type;
|
|
else if (bits < 64)
|
|
resolved_type = Type::lookup_integer_type("int64");
|
|
else
|
|
{
|
|
if (!saw_errors())
|
|
go_error_at(this->location(),
|
|
"unknown type for large integer constant");
|
|
return context->gogo()->backend()->error_expression();
|
|
}
|
|
}
|
|
Numeric_constant nc;
|
|
nc.set_int(resolved_type, this->val_);
|
|
return Expression::backend_numeric_constant_expression(context, &nc);
|
|
}
|
|
|
|
// Write VAL to export data.
|
|
|
|
void
|
|
Integer_expression::export_integer(String_dump* exp, const mpz_t val)
|
|
{
|
|
char* s = mpz_get_str(NULL, 10, val);
|
|
exp->write_c_string(s);
|
|
free(s);
|
|
}
|
|
|
|
// Export an integer in a constant expression.
|
|
|
|
void
|
|
Integer_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
Integer_expression::export_integer(efb, this->val_);
|
|
if (this->is_character_constant_)
|
|
efb->write_c_string("'");
|
|
// A trailing space lets us reliably identify the end of the number.
|
|
efb->write_c_string(" ");
|
|
}
|
|
|
|
// Import an integer, floating point, or complex value. This handles
|
|
// all these types because they all start with digits.
|
|
|
|
Expression*
|
|
Integer_expression::do_import(Import* imp)
|
|
{
|
|
std::string num = imp->read_identifier();
|
|
imp->require_c_string(" ");
|
|
if (!num.empty() && num[num.length() - 1] == 'i')
|
|
{
|
|
mpfr_t real;
|
|
size_t plus_pos = num.find('+', 1);
|
|
size_t minus_pos = num.find('-', 1);
|
|
size_t pos;
|
|
if (plus_pos == std::string::npos)
|
|
pos = minus_pos;
|
|
else if (minus_pos == std::string::npos)
|
|
pos = plus_pos;
|
|
else
|
|
{
|
|
go_error_at(imp->location(), "bad number in import data: %qs",
|
|
num.c_str());
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
if (pos == std::string::npos)
|
|
mpfr_set_ui(real, 0, GMP_RNDN);
|
|
else
|
|
{
|
|
std::string real_str = num.substr(0, pos);
|
|
if (mpfr_init_set_str(real, real_str.c_str(), 10, GMP_RNDN) != 0)
|
|
{
|
|
go_error_at(imp->location(), "bad number in import data: %qs",
|
|
real_str.c_str());
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
}
|
|
|
|
std::string imag_str;
|
|
if (pos == std::string::npos)
|
|
imag_str = num;
|
|
else
|
|
imag_str = num.substr(pos);
|
|
imag_str = imag_str.substr(0, imag_str.size() - 1);
|
|
mpfr_t imag;
|
|
if (mpfr_init_set_str(imag, imag_str.c_str(), 10, GMP_RNDN) != 0)
|
|
{
|
|
go_error_at(imp->location(), "bad number in import data: %qs",
|
|
imag_str.c_str());
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
mpc_t cval;
|
|
mpc_init2(cval, mpc_precision);
|
|
mpc_set_fr_fr(cval, real, imag, MPC_RNDNN);
|
|
mpfr_clear(real);
|
|
mpfr_clear(imag);
|
|
Expression* ret = Expression::make_complex(&cval, NULL, imp->location());
|
|
mpc_clear(cval);
|
|
return ret;
|
|
}
|
|
else if (num.find('.') == std::string::npos
|
|
&& num.find('E') == std::string::npos)
|
|
{
|
|
bool is_character_constant = (!num.empty()
|
|
&& num[num.length() - 1] == '\'');
|
|
if (is_character_constant)
|
|
num = num.substr(0, num.length() - 1);
|
|
mpz_t val;
|
|
if (mpz_init_set_str(val, num.c_str(), 10) != 0)
|
|
{
|
|
go_error_at(imp->location(), "bad number in import data: %qs",
|
|
num.c_str());
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
Expression* ret;
|
|
if (is_character_constant)
|
|
ret = Expression::make_character(&val, NULL, imp->location());
|
|
else
|
|
ret = Expression::make_integer_z(&val, NULL, imp->location());
|
|
mpz_clear(val);
|
|
return ret;
|
|
}
|
|
else
|
|
{
|
|
mpfr_t val;
|
|
if (mpfr_init_set_str(val, num.c_str(), 10, GMP_RNDN) != 0)
|
|
{
|
|
go_error_at(imp->location(), "bad number in import data: %qs",
|
|
num.c_str());
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
Expression* ret = Expression::make_float(&val, NULL, imp->location());
|
|
mpfr_clear(val);
|
|
return ret;
|
|
}
|
|
}
|
|
// Ast dump for integer expression.
|
|
|
|
void
|
|
Integer_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
if (this->is_character_constant_)
|
|
ast_dump_context->ostream() << '\'';
|
|
Integer_expression::export_integer(ast_dump_context, this->val_);
|
|
if (this->is_character_constant_)
|
|
ast_dump_context->ostream() << '\'';
|
|
}
|
|
|
|
// Build a new integer value from a multi-precision integer.
|
|
|
|
Expression*
|
|
Expression::make_integer_z(const mpz_t* val, Type* type, Location location)
|
|
{
|
|
return new Integer_expression(val, type, false, location);
|
|
}
|
|
|
|
// Build a new integer value from an unsigned long.
|
|
|
|
Expression*
|
|
Expression::make_integer_ul(unsigned long val, Type *type, Location location)
|
|
{
|
|
mpz_t zval;
|
|
mpz_init_set_ui(zval, val);
|
|
Expression* ret = Expression::make_integer_z(&zval, type, location);
|
|
mpz_clear(zval);
|
|
return ret;
|
|
}
|
|
|
|
// Build a new integer value from a signed long.
|
|
|
|
Expression*
|
|
Expression::make_integer_sl(long val, Type *type, Location location)
|
|
{
|
|
mpz_t zval;
|
|
mpz_init_set_si(zval, val);
|
|
Expression* ret = Expression::make_integer_z(&zval, type, location);
|
|
mpz_clear(zval);
|
|
return ret;
|
|
}
|
|
|
|
// Store an int64_t in an uninitialized mpz_t.
|
|
|
|
static void
|
|
set_mpz_from_int64(mpz_t* zval, int64_t val)
|
|
{
|
|
if (val >= 0)
|
|
{
|
|
unsigned long ul = static_cast<unsigned long>(val);
|
|
if (static_cast<int64_t>(ul) == val)
|
|
{
|
|
mpz_init_set_ui(*zval, ul);
|
|
return;
|
|
}
|
|
}
|
|
uint64_t uv;
|
|
if (val >= 0)
|
|
uv = static_cast<uint64_t>(val);
|
|
else
|
|
uv = static_cast<uint64_t>(- val);
|
|
unsigned long ul = uv & 0xffffffffUL;
|
|
mpz_init_set_ui(*zval, ul);
|
|
mpz_t hval;
|
|
mpz_init_set_ui(hval, static_cast<unsigned long>(uv >> 32));
|
|
mpz_mul_2exp(hval, hval, 32);
|
|
mpz_add(*zval, *zval, hval);
|
|
mpz_clear(hval);
|
|
if (val < 0)
|
|
mpz_neg(*zval, *zval);
|
|
}
|
|
|
|
// Build a new integer value from an int64_t.
|
|
|
|
Expression*
|
|
Expression::make_integer_int64(int64_t val, Type* type, Location location)
|
|
{
|
|
mpz_t zval;
|
|
set_mpz_from_int64(&zval, val);
|
|
Expression* ret = Expression::make_integer_z(&zval, type, location);
|
|
mpz_clear(zval);
|
|
return ret;
|
|
}
|
|
|
|
// Build a new character constant value.
|
|
|
|
Expression*
|
|
Expression::make_character(const mpz_t* val, Type* type, Location location)
|
|
{
|
|
return new Integer_expression(val, type, true, location);
|
|
}
|
|
|
|
// Floats.
|
|
|
|
class Float_expression : public Expression
|
|
{
|
|
public:
|
|
Float_expression(const mpfr_t* val, Type* type, Location location)
|
|
: Expression(EXPRESSION_FLOAT, location),
|
|
type_(type)
|
|
{
|
|
mpfr_init_set(this->val_, *val, GMP_RNDN);
|
|
}
|
|
|
|
// Write VAL to export data.
|
|
static void
|
|
export_float(String_dump* exp, const mpfr_t val);
|
|
|
|
// Write VAL to dump file.
|
|
static void
|
|
dump_float(Ast_dump_context* ast_dump_context, const mpfr_t val);
|
|
|
|
protected:
|
|
bool
|
|
do_is_constant() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
nc->set_float(this->type_, this->val_);
|
|
return true;
|
|
}
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*);
|
|
|
|
void
|
|
do_check_types(Gogo*);
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return Expression::make_float(&this->val_,
|
|
(this->type_ == NULL
|
|
? NULL
|
|
: this->type_->copy_expressions()),
|
|
this->location()); }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context*);
|
|
|
|
void
|
|
do_export(Export_function_body*) const;
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The floating point value.
|
|
mpfr_t val_;
|
|
// The type so far.
|
|
Type* type_;
|
|
};
|
|
|
|
// Return the current type. If we haven't set the type yet, we return
|
|
// an abstract float type.
|
|
|
|
Type*
|
|
Float_expression::do_type()
|
|
{
|
|
if (this->type_ == NULL)
|
|
this->type_ = Type::make_abstract_float_type();
|
|
return this->type_;
|
|
}
|
|
|
|
// Set the type of the float value. Here we may switch from an
|
|
// abstract type to a real type.
|
|
|
|
void
|
|
Float_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
;
|
|
else if (context->type != NULL
|
|
&& (context->type->integer_type() != NULL
|
|
|| context->type->float_type() != NULL
|
|
|| context->type->complex_type() != NULL))
|
|
this->type_ = context->type;
|
|
else if (!context->may_be_abstract)
|
|
this->type_ = Type::lookup_float_type("float64");
|
|
}
|
|
|
|
// Check the type of a float value.
|
|
|
|
void
|
|
Float_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->type_;
|
|
if (type == NULL)
|
|
return;
|
|
Numeric_constant nc;
|
|
nc.set_float(NULL, this->val_);
|
|
if (!nc.set_type(this->type_, true, this->location()))
|
|
this->set_is_error();
|
|
}
|
|
|
|
// Get the backend representation for a float constant.
|
|
|
|
Bexpression*
|
|
Float_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
if (this->is_error_expression()
|
|
|| (this->type_ != NULL && this->type_->is_error_type()))
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->gogo()->backend()->error_expression();
|
|
}
|
|
|
|
Type* resolved_type;
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
resolved_type = this->type_;
|
|
else if (this->type_ != NULL && this->type_->integer_type() != NULL)
|
|
{
|
|
// We have an abstract integer type. We just hope for the best.
|
|
resolved_type = Type::lookup_integer_type("int");
|
|
}
|
|
else if (this->type_ != NULL && this->type_->complex_type() != NULL)
|
|
{
|
|
// We are converting to an abstract complex type.
|
|
resolved_type = Type::lookup_complex_type("complex128");
|
|
}
|
|
else
|
|
{
|
|
// If we still have an abstract type here, then this is being
|
|
// used in a constant expression which didn't get reduced. We
|
|
// just use float64 and hope for the best.
|
|
resolved_type = Type::lookup_float_type("float64");
|
|
}
|
|
|
|
Numeric_constant nc;
|
|
nc.set_float(resolved_type, this->val_);
|
|
return Expression::backend_numeric_constant_expression(context, &nc);
|
|
}
|
|
|
|
// Write a floating point number to a string dump.
|
|
|
|
void
|
|
Float_expression::export_float(String_dump *exp, const mpfr_t val)
|
|
{
|
|
mp_exp_t exponent;
|
|
char* s = mpfr_get_str(NULL, &exponent, 10, 0, val, GMP_RNDN);
|
|
if (*s == '-')
|
|
exp->write_c_string("-");
|
|
exp->write_c_string("0.");
|
|
exp->write_c_string(*s == '-' ? s + 1 : s);
|
|
mpfr_free_str(s);
|
|
char buf[30];
|
|
snprintf(buf, sizeof buf, "E%ld", exponent);
|
|
exp->write_c_string(buf);
|
|
}
|
|
|
|
// Export a floating point number in a constant expression.
|
|
|
|
void
|
|
Float_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
Float_expression::export_float(efb, this->val_);
|
|
// A trailing space lets us reliably identify the end of the number.
|
|
efb->write_c_string(" ");
|
|
}
|
|
|
|
// Dump a floating point number to the dump file.
|
|
|
|
void
|
|
Float_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
Float_expression::export_float(ast_dump_context, this->val_);
|
|
}
|
|
|
|
// Make a float expression.
|
|
|
|
Expression*
|
|
Expression::make_float(const mpfr_t* val, Type* type, Location location)
|
|
{
|
|
return new Float_expression(val, type, location);
|
|
}
|
|
|
|
// Complex numbers.
|
|
|
|
class Complex_expression : public Expression
|
|
{
|
|
public:
|
|
Complex_expression(const mpc_t* val, Type* type, Location location)
|
|
: Expression(EXPRESSION_COMPLEX, location),
|
|
type_(type)
|
|
{
|
|
mpc_init2(this->val_, mpc_precision);
|
|
mpc_set(this->val_, *val, MPC_RNDNN);
|
|
}
|
|
|
|
// Write VAL to string dump.
|
|
static void
|
|
export_complex(String_dump* exp, const mpc_t val);
|
|
|
|
// Write REAL/IMAG to dump context.
|
|
static void
|
|
dump_complex(Ast_dump_context* ast_dump_context, const mpc_t val);
|
|
|
|
protected:
|
|
bool
|
|
do_is_constant() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
nc->set_complex(this->type_, this->val_);
|
|
return true;
|
|
}
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*);
|
|
|
|
void
|
|
do_check_types(Gogo*);
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return Expression::make_complex(&this->val_,
|
|
(this->type_ == NULL
|
|
? NULL
|
|
: this->type_->copy_expressions()),
|
|
this->location());
|
|
}
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context*);
|
|
|
|
void
|
|
do_export(Export_function_body*) const;
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The complex value.
|
|
mpc_t val_;
|
|
// The type if known.
|
|
Type* type_;
|
|
};
|
|
|
|
// Return the current type. If we haven't set the type yet, we return
|
|
// an abstract complex type.
|
|
|
|
Type*
|
|
Complex_expression::do_type()
|
|
{
|
|
if (this->type_ == NULL)
|
|
this->type_ = Type::make_abstract_complex_type();
|
|
return this->type_;
|
|
}
|
|
|
|
// Set the type of the complex value. Here we may switch from an
|
|
// abstract type to a real type.
|
|
|
|
void
|
|
Complex_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
;
|
|
else if (context->type != NULL && context->type->is_numeric_type())
|
|
this->type_ = context->type;
|
|
else if (!context->may_be_abstract)
|
|
this->type_ = Type::lookup_complex_type("complex128");
|
|
}
|
|
|
|
// Check the type of a complex value.
|
|
|
|
void
|
|
Complex_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->type_;
|
|
if (type == NULL)
|
|
return;
|
|
Numeric_constant nc;
|
|
nc.set_complex(NULL, this->val_);
|
|
if (!nc.set_type(this->type_, true, this->location()))
|
|
this->set_is_error();
|
|
}
|
|
|
|
// Get the backend representation for a complex constant.
|
|
|
|
Bexpression*
|
|
Complex_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
if (this->is_error_expression()
|
|
|| (this->type_ != NULL && this->type_->is_error_type()))
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->gogo()->backend()->error_expression();
|
|
}
|
|
|
|
Type* resolved_type;
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
resolved_type = this->type_;
|
|
else if (this->type_ != NULL && this->type_->integer_type() != NULL)
|
|
{
|
|
// We are converting to an abstract integer type.
|
|
resolved_type = Type::lookup_integer_type("int");
|
|
}
|
|
else if (this->type_ != NULL && this->type_->float_type() != NULL)
|
|
{
|
|
// We are converting to an abstract float type.
|
|
resolved_type = Type::lookup_float_type("float64");
|
|
}
|
|
else
|
|
{
|
|
// If we still have an abstract type here, this is being
|
|
// used in a constant expression which didn't get reduced. We
|
|
// just use complex128 and hope for the best.
|
|
resolved_type = Type::lookup_complex_type("complex128");
|
|
}
|
|
|
|
Numeric_constant nc;
|
|
nc.set_complex(resolved_type, this->val_);
|
|
return Expression::backend_numeric_constant_expression(context, &nc);
|
|
}
|
|
|
|
// Write REAL/IMAG to export data.
|
|
|
|
void
|
|
Complex_expression::export_complex(String_dump* exp, const mpc_t val)
|
|
{
|
|
if (!mpfr_zero_p(mpc_realref(val)))
|
|
{
|
|
Float_expression::export_float(exp, mpc_realref(val));
|
|
if (mpfr_sgn(mpc_imagref(val)) >= 0)
|
|
exp->write_c_string("+");
|
|
}
|
|
Float_expression::export_float(exp, mpc_imagref(val));
|
|
exp->write_c_string("i");
|
|
}
|
|
|
|
// Export a complex number in a constant expression.
|
|
|
|
void
|
|
Complex_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
Complex_expression::export_complex(efb, this->val_);
|
|
// A trailing space lets us reliably identify the end of the number.
|
|
efb->write_c_string(" ");
|
|
}
|
|
|
|
// Dump a complex expression to the dump file.
|
|
|
|
void
|
|
Complex_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
Complex_expression::export_complex(ast_dump_context, this->val_);
|
|
}
|
|
|
|
// Make a complex expression.
|
|
|
|
Expression*
|
|
Expression::make_complex(const mpc_t* val, Type* type, Location location)
|
|
{
|
|
return new Complex_expression(val, type, location);
|
|
}
|
|
|
|
// Find a named object in an expression.
|
|
|
|
class Find_named_object : public Traverse
|
|
{
|
|
public:
|
|
Find_named_object(Named_object* no)
|
|
: Traverse(traverse_expressions),
|
|
no_(no), found_(false)
|
|
{ }
|
|
|
|
// Whether we found the object.
|
|
bool
|
|
found() const
|
|
{ return this->found_; }
|
|
|
|
protected:
|
|
int
|
|
expression(Expression**);
|
|
|
|
private:
|
|
// The object we are looking for.
|
|
Named_object* no_;
|
|
// Whether we found it.
|
|
bool found_;
|
|
};
|
|
|
|
// A reference to a const in an expression.
|
|
|
|
class Const_expression : public Expression
|
|
{
|
|
public:
|
|
Const_expression(Named_object* constant, Location location)
|
|
: Expression(EXPRESSION_CONST_REFERENCE, location),
|
|
constant_(constant), type_(NULL), seen_(false)
|
|
{ }
|
|
|
|
Named_object*
|
|
named_object()
|
|
{ return this->constant_; }
|
|
|
|
// Check that the initializer does not refer to the constant itself.
|
|
void
|
|
check_for_init_loop();
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse*);
|
|
|
|
Expression*
|
|
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
|
|
|
|
bool
|
|
do_is_constant() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_numeric_constant_value(Numeric_constant* nc) const;
|
|
|
|
bool
|
|
do_string_constant_value(std::string* val) const;
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
// The type of a const is set by the declaration, not the use.
|
|
void
|
|
do_determine_type(const Type_context*);
|
|
|
|
void
|
|
do_check_types(Gogo*);
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
// When exporting a reference to a const as part of a const
|
|
// expression, we export the value. We ignore the fact that it has
|
|
// a name.
|
|
void
|
|
do_export(Export_function_body* efb) const
|
|
{ this->constant_->const_value()->expr()->export_expression(efb); }
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The constant.
|
|
Named_object* constant_;
|
|
// The type of this reference. This is used if the constant has an
|
|
// abstract type.
|
|
Type* type_;
|
|
// Used to prevent infinite recursion when a constant incorrectly
|
|
// refers to itself.
|
|
mutable bool seen_;
|
|
};
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Const_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (this->type_ != NULL)
|
|
return Type::traverse(this->type_, traverse);
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Lower a constant expression. This is where we convert the
|
|
// predeclared constant iota into an integer value.
|
|
|
|
Expression*
|
|
Const_expression::do_lower(Gogo* gogo, Named_object*,
|
|
Statement_inserter*, int iota_value)
|
|
{
|
|
if (this->constant_->const_value()->expr()->classification()
|
|
== EXPRESSION_IOTA)
|
|
{
|
|
if (iota_value == -1)
|
|
{
|
|
go_error_at(this->location(),
|
|
"iota is only defined in const declarations");
|
|
iota_value = 0;
|
|
}
|
|
return Expression::make_integer_ul(iota_value, NULL, this->location());
|
|
}
|
|
|
|
// Make sure that the constant itself has been lowered.
|
|
gogo->lower_constant(this->constant_);
|
|
|
|
return this;
|
|
}
|
|
|
|
// Return a numeric constant value.
|
|
|
|
bool
|
|
Const_expression::do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
if (this->seen_)
|
|
return false;
|
|
|
|
Expression* e = this->constant_->const_value()->expr();
|
|
|
|
this->seen_ = true;
|
|
|
|
bool r = e->numeric_constant_value(nc);
|
|
|
|
this->seen_ = false;
|
|
|
|
Type* ctype;
|
|
if (this->type_ != NULL)
|
|
ctype = this->type_;
|
|
else
|
|
ctype = this->constant_->const_value()->type();
|
|
if (r && ctype != NULL)
|
|
{
|
|
if (!nc->set_type(ctype, false, this->location()))
|
|
return false;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
bool
|
|
Const_expression::do_string_constant_value(std::string* val) const
|
|
{
|
|
if (this->seen_)
|
|
return false;
|
|
|
|
Expression* e = this->constant_->const_value()->expr();
|
|
|
|
this->seen_ = true;
|
|
bool ok = e->string_constant_value(val);
|
|
this->seen_ = false;
|
|
|
|
return ok;
|
|
}
|
|
|
|
// Return the type of the const reference.
|
|
|
|
Type*
|
|
Const_expression::do_type()
|
|
{
|
|
if (this->type_ != NULL)
|
|
return this->type_;
|
|
|
|
Named_constant* nc = this->constant_->const_value();
|
|
|
|
if (this->seen_ || nc->lowering())
|
|
{
|
|
if (nc->type() == NULL || !nc->type()->is_error_type())
|
|
{
|
|
Location loc = this->location();
|
|
if (!this->seen_)
|
|
loc = nc->location();
|
|
go_error_at(loc, "constant refers to itself");
|
|
}
|
|
this->set_is_error();
|
|
this->type_ = Type::make_error_type();
|
|
nc->set_type(this->type_);
|
|
return this->type_;
|
|
}
|
|
|
|
this->seen_ = true;
|
|
|
|
Type* ret = nc->type();
|
|
|
|
if (ret != NULL)
|
|
{
|
|
this->seen_ = false;
|
|
return ret;
|
|
}
|
|
|
|
// During parsing, a named constant may have a NULL type, but we
|
|
// must not return a NULL type here.
|
|
ret = nc->expr()->type();
|
|
|
|
this->seen_ = false;
|
|
|
|
if (ret->is_error_type())
|
|
nc->set_type(ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Set the type of the const reference.
|
|
|
|
void
|
|
Const_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
Type* ctype = this->constant_->const_value()->type();
|
|
Type* cetype = (ctype != NULL
|
|
? ctype
|
|
: this->constant_->const_value()->expr()->type());
|
|
if (ctype != NULL && !ctype->is_abstract())
|
|
;
|
|
else if (context->type != NULL
|
|
&& context->type->is_numeric_type()
|
|
&& cetype->is_numeric_type())
|
|
this->type_ = context->type;
|
|
else if (context->type != NULL
|
|
&& context->type->is_string_type()
|
|
&& cetype->is_string_type())
|
|
this->type_ = context->type;
|
|
else if (context->type != NULL
|
|
&& context->type->is_boolean_type()
|
|
&& cetype->is_boolean_type())
|
|
this->type_ = context->type;
|
|
else if (!context->may_be_abstract)
|
|
{
|
|
if (cetype->is_abstract())
|
|
cetype = cetype->make_non_abstract_type();
|
|
this->type_ = cetype;
|
|
}
|
|
}
|
|
|
|
// Check for a loop in which the initializer of a constant refers to
|
|
// the constant itself.
|
|
|
|
void
|
|
Const_expression::check_for_init_loop()
|
|
{
|
|
if (this->type_ != NULL && this->type_->is_error())
|
|
return;
|
|
|
|
if (this->seen_)
|
|
{
|
|
this->report_error(_("constant refers to itself"));
|
|
this->type_ = Type::make_error_type();
|
|
return;
|
|
}
|
|
|
|
Expression* init = this->constant_->const_value()->expr();
|
|
Find_named_object find_named_object(this->constant_);
|
|
|
|
this->seen_ = true;
|
|
Expression::traverse(&init, &find_named_object);
|
|
this->seen_ = false;
|
|
|
|
if (find_named_object.found())
|
|
{
|
|
if (this->type_ == NULL || !this->type_->is_error())
|
|
{
|
|
this->report_error(_("constant refers to itself"));
|
|
this->type_ = Type::make_error_type();
|
|
}
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Check types of a const reference.
|
|
|
|
void
|
|
Const_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->type_ != NULL && this->type_->is_error())
|
|
return;
|
|
|
|
this->check_for_init_loop();
|
|
|
|
// Check that numeric constant fits in type.
|
|
if (this->type_ != NULL && this->type_->is_numeric_type())
|
|
{
|
|
Numeric_constant nc;
|
|
if (this->constant_->const_value()->expr()->numeric_constant_value(&nc))
|
|
{
|
|
if (!nc.set_type(this->type_, true, this->location()))
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Return the backend representation for a const reference.
|
|
|
|
Bexpression*
|
|
Const_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
if (this->is_error_expression()
|
|
|| (this->type_ != NULL && this->type_->is_error()))
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
// If the type has been set for this expression, but the underlying
|
|
// object is an abstract int or float, we try to get the abstract
|
|
// value. Otherwise we may lose something in the conversion.
|
|
Expression* expr = this->constant_->const_value()->expr();
|
|
if (this->type_ != NULL
|
|
&& this->type_->is_numeric_type()
|
|
&& (this->constant_->const_value()->type() == NULL
|
|
|| this->constant_->const_value()->type()->is_abstract()))
|
|
{
|
|
Numeric_constant nc;
|
|
if (expr->numeric_constant_value(&nc)
|
|
&& nc.set_type(this->type_, false, this->location()))
|
|
{
|
|
Expression* e = nc.expression(this->location());
|
|
return e->get_backend(context);
|
|
}
|
|
}
|
|
|
|
if (this->type_ != NULL)
|
|
expr = Expression::make_cast(this->type_, expr, this->location());
|
|
return expr->get_backend(context);
|
|
}
|
|
|
|
// Dump ast representation for constant expression.
|
|
|
|
void
|
|
Const_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << this->constant_->name();
|
|
}
|
|
|
|
// Make a reference to a constant in an expression.
|
|
|
|
Expression*
|
|
Expression::make_const_reference(Named_object* constant,
|
|
Location location)
|
|
{
|
|
return new Const_expression(constant, location);
|
|
}
|
|
|
|
// Find a named object in an expression.
|
|
|
|
int
|
|
Find_named_object::expression(Expression** pexpr)
|
|
{
|
|
switch ((*pexpr)->classification())
|
|
{
|
|
case Expression::EXPRESSION_CONST_REFERENCE:
|
|
{
|
|
Const_expression* ce = static_cast<Const_expression*>(*pexpr);
|
|
if (ce->named_object() == this->no_)
|
|
break;
|
|
|
|
// We need to check a constant initializer explicitly, as
|
|
// loops here will not be caught by the loop checking for
|
|
// variable initializers.
|
|
ce->check_for_init_loop();
|
|
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
case Expression::EXPRESSION_VAR_REFERENCE:
|
|
if ((*pexpr)->var_expression()->named_object() == this->no_)
|
|
break;
|
|
return TRAVERSE_CONTINUE;
|
|
case Expression::EXPRESSION_FUNC_REFERENCE:
|
|
if ((*pexpr)->func_expression()->named_object() == this->no_)
|
|
break;
|
|
return TRAVERSE_CONTINUE;
|
|
default:
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
this->found_ = true;
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
|
|
// The nil value.
|
|
|
|
class Nil_expression : public Expression
|
|
{
|
|
public:
|
|
Nil_expression(Location location)
|
|
: Expression(EXPRESSION_NIL, location)
|
|
{ }
|
|
|
|
static Expression*
|
|
do_import(Import*);
|
|
|
|
protected:
|
|
bool
|
|
do_is_constant() const
|
|
{ return true; }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
Type*
|
|
do_type()
|
|
{ return Type::make_nil_type(); }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context)
|
|
{ return context->backend()->nil_pointer_expression(); }
|
|
|
|
void
|
|
do_export(Export_function_body* efb) const
|
|
{ efb->write_c_string("nil"); }
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{ ast_dump_context->ostream() << "nil"; }
|
|
};
|
|
|
|
// Import a nil expression.
|
|
|
|
Expression*
|
|
Nil_expression::do_import(Import* imp)
|
|
{
|
|
imp->require_c_string("nil");
|
|
return Expression::make_nil(imp->location());
|
|
}
|
|
|
|
// Make a nil expression.
|
|
|
|
Expression*
|
|
Expression::make_nil(Location location)
|
|
{
|
|
return new Nil_expression(location);
|
|
}
|
|
|
|
// The value of the predeclared constant iota. This is little more
|
|
// than a marker. This will be lowered to an integer in
|
|
// Const_expression::do_lower, which is where we know the value that
|
|
// it should have.
|
|
|
|
class Iota_expression : public Parser_expression
|
|
{
|
|
public:
|
|
Iota_expression(Location location)
|
|
: Parser_expression(EXPRESSION_IOTA, location)
|
|
{ }
|
|
|
|
protected:
|
|
Expression*
|
|
do_lower(Gogo*, Named_object*, Statement_inserter*, int)
|
|
{ go_unreachable(); }
|
|
|
|
// There should only ever be one of these.
|
|
Expression*
|
|
do_copy()
|
|
{ go_unreachable(); }
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{ ast_dump_context->ostream() << "iota"; }
|
|
};
|
|
|
|
// Make an iota expression. This is only called for one case: the
|
|
// value of the predeclared constant iota.
|
|
|
|
Expression*
|
|
Expression::make_iota()
|
|
{
|
|
static Iota_expression iota_expression(Linemap::unknown_location());
|
|
return &iota_expression;
|
|
}
|
|
|
|
// Class Type_conversion_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Type_conversion_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
|
|
|| Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Convert to a constant at lowering time.
|
|
|
|
Expression*
|
|
Type_conversion_expression::do_lower(Gogo*, Named_object*,
|
|
Statement_inserter*, int)
|
|
{
|
|
Type* type = this->type_;
|
|
Expression* val = this->expr_;
|
|
Location location = this->location();
|
|
|
|
if (type->is_numeric_type())
|
|
{
|
|
Numeric_constant nc;
|
|
if (val->numeric_constant_value(&nc))
|
|
{
|
|
if (!nc.set_type(type, true, location))
|
|
return Expression::make_error(location);
|
|
return nc.expression(location);
|
|
}
|
|
}
|
|
|
|
// According to the language specification on string conversions
|
|
// (http://golang.org/ref/spec#Conversions_to_and_from_a_string_type):
|
|
// When converting an integer into a string, the string will be a UTF-8
|
|
// representation of the integer and integers "outside the range of valid
|
|
// Unicode code points are converted to '\uFFFD'."
|
|
if (type->is_string_type())
|
|
{
|
|
Numeric_constant nc;
|
|
if (val->numeric_constant_value(&nc) && nc.is_int())
|
|
{
|
|
// An integer value doesn't fit in the Unicode code point range if it
|
|
// overflows the Go "int" type or is negative.
|
|
unsigned long ul;
|
|
if (!nc.set_type(Type::lookup_integer_type("int"), false, location)
|
|
|| nc.to_unsigned_long(&ul) == Numeric_constant::NC_UL_NEGATIVE)
|
|
return Expression::make_string("\ufffd", location);
|
|
}
|
|
}
|
|
|
|
if (type->is_slice_type())
|
|
{
|
|
Type* element_type = type->array_type()->element_type()->forwarded();
|
|
bool is_byte = (element_type->integer_type() != NULL
|
|
&& element_type->integer_type()->is_byte());
|
|
bool is_rune = (element_type->integer_type() != NULL
|
|
&& element_type->integer_type()->is_rune());
|
|
if (is_byte || is_rune)
|
|
{
|
|
std::string s;
|
|
if (val->string_constant_value(&s))
|
|
{
|
|
Expression_list* vals = new Expression_list();
|
|
if (is_byte)
|
|
{
|
|
for (std::string::const_iterator p = s.begin();
|
|
p != s.end();
|
|
p++)
|
|
{
|
|
unsigned char c = static_cast<unsigned char>(*p);
|
|
vals->push_back(Expression::make_integer_ul(c,
|
|
element_type,
|
|
location));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const char *p = s.data();
|
|
const char *pend = s.data() + s.length();
|
|
while (p < pend)
|
|
{
|
|
unsigned int c;
|
|
int adv = Lex::fetch_char(p, &c);
|
|
if (adv == 0)
|
|
{
|
|
go_warning_at(this->location(), 0,
|
|
"invalid UTF-8 encoding");
|
|
adv = 1;
|
|
}
|
|
p += adv;
|
|
vals->push_back(Expression::make_integer_ul(c,
|
|
element_type,
|
|
location));
|
|
}
|
|
}
|
|
|
|
return Expression::make_slice_composite_literal(type, vals,
|
|
location);
|
|
}
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Flatten a type conversion by using a temporary variable for the slice
|
|
// in slice to string conversions.
|
|
|
|
Expression*
|
|
Type_conversion_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->type()->is_error_type() || this->expr_->is_error_expression())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
if (((this->type()->is_string_type()
|
|
&& this->expr_->type()->is_slice_type())
|
|
|| this->expr_->type()->interface_type() != NULL)
|
|
&& !this->expr_->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, this->expr_, this->location());
|
|
inserter->insert(temp);
|
|
this->expr_ = Expression::make_temporary_reference(temp, this->location());
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Return whether a type conversion is a constant.
|
|
|
|
bool
|
|
Type_conversion_expression::do_is_constant() const
|
|
{
|
|
if (!this->expr_->is_constant())
|
|
return false;
|
|
|
|
// A conversion to a type that may not be used as a constant is not
|
|
// a constant. For example, []byte(nil).
|
|
Type* type = this->type_;
|
|
if (type->integer_type() == NULL
|
|
&& type->float_type() == NULL
|
|
&& type->complex_type() == NULL
|
|
&& !type->is_boolean_type()
|
|
&& !type->is_string_type())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return whether a type conversion can be used in a constant
|
|
// initializer.
|
|
|
|
bool
|
|
Type_conversion_expression::do_is_static_initializer() const
|
|
{
|
|
Type* type = this->type_;
|
|
Type* expr_type = this->expr_->type();
|
|
|
|
if (type->interface_type() != NULL
|
|
|| expr_type->interface_type() != NULL)
|
|
return false;
|
|
|
|
if (!this->expr_->is_static_initializer())
|
|
return false;
|
|
|
|
if (Type::are_identical(type, expr_type,
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
return true;
|
|
|
|
if (type->is_string_type() && expr_type->is_string_type())
|
|
return true;
|
|
|
|
if ((type->is_numeric_type()
|
|
|| type->is_boolean_type()
|
|
|| type->points_to() != NULL)
|
|
&& (expr_type->is_numeric_type()
|
|
|| expr_type->is_boolean_type()
|
|
|| expr_type->points_to() != NULL))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return the constant numeric value if there is one.
|
|
|
|
bool
|
|
Type_conversion_expression::do_numeric_constant_value(
|
|
Numeric_constant* nc) const
|
|
{
|
|
if (!this->type_->is_numeric_type())
|
|
return false;
|
|
if (!this->expr_->numeric_constant_value(nc))
|
|
return false;
|
|
return nc->set_type(this->type_, false, this->location());
|
|
}
|
|
|
|
// Return the constant string value if there is one.
|
|
|
|
bool
|
|
Type_conversion_expression::do_string_constant_value(std::string* val) const
|
|
{
|
|
if (this->type_->is_string_type()
|
|
&& this->expr_->type()->integer_type() != NULL)
|
|
{
|
|
Numeric_constant nc;
|
|
if (this->expr_->numeric_constant_value(&nc))
|
|
{
|
|
unsigned long ival;
|
|
if (nc.to_unsigned_long(&ival) == Numeric_constant::NC_UL_VALID)
|
|
{
|
|
val->clear();
|
|
Lex::append_char(ival, true, val, this->location());
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// FIXME: Could handle conversion from const []int here.
|
|
|
|
return false;
|
|
}
|
|
|
|
// Determine the resulting type of the conversion.
|
|
|
|
void
|
|
Type_conversion_expression::do_determine_type(const Type_context*)
|
|
{
|
|
Type_context subcontext(this->type_, false);
|
|
this->expr_->determine_type(&subcontext);
|
|
}
|
|
|
|
// Check that types are convertible.
|
|
|
|
void
|
|
Type_conversion_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->type_;
|
|
Type* expr_type = this->expr_->type();
|
|
std::string reason;
|
|
|
|
if (type->is_error() || expr_type->is_error())
|
|
{
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
|
|
if (this->may_convert_function_types_
|
|
&& type->function_type() != NULL
|
|
&& expr_type->function_type() != NULL)
|
|
return;
|
|
|
|
if (Type::are_convertible(type, expr_type, &reason))
|
|
return;
|
|
|
|
go_error_at(this->location(), "%s", reason.c_str());
|
|
this->set_is_error();
|
|
}
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Type_conversion_expression::do_copy()
|
|
{
|
|
return new Type_conversion_expression(this->type_->copy_expressions(),
|
|
this->expr_->copy(),
|
|
this->location());
|
|
}
|
|
|
|
// Get the backend representation for a type conversion.
|
|
|
|
Bexpression*
|
|
Type_conversion_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Type* type = this->type_;
|
|
Type* expr_type = this->expr_->type();
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = type->get_backend(gogo);
|
|
Location loc = this->location();
|
|
|
|
if (Type::are_identical(type, expr_type,
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
{
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
return gogo->backend()->convert_expression(btype, bexpr, loc);
|
|
}
|
|
else if (type->interface_type() != NULL
|
|
|| expr_type->interface_type() != NULL)
|
|
{
|
|
Expression* conversion =
|
|
Expression::convert_for_assignment(gogo, type, this->expr_,
|
|
this->location());
|
|
return conversion->get_backend(context);
|
|
}
|
|
else if (type->is_string_type()
|
|
&& expr_type->integer_type() != NULL)
|
|
{
|
|
mpz_t intval;
|
|
Numeric_constant nc;
|
|
if (this->expr_->numeric_constant_value(&nc)
|
|
&& nc.to_int(&intval)
|
|
&& mpz_fits_ushort_p(intval))
|
|
{
|
|
std::string s;
|
|
Lex::append_char(mpz_get_ui(intval), true, &s, loc);
|
|
mpz_clear(intval);
|
|
Expression* se = Expression::make_string(s, loc);
|
|
return se->get_backend(context);
|
|
}
|
|
|
|
Expression* i2s_expr =
|
|
Runtime::make_call(Runtime::INTSTRING, loc, 2,
|
|
Expression::make_nil(loc), this->expr_);
|
|
return Expression::make_cast(type, i2s_expr, loc)->get_backend(context);
|
|
}
|
|
else if (type->is_string_type() && expr_type->is_slice_type())
|
|
{
|
|
Array_type* a = expr_type->array_type();
|
|
Type* e = a->element_type()->forwarded();
|
|
go_assert(e->integer_type() != NULL);
|
|
go_assert(this->expr_->is_variable());
|
|
|
|
Runtime::Function code;
|
|
if (e->integer_type()->is_byte())
|
|
code = Runtime::SLICEBYTETOSTRING;
|
|
else
|
|
{
|
|
go_assert(e->integer_type()->is_rune());
|
|
code = Runtime::SLICERUNETOSTRING;
|
|
}
|
|
return Runtime::make_call(code, loc, 2, Expression::make_nil(loc),
|
|
this->expr_)->get_backend(context);
|
|
}
|
|
else if (type->is_slice_type() && expr_type->is_string_type())
|
|
{
|
|
Type* e = type->array_type()->element_type()->forwarded();
|
|
go_assert(e->integer_type() != NULL);
|
|
|
|
Runtime::Function code;
|
|
if (e->integer_type()->is_byte())
|
|
code = Runtime::STRINGTOSLICEBYTE;
|
|
else
|
|
{
|
|
go_assert(e->integer_type()->is_rune());
|
|
code = Runtime::STRINGTOSLICERUNE;
|
|
}
|
|
Expression* s2a = Runtime::make_call(code, loc, 2,
|
|
Expression::make_nil(loc),
|
|
this->expr_);
|
|
return Expression::make_unsafe_cast(type, s2a, loc)->get_backend(context);
|
|
}
|
|
else if (type->is_numeric_type())
|
|
{
|
|
go_assert(Type::are_convertible(type, expr_type, NULL));
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
return gogo->backend()->convert_expression(btype, bexpr, loc);
|
|
}
|
|
else if ((type->is_unsafe_pointer_type()
|
|
&& (expr_type->points_to() != NULL
|
|
|| expr_type->integer_type()))
|
|
|| (expr_type->is_unsafe_pointer_type()
|
|
&& type->points_to() != NULL)
|
|
|| (this->may_convert_function_types_
|
|
&& type->function_type() != NULL
|
|
&& expr_type->function_type() != NULL))
|
|
{
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
return gogo->backend()->convert_expression(btype, bexpr, loc);
|
|
}
|
|
else
|
|
{
|
|
Expression* conversion =
|
|
Expression::convert_for_assignment(gogo, type, this->expr_, loc);
|
|
return conversion->get_backend(context);
|
|
}
|
|
}
|
|
|
|
// Output a type conversion in a constant expression.
|
|
|
|
void
|
|
Type_conversion_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
efb->write_c_string("convert(");
|
|
efb->write_type(this->type_);
|
|
efb->write_c_string(", ");
|
|
this->expr_->export_expression(efb);
|
|
efb->write_c_string(")");
|
|
}
|
|
|
|
// Import a type conversion or a struct construction.
|
|
|
|
Expression*
|
|
Type_conversion_expression::do_import(Import* imp)
|
|
{
|
|
imp->require_c_string("convert(");
|
|
Type* type = imp->read_type();
|
|
imp->require_c_string(", ");
|
|
Expression* val = Expression::import_expression(imp);
|
|
imp->require_c_string(")");
|
|
return Expression::make_cast(type, val, imp->location());
|
|
}
|
|
|
|
// Dump ast representation for a type conversion expression.
|
|
|
|
void
|
|
Type_conversion_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << "(";
|
|
ast_dump_context->dump_expression(this->expr_);
|
|
ast_dump_context->ostream() << ") ";
|
|
}
|
|
|
|
// Make a type cast expression.
|
|
|
|
Expression*
|
|
Expression::make_cast(Type* type, Expression* val, Location location)
|
|
{
|
|
if (type->is_error_type() || val->is_error_expression())
|
|
return Expression::make_error(location);
|
|
return new Type_conversion_expression(type, val, location);
|
|
}
|
|
|
|
// Class Unsafe_type_conversion_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Unsafe_type_conversion_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
|
|
|| Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Return whether an unsafe type conversion can be used as a constant
|
|
// initializer.
|
|
|
|
bool
|
|
Unsafe_type_conversion_expression::do_is_static_initializer() const
|
|
{
|
|
Type* type = this->type_;
|
|
Type* expr_type = this->expr_->type();
|
|
|
|
if (type->interface_type() != NULL
|
|
|| expr_type->interface_type() != NULL)
|
|
return false;
|
|
|
|
if (!this->expr_->is_static_initializer())
|
|
return false;
|
|
|
|
if (Type::are_convertible(type, expr_type, NULL))
|
|
return true;
|
|
|
|
if (type->is_string_type() && expr_type->is_string_type())
|
|
return true;
|
|
|
|
if ((type->is_numeric_type()
|
|
|| type->is_boolean_type()
|
|
|| type->points_to() != NULL)
|
|
&& (expr_type->is_numeric_type()
|
|
|| expr_type->is_boolean_type()
|
|
|| expr_type->points_to() != NULL))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Unsafe_type_conversion_expression::do_copy()
|
|
{
|
|
return new Unsafe_type_conversion_expression(this->type_->copy_expressions(),
|
|
this->expr_->copy(),
|
|
this->location());
|
|
}
|
|
|
|
// Convert to backend representation.
|
|
|
|
Bexpression*
|
|
Unsafe_type_conversion_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
// We are only called for a limited number of cases.
|
|
|
|
Type* t = this->type_;
|
|
Type* et = this->expr_->type();
|
|
|
|
if (t->is_error_type()
|
|
|| this->expr_->is_error_expression()
|
|
|| et->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
if (t->array_type() != NULL)
|
|
go_assert(et->array_type() != NULL
|
|
&& t->is_slice_type() == et->is_slice_type());
|
|
else if (t->struct_type() != NULL)
|
|
{
|
|
if (t->named_type() != NULL
|
|
&& et->named_type() != NULL
|
|
&& !Type::are_convertible(t, et, NULL))
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
go_assert(et->struct_type() != NULL
|
|
&& Type::are_convertible(t, et, NULL));
|
|
}
|
|
else if (t->map_type() != NULL)
|
|
go_assert(et->map_type() != NULL);
|
|
else if (t->channel_type() != NULL)
|
|
go_assert(et->channel_type() != NULL);
|
|
else if (t->points_to() != NULL)
|
|
go_assert(et->points_to() != NULL
|
|
|| et->channel_type() != NULL
|
|
|| et->map_type() != NULL
|
|
|| et->function_type() != NULL
|
|
|| et->integer_type() != NULL
|
|
|| et->is_nil_type());
|
|
else if (et->is_unsafe_pointer_type())
|
|
go_assert(t->points_to() != NULL);
|
|
else if (t->interface_type() != NULL)
|
|
{
|
|
bool empty_iface = t->interface_type()->is_empty();
|
|
go_assert(et->interface_type() != NULL
|
|
&& et->interface_type()->is_empty() == empty_iface);
|
|
}
|
|
else if (t->integer_type() != NULL)
|
|
go_assert(et->is_boolean_type()
|
|
|| et->integer_type() != NULL
|
|
|| et->function_type() != NULL
|
|
|| et->points_to() != NULL
|
|
|| et->map_type() != NULL
|
|
|| et->channel_type() != NULL
|
|
|| et->is_nil_type());
|
|
else if (t->function_type() != NULL)
|
|
go_assert(et->points_to() != NULL);
|
|
else
|
|
go_unreachable();
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = t->get_backend(gogo);
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
Location loc = this->location();
|
|
return gogo->backend()->convert_expression(btype, bexpr, loc);
|
|
}
|
|
|
|
// Dump ast representation for an unsafe type conversion expression.
|
|
|
|
void
|
|
Unsafe_type_conversion_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << "(";
|
|
ast_dump_context->dump_expression(this->expr_);
|
|
ast_dump_context->ostream() << ") ";
|
|
}
|
|
|
|
// Make an unsafe type conversion expression.
|
|
|
|
Expression*
|
|
Expression::make_unsafe_cast(Type* type, Expression* expr,
|
|
Location location)
|
|
{
|
|
return new Unsafe_type_conversion_expression(type, expr, location);
|
|
}
|
|
|
|
// Class Unary_expression.
|
|
|
|
// Call the address_taken method of the operand if needed. This is
|
|
// called after escape analysis but before inserting write barriers.
|
|
|
|
void
|
|
Unary_expression::check_operand_address_taken(Gogo*)
|
|
{
|
|
if (this->op_ != OPERATOR_AND)
|
|
return;
|
|
|
|
// If this->escapes_ is false at this point, then it was set to
|
|
// false by an explicit call to set_does_not_escape, and the value
|
|
// does not escape. If this->escapes_ is true, we may be able to
|
|
// set it to false if taking the address of a variable that does not
|
|
// escape.
|
|
Node* n = Node::make_node(this);
|
|
if ((n->encoding() & ESCAPE_MASK) == int(Node::ESCAPE_NONE))
|
|
this->escapes_ = false;
|
|
|
|
Named_object* var = NULL;
|
|
if (this->expr_->var_expression() != NULL)
|
|
var = this->expr_->var_expression()->named_object();
|
|
else if (this->expr_->enclosed_var_expression() != NULL)
|
|
var = this->expr_->enclosed_var_expression()->variable();
|
|
|
|
if (this->escapes_ && var != NULL)
|
|
{
|
|
if (var->is_variable())
|
|
this->escapes_ = var->var_value()->escapes();
|
|
if (var->is_result_variable())
|
|
this->escapes_ = var->result_var_value()->escapes();
|
|
}
|
|
|
|
this->expr_->address_taken(this->escapes_);
|
|
}
|
|
|
|
// If we are taking the address of a composite literal, and the
|
|
// contents are not constant, then we want to make a heap expression
|
|
// instead.
|
|
|
|
Expression*
|
|
Unary_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
|
|
{
|
|
Location loc = this->location();
|
|
Operator op = this->op_;
|
|
Expression* expr = this->expr_;
|
|
|
|
if (op == OPERATOR_MULT && expr->is_type_expression())
|
|
return Expression::make_type(Type::make_pointer_type(expr->type()), loc);
|
|
|
|
// *&x simplifies to x. *(*T)(unsafe.Pointer)(&x) does not require
|
|
// moving x to the heap. FIXME: Is it worth doing a real escape
|
|
// analysis here? This case is found in math/unsafe.go and is
|
|
// therefore worth special casing.
|
|
if (op == OPERATOR_MULT)
|
|
{
|
|
Expression* e = expr;
|
|
while (e->classification() == EXPRESSION_CONVERSION)
|
|
{
|
|
Type_conversion_expression* te
|
|
= static_cast<Type_conversion_expression*>(e);
|
|
e = te->expr();
|
|
}
|
|
|
|
if (e->classification() == EXPRESSION_UNARY)
|
|
{
|
|
Unary_expression* ue = static_cast<Unary_expression*>(e);
|
|
if (ue->op_ == OPERATOR_AND)
|
|
{
|
|
if (e == expr)
|
|
{
|
|
// *&x == x.
|
|
if (!ue->expr_->is_addressable() && !ue->create_temp_)
|
|
{
|
|
go_error_at(ue->location(),
|
|
"invalid operand for unary %<&%>");
|
|
this->set_is_error();
|
|
}
|
|
return ue->expr_;
|
|
}
|
|
ue->set_does_not_escape();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Catching an invalid indirection of unsafe.Pointer here avoid
|
|
// having to deal with TYPE_VOID in other places.
|
|
if (op == OPERATOR_MULT && expr->type()->is_unsafe_pointer_type())
|
|
{
|
|
go_error_at(this->location(), "invalid indirect of %<unsafe.Pointer%>");
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
// Check for an invalid pointer dereference. We need to do this
|
|
// here because Unary_expression::do_type will return an error type
|
|
// in this case. That can cause code to appear erroneous, and
|
|
// therefore disappear at lowering time, without any error message.
|
|
if (op == OPERATOR_MULT && expr->type()->points_to() == NULL)
|
|
{
|
|
this->report_error(_("expected pointer"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
if (op == OPERATOR_PLUS || op == OPERATOR_MINUS || op == OPERATOR_XOR)
|
|
{
|
|
Numeric_constant nc;
|
|
if (expr->numeric_constant_value(&nc))
|
|
{
|
|
Numeric_constant result;
|
|
bool issued_error;
|
|
if (Unary_expression::eval_constant(op, &nc, loc, &result,
|
|
&issued_error))
|
|
return result.expression(loc);
|
|
else if (issued_error)
|
|
return Expression::make_error(this->location());
|
|
}
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Flatten expression if a nil check must be performed and create temporary
|
|
// variables if necessary.
|
|
|
|
Expression*
|
|
Unary_expression::do_flatten(Gogo* gogo, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->is_error_expression()
|
|
|| this->expr_->is_error_expression()
|
|
|| this->expr_->type()->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
Location location = this->location();
|
|
if (this->op_ == OPERATOR_MULT
|
|
&& !this->expr_->is_variable())
|
|
{
|
|
go_assert(this->expr_->type()->points_to() != NULL);
|
|
switch (this->requires_nil_check(gogo))
|
|
{
|
|
case NIL_CHECK_ERROR_ENCOUNTERED:
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
case NIL_CHECK_NOT_NEEDED:
|
|
break;
|
|
case NIL_CHECK_NEEDED:
|
|
this->create_temp_ = true;
|
|
break;
|
|
case NIL_CHECK_DEFAULT:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
if (this->create_temp_ && !this->expr_->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, this->expr_, location);
|
|
inserter->insert(temp);
|
|
this->expr_ = Expression::make_temporary_reference(temp, location);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Return whether a unary expression is a constant.
|
|
|
|
bool
|
|
Unary_expression::do_is_constant() const
|
|
{
|
|
if (this->op_ == OPERATOR_MULT)
|
|
{
|
|
// Indirecting through a pointer is only constant if the object
|
|
// to which the expression points is constant, but we currently
|
|
// have no way to determine that.
|
|
return false;
|
|
}
|
|
else if (this->op_ == OPERATOR_AND)
|
|
{
|
|
// Taking the address of a variable is constant if it is a
|
|
// global variable, not constant otherwise. In other cases taking the
|
|
// address is probably not a constant.
|
|
Var_expression* ve = this->expr_->var_expression();
|
|
if (ve != NULL)
|
|
{
|
|
Named_object* no = ve->named_object();
|
|
return no->is_variable() && no->var_value()->is_global();
|
|
}
|
|
return false;
|
|
}
|
|
else
|
|
return this->expr_->is_constant();
|
|
}
|
|
|
|
// Return whether a unary expression can be used as a constant
|
|
// initializer.
|
|
|
|
bool
|
|
Unary_expression::do_is_static_initializer() const
|
|
{
|
|
if (this->op_ == OPERATOR_MULT)
|
|
return false;
|
|
else if (this->op_ == OPERATOR_AND)
|
|
return Unary_expression::base_is_static_initializer(this->expr_);
|
|
else
|
|
return this->expr_->is_static_initializer();
|
|
}
|
|
|
|
// Return whether the address of EXPR can be used as a static
|
|
// initializer.
|
|
|
|
bool
|
|
Unary_expression::base_is_static_initializer(Expression* expr)
|
|
{
|
|
// The address of a field reference can be a static initializer if
|
|
// the base can be a static initializer.
|
|
Field_reference_expression* fre = expr->field_reference_expression();
|
|
if (fre != NULL)
|
|
return Unary_expression::base_is_static_initializer(fre->expr());
|
|
|
|
// The address of an index expression can be a static initializer if
|
|
// the base can be a static initializer and the index is constant.
|
|
Array_index_expression* aind = expr->array_index_expression();
|
|
if (aind != NULL)
|
|
return (aind->end() == NULL
|
|
&& aind->start()->is_constant()
|
|
&& Unary_expression::base_is_static_initializer(aind->array()));
|
|
|
|
// The address of a global variable can be a static initializer.
|
|
Var_expression* ve = expr->var_expression();
|
|
if (ve != NULL)
|
|
{
|
|
Named_object* no = ve->named_object();
|
|
return no->is_variable() && no->var_value()->is_global();
|
|
}
|
|
|
|
// The address of a composite literal can be used as a static
|
|
// initializer if the composite literal is itself usable as a
|
|
// static initializer.
|
|
if (expr->is_composite_literal() && expr->is_static_initializer())
|
|
return true;
|
|
|
|
// The address of a string constant can be used as a static
|
|
// initializer. This can not be written in Go itself but this is
|
|
// used when building a type descriptor.
|
|
if (expr->string_expression() != NULL)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return whether this dereference expression requires an explicit nil
|
|
// check. If we are dereferencing the pointer to a large struct
|
|
// (greater than the specified size threshold), we need to check for
|
|
// nil. We don't bother to check for small structs because we expect
|
|
// the system to crash on a nil pointer dereference. However, if we
|
|
// know the address of this expression is being taken, we must always
|
|
// check for nil.
|
|
Unary_expression::Nil_check_classification
|
|
Unary_expression::requires_nil_check(Gogo* gogo)
|
|
{
|
|
go_assert(this->op_ == OPERATOR_MULT);
|
|
go_assert(this->expr_->type()->points_to() != NULL);
|
|
|
|
if (this->issue_nil_check_ == NIL_CHECK_NEEDED)
|
|
return NIL_CHECK_NEEDED;
|
|
else if (this->issue_nil_check_ == NIL_CHECK_NOT_NEEDED)
|
|
return NIL_CHECK_NOT_NEEDED;
|
|
|
|
Type* ptype = this->expr_->type()->points_to();
|
|
int64_t type_size = -1;
|
|
if (!ptype->is_void_type())
|
|
{
|
|
bool ok = ptype->backend_type_size(gogo, &type_size);
|
|
if (!ok)
|
|
return NIL_CHECK_ERROR_ENCOUNTERED;
|
|
}
|
|
|
|
int64_t size_cutoff = gogo->nil_check_size_threshold();
|
|
if (size_cutoff == -1 || (type_size != -1 && type_size >= size_cutoff))
|
|
this->issue_nil_check_ = NIL_CHECK_NEEDED;
|
|
else
|
|
this->issue_nil_check_ = NIL_CHECK_NOT_NEEDED;
|
|
return this->issue_nil_check_;
|
|
}
|
|
|
|
// Apply unary opcode OP to UNC, setting NC. Return true if this
|
|
// could be done, false if not. On overflow, issues an error and sets
|
|
// *ISSUED_ERROR.
|
|
|
|
bool
|
|
Unary_expression::eval_constant(Operator op, const Numeric_constant* unc,
|
|
Location location, Numeric_constant* nc,
|
|
bool* issued_error)
|
|
{
|
|
*issued_error = false;
|
|
switch (op)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
*nc = *unc;
|
|
return true;
|
|
|
|
case OPERATOR_MINUS:
|
|
if (unc->is_int() || unc->is_rune())
|
|
break;
|
|
else if (unc->is_float())
|
|
{
|
|
mpfr_t uval;
|
|
unc->get_float(&uval);
|
|
mpfr_t val;
|
|
mpfr_init(val);
|
|
mpfr_neg(val, uval, GMP_RNDN);
|
|
nc->set_float(unc->type(), val);
|
|
mpfr_clear(uval);
|
|
mpfr_clear(val);
|
|
return true;
|
|
}
|
|
else if (unc->is_complex())
|
|
{
|
|
mpc_t uval;
|
|
unc->get_complex(&uval);
|
|
mpc_t val;
|
|
mpc_init2(val, mpc_precision);
|
|
mpc_neg(val, uval, MPC_RNDNN);
|
|
nc->set_complex(unc->type(), val);
|
|
mpc_clear(uval);
|
|
mpc_clear(val);
|
|
return true;
|
|
}
|
|
else
|
|
go_unreachable();
|
|
|
|
case OPERATOR_XOR:
|
|
break;
|
|
|
|
case OPERATOR_NOT:
|
|
case OPERATOR_AND:
|
|
case OPERATOR_MULT:
|
|
return false;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
if (!unc->is_int() && !unc->is_rune())
|
|
return false;
|
|
|
|
mpz_t uval;
|
|
if (unc->is_rune())
|
|
unc->get_rune(&uval);
|
|
else
|
|
unc->get_int(&uval);
|
|
mpz_t val;
|
|
mpz_init(val);
|
|
|
|
switch (op)
|
|
{
|
|
case OPERATOR_MINUS:
|
|
mpz_neg(val, uval);
|
|
break;
|
|
|
|
case OPERATOR_NOT:
|
|
mpz_set_ui(val, mpz_cmp_si(uval, 0) == 0 ? 1 : 0);
|
|
break;
|
|
|
|
case OPERATOR_XOR:
|
|
{
|
|
Type* utype = unc->type();
|
|
if (utype->integer_type() == NULL
|
|
|| utype->integer_type()->is_abstract())
|
|
mpz_com(val, uval);
|
|
else
|
|
{
|
|
// The number of HOST_WIDE_INTs that it takes to represent
|
|
// UVAL.
|
|
size_t count = ((mpz_sizeinbase(uval, 2)
|
|
+ HOST_BITS_PER_WIDE_INT
|
|
- 1)
|
|
/ HOST_BITS_PER_WIDE_INT);
|
|
|
|
unsigned HOST_WIDE_INT* phwi = new unsigned HOST_WIDE_INT[count];
|
|
memset(phwi, 0, count * sizeof(HOST_WIDE_INT));
|
|
|
|
size_t obits = utype->integer_type()->bits();
|
|
|
|
if (!utype->integer_type()->is_unsigned() && mpz_sgn(uval) < 0)
|
|
{
|
|
mpz_t adj;
|
|
mpz_init_set_ui(adj, 1);
|
|
mpz_mul_2exp(adj, adj, obits);
|
|
mpz_add(uval, uval, adj);
|
|
mpz_clear(adj);
|
|
}
|
|
|
|
size_t ecount;
|
|
mpz_export(phwi, &ecount, -1, sizeof(HOST_WIDE_INT), 0, 0, uval);
|
|
go_assert(ecount <= count);
|
|
|
|
// Trim down to the number of words required by the type.
|
|
size_t ocount = ((obits + HOST_BITS_PER_WIDE_INT - 1)
|
|
/ HOST_BITS_PER_WIDE_INT);
|
|
go_assert(ocount <= count);
|
|
|
|
for (size_t i = 0; i < ocount; ++i)
|
|
phwi[i] = ~phwi[i];
|
|
|
|
size_t clearbits = ocount * HOST_BITS_PER_WIDE_INT - obits;
|
|
if (clearbits != 0)
|
|
phwi[ocount - 1] &= (((unsigned HOST_WIDE_INT) (HOST_WIDE_INT) -1)
|
|
>> clearbits);
|
|
|
|
mpz_import(val, ocount, -1, sizeof(HOST_WIDE_INT), 0, 0, phwi);
|
|
|
|
if (!utype->integer_type()->is_unsigned()
|
|
&& mpz_tstbit(val, obits - 1))
|
|
{
|
|
mpz_t adj;
|
|
mpz_init_set_ui(adj, 1);
|
|
mpz_mul_2exp(adj, adj, obits);
|
|
mpz_sub(val, val, adj);
|
|
mpz_clear(adj);
|
|
}
|
|
|
|
delete[] phwi;
|
|
}
|
|
}
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
if (unc->is_rune())
|
|
nc->set_rune(NULL, val);
|
|
else
|
|
nc->set_int(NULL, val);
|
|
|
|
mpz_clear(uval);
|
|
mpz_clear(val);
|
|
|
|
if (!nc->set_type(unc->type(), true, location))
|
|
{
|
|
*issued_error = true;
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return the integral constant value of a unary expression, if it has one.
|
|
|
|
bool
|
|
Unary_expression::do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
Numeric_constant unc;
|
|
if (!this->expr_->numeric_constant_value(&unc))
|
|
return false;
|
|
bool issued_error;
|
|
return Unary_expression::eval_constant(this->op_, &unc, this->location(),
|
|
nc, &issued_error);
|
|
}
|
|
|
|
// Return the type of a unary expression.
|
|
|
|
Type*
|
|
Unary_expression::do_type()
|
|
{
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
case OPERATOR_MINUS:
|
|
case OPERATOR_NOT:
|
|
case OPERATOR_XOR:
|
|
return this->expr_->type();
|
|
|
|
case OPERATOR_AND:
|
|
return Type::make_pointer_type(this->expr_->type());
|
|
|
|
case OPERATOR_MULT:
|
|
{
|
|
Type* subtype = this->expr_->type();
|
|
Type* points_to = subtype->points_to();
|
|
if (points_to == NULL)
|
|
return Type::make_error_type();
|
|
return points_to;
|
|
}
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Determine abstract types for a unary expression.
|
|
|
|
void
|
|
Unary_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
case OPERATOR_MINUS:
|
|
case OPERATOR_NOT:
|
|
case OPERATOR_XOR:
|
|
this->expr_->determine_type(context);
|
|
break;
|
|
|
|
case OPERATOR_AND:
|
|
// Taking the address of something.
|
|
{
|
|
Type* subtype = (context->type == NULL
|
|
? NULL
|
|
: context->type->points_to());
|
|
Type_context subcontext(subtype, false);
|
|
this->expr_->determine_type(&subcontext);
|
|
}
|
|
break;
|
|
|
|
case OPERATOR_MULT:
|
|
// Indirecting through a pointer.
|
|
{
|
|
Type* subtype = (context->type == NULL
|
|
? NULL
|
|
: Type::make_pointer_type(context->type));
|
|
Type_context subcontext(subtype, false);
|
|
this->expr_->determine_type(&subcontext);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Check types for a unary expression.
|
|
|
|
void
|
|
Unary_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->expr_->type();
|
|
if (type->is_error())
|
|
{
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
case OPERATOR_MINUS:
|
|
if (type->integer_type() == NULL
|
|
&& type->float_type() == NULL
|
|
&& type->complex_type() == NULL)
|
|
this->report_error(_("expected numeric type"));
|
|
break;
|
|
|
|
case OPERATOR_NOT:
|
|
if (!type->is_boolean_type())
|
|
this->report_error(_("expected boolean type"));
|
|
break;
|
|
|
|
case OPERATOR_XOR:
|
|
if (type->integer_type() == NULL)
|
|
this->report_error(_("expected integer"));
|
|
break;
|
|
|
|
case OPERATOR_AND:
|
|
if (!this->expr_->is_addressable())
|
|
{
|
|
if (!this->create_temp_)
|
|
{
|
|
go_error_at(this->location(), "invalid operand for unary %<&%>");
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
else
|
|
this->expr_->issue_nil_check();
|
|
break;
|
|
|
|
case OPERATOR_MULT:
|
|
// Indirecting through a pointer.
|
|
if (type->points_to() == NULL)
|
|
this->report_error(_("expected pointer"));
|
|
if (type->points_to()->is_error())
|
|
this->set_is_error();
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Get the backend representation for a unary expression.
|
|
|
|
Bexpression*
|
|
Unary_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Location loc = this->location();
|
|
|
|
// Taking the address of a set-and-use-temporary expression requires
|
|
// setting the temporary and then taking the address.
|
|
if (this->op_ == OPERATOR_AND)
|
|
{
|
|
Set_and_use_temporary_expression* sut =
|
|
this->expr_->set_and_use_temporary_expression();
|
|
if (sut != NULL)
|
|
{
|
|
Temporary_statement* temp = sut->temporary();
|
|
Bvariable* bvar = temp->get_backend_variable(context);
|
|
Bexpression* bvar_expr =
|
|
gogo->backend()->var_expression(bvar, loc);
|
|
Bexpression* bval = sut->expression()->get_backend(context);
|
|
|
|
Named_object* fn = context->function();
|
|
go_assert(fn != NULL);
|
|
Bfunction* bfn =
|
|
fn->func_value()->get_or_make_decl(gogo, fn);
|
|
Bstatement* bassign =
|
|
gogo->backend()->assignment_statement(bfn, bvar_expr, bval, loc);
|
|
Bexpression* bvar_addr =
|
|
gogo->backend()->address_expression(bvar_expr, loc);
|
|
return gogo->backend()->compound_expression(bassign, bvar_addr, loc);
|
|
}
|
|
}
|
|
|
|
Bexpression* ret;
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
Btype* btype = this->expr_->type()->get_backend(gogo);
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
ret = bexpr;
|
|
break;
|
|
|
|
case OPERATOR_MINUS:
|
|
ret = gogo->backend()->unary_expression(this->op_, bexpr, loc);
|
|
ret = gogo->backend()->convert_expression(btype, ret, loc);
|
|
break;
|
|
|
|
case OPERATOR_NOT:
|
|
case OPERATOR_XOR:
|
|
ret = gogo->backend()->unary_expression(this->op_, bexpr, loc);
|
|
break;
|
|
|
|
case OPERATOR_AND:
|
|
if (!this->create_temp_)
|
|
{
|
|
// We should not see a non-constant constructor here; cases
|
|
// where we would see one should have been moved onto the
|
|
// heap at parse time. Taking the address of a nonconstant
|
|
// constructor will not do what the programmer expects.
|
|
|
|
go_assert(!this->expr_->is_composite_literal()
|
|
|| this->expr_->is_static_initializer());
|
|
if (this->expr_->classification() == EXPRESSION_UNARY)
|
|
{
|
|
Unary_expression* ue =
|
|
static_cast<Unary_expression*>(this->expr_);
|
|
go_assert(ue->op() != OPERATOR_AND);
|
|
}
|
|
}
|
|
|
|
if (this->is_gc_root_ || this->is_slice_init_)
|
|
{
|
|
std::string var_name;
|
|
bool copy_to_heap = false;
|
|
if (this->is_gc_root_)
|
|
{
|
|
// Build a decl for a GC root variable. GC roots are mutable, so
|
|
// they cannot be represented as an immutable_struct in the
|
|
// backend.
|
|
var_name = gogo->gc_root_name();
|
|
}
|
|
else
|
|
{
|
|
// Build a decl for a slice value initializer. An immutable slice
|
|
// value initializer may have to be copied to the heap if it
|
|
// contains pointers in a non-constant context.
|
|
var_name = gogo->initializer_name();
|
|
|
|
Array_type* at = this->expr_->type()->array_type();
|
|
go_assert(at != NULL);
|
|
|
|
// If we are not copying the value to the heap, we will only
|
|
// initialize the value once, so we can use this directly
|
|
// rather than copying it. In that case we can't make it
|
|
// read-only, because the program is permitted to change it.
|
|
copy_to_heap = (context->function() != NULL
|
|
|| context->is_const());
|
|
}
|
|
std::string asm_name(go_selectively_encode_id(var_name));
|
|
Bvariable* implicit =
|
|
gogo->backend()->implicit_variable(var_name, asm_name,
|
|
btype, true, copy_to_heap,
|
|
false, 0);
|
|
gogo->backend()->implicit_variable_set_init(implicit, var_name, btype,
|
|
true, copy_to_heap, false,
|
|
bexpr);
|
|
bexpr = gogo->backend()->var_expression(implicit, loc);
|
|
|
|
// If we are not copying a slice initializer to the heap,
|
|
// then it can be changed by the program, so if it can
|
|
// contain pointers we must register it as a GC root.
|
|
if (this->is_slice_init_
|
|
&& !copy_to_heap
|
|
&& this->expr_->type()->has_pointer())
|
|
{
|
|
Bexpression* root =
|
|
gogo->backend()->var_expression(implicit, loc);
|
|
root = gogo->backend()->address_expression(root, loc);
|
|
Type* type = Type::make_pointer_type(this->expr_->type());
|
|
gogo->add_gc_root(Expression::make_backend(root, type, loc));
|
|
}
|
|
}
|
|
else if ((this->expr_->is_composite_literal()
|
|
|| this->expr_->string_expression() != NULL)
|
|
&& this->expr_->is_static_initializer())
|
|
{
|
|
std::string var_name(gogo->initializer_name());
|
|
std::string asm_name(go_selectively_encode_id(var_name));
|
|
Bvariable* decl =
|
|
gogo->backend()->immutable_struct(var_name, asm_name,
|
|
true, false, btype, loc);
|
|
gogo->backend()->immutable_struct_set_init(decl, var_name, true,
|
|
false, btype, loc, bexpr);
|
|
bexpr = gogo->backend()->var_expression(decl, loc);
|
|
}
|
|
|
|
go_assert(!this->create_temp_ || this->expr_->is_variable());
|
|
ret = gogo->backend()->address_expression(bexpr, loc);
|
|
break;
|
|
|
|
case OPERATOR_MULT:
|
|
{
|
|
go_assert(this->expr_->type()->points_to() != NULL);
|
|
|
|
bool known_valid = false;
|
|
Type* ptype = this->expr_->type()->points_to();
|
|
Btype* pbtype = ptype->get_backend(gogo);
|
|
switch (this->requires_nil_check(gogo))
|
|
{
|
|
case NIL_CHECK_NOT_NEEDED:
|
|
break;
|
|
case NIL_CHECK_ERROR_ENCOUNTERED:
|
|
{
|
|
go_assert(saw_errors());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
case NIL_CHECK_NEEDED:
|
|
{
|
|
go_assert(this->expr_->is_variable());
|
|
|
|
// If we're nil-checking the result of a set-and-use-temporary
|
|
// expression, then pick out the target temp and use that
|
|
// for the final result of the conditional.
|
|
Bexpression* tbexpr = bexpr;
|
|
Bexpression* ubexpr = bexpr;
|
|
Set_and_use_temporary_expression* sut =
|
|
this->expr_->set_and_use_temporary_expression();
|
|
if (sut != NULL) {
|
|
Temporary_statement* temp = sut->temporary();
|
|
Bvariable* bvar = temp->get_backend_variable(context);
|
|
ubexpr = gogo->backend()->var_expression(bvar, loc);
|
|
}
|
|
Bexpression* nil =
|
|
Expression::make_nil(loc)->get_backend(context);
|
|
Bexpression* compare =
|
|
gogo->backend()->binary_expression(OPERATOR_EQEQ, tbexpr,
|
|
nil, loc);
|
|
Bexpression* crash =
|
|
gogo->runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
|
|
loc)->get_backend(context);
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
bexpr = gogo->backend()->conditional_expression(bfn, btype,
|
|
compare,
|
|
crash, ubexpr,
|
|
loc);
|
|
known_valid = true;
|
|
break;
|
|
}
|
|
case NIL_CHECK_DEFAULT:
|
|
go_unreachable();
|
|
}
|
|
ret = gogo->backend()->indirect_expression(pbtype, bexpr,
|
|
known_valid, loc);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Export a unary expression.
|
|
|
|
void
|
|
Unary_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
efb->write_c_string("+ ");
|
|
break;
|
|
case OPERATOR_MINUS:
|
|
efb->write_c_string("- ");
|
|
break;
|
|
case OPERATOR_NOT:
|
|
efb->write_c_string("! ");
|
|
break;
|
|
case OPERATOR_XOR:
|
|
efb->write_c_string("^ ");
|
|
break;
|
|
case OPERATOR_AND:
|
|
case OPERATOR_MULT:
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
this->expr_->export_expression(efb);
|
|
}
|
|
|
|
// Import a unary expression.
|
|
|
|
Expression*
|
|
Unary_expression::do_import(Import* imp)
|
|
{
|
|
Operator op;
|
|
switch (imp->get_char())
|
|
{
|
|
case '+':
|
|
op = OPERATOR_PLUS;
|
|
break;
|
|
case '-':
|
|
op = OPERATOR_MINUS;
|
|
break;
|
|
case '!':
|
|
op = OPERATOR_NOT;
|
|
break;
|
|
case '^':
|
|
op = OPERATOR_XOR;
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
imp->require_c_string(" ");
|
|
Expression* expr = Expression::import_expression(imp);
|
|
return Expression::make_unary(op, expr, imp->location());
|
|
}
|
|
|
|
// Dump ast representation of an unary expression.
|
|
|
|
void
|
|
Unary_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->dump_operator(this->op_);
|
|
ast_dump_context->ostream() << "(";
|
|
ast_dump_context->dump_expression(this->expr_);
|
|
ast_dump_context->ostream() << ") ";
|
|
}
|
|
|
|
// Make a unary expression.
|
|
|
|
Expression*
|
|
Expression::make_unary(Operator op, Expression* expr, Location location)
|
|
{
|
|
return new Unary_expression(op, expr, location);
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_dereference(Expression* ptr,
|
|
Nil_check_classification docheck,
|
|
Location location)
|
|
{
|
|
Expression* deref = Expression::make_unary(OPERATOR_MULT, ptr, location);
|
|
if (docheck == NIL_CHECK_NEEDED)
|
|
deref->unary_expression()->set_requires_nil_check(true);
|
|
else if (docheck == NIL_CHECK_NOT_NEEDED)
|
|
deref->unary_expression()->set_requires_nil_check(false);
|
|
return deref;
|
|
}
|
|
|
|
// If this is an indirection through a pointer, return the expression
|
|
// being pointed through. Otherwise return this.
|
|
|
|
Expression*
|
|
Expression::deref()
|
|
{
|
|
if (this->classification_ == EXPRESSION_UNARY)
|
|
{
|
|
Unary_expression* ue = static_cast<Unary_expression*>(this);
|
|
if (ue->op() == OPERATOR_MULT)
|
|
return ue->operand();
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Class Binary_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Binary_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
int t = Expression::traverse(&this->left_, traverse);
|
|
if (t == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return Expression::traverse(&this->right_, traverse);
|
|
}
|
|
|
|
// Return whether this expression may be used as a static initializer.
|
|
|
|
bool
|
|
Binary_expression::do_is_static_initializer() const
|
|
{
|
|
if (!this->left_->is_static_initializer()
|
|
|| !this->right_->is_static_initializer())
|
|
return false;
|
|
|
|
// Addresses can be static initializers, but we can't implement
|
|
// arbitray binary expressions of them.
|
|
Unary_expression* lu = this->left_->unary_expression();
|
|
Unary_expression* ru = this->right_->unary_expression();
|
|
if (lu != NULL && lu->op() == OPERATOR_AND)
|
|
{
|
|
if (ru != NULL && ru->op() == OPERATOR_AND)
|
|
return this->op_ == OPERATOR_MINUS;
|
|
else
|
|
return this->op_ == OPERATOR_PLUS || this->op_ == OPERATOR_MINUS;
|
|
}
|
|
else if (ru != NULL && ru->op() == OPERATOR_AND)
|
|
return this->op_ == OPERATOR_PLUS || this->op_ == OPERATOR_MINUS;
|
|
|
|
// Other cases should resolve in the backend.
|
|
return true;
|
|
}
|
|
|
|
// Return the type to use for a binary operation on operands of
|
|
// LEFT_TYPE and RIGHT_TYPE. These are the types of constants and as
|
|
// such may be NULL or abstract.
|
|
|
|
bool
|
|
Binary_expression::operation_type(Operator op, Type* left_type,
|
|
Type* right_type, Type** result_type)
|
|
{
|
|
if (left_type != right_type
|
|
&& !left_type->is_abstract()
|
|
&& !right_type->is_abstract()
|
|
&& left_type->base() != right_type->base()
|
|
&& op != OPERATOR_LSHIFT
|
|
&& op != OPERATOR_RSHIFT)
|
|
{
|
|
// May be a type error--let it be diagnosed elsewhere.
|
|
return false;
|
|
}
|
|
|
|
if (op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT)
|
|
{
|
|
if (left_type->integer_type() != NULL)
|
|
*result_type = left_type;
|
|
else
|
|
*result_type = Type::make_abstract_integer_type();
|
|
}
|
|
else if (!left_type->is_abstract() && left_type->named_type() != NULL)
|
|
*result_type = left_type;
|
|
else if (!right_type->is_abstract() && right_type->named_type() != NULL)
|
|
*result_type = right_type;
|
|
else if (!left_type->is_abstract())
|
|
*result_type = left_type;
|
|
else if (!right_type->is_abstract())
|
|
*result_type = right_type;
|
|
else if (left_type->complex_type() != NULL)
|
|
*result_type = left_type;
|
|
else if (right_type->complex_type() != NULL)
|
|
*result_type = right_type;
|
|
else if (left_type->float_type() != NULL)
|
|
*result_type = left_type;
|
|
else if (right_type->float_type() != NULL)
|
|
*result_type = right_type;
|
|
else if (left_type->integer_type() != NULL
|
|
&& left_type->integer_type()->is_rune())
|
|
*result_type = left_type;
|
|
else if (right_type->integer_type() != NULL
|
|
&& right_type->integer_type()->is_rune())
|
|
*result_type = right_type;
|
|
else
|
|
*result_type = left_type;
|
|
|
|
return true;
|
|
}
|
|
|
|
// Convert an integer comparison code and an operator to a boolean
|
|
// value.
|
|
|
|
bool
|
|
Binary_expression::cmp_to_bool(Operator op, int cmp)
|
|
{
|
|
switch (op)
|
|
{
|
|
case OPERATOR_EQEQ:
|
|
return cmp == 0;
|
|
break;
|
|
case OPERATOR_NOTEQ:
|
|
return cmp != 0;
|
|
break;
|
|
case OPERATOR_LT:
|
|
return cmp < 0;
|
|
break;
|
|
case OPERATOR_LE:
|
|
return cmp <= 0;
|
|
case OPERATOR_GT:
|
|
return cmp > 0;
|
|
case OPERATOR_GE:
|
|
return cmp >= 0;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Compare constants according to OP.
|
|
|
|
bool
|
|
Binary_expression::compare_constant(Operator op, Numeric_constant* left_nc,
|
|
Numeric_constant* right_nc,
|
|
Location location, bool* result)
|
|
{
|
|
Type* left_type = left_nc->type();
|
|
Type* right_type = right_nc->type();
|
|
|
|
Type* type;
|
|
if (!Binary_expression::operation_type(op, left_type, right_type, &type))
|
|
return false;
|
|
|
|
// When comparing an untyped operand to a typed operand, we are
|
|
// effectively coercing the untyped operand to the other operand's
|
|
// type, so make sure that is valid.
|
|
if (!left_nc->set_type(type, true, location)
|
|
|| !right_nc->set_type(type, true, location))
|
|
return false;
|
|
|
|
bool ret;
|
|
int cmp;
|
|
if (type->complex_type() != NULL)
|
|
{
|
|
if (op != OPERATOR_EQEQ && op != OPERATOR_NOTEQ)
|
|
return false;
|
|
ret = Binary_expression::compare_complex(left_nc, right_nc, &cmp);
|
|
}
|
|
else if (type->float_type() != NULL)
|
|
ret = Binary_expression::compare_float(left_nc, right_nc, &cmp);
|
|
else
|
|
ret = Binary_expression::compare_integer(left_nc, right_nc, &cmp);
|
|
|
|
if (ret)
|
|
*result = Binary_expression::cmp_to_bool(op, cmp);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Compare integer constants.
|
|
|
|
bool
|
|
Binary_expression::compare_integer(const Numeric_constant* left_nc,
|
|
const Numeric_constant* right_nc,
|
|
int* cmp)
|
|
{
|
|
mpz_t left_val;
|
|
if (!left_nc->to_int(&left_val))
|
|
return false;
|
|
mpz_t right_val;
|
|
if (!right_nc->to_int(&right_val))
|
|
{
|
|
mpz_clear(left_val);
|
|
return false;
|
|
}
|
|
|
|
*cmp = mpz_cmp(left_val, right_val);
|
|
|
|
mpz_clear(left_val);
|
|
mpz_clear(right_val);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Compare floating point constants.
|
|
|
|
bool
|
|
Binary_expression::compare_float(const Numeric_constant* left_nc,
|
|
const Numeric_constant* right_nc,
|
|
int* cmp)
|
|
{
|
|
mpfr_t left_val;
|
|
if (!left_nc->to_float(&left_val))
|
|
return false;
|
|
mpfr_t right_val;
|
|
if (!right_nc->to_float(&right_val))
|
|
{
|
|
mpfr_clear(left_val);
|
|
return false;
|
|
}
|
|
|
|
// We already coerced both operands to the same type. If that type
|
|
// is not an abstract type, we need to round the values accordingly.
|
|
Type* type = left_nc->type();
|
|
if (!type->is_abstract() && type->float_type() != NULL)
|
|
{
|
|
int bits = type->float_type()->bits();
|
|
mpfr_prec_round(left_val, bits, GMP_RNDN);
|
|
mpfr_prec_round(right_val, bits, GMP_RNDN);
|
|
}
|
|
|
|
*cmp = mpfr_cmp(left_val, right_val);
|
|
|
|
mpfr_clear(left_val);
|
|
mpfr_clear(right_val);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Compare complex constants. Complex numbers may only be compared
|
|
// for equality.
|
|
|
|
bool
|
|
Binary_expression::compare_complex(const Numeric_constant* left_nc,
|
|
const Numeric_constant* right_nc,
|
|
int* cmp)
|
|
{
|
|
mpc_t left_val;
|
|
if (!left_nc->to_complex(&left_val))
|
|
return false;
|
|
mpc_t right_val;
|
|
if (!right_nc->to_complex(&right_val))
|
|
{
|
|
mpc_clear(left_val);
|
|
return false;
|
|
}
|
|
|
|
// We already coerced both operands to the same type. If that type
|
|
// is not an abstract type, we need to round the values accordingly.
|
|
Type* type = left_nc->type();
|
|
if (!type->is_abstract() && type->complex_type() != NULL)
|
|
{
|
|
int bits = type->complex_type()->bits();
|
|
mpfr_prec_round(mpc_realref(left_val), bits / 2, GMP_RNDN);
|
|
mpfr_prec_round(mpc_imagref(left_val), bits / 2, GMP_RNDN);
|
|
mpfr_prec_round(mpc_realref(right_val), bits / 2, GMP_RNDN);
|
|
mpfr_prec_round(mpc_imagref(right_val), bits / 2, GMP_RNDN);
|
|
}
|
|
|
|
*cmp = mpc_cmp(left_val, right_val) != 0;
|
|
|
|
mpc_clear(left_val);
|
|
mpc_clear(right_val);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Apply binary opcode OP to LEFT_NC and RIGHT_NC, setting NC. Return
|
|
// true if this could be done, false if not. Issue errors at LOCATION
|
|
// as appropriate, and sets *ISSUED_ERROR if it did.
|
|
|
|
bool
|
|
Binary_expression::eval_constant(Operator op, Numeric_constant* left_nc,
|
|
Numeric_constant* right_nc,
|
|
Location location, Numeric_constant* nc,
|
|
bool* issued_error)
|
|
{
|
|
*issued_error = false;
|
|
switch (op)
|
|
{
|
|
case OPERATOR_OROR:
|
|
case OPERATOR_ANDAND:
|
|
case OPERATOR_EQEQ:
|
|
case OPERATOR_NOTEQ:
|
|
case OPERATOR_LT:
|
|
case OPERATOR_LE:
|
|
case OPERATOR_GT:
|
|
case OPERATOR_GE:
|
|
// These return boolean values, not numeric.
|
|
return false;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
Type* left_type = left_nc->type();
|
|
Type* right_type = right_nc->type();
|
|
|
|
Type* type;
|
|
if (!Binary_expression::operation_type(op, left_type, right_type, &type))
|
|
return false;
|
|
|
|
bool is_shift = op == OPERATOR_LSHIFT || op == OPERATOR_RSHIFT;
|
|
|
|
// When combining an untyped operand with a typed operand, we are
|
|
// effectively coercing the untyped operand to the other operand's
|
|
// type, so make sure that is valid.
|
|
if (!left_nc->set_type(type, true, location))
|
|
return false;
|
|
if (!is_shift && !right_nc->set_type(type, true, location))
|
|
return false;
|
|
if (is_shift
|
|
&& ((left_type->integer_type() == NULL
|
|
&& !left_type->is_abstract())
|
|
|| (right_type->integer_type() == NULL
|
|
&& !right_type->is_abstract())))
|
|
return false;
|
|
|
|
bool r;
|
|
if (type->complex_type() != NULL)
|
|
r = Binary_expression::eval_complex(op, left_nc, right_nc, location, nc);
|
|
else if (type->float_type() != NULL)
|
|
r = Binary_expression::eval_float(op, left_nc, right_nc, location, nc);
|
|
else
|
|
r = Binary_expression::eval_integer(op, left_nc, right_nc, location, nc);
|
|
|
|
if (r)
|
|
{
|
|
r = nc->set_type(type, true, location);
|
|
if (!r)
|
|
*issued_error = true;
|
|
}
|
|
|
|
return r;
|
|
}
|
|
|
|
// Apply binary opcode OP to LEFT_NC and RIGHT_NC, setting NC, using
|
|
// integer operations. Return true if this could be done, false if
|
|
// not.
|
|
|
|
bool
|
|
Binary_expression::eval_integer(Operator op, const Numeric_constant* left_nc,
|
|
const Numeric_constant* right_nc,
|
|
Location location, Numeric_constant* nc)
|
|
{
|
|
mpz_t left_val;
|
|
if (!left_nc->to_int(&left_val))
|
|
return false;
|
|
mpz_t right_val;
|
|
if (!right_nc->to_int(&right_val))
|
|
{
|
|
mpz_clear(left_val);
|
|
return false;
|
|
}
|
|
|
|
mpz_t val;
|
|
mpz_init(val);
|
|
|
|
switch (op)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
mpz_add(val, left_val, right_val);
|
|
if (mpz_sizeinbase(val, 2) > 0x100000)
|
|
{
|
|
go_error_at(location, "constant addition overflow");
|
|
nc->set_invalid();
|
|
mpz_set_ui(val, 1);
|
|
}
|
|
break;
|
|
case OPERATOR_MINUS:
|
|
mpz_sub(val, left_val, right_val);
|
|
if (mpz_sizeinbase(val, 2) > 0x100000)
|
|
{
|
|
go_error_at(location, "constant subtraction overflow");
|
|
nc->set_invalid();
|
|
mpz_set_ui(val, 1);
|
|
}
|
|
break;
|
|
case OPERATOR_OR:
|
|
mpz_ior(val, left_val, right_val);
|
|
break;
|
|
case OPERATOR_XOR:
|
|
mpz_xor(val, left_val, right_val);
|
|
break;
|
|
case OPERATOR_MULT:
|
|
mpz_mul(val, left_val, right_val);
|
|
if (mpz_sizeinbase(val, 2) > 0x100000)
|
|
{
|
|
go_error_at(location, "constant multiplication overflow");
|
|
nc->set_invalid();
|
|
mpz_set_ui(val, 1);
|
|
}
|
|
break;
|
|
case OPERATOR_DIV:
|
|
if (mpz_sgn(right_val) != 0)
|
|
mpz_tdiv_q(val, left_val, right_val);
|
|
else
|
|
{
|
|
go_error_at(location, "division by zero");
|
|
nc->set_invalid();
|
|
mpz_set_ui(val, 0);
|
|
}
|
|
break;
|
|
case OPERATOR_MOD:
|
|
if (mpz_sgn(right_val) != 0)
|
|
mpz_tdiv_r(val, left_val, right_val);
|
|
else
|
|
{
|
|
go_error_at(location, "division by zero");
|
|
nc->set_invalid();
|
|
mpz_set_ui(val, 0);
|
|
}
|
|
break;
|
|
case OPERATOR_LSHIFT:
|
|
{
|
|
unsigned long shift = mpz_get_ui(right_val);
|
|
if (mpz_cmp_ui(right_val, shift) == 0 && shift <= 0x100000)
|
|
mpz_mul_2exp(val, left_val, shift);
|
|
else
|
|
{
|
|
go_error_at(location, "shift count overflow");
|
|
nc->set_invalid();
|
|
mpz_set_ui(val, 1);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case OPERATOR_RSHIFT:
|
|
{
|
|
unsigned long shift = mpz_get_ui(right_val);
|
|
if (mpz_cmp_ui(right_val, shift) != 0)
|
|
{
|
|
go_error_at(location, "shift count overflow");
|
|
nc->set_invalid();
|
|
mpz_set_ui(val, 1);
|
|
}
|
|
else
|
|
{
|
|
if (mpz_cmp_ui(left_val, 0) >= 0)
|
|
mpz_tdiv_q_2exp(val, left_val, shift);
|
|
else
|
|
mpz_fdiv_q_2exp(val, left_val, shift);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case OPERATOR_AND:
|
|
mpz_and(val, left_val, right_val);
|
|
break;
|
|
case OPERATOR_BITCLEAR:
|
|
{
|
|
mpz_t tval;
|
|
mpz_init(tval);
|
|
mpz_com(tval, right_val);
|
|
mpz_and(val, left_val, tval);
|
|
mpz_clear(tval);
|
|
}
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
mpz_clear(left_val);
|
|
mpz_clear(right_val);
|
|
|
|
if (left_nc->is_rune()
|
|
|| (op != OPERATOR_LSHIFT
|
|
&& op != OPERATOR_RSHIFT
|
|
&& right_nc->is_rune()))
|
|
nc->set_rune(NULL, val);
|
|
else
|
|
nc->set_int(NULL, val);
|
|
|
|
mpz_clear(val);
|
|
|
|
return true;
|
|
}
|
|
|
|
// Apply binary opcode OP to LEFT_NC and RIGHT_NC, setting NC, using
|
|
// floating point operations. Return true if this could be done,
|
|
// false if not.
|
|
|
|
bool
|
|
Binary_expression::eval_float(Operator op, const Numeric_constant* left_nc,
|
|
const Numeric_constant* right_nc,
|
|
Location location, Numeric_constant* nc)
|
|
{
|
|
mpfr_t left_val;
|
|
if (!left_nc->to_float(&left_val))
|
|
return false;
|
|
mpfr_t right_val;
|
|
if (!right_nc->to_float(&right_val))
|
|
{
|
|
mpfr_clear(left_val);
|
|
return false;
|
|
}
|
|
|
|
mpfr_t val;
|
|
mpfr_init(val);
|
|
|
|
bool ret = true;
|
|
switch (op)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
mpfr_add(val, left_val, right_val, GMP_RNDN);
|
|
break;
|
|
case OPERATOR_MINUS:
|
|
mpfr_sub(val, left_val, right_val, GMP_RNDN);
|
|
break;
|
|
case OPERATOR_OR:
|
|
case OPERATOR_XOR:
|
|
case OPERATOR_AND:
|
|
case OPERATOR_BITCLEAR:
|
|
case OPERATOR_MOD:
|
|
case OPERATOR_LSHIFT:
|
|
case OPERATOR_RSHIFT:
|
|
mpfr_set_ui(val, 0, GMP_RNDN);
|
|
ret = false;
|
|
break;
|
|
case OPERATOR_MULT:
|
|
mpfr_mul(val, left_val, right_val, GMP_RNDN);
|
|
break;
|
|
case OPERATOR_DIV:
|
|
if (!mpfr_zero_p(right_val))
|
|
mpfr_div(val, left_val, right_val, GMP_RNDN);
|
|
else
|
|
{
|
|
go_error_at(location, "division by zero");
|
|
nc->set_invalid();
|
|
mpfr_set_ui(val, 0, GMP_RNDN);
|
|
}
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
mpfr_clear(left_val);
|
|
mpfr_clear(right_val);
|
|
|
|
nc->set_float(NULL, val);
|
|
mpfr_clear(val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Apply binary opcode OP to LEFT_NC and RIGHT_NC, setting NC, using
|
|
// complex operations. Return true if this could be done, false if
|
|
// not.
|
|
|
|
bool
|
|
Binary_expression::eval_complex(Operator op, const Numeric_constant* left_nc,
|
|
const Numeric_constant* right_nc,
|
|
Location location, Numeric_constant* nc)
|
|
{
|
|
mpc_t left_val;
|
|
if (!left_nc->to_complex(&left_val))
|
|
return false;
|
|
mpc_t right_val;
|
|
if (!right_nc->to_complex(&right_val))
|
|
{
|
|
mpc_clear(left_val);
|
|
return false;
|
|
}
|
|
|
|
mpc_t val;
|
|
mpc_init2(val, mpc_precision);
|
|
|
|
bool ret = true;
|
|
switch (op)
|
|
{
|
|
case OPERATOR_PLUS:
|
|
mpc_add(val, left_val, right_val, MPC_RNDNN);
|
|
break;
|
|
case OPERATOR_MINUS:
|
|
mpc_sub(val, left_val, right_val, MPC_RNDNN);
|
|
break;
|
|
case OPERATOR_OR:
|
|
case OPERATOR_XOR:
|
|
case OPERATOR_AND:
|
|
case OPERATOR_BITCLEAR:
|
|
case OPERATOR_MOD:
|
|
case OPERATOR_LSHIFT:
|
|
case OPERATOR_RSHIFT:
|
|
mpc_set_ui(val, 0, MPC_RNDNN);
|
|
ret = false;
|
|
break;
|
|
case OPERATOR_MULT:
|
|
mpc_mul(val, left_val, right_val, MPC_RNDNN);
|
|
break;
|
|
case OPERATOR_DIV:
|
|
if (mpc_cmp_si(right_val, 0) == 0)
|
|
{
|
|
go_error_at(location, "division by zero");
|
|
nc->set_invalid();
|
|
mpc_set_ui(val, 0, MPC_RNDNN);
|
|
break;
|
|
}
|
|
mpc_div(val, left_val, right_val, MPC_RNDNN);
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
mpc_clear(left_val);
|
|
mpc_clear(right_val);
|
|
|
|
nc->set_complex(NULL, val);
|
|
mpc_clear(val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Lower a binary expression. We have to evaluate constant
|
|
// expressions now, in order to implement Go's unlimited precision
|
|
// constants.
|
|
|
|
Expression*
|
|
Binary_expression::do_lower(Gogo* gogo, Named_object*,
|
|
Statement_inserter* inserter, int)
|
|
{
|
|
Location location = this->location();
|
|
Operator op = this->op_;
|
|
Expression* left = this->left_;
|
|
Expression* right = this->right_;
|
|
|
|
const bool is_comparison = (op == OPERATOR_EQEQ
|
|
|| op == OPERATOR_NOTEQ
|
|
|| op == OPERATOR_LT
|
|
|| op == OPERATOR_LE
|
|
|| op == OPERATOR_GT
|
|
|| op == OPERATOR_GE);
|
|
|
|
// Numeric constant expressions.
|
|
{
|
|
Numeric_constant left_nc;
|
|
Numeric_constant right_nc;
|
|
if (left->numeric_constant_value(&left_nc)
|
|
&& right->numeric_constant_value(&right_nc))
|
|
{
|
|
if (is_comparison)
|
|
{
|
|
bool result;
|
|
if (!Binary_expression::compare_constant(op, &left_nc,
|
|
&right_nc, location,
|
|
&result))
|
|
return this;
|
|
return Expression::make_cast(Type::make_boolean_type(),
|
|
Expression::make_boolean(result,
|
|
location),
|
|
location);
|
|
}
|
|
else
|
|
{
|
|
Numeric_constant nc;
|
|
bool issued_error;
|
|
if (!Binary_expression::eval_constant(op, &left_nc, &right_nc,
|
|
location, &nc,
|
|
&issued_error))
|
|
{
|
|
if (issued_error)
|
|
return Expression::make_error(location);
|
|
return this;
|
|
}
|
|
return nc.expression(location);
|
|
}
|
|
}
|
|
}
|
|
|
|
// String constant expressions.
|
|
if (left->type()->is_string_type() && right->type()->is_string_type())
|
|
{
|
|
std::string left_string;
|
|
std::string right_string;
|
|
if (left->string_constant_value(&left_string)
|
|
&& right->string_constant_value(&right_string))
|
|
{
|
|
if (op == OPERATOR_PLUS)
|
|
return Expression::make_string(left_string + right_string,
|
|
location);
|
|
else if (is_comparison)
|
|
{
|
|
int cmp = left_string.compare(right_string);
|
|
bool r = Binary_expression::cmp_to_bool(op, cmp);
|
|
return Expression::make_boolean(r, location);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Lower struct, array, and some interface comparisons.
|
|
if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
|
|
{
|
|
if (left->type()->struct_type() != NULL
|
|
&& right->type()->struct_type() != NULL)
|
|
return this->lower_struct_comparison(gogo, inserter);
|
|
else if (left->type()->array_type() != NULL
|
|
&& !left->type()->is_slice_type()
|
|
&& right->type()->array_type() != NULL
|
|
&& !right->type()->is_slice_type())
|
|
return this->lower_array_comparison(gogo, inserter);
|
|
else if ((left->type()->interface_type() != NULL
|
|
&& right->type()->interface_type() == NULL)
|
|
|| (left->type()->interface_type() == NULL
|
|
&& right->type()->interface_type() != NULL))
|
|
return this->lower_interface_value_comparison(gogo, inserter);
|
|
}
|
|
|
|
// Lower string concatenation to String_concat_expression, so that
|
|
// we can group sequences of string additions.
|
|
if (this->left_->type()->is_string_type() && this->op_ == OPERATOR_PLUS)
|
|
{
|
|
Expression_list* exprs;
|
|
String_concat_expression* left_sce =
|
|
this->left_->string_concat_expression();
|
|
if (left_sce != NULL)
|
|
exprs = left_sce->exprs();
|
|
else
|
|
{
|
|
exprs = new Expression_list();
|
|
exprs->push_back(this->left_);
|
|
}
|
|
|
|
String_concat_expression* right_sce =
|
|
this->right_->string_concat_expression();
|
|
if (right_sce != NULL)
|
|
exprs->append(right_sce->exprs());
|
|
else
|
|
exprs->push_back(this->right_);
|
|
|
|
return Expression::make_string_concat(exprs);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Lower a struct comparison.
|
|
|
|
Expression*
|
|
Binary_expression::lower_struct_comparison(Gogo* gogo,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Struct_type* st = this->left_->type()->struct_type();
|
|
Struct_type* st2 = this->right_->type()->struct_type();
|
|
if (st2 == NULL)
|
|
return this;
|
|
if (st != st2
|
|
&& !Type::are_identical(st, st2,
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
return this;
|
|
if (!Type::are_compatible_for_comparison(true, this->left_->type(),
|
|
this->right_->type(), NULL))
|
|
return this;
|
|
|
|
// See if we can compare using memcmp. As a heuristic, we use
|
|
// memcmp rather than field references and comparisons if there are
|
|
// more than two fields.
|
|
if (st->compare_is_identity(gogo) && st->total_field_count() > 2)
|
|
return this->lower_compare_to_memcmp(gogo, inserter);
|
|
|
|
Location loc = this->location();
|
|
|
|
Expression* left = this->left_;
|
|
Temporary_statement* left_temp = NULL;
|
|
if (left->var_expression() == NULL
|
|
&& left->temporary_reference_expression() == NULL)
|
|
{
|
|
left_temp = Statement::make_temporary(left->type(), NULL, loc);
|
|
inserter->insert(left_temp);
|
|
left = Expression::make_set_and_use_temporary(left_temp, left, loc);
|
|
}
|
|
|
|
Expression* right = this->right_;
|
|
Temporary_statement* right_temp = NULL;
|
|
if (right->var_expression() == NULL
|
|
&& right->temporary_reference_expression() == NULL)
|
|
{
|
|
right_temp = Statement::make_temporary(right->type(), NULL, loc);
|
|
inserter->insert(right_temp);
|
|
right = Expression::make_set_and_use_temporary(right_temp, right, loc);
|
|
}
|
|
|
|
Expression* ret = Expression::make_boolean(true, loc);
|
|
const Struct_field_list* fields = st->fields();
|
|
unsigned int field_index = 0;
|
|
for (Struct_field_list::const_iterator pf = fields->begin();
|
|
pf != fields->end();
|
|
++pf, ++field_index)
|
|
{
|
|
if (Gogo::is_sink_name(pf->field_name()))
|
|
continue;
|
|
|
|
if (field_index > 0)
|
|
{
|
|
if (left_temp == NULL)
|
|
left = left->copy();
|
|
else
|
|
left = Expression::make_temporary_reference(left_temp, loc);
|
|
if (right_temp == NULL)
|
|
right = right->copy();
|
|
else
|
|
right = Expression::make_temporary_reference(right_temp, loc);
|
|
}
|
|
Expression* f1 = Expression::make_field_reference(left, field_index,
|
|
loc);
|
|
Expression* f2 = Expression::make_field_reference(right, field_index,
|
|
loc);
|
|
Expression* cond = Expression::make_binary(OPERATOR_EQEQ, f1, f2, loc);
|
|
ret = Expression::make_binary(OPERATOR_ANDAND, ret, cond, loc);
|
|
}
|
|
|
|
if (this->op_ == OPERATOR_NOTEQ)
|
|
ret = Expression::make_unary(OPERATOR_NOT, ret, loc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Lower an array comparison.
|
|
|
|
Expression*
|
|
Binary_expression::lower_array_comparison(Gogo* gogo,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Array_type* at = this->left_->type()->array_type();
|
|
Array_type* at2 = this->right_->type()->array_type();
|
|
if (at2 == NULL)
|
|
return this;
|
|
if (at != at2
|
|
&& !Type::are_identical(at, at2,
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
return this;
|
|
if (!Type::are_compatible_for_comparison(true, this->left_->type(),
|
|
this->right_->type(), NULL))
|
|
return this;
|
|
|
|
// Call memcmp directly if possible. This may let the middle-end
|
|
// optimize the call.
|
|
if (at->compare_is_identity(gogo))
|
|
return this->lower_compare_to_memcmp(gogo, inserter);
|
|
|
|
// Call the array comparison function.
|
|
Named_object* hash_fn;
|
|
Named_object* equal_fn;
|
|
at->type_functions(gogo, this->left_->type()->named_type(), NULL, NULL,
|
|
&hash_fn, &equal_fn);
|
|
|
|
Location loc = this->location();
|
|
|
|
Expression* func = Expression::make_func_reference(equal_fn, NULL, loc);
|
|
|
|
Expression_list* args = new Expression_list();
|
|
args->push_back(this->operand_address(inserter, this->left_));
|
|
args->push_back(this->operand_address(inserter, this->right_));
|
|
|
|
Expression* ret = Expression::make_call(func, args, false, loc);
|
|
|
|
if (this->op_ == OPERATOR_NOTEQ)
|
|
ret = Expression::make_unary(OPERATOR_NOT, ret, loc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Lower an interface to value comparison.
|
|
|
|
Expression*
|
|
Binary_expression::lower_interface_value_comparison(Gogo*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Type* left_type = this->left_->type();
|
|
Type* right_type = this->right_->type();
|
|
Interface_type* ift;
|
|
if (left_type->interface_type() != NULL)
|
|
{
|
|
ift = left_type->interface_type();
|
|
if (!ift->implements_interface(right_type, NULL))
|
|
return this;
|
|
}
|
|
else
|
|
{
|
|
ift = right_type->interface_type();
|
|
if (!ift->implements_interface(left_type, NULL))
|
|
return this;
|
|
}
|
|
if (!Type::are_compatible_for_comparison(true, left_type, right_type, NULL))
|
|
return this;
|
|
|
|
Location loc = this->location();
|
|
|
|
if (left_type->interface_type() == NULL
|
|
&& left_type->points_to() == NULL
|
|
&& !this->left_->is_addressable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(left_type, NULL, loc);
|
|
inserter->insert(temp);
|
|
this->left_ =
|
|
Expression::make_set_and_use_temporary(temp, this->left_, loc);
|
|
}
|
|
|
|
if (right_type->interface_type() == NULL
|
|
&& right_type->points_to() == NULL
|
|
&& !this->right_->is_addressable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(right_type, NULL, loc);
|
|
inserter->insert(temp);
|
|
this->right_ =
|
|
Expression::make_set_and_use_temporary(temp, this->right_, loc);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Lower a struct or array comparison to a call to memcmp.
|
|
|
|
Expression*
|
|
Binary_expression::lower_compare_to_memcmp(Gogo*, Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
|
|
Expression* a1 = this->operand_address(inserter, this->left_);
|
|
Expression* a2 = this->operand_address(inserter, this->right_);
|
|
Expression* len = Expression::make_type_info(this->left_->type(),
|
|
TYPE_INFO_SIZE);
|
|
|
|
Expression* call = Runtime::make_call(Runtime::MEMCMP, loc, 3, a1, a2, len);
|
|
Expression* zero = Expression::make_integer_ul(0, NULL, loc);
|
|
return Expression::make_binary(this->op_, call, zero, loc);
|
|
}
|
|
|
|
Expression*
|
|
Binary_expression::do_flatten(Gogo* gogo, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
if (this->left_->type()->is_error_type()
|
|
|| this->right_->type()->is_error_type()
|
|
|| this->left_->is_error_expression()
|
|
|| this->right_->is_error_expression())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
|
|
Temporary_statement* temp;
|
|
|
|
Type* left_type = this->left_->type();
|
|
bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
|
|
|| this->op_ == OPERATOR_RSHIFT);
|
|
bool is_idiv_op = ((this->op_ == OPERATOR_DIV &&
|
|
left_type->integer_type() != NULL)
|
|
|| this->op_ == OPERATOR_MOD);
|
|
|
|
if (is_shift_op
|
|
|| (is_idiv_op
|
|
&& (gogo->check_divide_by_zero() || gogo->check_divide_overflow())))
|
|
{
|
|
if (!this->left_->is_variable() && !this->left_->is_constant())
|
|
{
|
|
temp = Statement::make_temporary(NULL, this->left_, loc);
|
|
inserter->insert(temp);
|
|
this->left_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
if (!this->right_->is_variable() && !this->right_->is_constant())
|
|
{
|
|
temp =
|
|
Statement::make_temporary(NULL, this->right_, loc);
|
|
this->right_ = Expression::make_temporary_reference(temp, loc);
|
|
inserter->insert(temp);
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
|
|
|
|
// Return the address of EXPR, cast to unsafe.Pointer.
|
|
|
|
Expression*
|
|
Binary_expression::operand_address(Statement_inserter* inserter,
|
|
Expression* expr)
|
|
{
|
|
Location loc = this->location();
|
|
|
|
if (!expr->is_addressable())
|
|
{
|
|
Temporary_statement* temp = Statement::make_temporary(expr->type(), NULL,
|
|
loc);
|
|
inserter->insert(temp);
|
|
expr = Expression::make_set_and_use_temporary(temp, expr, loc);
|
|
}
|
|
expr = Expression::make_unary(OPERATOR_AND, expr, loc);
|
|
static_cast<Unary_expression*>(expr)->set_does_not_escape();
|
|
Type* void_type = Type::make_void_type();
|
|
Type* unsafe_pointer_type = Type::make_pointer_type(void_type);
|
|
return Expression::make_cast(unsafe_pointer_type, expr, loc);
|
|
}
|
|
|
|
// Return the numeric constant value, if it has one.
|
|
|
|
bool
|
|
Binary_expression::do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
Numeric_constant left_nc;
|
|
if (!this->left_->numeric_constant_value(&left_nc))
|
|
return false;
|
|
Numeric_constant right_nc;
|
|
if (!this->right_->numeric_constant_value(&right_nc))
|
|
return false;
|
|
bool issued_error;
|
|
return Binary_expression::eval_constant(this->op_, &left_nc, &right_nc,
|
|
this->location(), nc, &issued_error);
|
|
}
|
|
|
|
// Note that the value is being discarded.
|
|
|
|
bool
|
|
Binary_expression::do_discarding_value()
|
|
{
|
|
if (this->op_ == OPERATOR_OROR || this->op_ == OPERATOR_ANDAND)
|
|
return this->right_->discarding_value();
|
|
else
|
|
{
|
|
this->unused_value_error();
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Get type.
|
|
|
|
Type*
|
|
Binary_expression::do_type()
|
|
{
|
|
if (this->classification() == EXPRESSION_ERROR)
|
|
return Type::make_error_type();
|
|
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_EQEQ:
|
|
case OPERATOR_NOTEQ:
|
|
case OPERATOR_LT:
|
|
case OPERATOR_LE:
|
|
case OPERATOR_GT:
|
|
case OPERATOR_GE:
|
|
if (this->type_ == NULL)
|
|
this->type_ = Type::make_boolean_type();
|
|
return this->type_;
|
|
|
|
case OPERATOR_PLUS:
|
|
case OPERATOR_MINUS:
|
|
case OPERATOR_OR:
|
|
case OPERATOR_XOR:
|
|
case OPERATOR_MULT:
|
|
case OPERATOR_DIV:
|
|
case OPERATOR_MOD:
|
|
case OPERATOR_AND:
|
|
case OPERATOR_BITCLEAR:
|
|
case OPERATOR_OROR:
|
|
case OPERATOR_ANDAND:
|
|
{
|
|
Type* type;
|
|
if (!Binary_expression::operation_type(this->op_,
|
|
this->left_->type(),
|
|
this->right_->type(),
|
|
&type))
|
|
return Type::make_error_type();
|
|
return type;
|
|
}
|
|
|
|
case OPERATOR_LSHIFT:
|
|
case OPERATOR_RSHIFT:
|
|
return this->left_->type();
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Set type for a binary expression.
|
|
|
|
void
|
|
Binary_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
Type* tleft = this->left_->type();
|
|
Type* tright = this->right_->type();
|
|
|
|
// Both sides should have the same type, except for the shift
|
|
// operations. For a comparison, we should ignore the incoming
|
|
// type.
|
|
|
|
bool is_shift_op = (this->op_ == OPERATOR_LSHIFT
|
|
|| this->op_ == OPERATOR_RSHIFT);
|
|
|
|
bool is_comparison = (this->op_ == OPERATOR_EQEQ
|
|
|| this->op_ == OPERATOR_NOTEQ
|
|
|| this->op_ == OPERATOR_LT
|
|
|| this->op_ == OPERATOR_LE
|
|
|| this->op_ == OPERATOR_GT
|
|
|| this->op_ == OPERATOR_GE);
|
|
|
|
// For constant expressions, the context of the result is not useful in
|
|
// determining the types of the operands. It is only legal to use abstract
|
|
// boolean, numeric, and string constants as operands where it is legal to
|
|
// use non-abstract boolean, numeric, and string constants, respectively.
|
|
// Any issues with the operation will be resolved in the check_types pass.
|
|
bool is_constant_expr = (this->left_->is_constant()
|
|
&& this->right_->is_constant());
|
|
|
|
Type_context subcontext(*context);
|
|
|
|
if (is_constant_expr && !is_shift_op)
|
|
{
|
|
subcontext.type = NULL;
|
|
subcontext.may_be_abstract = true;
|
|
}
|
|
else if (is_comparison)
|
|
{
|
|
// In a comparison, the context does not determine the types of
|
|
// the operands.
|
|
subcontext.type = NULL;
|
|
}
|
|
|
|
// Set the context for the left hand operand.
|
|
if (is_shift_op)
|
|
{
|
|
// The right hand operand of a shift plays no role in
|
|
// determining the type of the left hand operand.
|
|
}
|
|
else if (!tleft->is_abstract())
|
|
subcontext.type = tleft;
|
|
else if (!tright->is_abstract())
|
|
subcontext.type = tright;
|
|
else if (subcontext.type == NULL)
|
|
{
|
|
if ((tleft->integer_type() != NULL && tright->integer_type() != NULL)
|
|
|| (tleft->float_type() != NULL && tright->float_type() != NULL)
|
|
|| (tleft->complex_type() != NULL && tright->complex_type() != NULL))
|
|
{
|
|
// Both sides have an abstract integer, abstract float, or
|
|
// abstract complex type. Just let CONTEXT determine
|
|
// whether they may remain abstract or not.
|
|
}
|
|
else if (tleft->complex_type() != NULL)
|
|
subcontext.type = tleft;
|
|
else if (tright->complex_type() != NULL)
|
|
subcontext.type = tright;
|
|
else if (tleft->float_type() != NULL)
|
|
subcontext.type = tleft;
|
|
else if (tright->float_type() != NULL)
|
|
subcontext.type = tright;
|
|
else
|
|
subcontext.type = tleft;
|
|
|
|
if (subcontext.type != NULL && !context->may_be_abstract)
|
|
subcontext.type = subcontext.type->make_non_abstract_type();
|
|
}
|
|
|
|
this->left_->determine_type(&subcontext);
|
|
|
|
if (is_shift_op)
|
|
{
|
|
// We may have inherited an unusable type for the shift operand.
|
|
// Give a useful error if that happened.
|
|
if (tleft->is_abstract()
|
|
&& subcontext.type != NULL
|
|
&& !subcontext.may_be_abstract
|
|
&& subcontext.type->interface_type() == NULL
|
|
&& subcontext.type->integer_type() == NULL)
|
|
this->report_error(("invalid context-determined non-integer type "
|
|
"for left operand of shift"));
|
|
|
|
// The context for the right hand operand is the same as for the
|
|
// left hand operand, except for a shift operator.
|
|
subcontext.type = Type::lookup_integer_type("uint");
|
|
subcontext.may_be_abstract = false;
|
|
}
|
|
|
|
this->right_->determine_type(&subcontext);
|
|
|
|
if (is_comparison)
|
|
{
|
|
if (this->type_ != NULL && !this->type_->is_abstract())
|
|
;
|
|
else if (context->type != NULL && context->type->is_boolean_type())
|
|
this->type_ = context->type;
|
|
else if (!context->may_be_abstract)
|
|
this->type_ = Type::lookup_bool_type();
|
|
}
|
|
}
|
|
|
|
// Report an error if the binary operator OP does not support TYPE.
|
|
// OTYPE is the type of the other operand. Return whether the
|
|
// operation is OK. This should not be used for shift.
|
|
|
|
bool
|
|
Binary_expression::check_operator_type(Operator op, Type* type, Type* otype,
|
|
Location location)
|
|
{
|
|
switch (op)
|
|
{
|
|
case OPERATOR_OROR:
|
|
case OPERATOR_ANDAND:
|
|
if (!type->is_boolean_type()
|
|
|| !otype->is_boolean_type())
|
|
{
|
|
go_error_at(location, "expected boolean type");
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case OPERATOR_EQEQ:
|
|
case OPERATOR_NOTEQ:
|
|
{
|
|
std::string reason;
|
|
if (!Type::are_compatible_for_comparison(true, type, otype, &reason))
|
|
{
|
|
go_error_at(location, "%s", reason.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OPERATOR_LT:
|
|
case OPERATOR_LE:
|
|
case OPERATOR_GT:
|
|
case OPERATOR_GE:
|
|
{
|
|
std::string reason;
|
|
if (!Type::are_compatible_for_comparison(false, type, otype, &reason))
|
|
{
|
|
go_error_at(location, "%s", reason.c_str());
|
|
return false;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case OPERATOR_PLUS:
|
|
case OPERATOR_PLUSEQ:
|
|
if ((!type->is_numeric_type() && !type->is_string_type())
|
|
|| (!otype->is_numeric_type() && !otype->is_string_type()))
|
|
{
|
|
go_error_at(location,
|
|
"expected integer, floating, complex, or string type");
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case OPERATOR_MINUS:
|
|
case OPERATOR_MINUSEQ:
|
|
case OPERATOR_MULT:
|
|
case OPERATOR_MULTEQ:
|
|
case OPERATOR_DIV:
|
|
case OPERATOR_DIVEQ:
|
|
if (!type->is_numeric_type() || !otype->is_numeric_type())
|
|
{
|
|
go_error_at(location, "expected integer, floating, or complex type");
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
case OPERATOR_MOD:
|
|
case OPERATOR_MODEQ:
|
|
case OPERATOR_OR:
|
|
case OPERATOR_OREQ:
|
|
case OPERATOR_AND:
|
|
case OPERATOR_ANDEQ:
|
|
case OPERATOR_XOR:
|
|
case OPERATOR_XOREQ:
|
|
case OPERATOR_BITCLEAR:
|
|
case OPERATOR_BITCLEAREQ:
|
|
if (type->integer_type() == NULL || otype->integer_type() == NULL)
|
|
{
|
|
go_error_at(location, "expected integer type");
|
|
return false;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check types.
|
|
|
|
void
|
|
Binary_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->classification() == EXPRESSION_ERROR)
|
|
return;
|
|
|
|
Type* left_type = this->left_->type();
|
|
Type* right_type = this->right_->type();
|
|
if (left_type->is_error() || right_type->is_error())
|
|
{
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
|
|
if (this->op_ == OPERATOR_EQEQ
|
|
|| this->op_ == OPERATOR_NOTEQ
|
|
|| this->op_ == OPERATOR_LT
|
|
|| this->op_ == OPERATOR_LE
|
|
|| this->op_ == OPERATOR_GT
|
|
|| this->op_ == OPERATOR_GE)
|
|
{
|
|
if (left_type->is_nil_type() && right_type->is_nil_type())
|
|
{
|
|
this->report_error(_("invalid comparison of nil with nil"));
|
|
return;
|
|
}
|
|
if (!Type::are_assignable(left_type, right_type, NULL)
|
|
&& !Type::are_assignable(right_type, left_type, NULL))
|
|
{
|
|
this->report_error(_("incompatible types in binary expression"));
|
|
return;
|
|
}
|
|
if (!Binary_expression::check_operator_type(this->op_, left_type,
|
|
right_type,
|
|
this->location())
|
|
|| !Binary_expression::check_operator_type(this->op_, right_type,
|
|
left_type,
|
|
this->location()))
|
|
{
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
}
|
|
else if (this->op_ != OPERATOR_LSHIFT && this->op_ != OPERATOR_RSHIFT)
|
|
{
|
|
if (!Type::are_compatible_for_binop(left_type, right_type))
|
|
{
|
|
this->report_error(_("incompatible types in binary expression"));
|
|
return;
|
|
}
|
|
if (!Binary_expression::check_operator_type(this->op_, left_type,
|
|
right_type,
|
|
this->location()))
|
|
{
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
if (this->op_ == OPERATOR_DIV || this->op_ == OPERATOR_MOD)
|
|
{
|
|
// Division by a zero integer constant is an error.
|
|
Numeric_constant rconst;
|
|
unsigned long rval;
|
|
if (left_type->integer_type() != NULL
|
|
&& this->right_->numeric_constant_value(&rconst)
|
|
&& rconst.to_unsigned_long(&rval) == Numeric_constant::NC_UL_VALID
|
|
&& rval == 0)
|
|
{
|
|
this->report_error(_("integer division by zero"));
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (left_type->integer_type() == NULL)
|
|
this->report_error(_("shift of non-integer operand"));
|
|
|
|
if (right_type->is_string_type())
|
|
this->report_error(_("shift count not unsigned integer"));
|
|
else if (!right_type->is_abstract()
|
|
&& (right_type->integer_type() == NULL
|
|
|| !right_type->integer_type()->is_unsigned()))
|
|
this->report_error(_("shift count not unsigned integer"));
|
|
else
|
|
{
|
|
Numeric_constant nc;
|
|
if (this->right_->numeric_constant_value(&nc))
|
|
{
|
|
mpz_t val;
|
|
if (!nc.to_int(&val))
|
|
this->report_error(_("shift count not unsigned integer"));
|
|
else
|
|
{
|
|
if (mpz_sgn(val) < 0)
|
|
{
|
|
this->report_error(_("negative shift count"));
|
|
Location rloc = this->right_->location();
|
|
this->right_ = Expression::make_integer_ul(0, right_type,
|
|
rloc);
|
|
}
|
|
mpz_clear(val);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the backend representation for a binary expression.
|
|
|
|
Bexpression*
|
|
Binary_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Location loc = this->location();
|
|
Type* left_type = this->left_->type();
|
|
Type* right_type = this->right_->type();
|
|
|
|
bool use_left_type = true;
|
|
bool is_shift_op = false;
|
|
bool is_idiv_op = false;
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_EQEQ:
|
|
case OPERATOR_NOTEQ:
|
|
case OPERATOR_LT:
|
|
case OPERATOR_LE:
|
|
case OPERATOR_GT:
|
|
case OPERATOR_GE:
|
|
return Expression::comparison(context, this->type_, this->op_,
|
|
this->left_, this->right_, loc);
|
|
|
|
case OPERATOR_OROR:
|
|
case OPERATOR_ANDAND:
|
|
use_left_type = false;
|
|
break;
|
|
case OPERATOR_PLUS:
|
|
case OPERATOR_MINUS:
|
|
case OPERATOR_OR:
|
|
case OPERATOR_XOR:
|
|
case OPERATOR_MULT:
|
|
break;
|
|
case OPERATOR_DIV:
|
|
if (left_type->float_type() != NULL || left_type->complex_type() != NULL)
|
|
break;
|
|
// Fall through.
|
|
case OPERATOR_MOD:
|
|
is_idiv_op = true;
|
|
break;
|
|
case OPERATOR_LSHIFT:
|
|
case OPERATOR_RSHIFT:
|
|
is_shift_op = true;
|
|
break;
|
|
case OPERATOR_BITCLEAR:
|
|
this->right_ = Expression::make_unary(OPERATOR_XOR, this->right_, loc);
|
|
case OPERATOR_AND:
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
// The only binary operation for string is +, and that should have
|
|
// been converted to a String_concat_expression in do_lower.
|
|
go_assert(!left_type->is_string_type());
|
|
|
|
// For complex division Go might want slightly different results than the
|
|
// backend implementation provides, so we have our own runtime routine.
|
|
if (this->op_ == OPERATOR_DIV && this->left_->type()->complex_type() != NULL)
|
|
{
|
|
Runtime::Function complex_code;
|
|
switch (this->left_->type()->complex_type()->bits())
|
|
{
|
|
case 64:
|
|
complex_code = Runtime::COMPLEX64_DIV;
|
|
break;
|
|
case 128:
|
|
complex_code = Runtime::COMPLEX128_DIV;
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
Expression* complex_div =
|
|
Runtime::make_call(complex_code, loc, 2, this->left_, this->right_);
|
|
return complex_div->get_backend(context);
|
|
}
|
|
|
|
Bexpression* left = this->left_->get_backend(context);
|
|
Bexpression* right = this->right_->get_backend(context);
|
|
|
|
Type* type = use_left_type ? left_type : right_type;
|
|
Btype* btype = type->get_backend(gogo);
|
|
|
|
Bexpression* ret =
|
|
gogo->backend()->binary_expression(this->op_, left, right, loc);
|
|
ret = gogo->backend()->convert_expression(btype, ret, loc);
|
|
|
|
// Initialize overflow constants.
|
|
Bexpression* overflow;
|
|
mpz_t zero;
|
|
mpz_init_set_ui(zero, 0UL);
|
|
mpz_t one;
|
|
mpz_init_set_ui(one, 1UL);
|
|
mpz_t neg_one;
|
|
mpz_init_set_si(neg_one, -1);
|
|
|
|
Btype* left_btype = left_type->get_backend(gogo);
|
|
Btype* right_btype = right_type->get_backend(gogo);
|
|
|
|
// In Go, a shift larger than the size of the type is well-defined.
|
|
// This is not true in C, so we need to insert a conditional.
|
|
if (is_shift_op)
|
|
{
|
|
go_assert(left_type->integer_type() != NULL);
|
|
|
|
int bits = left_type->integer_type()->bits();
|
|
|
|
Numeric_constant nc;
|
|
unsigned long ul;
|
|
if (!this->right_->numeric_constant_value(&nc)
|
|
|| nc.to_unsigned_long(&ul) != Numeric_constant::NC_UL_VALID
|
|
|| ul >= static_cast<unsigned long>(bits))
|
|
{
|
|
mpz_t bitsval;
|
|
mpz_init_set_ui(bitsval, bits);
|
|
Bexpression* bits_expr =
|
|
gogo->backend()->integer_constant_expression(right_btype, bitsval);
|
|
Bexpression* compare =
|
|
gogo->backend()->binary_expression(OPERATOR_LT,
|
|
right, bits_expr, loc);
|
|
|
|
Bexpression* zero_expr =
|
|
gogo->backend()->integer_constant_expression(left_btype, zero);
|
|
overflow = zero_expr;
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
if (this->op_ == OPERATOR_RSHIFT
|
|
&& !left_type->integer_type()->is_unsigned())
|
|
{
|
|
Bexpression* neg_expr =
|
|
gogo->backend()->binary_expression(OPERATOR_LT, left,
|
|
zero_expr, loc);
|
|
Bexpression* neg_one_expr =
|
|
gogo->backend()->integer_constant_expression(left_btype,
|
|
neg_one);
|
|
overflow = gogo->backend()->conditional_expression(bfn,
|
|
btype,
|
|
neg_expr,
|
|
neg_one_expr,
|
|
zero_expr,
|
|
loc);
|
|
}
|
|
ret = gogo->backend()->conditional_expression(bfn, btype, compare,
|
|
ret, overflow, loc);
|
|
mpz_clear(bitsval);
|
|
}
|
|
}
|
|
|
|
// Add checks for division by zero and division overflow as needed.
|
|
if (is_idiv_op)
|
|
{
|
|
if (gogo->check_divide_by_zero())
|
|
{
|
|
// right == 0
|
|
Bexpression* zero_expr =
|
|
gogo->backend()->integer_constant_expression(right_btype, zero);
|
|
Bexpression* check =
|
|
gogo->backend()->binary_expression(OPERATOR_EQEQ,
|
|
right, zero_expr, loc);
|
|
|
|
// __go_runtime_error(RUNTIME_ERROR_DIVISION_BY_ZERO)
|
|
int errcode = RUNTIME_ERROR_DIVISION_BY_ZERO;
|
|
Bexpression* crash = gogo->runtime_error(errcode,
|
|
loc)->get_backend(context);
|
|
|
|
// right == 0 ? (__go_runtime_error(...), 0) : ret
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
ret = gogo->backend()->conditional_expression(bfn, btype,
|
|
check, crash,
|
|
ret, loc);
|
|
}
|
|
|
|
if (gogo->check_divide_overflow())
|
|
{
|
|
// right == -1
|
|
// FIXME: It would be nice to say that this test is expected
|
|
// to return false.
|
|
|
|
Bexpression* neg_one_expr =
|
|
gogo->backend()->integer_constant_expression(right_btype, neg_one);
|
|
Bexpression* check =
|
|
gogo->backend()->binary_expression(OPERATOR_EQEQ,
|
|
right, neg_one_expr, loc);
|
|
|
|
Bexpression* zero_expr =
|
|
gogo->backend()->integer_constant_expression(btype, zero);
|
|
Bexpression* one_expr =
|
|
gogo->backend()->integer_constant_expression(btype, one);
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
|
|
if (type->integer_type()->is_unsigned())
|
|
{
|
|
// An unsigned -1 is the largest possible number, so
|
|
// dividing is always 1 or 0.
|
|
|
|
Bexpression* cmp =
|
|
gogo->backend()->binary_expression(OPERATOR_EQEQ,
|
|
left, right, loc);
|
|
if (this->op_ == OPERATOR_DIV)
|
|
overflow =
|
|
gogo->backend()->conditional_expression(bfn, btype, cmp,
|
|
one_expr, zero_expr,
|
|
loc);
|
|
else
|
|
overflow =
|
|
gogo->backend()->conditional_expression(bfn, btype, cmp,
|
|
zero_expr, left,
|
|
loc);
|
|
}
|
|
else
|
|
{
|
|
// Computing left / -1 is the same as computing - left,
|
|
// which does not overflow since Go sets -fwrapv.
|
|
if (this->op_ == OPERATOR_DIV)
|
|
{
|
|
Expression* negate_expr =
|
|
Expression::make_unary(OPERATOR_MINUS, this->left_, loc);
|
|
overflow = negate_expr->get_backend(context);
|
|
}
|
|
else
|
|
overflow = zero_expr;
|
|
}
|
|
overflow = gogo->backend()->convert_expression(btype, overflow, loc);
|
|
|
|
// right == -1 ? - left : ret
|
|
ret = gogo->backend()->conditional_expression(bfn, btype,
|
|
check, overflow,
|
|
ret, loc);
|
|
}
|
|
}
|
|
|
|
mpz_clear(zero);
|
|
mpz_clear(one);
|
|
mpz_clear(neg_one);
|
|
return ret;
|
|
}
|
|
|
|
// Export a binary expression.
|
|
|
|
void
|
|
Binary_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
efb->write_c_string("(");
|
|
this->left_->export_expression(efb);
|
|
switch (this->op_)
|
|
{
|
|
case OPERATOR_OROR:
|
|
efb->write_c_string(" || ");
|
|
break;
|
|
case OPERATOR_ANDAND:
|
|
efb->write_c_string(" && ");
|
|
break;
|
|
case OPERATOR_EQEQ:
|
|
efb->write_c_string(" == ");
|
|
break;
|
|
case OPERATOR_NOTEQ:
|
|
efb->write_c_string(" != ");
|
|
break;
|
|
case OPERATOR_LT:
|
|
efb->write_c_string(" < ");
|
|
break;
|
|
case OPERATOR_LE:
|
|
efb->write_c_string(" <= ");
|
|
break;
|
|
case OPERATOR_GT:
|
|
efb->write_c_string(" > ");
|
|
break;
|
|
case OPERATOR_GE:
|
|
efb->write_c_string(" >= ");
|
|
break;
|
|
case OPERATOR_PLUS:
|
|
efb->write_c_string(" + ");
|
|
break;
|
|
case OPERATOR_MINUS:
|
|
efb->write_c_string(" - ");
|
|
break;
|
|
case OPERATOR_OR:
|
|
efb->write_c_string(" | ");
|
|
break;
|
|
case OPERATOR_XOR:
|
|
efb->write_c_string(" ^ ");
|
|
break;
|
|
case OPERATOR_MULT:
|
|
efb->write_c_string(" * ");
|
|
break;
|
|
case OPERATOR_DIV:
|
|
efb->write_c_string(" / ");
|
|
break;
|
|
case OPERATOR_MOD:
|
|
efb->write_c_string(" % ");
|
|
break;
|
|
case OPERATOR_LSHIFT:
|
|
efb->write_c_string(" << ");
|
|
break;
|
|
case OPERATOR_RSHIFT:
|
|
efb->write_c_string(" >> ");
|
|
break;
|
|
case OPERATOR_AND:
|
|
efb->write_c_string(" & ");
|
|
break;
|
|
case OPERATOR_BITCLEAR:
|
|
efb->write_c_string(" &^ ");
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
this->right_->export_expression(efb);
|
|
efb->write_c_string(")");
|
|
}
|
|
|
|
// Import a binary expression.
|
|
|
|
Expression*
|
|
Binary_expression::do_import(Import* imp)
|
|
{
|
|
imp->require_c_string("(");
|
|
|
|
Expression* left = Expression::import_expression(imp);
|
|
|
|
Operator op;
|
|
if (imp->match_c_string(" || "))
|
|
{
|
|
op = OPERATOR_OROR;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" && "))
|
|
{
|
|
op = OPERATOR_ANDAND;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" == "))
|
|
{
|
|
op = OPERATOR_EQEQ;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" != "))
|
|
{
|
|
op = OPERATOR_NOTEQ;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" < "))
|
|
{
|
|
op = OPERATOR_LT;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" <= "))
|
|
{
|
|
op = OPERATOR_LE;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" > "))
|
|
{
|
|
op = OPERATOR_GT;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" >= "))
|
|
{
|
|
op = OPERATOR_GE;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" + "))
|
|
{
|
|
op = OPERATOR_PLUS;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" - "))
|
|
{
|
|
op = OPERATOR_MINUS;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" | "))
|
|
{
|
|
op = OPERATOR_OR;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" ^ "))
|
|
{
|
|
op = OPERATOR_XOR;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" * "))
|
|
{
|
|
op = OPERATOR_MULT;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" / "))
|
|
{
|
|
op = OPERATOR_DIV;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" % "))
|
|
{
|
|
op = OPERATOR_MOD;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" << "))
|
|
{
|
|
op = OPERATOR_LSHIFT;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" >> "))
|
|
{
|
|
op = OPERATOR_RSHIFT;
|
|
imp->advance(4);
|
|
}
|
|
else if (imp->match_c_string(" & "))
|
|
{
|
|
op = OPERATOR_AND;
|
|
imp->advance(3);
|
|
}
|
|
else if (imp->match_c_string(" &^ "))
|
|
{
|
|
op = OPERATOR_BITCLEAR;
|
|
imp->advance(4);
|
|
}
|
|
else
|
|
{
|
|
go_error_at(imp->location(), "unrecognized binary operator");
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
|
|
Expression* right = Expression::import_expression(imp);
|
|
|
|
imp->require_c_string(")");
|
|
|
|
return Expression::make_binary(op, left, right, imp->location());
|
|
}
|
|
|
|
// Dump ast representation of a binary expression.
|
|
|
|
void
|
|
Binary_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "(";
|
|
ast_dump_context->dump_expression(this->left_);
|
|
ast_dump_context->ostream() << " ";
|
|
ast_dump_context->dump_operator(this->op_);
|
|
ast_dump_context->ostream() << " ";
|
|
ast_dump_context->dump_expression(this->right_);
|
|
ast_dump_context->ostream() << ") ";
|
|
}
|
|
|
|
// Make a binary expression.
|
|
|
|
Expression*
|
|
Expression::make_binary(Operator op, Expression* left, Expression* right,
|
|
Location location)
|
|
{
|
|
return new Binary_expression(op, left, right, location);
|
|
}
|
|
|
|
// Implement a comparison.
|
|
|
|
Bexpression*
|
|
Expression::comparison(Translate_context* context, Type* result_type,
|
|
Operator op, Expression* left, Expression* right,
|
|
Location location)
|
|
{
|
|
Type* left_type = left->type();
|
|
Type* right_type = right->type();
|
|
|
|
Expression* zexpr = Expression::make_integer_ul(0, NULL, location);
|
|
|
|
if (left_type->is_string_type() && right_type->is_string_type())
|
|
{
|
|
if (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ)
|
|
{
|
|
left = Runtime::make_call(Runtime::EQSTRING, location, 2,
|
|
left, right);
|
|
right = Expression::make_boolean(true, location);
|
|
}
|
|
else
|
|
{
|
|
left = Runtime::make_call(Runtime::CMPSTRING, location, 2,
|
|
left, right);
|
|
right = zexpr;
|
|
}
|
|
}
|
|
else if ((left_type->interface_type() != NULL
|
|
&& right_type->interface_type() == NULL
|
|
&& !right_type->is_nil_type())
|
|
|| (left_type->interface_type() == NULL
|
|
&& !left_type->is_nil_type()
|
|
&& right_type->interface_type() != NULL))
|
|
{
|
|
// Comparing an interface value to a non-interface value.
|
|
if (left_type->interface_type() == NULL)
|
|
{
|
|
std::swap(left_type, right_type);
|
|
std::swap(left, right);
|
|
}
|
|
|
|
// The right operand is not an interface. We need to take its
|
|
// address if it is not a pointer.
|
|
Expression* pointer_arg = NULL;
|
|
if (right_type->points_to() != NULL)
|
|
pointer_arg = right;
|
|
else
|
|
{
|
|
go_assert(right->is_addressable());
|
|
pointer_arg = Expression::make_unary(OPERATOR_AND, right,
|
|
location);
|
|
}
|
|
|
|
Expression* descriptor =
|
|
Expression::make_type_descriptor(right_type, location);
|
|
left =
|
|
Runtime::make_call((left_type->interface_type()->is_empty()
|
|
? Runtime::EFACEVALEQ
|
|
: Runtime::IFACEVALEQ),
|
|
location, 3, left, descriptor,
|
|
pointer_arg);
|
|
go_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
|
|
right = Expression::make_boolean(true, location);
|
|
}
|
|
else if (left_type->interface_type() != NULL
|
|
&& right_type->interface_type() != NULL)
|
|
{
|
|
Runtime::Function compare_function;
|
|
if (left_type->interface_type()->is_empty()
|
|
&& right_type->interface_type()->is_empty())
|
|
compare_function = Runtime::EFACEEQ;
|
|
else if (!left_type->interface_type()->is_empty()
|
|
&& !right_type->interface_type()->is_empty())
|
|
compare_function = Runtime::IFACEEQ;
|
|
else
|
|
{
|
|
if (left_type->interface_type()->is_empty())
|
|
{
|
|
std::swap(left_type, right_type);
|
|
std::swap(left, right);
|
|
}
|
|
go_assert(!left_type->interface_type()->is_empty());
|
|
go_assert(right_type->interface_type()->is_empty());
|
|
compare_function = Runtime::IFACEEFACEEQ;
|
|
}
|
|
|
|
left = Runtime::make_call(compare_function, location, 2, left, right);
|
|
go_assert(op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ);
|
|
right = Expression::make_boolean(true, location);
|
|
}
|
|
|
|
if (left_type->is_nil_type()
|
|
&& (op == OPERATOR_EQEQ || op == OPERATOR_NOTEQ))
|
|
{
|
|
std::swap(left_type, right_type);
|
|
std::swap(left, right);
|
|
}
|
|
|
|
if (right_type->is_nil_type())
|
|
{
|
|
right = Expression::make_nil(location);
|
|
if (left_type->array_type() != NULL
|
|
&& left_type->array_type()->length() == NULL)
|
|
{
|
|
Array_type* at = left_type->array_type();
|
|
bool is_lvalue = false;
|
|
left = at->get_value_pointer(context->gogo(), left, is_lvalue);
|
|
}
|
|
else if (left_type->interface_type() != NULL)
|
|
{
|
|
// An interface is nil if the first field is nil.
|
|
left = Expression::make_field_reference(left, 0, location);
|
|
}
|
|
}
|
|
|
|
Bexpression* left_bexpr = left->get_backend(context);
|
|
Bexpression* right_bexpr = right->get_backend(context);
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Bexpression* ret = gogo->backend()->binary_expression(op, left_bexpr,
|
|
right_bexpr, location);
|
|
if (result_type != NULL)
|
|
ret = gogo->backend()->convert_expression(result_type->get_backend(gogo),
|
|
ret, location);
|
|
return ret;
|
|
}
|
|
|
|
// Class String_concat_expression.
|
|
|
|
bool
|
|
String_concat_expression::do_is_constant() const
|
|
{
|
|
for (Expression_list::const_iterator pe = this->exprs_->begin();
|
|
pe != this->exprs_->end();
|
|
++pe)
|
|
{
|
|
if (!(*pe)->is_constant())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
String_concat_expression::do_is_static_initializer() const
|
|
{
|
|
for (Expression_list::const_iterator pe = this->exprs_->begin();
|
|
pe != this->exprs_->end();
|
|
++pe)
|
|
{
|
|
if (!(*pe)->is_static_initializer())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
Type*
|
|
String_concat_expression::do_type()
|
|
{
|
|
Type* t = this->exprs_->front()->type();
|
|
Expression_list::iterator pe = this->exprs_->begin();
|
|
++pe;
|
|
for (; pe != this->exprs_->end(); ++pe)
|
|
{
|
|
Type* t1;
|
|
if (!Binary_expression::operation_type(OPERATOR_PLUS, t,
|
|
(*pe)->type(),
|
|
&t1))
|
|
return Type::make_error_type();
|
|
t = t1;
|
|
}
|
|
return t;
|
|
}
|
|
|
|
void
|
|
String_concat_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
Type_context subcontext(*context);
|
|
for (Expression_list::iterator pe = this->exprs_->begin();
|
|
pe != this->exprs_->end();
|
|
++pe)
|
|
{
|
|
Type* t = (*pe)->type();
|
|
if (!t->is_abstract())
|
|
{
|
|
subcontext.type = t;
|
|
break;
|
|
}
|
|
}
|
|
if (subcontext.type == NULL)
|
|
subcontext.type = this->exprs_->front()->type();
|
|
for (Expression_list::iterator pe = this->exprs_->begin();
|
|
pe != this->exprs_->end();
|
|
++pe)
|
|
(*pe)->determine_type(&subcontext);
|
|
}
|
|
|
|
void
|
|
String_concat_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->is_error_expression())
|
|
return;
|
|
Type* t = this->exprs_->front()->type();
|
|
if (t->is_error())
|
|
{
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
Expression_list::iterator pe = this->exprs_->begin();
|
|
++pe;
|
|
for (; pe != this->exprs_->end(); ++pe)
|
|
{
|
|
Type* t1 = (*pe)->type();
|
|
if (!Type::are_compatible_for_binop(t, t1))
|
|
{
|
|
this->report_error("incompatible types in binary expression");
|
|
return;
|
|
}
|
|
if (!Binary_expression::check_operator_type(OPERATOR_PLUS, t, t1,
|
|
this->location()))
|
|
{
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
Expression*
|
|
String_concat_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter*)
|
|
{
|
|
if (this->is_error_expression())
|
|
return this;
|
|
Location loc = this->location();
|
|
Type* type = this->type();
|
|
Expression* nil_arg = Expression::make_nil(loc);
|
|
Expression* call;
|
|
switch (this->exprs_->size())
|
|
{
|
|
case 0: case 1:
|
|
go_unreachable();
|
|
|
|
case 2: case 3: case 4: case 5:
|
|
{
|
|
Expression* len = Expression::make_integer_ul(this->exprs_->size(),
|
|
NULL, loc);
|
|
Array_type* arg_type = Type::make_array_type(type, len);
|
|
arg_type->set_is_array_incomparable();
|
|
Expression* arg =
|
|
Expression::make_array_composite_literal(arg_type, this->exprs_,
|
|
loc);
|
|
Runtime::Function code;
|
|
switch (this->exprs_->size())
|
|
{
|
|
default:
|
|
go_unreachable();
|
|
case 2:
|
|
code = Runtime::CONCATSTRING2;
|
|
break;
|
|
case 3:
|
|
code = Runtime::CONCATSTRING3;
|
|
break;
|
|
case 4:
|
|
code = Runtime::CONCATSTRING4;
|
|
break;
|
|
case 5:
|
|
code = Runtime::CONCATSTRING5;
|
|
break;
|
|
}
|
|
call = Runtime::make_call(code, loc, 2, nil_arg, arg);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
{
|
|
Type* arg_type = Type::make_array_type(type, NULL);
|
|
Slice_construction_expression* sce =
|
|
Expression::make_slice_composite_literal(arg_type, this->exprs_,
|
|
loc);
|
|
sce->set_storage_does_not_escape();
|
|
call = Runtime::make_call(Runtime::CONCATSTRINGS, loc, 2, nil_arg,
|
|
sce);
|
|
}
|
|
break;
|
|
}
|
|
|
|
return Expression::make_cast(type, call, loc);
|
|
}
|
|
|
|
void
|
|
String_concat_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "concat(";
|
|
ast_dump_context->dump_expression_list(this->exprs_, false);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_string_concat(Expression_list* exprs)
|
|
{
|
|
return new String_concat_expression(exprs);
|
|
}
|
|
|
|
// Class Bound_method_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Bound_method_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
return Expression::traverse(&this->expr_, traverse);
|
|
}
|
|
|
|
// Return the type of a bound method expression. The type of this
|
|
// object is simply the type of the method with no receiver.
|
|
|
|
Type*
|
|
Bound_method_expression::do_type()
|
|
{
|
|
Named_object* fn = this->method_->named_object();
|
|
Function_type* fntype;
|
|
if (fn->is_function())
|
|
fntype = fn->func_value()->type();
|
|
else if (fn->is_function_declaration())
|
|
fntype = fn->func_declaration_value()->type();
|
|
else
|
|
return Type::make_error_type();
|
|
return fntype->copy_without_receiver();
|
|
}
|
|
|
|
// Determine the types of a method expression.
|
|
|
|
void
|
|
Bound_method_expression::do_determine_type(const Type_context*)
|
|
{
|
|
Named_object* fn = this->method_->named_object();
|
|
Function_type* fntype;
|
|
if (fn->is_function())
|
|
fntype = fn->func_value()->type();
|
|
else if (fn->is_function_declaration())
|
|
fntype = fn->func_declaration_value()->type();
|
|
else
|
|
fntype = NULL;
|
|
if (fntype == NULL || !fntype->is_method())
|
|
this->expr_->determine_type_no_context();
|
|
else
|
|
{
|
|
Type_context subcontext(fntype->receiver()->type(), false);
|
|
this->expr_->determine_type(&subcontext);
|
|
}
|
|
}
|
|
|
|
// Check the types of a method expression.
|
|
|
|
void
|
|
Bound_method_expression::do_check_types(Gogo*)
|
|
{
|
|
Named_object* fn = this->method_->named_object();
|
|
if (!fn->is_function() && !fn->is_function_declaration())
|
|
{
|
|
this->report_error(_("object is not a method"));
|
|
return;
|
|
}
|
|
|
|
Function_type* fntype;
|
|
if (fn->is_function())
|
|
fntype = fn->func_value()->type();
|
|
else if (fn->is_function_declaration())
|
|
fntype = fn->func_declaration_value()->type();
|
|
else
|
|
go_unreachable();
|
|
Type* rtype = fntype->receiver()->type()->deref();
|
|
Type* etype = (this->expr_type_ != NULL
|
|
? this->expr_type_
|
|
: this->expr_->type());
|
|
etype = etype->deref();
|
|
if (!Type::are_identical(rtype, etype, Type::COMPARE_TAGS, NULL))
|
|
this->report_error(_("method type does not match object type"));
|
|
}
|
|
|
|
// If a bound method expression is not simply called, then it is
|
|
// represented as a closure. The closure will hold a single variable,
|
|
// the receiver to pass to the method. The function will be a simple
|
|
// thunk that pulls that value from the closure and calls the method
|
|
// with the remaining arguments.
|
|
//
|
|
// Because method values are not common, we don't build all thunks for
|
|
// every methods, but instead only build them as we need them. In
|
|
// particular, we even build them on demand for methods defined in
|
|
// other packages.
|
|
|
|
Bound_method_expression::Method_value_thunks
|
|
Bound_method_expression::method_value_thunks;
|
|
|
|
// Find or create the thunk for METHOD.
|
|
|
|
Named_object*
|
|
Bound_method_expression::create_thunk(Gogo* gogo, const Method* method,
|
|
Named_object* fn)
|
|
{
|
|
std::pair<Named_object*, Named_object*> val(fn, NULL);
|
|
std::pair<Method_value_thunks::iterator, bool> ins =
|
|
Bound_method_expression::method_value_thunks.insert(val);
|
|
if (!ins.second)
|
|
{
|
|
// We have seen this method before.
|
|
go_assert(ins.first->second != NULL);
|
|
return ins.first->second;
|
|
}
|
|
|
|
Location loc = fn->location();
|
|
|
|
Function_type* orig_fntype;
|
|
if (fn->is_function())
|
|
orig_fntype = fn->func_value()->type();
|
|
else if (fn->is_function_declaration())
|
|
orig_fntype = fn->func_declaration_value()->type();
|
|
else
|
|
orig_fntype = NULL;
|
|
|
|
if (orig_fntype == NULL || !orig_fntype->is_method())
|
|
{
|
|
ins.first->second =
|
|
Named_object::make_erroneous_name(gogo->thunk_name());
|
|
return ins.first->second;
|
|
}
|
|
|
|
Struct_field_list* sfl = new Struct_field_list();
|
|
// The type here is wrong--it should be the C function type. But it
|
|
// doesn't really matter.
|
|
Type* vt = Type::make_pointer_type(Type::make_void_type());
|
|
sfl->push_back(Struct_field(Typed_identifier("fn", vt, loc)));
|
|
sfl->push_back(Struct_field(Typed_identifier("val",
|
|
orig_fntype->receiver()->type(),
|
|
loc)));
|
|
Struct_type* st = Type::make_struct_type(sfl, loc);
|
|
st->set_is_struct_incomparable();
|
|
Type* closure_type = Type::make_pointer_type(st);
|
|
|
|
Function_type* new_fntype = orig_fntype->copy_with_names();
|
|
|
|
std::string thunk_name = gogo->thunk_name();
|
|
Named_object* new_no = gogo->start_function(thunk_name, new_fntype,
|
|
false, loc);
|
|
|
|
Variable* cvar = new Variable(closure_type, NULL, false, false, false, loc);
|
|
cvar->set_is_used();
|
|
cvar->set_is_closure();
|
|
Named_object* cp = Named_object::make_variable("$closure" + thunk_name,
|
|
NULL, cvar);
|
|
new_no->func_value()->set_closure_var(cp);
|
|
|
|
gogo->start_block(loc);
|
|
|
|
// Field 0 of the closure is the function code pointer, field 1 is
|
|
// the value on which to invoke the method.
|
|
Expression* arg = Expression::make_var_reference(cp, loc);
|
|
arg = Expression::make_dereference(arg, NIL_CHECK_NOT_NEEDED, loc);
|
|
arg = Expression::make_field_reference(arg, 1, loc);
|
|
|
|
Expression* bme = Expression::make_bound_method(arg, method, fn, loc);
|
|
|
|
const Typed_identifier_list* orig_params = orig_fntype->parameters();
|
|
Expression_list* args;
|
|
if (orig_params == NULL || orig_params->empty())
|
|
args = NULL;
|
|
else
|
|
{
|
|
const Typed_identifier_list* new_params = new_fntype->parameters();
|
|
args = new Expression_list();
|
|
for (Typed_identifier_list::const_iterator p = new_params->begin();
|
|
p != new_params->end();
|
|
++p)
|
|
{
|
|
Named_object* p_no = gogo->lookup(p->name(), NULL);
|
|
go_assert(p_no != NULL
|
|
&& p_no->is_variable()
|
|
&& p_no->var_value()->is_parameter());
|
|
args->push_back(Expression::make_var_reference(p_no, loc));
|
|
}
|
|
}
|
|
|
|
Call_expression* call = Expression::make_call(bme, args,
|
|
orig_fntype->is_varargs(),
|
|
loc);
|
|
call->set_varargs_are_lowered();
|
|
|
|
Statement* s = Statement::make_return_from_call(call, loc);
|
|
gogo->add_statement(s);
|
|
Block* b = gogo->finish_block(loc);
|
|
gogo->add_block(b, loc);
|
|
gogo->lower_block(new_no, b);
|
|
gogo->flatten_block(new_no, b);
|
|
gogo->finish_function(loc);
|
|
|
|
ins.first->second = new_no;
|
|
return new_no;
|
|
}
|
|
|
|
// Return an expression to check *REF for nil while dereferencing
|
|
// according to FIELD_INDEXES. Update *REF to build up the field
|
|
// reference. This is a static function so that we don't have to
|
|
// worry about declaring Field_indexes in expressions.h.
|
|
|
|
static Expression*
|
|
bme_check_nil(const Method::Field_indexes* field_indexes, Location loc,
|
|
Expression** ref)
|
|
{
|
|
if (field_indexes == NULL)
|
|
return Expression::make_boolean(false, loc);
|
|
Expression* cond = bme_check_nil(field_indexes->next, loc, ref);
|
|
Struct_type* stype = (*ref)->type()->deref()->struct_type();
|
|
go_assert(stype != NULL
|
|
&& field_indexes->field_index < stype->field_count());
|
|
if ((*ref)->type()->struct_type() == NULL)
|
|
{
|
|
go_assert((*ref)->type()->points_to() != NULL);
|
|
Expression* n = Expression::make_binary(OPERATOR_EQEQ, *ref,
|
|
Expression::make_nil(loc),
|
|
loc);
|
|
cond = Expression::make_binary(OPERATOR_OROR, cond, n, loc);
|
|
*ref = Expression::make_dereference(*ref, Expression::NIL_CHECK_DEFAULT,
|
|
loc);
|
|
go_assert((*ref)->type()->struct_type() == stype);
|
|
}
|
|
*ref = Expression::make_field_reference(*ref, field_indexes->field_index,
|
|
loc);
|
|
return cond;
|
|
}
|
|
|
|
// Flatten a method value into a struct with nil checks. We can't do
|
|
// this in the lowering phase, because if the method value is called
|
|
// directly we don't need a thunk. That case will have been handled
|
|
// by Call_expression::do_lower, so if we get here then we do need a
|
|
// thunk.
|
|
|
|
Expression*
|
|
Bound_method_expression::do_flatten(Gogo* gogo, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
|
|
Named_object* thunk = Bound_method_expression::create_thunk(gogo,
|
|
this->method_,
|
|
this->function_);
|
|
if (thunk->is_erroneous())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
|
|
// Force the expression into a variable. This is only necessary if
|
|
// we are going to do nil checks below, but it's easy enough to
|
|
// always do it.
|
|
Expression* expr = this->expr_;
|
|
if (!expr->is_variable())
|
|
{
|
|
Temporary_statement* etemp = Statement::make_temporary(NULL, expr, loc);
|
|
inserter->insert(etemp);
|
|
expr = Expression::make_temporary_reference(etemp, loc);
|
|
}
|
|
|
|
// If the method expects a value, and we have a pointer, we need to
|
|
// dereference the pointer.
|
|
|
|
Named_object* fn = this->method_->named_object();
|
|
Function_type *fntype;
|
|
if (fn->is_function())
|
|
fntype = fn->func_value()->type();
|
|
else if (fn->is_function_declaration())
|
|
fntype = fn->func_declaration_value()->type();
|
|
else
|
|
go_unreachable();
|
|
|
|
Expression* val = expr;
|
|
if (fntype->receiver()->type()->points_to() == NULL
|
|
&& val->type()->points_to() != NULL)
|
|
val = Expression::make_dereference(val, NIL_CHECK_DEFAULT, loc);
|
|
|
|
// Note that we are ignoring this->expr_type_ here. The thunk will
|
|
// expect a closure whose second field has type this->expr_type_ (if
|
|
// that is not NULL). We are going to pass it a closure whose
|
|
// second field has type this->expr_->type(). Since
|
|
// this->expr_type_ is only not-NULL for pointer types, we can get
|
|
// away with this.
|
|
|
|
Struct_field_list* fields = new Struct_field_list();
|
|
fields->push_back(Struct_field(Typed_identifier("fn",
|
|
thunk->func_value()->type(),
|
|
loc)));
|
|
fields->push_back(Struct_field(Typed_identifier("val", val->type(), loc)));
|
|
Struct_type* st = Type::make_struct_type(fields, loc);
|
|
st->set_is_struct_incomparable();
|
|
|
|
Expression_list* vals = new Expression_list();
|
|
vals->push_back(Expression::make_func_code_reference(thunk, loc));
|
|
vals->push_back(val);
|
|
|
|
Expression* ret = Expression::make_struct_composite_literal(st, vals, loc);
|
|
ret = Expression::make_heap_expression(ret, loc);
|
|
|
|
Node* n = Node::make_node(this);
|
|
if ((n->encoding() & ESCAPE_MASK) == Node::ESCAPE_NONE)
|
|
ret->heap_expression()->set_allocate_on_stack();
|
|
else if (gogo->compiling_runtime() && gogo->package_name() == "runtime")
|
|
go_error_at(loc, "%s escapes to heap, not allowed in runtime",
|
|
n->ast_format(gogo).c_str());
|
|
|
|
// If necessary, check whether the expression or any embedded
|
|
// pointers are nil.
|
|
|
|
Expression* nil_check = NULL;
|
|
if (this->method_->field_indexes() != NULL)
|
|
{
|
|
Expression* ref = expr;
|
|
nil_check = bme_check_nil(this->method_->field_indexes(), loc, &ref);
|
|
expr = ref;
|
|
}
|
|
|
|
if (this->method_->is_value_method() && expr->type()->points_to() != NULL)
|
|
{
|
|
Expression* n = Expression::make_binary(OPERATOR_EQEQ, expr,
|
|
Expression::make_nil(loc),
|
|
loc);
|
|
if (nil_check == NULL)
|
|
nil_check = n;
|
|
else
|
|
nil_check = Expression::make_binary(OPERATOR_OROR, nil_check, n, loc);
|
|
}
|
|
|
|
if (nil_check != NULL)
|
|
{
|
|
Expression* crash = gogo->runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
|
|
loc);
|
|
// Fix the type of the conditional expression by pretending to
|
|
// evaluate to RET either way through the conditional.
|
|
crash = Expression::make_compound(crash, ret, loc);
|
|
ret = Expression::make_conditional(nil_check, crash, ret, loc);
|
|
}
|
|
|
|
// RET is a pointer to a struct, but we want a function type.
|
|
ret = Expression::make_unsafe_cast(this->type(), ret, loc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Dump ast representation of a bound method expression.
|
|
|
|
void
|
|
Bound_method_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
if (this->expr_type_ != NULL)
|
|
ast_dump_context->ostream() << "(";
|
|
ast_dump_context->dump_expression(this->expr_);
|
|
if (this->expr_type_ != NULL)
|
|
{
|
|
ast_dump_context->ostream() << ":";
|
|
ast_dump_context->dump_type(this->expr_type_);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
ast_dump_context->ostream() << "." << this->function_->name();
|
|
}
|
|
|
|
// Make a method expression.
|
|
|
|
Bound_method_expression*
|
|
Expression::make_bound_method(Expression* expr, const Method* method,
|
|
Named_object* function, Location location)
|
|
{
|
|
return new Bound_method_expression(expr, method, function, location);
|
|
}
|
|
|
|
// Class Builtin_call_expression. This is used for a call to a
|
|
// builtin function.
|
|
|
|
Builtin_call_expression::Builtin_call_expression(Gogo* gogo,
|
|
Expression* fn,
|
|
Expression_list* args,
|
|
bool is_varargs,
|
|
Location location)
|
|
: Call_expression(fn, args, is_varargs, location),
|
|
gogo_(gogo), code_(BUILTIN_INVALID), seen_(false),
|
|
recover_arg_is_set_(false)
|
|
{
|
|
Func_expression* fnexp = this->fn()->func_expression();
|
|
if (fnexp == NULL)
|
|
{
|
|
this->code_ = BUILTIN_INVALID;
|
|
return;
|
|
}
|
|
const std::string& name(fnexp->named_object()->name());
|
|
if (name == "append")
|
|
this->code_ = BUILTIN_APPEND;
|
|
else if (name == "cap")
|
|
this->code_ = BUILTIN_CAP;
|
|
else if (name == "close")
|
|
this->code_ = BUILTIN_CLOSE;
|
|
else if (name == "complex")
|
|
this->code_ = BUILTIN_COMPLEX;
|
|
else if (name == "copy")
|
|
this->code_ = BUILTIN_COPY;
|
|
else if (name == "delete")
|
|
this->code_ = BUILTIN_DELETE;
|
|
else if (name == "imag")
|
|
this->code_ = BUILTIN_IMAG;
|
|
else if (name == "len")
|
|
this->code_ = BUILTIN_LEN;
|
|
else if (name == "make")
|
|
this->code_ = BUILTIN_MAKE;
|
|
else if (name == "new")
|
|
this->code_ = BUILTIN_NEW;
|
|
else if (name == "panic")
|
|
this->code_ = BUILTIN_PANIC;
|
|
else if (name == "print")
|
|
this->code_ = BUILTIN_PRINT;
|
|
else if (name == "println")
|
|
this->code_ = BUILTIN_PRINTLN;
|
|
else if (name == "real")
|
|
this->code_ = BUILTIN_REAL;
|
|
else if (name == "recover")
|
|
this->code_ = BUILTIN_RECOVER;
|
|
else if (name == "Alignof")
|
|
this->code_ = BUILTIN_ALIGNOF;
|
|
else if (name == "Offsetof")
|
|
this->code_ = BUILTIN_OFFSETOF;
|
|
else if (name == "Sizeof")
|
|
this->code_ = BUILTIN_SIZEOF;
|
|
else
|
|
go_unreachable();
|
|
}
|
|
|
|
// Return whether this is a call to recover. This is a virtual
|
|
// function called from the parent class.
|
|
|
|
bool
|
|
Builtin_call_expression::do_is_recover_call() const
|
|
{
|
|
if (this->classification() == EXPRESSION_ERROR)
|
|
return false;
|
|
return this->code_ == BUILTIN_RECOVER;
|
|
}
|
|
|
|
// Set the argument for a call to recover.
|
|
|
|
void
|
|
Builtin_call_expression::do_set_recover_arg(Expression* arg)
|
|
{
|
|
const Expression_list* args = this->args();
|
|
go_assert(args == NULL || args->empty());
|
|
Expression_list* new_args = new Expression_list();
|
|
new_args->push_back(arg);
|
|
this->set_args(new_args);
|
|
this->recover_arg_is_set_ = true;
|
|
}
|
|
|
|
// Lower a builtin call expression. This turns new and make into
|
|
// specific expressions. We also convert to a constant if we can.
|
|
|
|
Expression*
|
|
Builtin_call_expression::do_lower(Gogo*, Named_object* function,
|
|
Statement_inserter* inserter, int)
|
|
{
|
|
if (this->is_error_expression())
|
|
return this;
|
|
|
|
Location loc = this->location();
|
|
|
|
if (this->is_varargs() && this->code_ != BUILTIN_APPEND)
|
|
{
|
|
this->report_error(_("invalid use of %<...%> with builtin function"));
|
|
return Expression::make_error(loc);
|
|
}
|
|
|
|
if (this->code_ == BUILTIN_OFFSETOF)
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
|
|
if (arg->bound_method_expression() != NULL
|
|
|| arg->interface_field_reference_expression() != NULL)
|
|
{
|
|
this->report_error(_("invalid use of method value as argument "
|
|
"of Offsetof"));
|
|
return this;
|
|
}
|
|
|
|
Field_reference_expression* farg = arg->field_reference_expression();
|
|
while (farg != NULL)
|
|
{
|
|
if (!farg->implicit())
|
|
break;
|
|
// When the selector refers to an embedded field,
|
|
// it must not be reached through pointer indirections.
|
|
if (farg->expr()->deref() != farg->expr())
|
|
{
|
|
this->report_error(_("argument of Offsetof implies "
|
|
"indirection of an embedded field"));
|
|
return this;
|
|
}
|
|
// Go up until we reach the original base.
|
|
farg = farg->expr()->field_reference_expression();
|
|
}
|
|
}
|
|
|
|
if (this->is_constant())
|
|
{
|
|
Numeric_constant nc;
|
|
if (this->numeric_constant_value(&nc))
|
|
return nc.expression(loc);
|
|
}
|
|
|
|
switch (this->code_)
|
|
{
|
|
default:
|
|
break;
|
|
|
|
case BUILTIN_NEW:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() < 1)
|
|
this->report_error(_("not enough arguments"));
|
|
else if (args->size() > 1)
|
|
this->report_error(_("too many arguments"));
|
|
else
|
|
{
|
|
Expression* arg = args->front();
|
|
if (!arg->is_type_expression())
|
|
{
|
|
go_error_at(arg->location(), "expected type");
|
|
this->set_is_error();
|
|
}
|
|
else
|
|
return Expression::make_allocation(arg->type(), loc);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_MAKE:
|
|
return this->lower_make(inserter);
|
|
|
|
case BUILTIN_RECOVER:
|
|
if (function != NULL)
|
|
function->func_value()->set_calls_recover();
|
|
else
|
|
{
|
|
// Calling recover outside of a function always returns the
|
|
// nil empty interface.
|
|
Type* eface = Type::make_empty_interface_type(loc);
|
|
return Expression::make_cast(eface, Expression::make_nil(loc), loc);
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_DELETE:
|
|
{
|
|
// Lower to a runtime function call.
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() < 2)
|
|
this->report_error(_("not enough arguments"));
|
|
else if (args->size() > 2)
|
|
this->report_error(_("too many arguments"));
|
|
else if (args->front()->type()->map_type() == NULL)
|
|
this->report_error(_("argument 1 must be a map"));
|
|
else
|
|
{
|
|
// Since this function returns no value it must appear in
|
|
// a statement by itself, so we don't have to worry about
|
|
// order of evaluation of values around it. Evaluate the
|
|
// map first to get order of evaluation right.
|
|
Map_type* mt = args->front()->type()->map_type();
|
|
Temporary_statement* map_temp =
|
|
Statement::make_temporary(mt, args->front(), loc);
|
|
inserter->insert(map_temp);
|
|
|
|
Temporary_statement* key_temp =
|
|
Statement::make_temporary(mt->key_type(), args->back(), loc);
|
|
inserter->insert(key_temp);
|
|
|
|
Expression* e1 = Expression::make_type_descriptor(mt, loc);
|
|
Expression* e2 = Expression::make_temporary_reference(map_temp,
|
|
loc);
|
|
Expression* e3 = Expression::make_temporary_reference(key_temp,
|
|
loc);
|
|
|
|
// If the call to delete is deferred, and is in a loop,
|
|
// then the loop will only have a single instance of the
|
|
// temporary variable. Passing the address of the
|
|
// temporary variable here means that the deferred call
|
|
// will see the last value in the loop, not the current
|
|
// value. So for this unusual case copy the value into
|
|
// the heap.
|
|
if (!this->is_deferred())
|
|
e3 = Expression::make_unary(OPERATOR_AND, e3, loc);
|
|
else
|
|
{
|
|
Expression* a = Expression::make_allocation(mt->key_type(),
|
|
loc);
|
|
Temporary_statement* atemp =
|
|
Statement::make_temporary(NULL, a, loc);
|
|
inserter->insert(atemp);
|
|
|
|
a = Expression::make_temporary_reference(atemp, loc);
|
|
a = Expression::make_dereference(a, NIL_CHECK_NOT_NEEDED, loc);
|
|
Statement* s = Statement::make_assignment(a, e3, loc);
|
|
inserter->insert(s);
|
|
|
|
e3 = Expression::make_temporary_reference(atemp, loc);
|
|
}
|
|
|
|
return Runtime::make_call(Runtime::MAPDELETE, this->location(),
|
|
3, e1, e2, e3);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_PRINT:
|
|
case BUILTIN_PRINTLN:
|
|
// Force all the arguments into temporary variables, so that we
|
|
// don't try to evaluate something while holding the print lock.
|
|
if (this->args() == NULL)
|
|
break;
|
|
for (Expression_list::iterator pa = this->args()->begin();
|
|
pa != this->args()->end();
|
|
++pa)
|
|
{
|
|
if (!(*pa)->is_variable() && !(*pa)->is_constant())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, *pa, loc);
|
|
inserter->insert(temp);
|
|
*pa = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Flatten a builtin call expression. This turns the arguments of copy and
|
|
// append into temporary expressions.
|
|
|
|
Expression*
|
|
Builtin_call_expression::do_flatten(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
|
|
switch (this->code_)
|
|
{
|
|
default:
|
|
break;
|
|
|
|
case BUILTIN_APPEND:
|
|
return this->flatten_append(gogo, function, inserter, NULL, NULL);
|
|
|
|
case BUILTIN_COPY:
|
|
{
|
|
Type* at = this->args()->front()->type();
|
|
for (Expression_list::iterator pa = this->args()->begin();
|
|
pa != this->args()->end();
|
|
++pa)
|
|
{
|
|
if ((*pa)->is_nil_expression())
|
|
{
|
|
Expression* nil = Expression::make_nil(loc);
|
|
Expression* zero = Expression::make_integer_ul(0, NULL, loc);
|
|
*pa = Expression::make_slice_value(at, nil, zero, zero, loc);
|
|
}
|
|
if (!(*pa)->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, *pa, loc);
|
|
inserter->insert(temp);
|
|
*pa = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_PANIC:
|
|
for (Expression_list::iterator pa = this->args()->begin();
|
|
pa != this->args()->end();
|
|
++pa)
|
|
{
|
|
if (!(*pa)->is_variable() && (*pa)->type()->interface_type() != NULL)
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, *pa, loc);
|
|
inserter->insert(temp);
|
|
*pa = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_LEN:
|
|
case BUILTIN_CAP:
|
|
{
|
|
Expression_list::iterator pa = this->args()->begin();
|
|
if (!(*pa)->is_variable()
|
|
&& ((*pa)->type()->map_type() != NULL
|
|
|| (*pa)->type()->channel_type() != NULL))
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, *pa, loc);
|
|
inserter->insert(temp);
|
|
*pa = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Lower a make expression.
|
|
|
|
Expression*
|
|
Builtin_call_expression::lower_make(Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() < 1)
|
|
{
|
|
this->report_error(_("not enough arguments"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
Expression_list::const_iterator parg = args->begin();
|
|
|
|
Expression* first_arg = *parg;
|
|
if (!first_arg->is_type_expression())
|
|
{
|
|
go_error_at(first_arg->location(), "expected type");
|
|
this->set_is_error();
|
|
return Expression::make_error(this->location());
|
|
}
|
|
Type* type = first_arg->type();
|
|
|
|
if (!type->in_heap())
|
|
go_error_at(first_arg->location(),
|
|
"can't make slice of go:notinheap type");
|
|
|
|
bool is_slice = false;
|
|
bool is_map = false;
|
|
bool is_chan = false;
|
|
if (type->is_slice_type())
|
|
is_slice = true;
|
|
else if (type->map_type() != NULL)
|
|
is_map = true;
|
|
else if (type->channel_type() != NULL)
|
|
is_chan = true;
|
|
else
|
|
{
|
|
this->report_error(_("invalid type for make function"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
Type_context int_context(Type::lookup_integer_type("int"), false);
|
|
|
|
++parg;
|
|
Expression* len_arg;
|
|
bool len_small = false;
|
|
if (parg == args->end())
|
|
{
|
|
if (is_slice)
|
|
{
|
|
this->report_error(_("length required when allocating a slice"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
len_arg = Expression::make_integer_ul(0, NULL, loc);
|
|
len_small = true;
|
|
}
|
|
else
|
|
{
|
|
len_arg = *parg;
|
|
len_arg->determine_type(&int_context);
|
|
if (len_arg->type()->integer_type() == NULL)
|
|
{
|
|
go_error_at(len_arg->location(), "non-integer len argument in make");
|
|
return Expression::make_error(this->location());
|
|
}
|
|
if (!this->check_int_value(len_arg, true, &len_small))
|
|
return Expression::make_error(this->location());
|
|
++parg;
|
|
}
|
|
|
|
Expression* cap_arg = NULL;
|
|
bool cap_small = false;
|
|
Numeric_constant nclen;
|
|
Numeric_constant nccap;
|
|
unsigned long vlen;
|
|
unsigned long vcap;
|
|
if (is_slice && parg != args->end())
|
|
{
|
|
cap_arg = *parg;
|
|
cap_arg->determine_type(&int_context);
|
|
if (cap_arg->type()->integer_type() == NULL)
|
|
{
|
|
go_error_at(cap_arg->location(), "non-integer cap argument in make");
|
|
return Expression::make_error(this->location());
|
|
}
|
|
if (!this->check_int_value(cap_arg, false, &cap_small))
|
|
return Expression::make_error(this->location());
|
|
|
|
if (len_arg->numeric_constant_value(&nclen)
|
|
&& cap_arg->numeric_constant_value(&nccap)
|
|
&& nclen.to_unsigned_long(&vlen) == Numeric_constant::NC_UL_VALID
|
|
&& nccap.to_unsigned_long(&vcap) == Numeric_constant::NC_UL_VALID
|
|
&& vlen > vcap)
|
|
{
|
|
this->report_error(_("len larger than cap"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
++parg;
|
|
}
|
|
|
|
if (parg != args->end())
|
|
{
|
|
this->report_error(_("too many arguments to make"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
Location type_loc = first_arg->location();
|
|
|
|
Expression* call;
|
|
if (is_slice)
|
|
{
|
|
if (cap_arg == NULL)
|
|
{
|
|
cap_small = len_small;
|
|
if (len_arg->numeric_constant_value(&nclen)
|
|
&& nclen.to_unsigned_long(&vlen) == Numeric_constant::NC_UL_VALID)
|
|
cap_arg = Expression::make_integer_ul(vlen, len_arg->type(), loc);
|
|
else
|
|
{
|
|
Temporary_statement* temp = Statement::make_temporary(NULL,
|
|
len_arg,
|
|
loc);
|
|
inserter->insert(temp);
|
|
len_arg = Expression::make_temporary_reference(temp, loc);
|
|
cap_arg = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
}
|
|
|
|
Type* et = type->array_type()->element_type();
|
|
Expression* type_arg = Expression::make_type_descriptor(et, type_loc);
|
|
Runtime::Function code = Runtime::MAKESLICE;
|
|
if (!len_small || !cap_small)
|
|
code = Runtime::MAKESLICE64;
|
|
call = Runtime::make_call(code, loc, 3, type_arg, len_arg, cap_arg);
|
|
}
|
|
else if (is_map)
|
|
{
|
|
Expression* type_arg = Expression::make_type_descriptor(type, type_loc);
|
|
if (!len_small)
|
|
call = Runtime::make_call(Runtime::MAKEMAP64, loc, 3, type_arg,
|
|
len_arg,
|
|
Expression::make_nil(loc));
|
|
else
|
|
{
|
|
Numeric_constant nclen;
|
|
unsigned long vlen;
|
|
if (len_arg->numeric_constant_value(&nclen)
|
|
&& nclen.to_unsigned_long(&vlen) == Numeric_constant::NC_UL_VALID
|
|
&& vlen <= Map_type::bucket_size)
|
|
call = Runtime::make_call(Runtime::MAKEMAP_SMALL, loc, 0);
|
|
else
|
|
call = Runtime::make_call(Runtime::MAKEMAP, loc, 3, type_arg,
|
|
len_arg,
|
|
Expression::make_nil(loc));
|
|
}
|
|
}
|
|
else if (is_chan)
|
|
{
|
|
Expression* type_arg = Expression::make_type_descriptor(type, type_loc);
|
|
Runtime::Function code = Runtime::MAKECHAN;
|
|
if (!len_small)
|
|
code = Runtime::MAKECHAN64;
|
|
call = Runtime::make_call(code, loc, 2, type_arg, len_arg);
|
|
}
|
|
else
|
|
go_unreachable();
|
|
|
|
return Expression::make_unsafe_cast(type, call, loc);
|
|
}
|
|
|
|
// Flatten a call to the predeclared append function. We do this in
|
|
// the flatten phase, not the lowering phase, so that we run after
|
|
// type checking and after order_evaluations. If ASSIGN_LHS is not
|
|
// NULL, this append is the right-hand-side of an assignment and
|
|
// ASSIGN_LHS is the left-hand-side; in that case, set LHS directly
|
|
// rather than returning a slice. This lets us omit a write barrier
|
|
// in common cases like a = append(a, ...) when the slice does not
|
|
// need to grow. ENCLOSING is not NULL iff ASSIGN_LHS is not NULL.
|
|
|
|
Expression*
|
|
Builtin_call_expression::flatten_append(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter,
|
|
Expression* assign_lhs,
|
|
Block* enclosing)
|
|
{
|
|
if (this->is_error_expression())
|
|
return this;
|
|
|
|
Location loc = this->location();
|
|
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && !args->empty());
|
|
|
|
Type* slice_type = args->front()->type();
|
|
go_assert(slice_type->is_slice_type());
|
|
Type* element_type = slice_type->array_type()->element_type();
|
|
|
|
if (args->size() == 1)
|
|
{
|
|
// append(s) evaluates to s.
|
|
if (assign_lhs != NULL)
|
|
return NULL;
|
|
return args->front();
|
|
}
|
|
|
|
Type* int_type = Type::lookup_integer_type("int");
|
|
Type* uint_type = Type::lookup_integer_type("uint");
|
|
|
|
// Implementing
|
|
// append(s1, s2...)
|
|
// or
|
|
// append(s1, a1, a2, a3, ...)
|
|
|
|
// s1tmp := s1
|
|
Temporary_statement* s1tmp = Statement::make_temporary(NULL, args->front(),
|
|
loc);
|
|
inserter->insert(s1tmp);
|
|
|
|
// l1tmp := len(s1tmp)
|
|
Named_object* lenfn = gogo->lookup_global("len");
|
|
Expression* lenref = Expression::make_func_reference(lenfn, NULL, loc);
|
|
Expression_list* call_args = new Expression_list();
|
|
call_args->push_back(Expression::make_temporary_reference(s1tmp, loc));
|
|
Expression* len = Expression::make_call(lenref, call_args, false, loc);
|
|
gogo->lower_expression(function, inserter, &len);
|
|
gogo->flatten_expression(function, inserter, &len);
|
|
Temporary_statement* l1tmp = Statement::make_temporary(int_type, len, loc);
|
|
inserter->insert(l1tmp);
|
|
|
|
Temporary_statement* s2tmp = NULL;
|
|
Temporary_statement* l2tmp = NULL;
|
|
Expression_list* add = NULL;
|
|
Expression* len2;
|
|
if (this->is_varargs())
|
|
{
|
|
go_assert(args->size() == 2);
|
|
|
|
// s2tmp := s2
|
|
s2tmp = Statement::make_temporary(NULL, args->back(), loc);
|
|
inserter->insert(s2tmp);
|
|
|
|
// l2tmp := len(s2tmp)
|
|
lenref = Expression::make_func_reference(lenfn, NULL, loc);
|
|
call_args = new Expression_list();
|
|
call_args->push_back(Expression::make_temporary_reference(s2tmp, loc));
|
|
len = Expression::make_call(lenref, call_args, false, loc);
|
|
gogo->lower_expression(function, inserter, &len);
|
|
gogo->flatten_expression(function, inserter, &len);
|
|
l2tmp = Statement::make_temporary(int_type, len, loc);
|
|
inserter->insert(l2tmp);
|
|
|
|
// len2 = l2tmp
|
|
len2 = Expression::make_temporary_reference(l2tmp, loc);
|
|
}
|
|
else
|
|
{
|
|
// We have to ensure that all the arguments are in variables
|
|
// now, because otherwise if one of them is an index expression
|
|
// into the current slice we could overwrite it before we fetch
|
|
// it.
|
|
add = new Expression_list();
|
|
Expression_list::const_iterator pa = args->begin();
|
|
for (++pa; pa != args->end(); ++pa)
|
|
{
|
|
if ((*pa)->is_variable())
|
|
add->push_back(*pa);
|
|
else
|
|
{
|
|
Temporary_statement* tmp = Statement::make_temporary(NULL, *pa,
|
|
loc);
|
|
inserter->insert(tmp);
|
|
add->push_back(Expression::make_temporary_reference(tmp, loc));
|
|
}
|
|
}
|
|
|
|
// len2 = len(add)
|
|
len2 = Expression::make_integer_ul(add->size(), int_type, loc);
|
|
}
|
|
|
|
// ntmp := l1tmp + len2
|
|
Expression* ref = Expression::make_temporary_reference(l1tmp, loc);
|
|
Expression* sum = Expression::make_binary(OPERATOR_PLUS, ref, len2, loc);
|
|
gogo->lower_expression(function, inserter, &sum);
|
|
gogo->flatten_expression(function, inserter, &sum);
|
|
Temporary_statement* ntmp = Statement::make_temporary(int_type, sum, loc);
|
|
inserter->insert(ntmp);
|
|
|
|
// s1tmp = uint(ntmp) > uint(cap(s1tmp)) ?
|
|
// growslice(type, s1tmp, ntmp) :
|
|
// s1tmp[:ntmp]
|
|
// Using uint here means that if the computation of ntmp overflowed,
|
|
// we will call growslice which will panic.
|
|
|
|
Expression* left = Expression::make_temporary_reference(ntmp, loc);
|
|
left = Expression::make_cast(uint_type, left, loc);
|
|
|
|
Named_object* capfn = gogo->lookup_global("cap");
|
|
Expression* capref = Expression::make_func_reference(capfn, NULL, loc);
|
|
call_args = new Expression_list();
|
|
call_args->push_back(Expression::make_temporary_reference(s1tmp, loc));
|
|
Expression* right = Expression::make_call(capref, call_args, false, loc);
|
|
right = Expression::make_cast(uint_type, right, loc);
|
|
|
|
Expression* cond = Expression::make_binary(OPERATOR_GT, left, right, loc);
|
|
|
|
Expression* a1 = Expression::make_type_descriptor(element_type, loc);
|
|
Expression* a2 = Expression::make_temporary_reference(s1tmp, loc);
|
|
Expression* a3 = Expression::make_temporary_reference(ntmp, loc);
|
|
Expression* call = Runtime::make_call(Runtime::GROWSLICE, loc, 3,
|
|
a1, a2, a3);
|
|
call = Expression::make_unsafe_cast(slice_type, call, loc);
|
|
|
|
ref = Expression::make_temporary_reference(s1tmp, loc);
|
|
Expression* zero = Expression::make_integer_ul(0, int_type, loc);
|
|
Expression* ref2 = Expression::make_temporary_reference(ntmp, loc);
|
|
// FIXME: Mark this index as not requiring bounds checks.
|
|
ref = Expression::make_index(ref, zero, ref2, NULL, loc);
|
|
|
|
if (assign_lhs == NULL)
|
|
{
|
|
Expression* rhs = Expression::make_conditional(cond, call, ref, loc);
|
|
|
|
gogo->lower_expression(function, inserter, &rhs);
|
|
gogo->flatten_expression(function, inserter, &rhs);
|
|
|
|
ref = Expression::make_temporary_reference(s1tmp, loc);
|
|
Statement* assign = Statement::make_assignment(ref, rhs, loc);
|
|
inserter->insert(assign);
|
|
}
|
|
else
|
|
{
|
|
gogo->lower_expression(function, inserter, &cond);
|
|
gogo->flatten_expression(function, inserter, &cond);
|
|
gogo->lower_expression(function, inserter, &call);
|
|
gogo->flatten_expression(function, inserter, &call);
|
|
gogo->lower_expression(function, inserter, &ref);
|
|
gogo->flatten_expression(function, inserter, &ref);
|
|
|
|
Block* then_block = new Block(enclosing, loc);
|
|
Assignment_statement* assign =
|
|
Statement::make_assignment(assign_lhs, call, loc);
|
|
then_block->add_statement(assign);
|
|
|
|
Block* else_block = new Block(enclosing, loc);
|
|
assign = Statement::make_assignment(assign_lhs->copy(), ref, loc);
|
|
// This assignment will not change the pointer value, so it does
|
|
// not need a write barrier.
|
|
assign->set_omit_write_barrier();
|
|
else_block->add_statement(assign);
|
|
|
|
Statement* s = Statement::make_if_statement(cond, then_block,
|
|
else_block, loc);
|
|
inserter->insert(s);
|
|
|
|
ref = Expression::make_temporary_reference(s1tmp, loc);
|
|
assign = Statement::make_assignment(ref, assign_lhs->copy(), loc);
|
|
inserter->insert(assign);
|
|
}
|
|
|
|
if (this->is_varargs())
|
|
{
|
|
// copy(s1tmp[l1tmp:], s2tmp)
|
|
a1 = Expression::make_temporary_reference(s1tmp, loc);
|
|
ref = Expression::make_temporary_reference(l1tmp, loc);
|
|
Expression* nil = Expression::make_nil(loc);
|
|
// FIXME: Mark this index as not requiring bounds checks.
|
|
a1 = Expression::make_index(a1, ref, nil, NULL, loc);
|
|
|
|
a2 = Expression::make_temporary_reference(s2tmp, loc);
|
|
|
|
Named_object* copyfn = gogo->lookup_global("copy");
|
|
Expression* copyref = Expression::make_func_reference(copyfn, NULL, loc);
|
|
call_args = new Expression_list();
|
|
call_args->push_back(a1);
|
|
call_args->push_back(a2);
|
|
call = Expression::make_call(copyref, call_args, false, loc);
|
|
gogo->lower_expression(function, inserter, &call);
|
|
gogo->flatten_expression(function, inserter, &call);
|
|
inserter->insert(Statement::make_statement(call, false));
|
|
}
|
|
else
|
|
{
|
|
// For each argument:
|
|
// s1tmp[l1tmp+i] = a
|
|
unsigned long i = 0;
|
|
for (Expression_list::const_iterator pa = add->begin();
|
|
pa != add->end();
|
|
++pa, ++i)
|
|
{
|
|
ref = Expression::make_temporary_reference(s1tmp, loc);
|
|
ref2 = Expression::make_temporary_reference(l1tmp, loc);
|
|
Expression* off = Expression::make_integer_ul(i, int_type, loc);
|
|
ref2 = Expression::make_binary(OPERATOR_PLUS, ref2, off, loc);
|
|
// FIXME: Mark this index as not requiring bounds checks.
|
|
Expression* lhs = Expression::make_index(ref, ref2, NULL, NULL,
|
|
loc);
|
|
gogo->lower_expression(function, inserter, &lhs);
|
|
gogo->flatten_expression(function, inserter, &lhs);
|
|
// The flatten pass runs after the write barrier pass, so we
|
|
// need to insert a write barrier here if necessary.
|
|
// However, if ASSIGN_LHS is not NULL, we have been called
|
|
// directly before the write barrier pass.
|
|
Statement* assign;
|
|
if (assign_lhs != NULL
|
|
|| !gogo->assign_needs_write_barrier(lhs))
|
|
assign = Statement::make_assignment(lhs, *pa, loc);
|
|
else
|
|
{
|
|
Function* f = function == NULL ? NULL : function->func_value();
|
|
assign = gogo->assign_with_write_barrier(f, NULL, inserter,
|
|
lhs, *pa, loc);
|
|
}
|
|
inserter->insert(assign);
|
|
}
|
|
}
|
|
|
|
if (assign_lhs != NULL)
|
|
return NULL;
|
|
|
|
return Expression::make_temporary_reference(s1tmp, loc);
|
|
}
|
|
|
|
// Return whether an expression has an integer value. Report an error
|
|
// if not. This is used when handling calls to the predeclared make
|
|
// function. Set *SMALL if the value is known to fit in type "int".
|
|
|
|
bool
|
|
Builtin_call_expression::check_int_value(Expression* e, bool is_length,
|
|
bool *small)
|
|
{
|
|
*small = false;
|
|
|
|
Numeric_constant nc;
|
|
if (e->numeric_constant_value(&nc))
|
|
{
|
|
unsigned long v;
|
|
switch (nc.to_unsigned_long(&v))
|
|
{
|
|
case Numeric_constant::NC_UL_VALID:
|
|
break;
|
|
case Numeric_constant::NC_UL_NOTINT:
|
|
go_error_at(e->location(), "non-integer %s argument to make",
|
|
is_length ? "len" : "cap");
|
|
return false;
|
|
case Numeric_constant::NC_UL_NEGATIVE:
|
|
go_error_at(e->location(), "negative %s argument to make",
|
|
is_length ? "len" : "cap");
|
|
return false;
|
|
case Numeric_constant::NC_UL_BIG:
|
|
// We don't want to give a compile-time error for a 64-bit
|
|
// value on a 32-bit target.
|
|
break;
|
|
}
|
|
|
|
mpz_t val;
|
|
if (!nc.to_int(&val))
|
|
go_unreachable();
|
|
int bits = mpz_sizeinbase(val, 2);
|
|
mpz_clear(val);
|
|
Type* int_type = Type::lookup_integer_type("int");
|
|
if (bits >= int_type->integer_type()->bits())
|
|
{
|
|
go_error_at(e->location(), "%s argument too large for make",
|
|
is_length ? "len" : "cap");
|
|
return false;
|
|
}
|
|
|
|
*small = true;
|
|
return true;
|
|
}
|
|
|
|
if (e->type()->integer_type() != NULL)
|
|
{
|
|
int ebits = e->type()->integer_type()->bits();
|
|
int intbits = Type::lookup_integer_type("int")->integer_type()->bits();
|
|
|
|
// We can treat ebits == intbits as small even for an unsigned
|
|
// integer type, because we will convert the value to int and
|
|
// then reject it in the runtime if it is negative.
|
|
*small = ebits <= intbits;
|
|
|
|
return true;
|
|
}
|
|
|
|
go_error_at(e->location(), "non-integer %s argument to make",
|
|
is_length ? "len" : "cap");
|
|
return false;
|
|
}
|
|
|
|
// Return the type of the real or imag functions, given the type of
|
|
// the argument. We need to map complex64 to float32 and complex128
|
|
// to float64, so it has to be done by name. This returns NULL if it
|
|
// can't figure out the type.
|
|
|
|
Type*
|
|
Builtin_call_expression::real_imag_type(Type* arg_type)
|
|
{
|
|
if (arg_type == NULL || arg_type->is_abstract())
|
|
return NULL;
|
|
Named_type* nt = arg_type->named_type();
|
|
if (nt == NULL)
|
|
return NULL;
|
|
while (nt->real_type()->named_type() != NULL)
|
|
nt = nt->real_type()->named_type();
|
|
if (nt->name() == "complex64")
|
|
return Type::lookup_float_type("float32");
|
|
else if (nt->name() == "complex128")
|
|
return Type::lookup_float_type("float64");
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Return the type of the complex function, given the type of one of the
|
|
// argments. Like real_imag_type, we have to map by name.
|
|
|
|
Type*
|
|
Builtin_call_expression::complex_type(Type* arg_type)
|
|
{
|
|
if (arg_type == NULL || arg_type->is_abstract())
|
|
return NULL;
|
|
Named_type* nt = arg_type->named_type();
|
|
if (nt == NULL)
|
|
return NULL;
|
|
while (nt->real_type()->named_type() != NULL)
|
|
nt = nt->real_type()->named_type();
|
|
if (nt->name() == "float32")
|
|
return Type::lookup_complex_type("complex64");
|
|
else if (nt->name() == "float64")
|
|
return Type::lookup_complex_type("complex128");
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
// Return a single argument, or NULL if there isn't one.
|
|
|
|
Expression*
|
|
Builtin_call_expression::one_arg() const
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() != 1)
|
|
return NULL;
|
|
return args->front();
|
|
}
|
|
|
|
// A traversal class which looks for a call or receive expression.
|
|
|
|
class Find_call_expression : public Traverse
|
|
{
|
|
public:
|
|
Find_call_expression()
|
|
: Traverse(traverse_expressions),
|
|
found_(false)
|
|
{ }
|
|
|
|
int
|
|
expression(Expression**);
|
|
|
|
bool
|
|
found()
|
|
{ return this->found_; }
|
|
|
|
private:
|
|
bool found_;
|
|
};
|
|
|
|
int
|
|
Find_call_expression::expression(Expression** pexpr)
|
|
{
|
|
Expression* expr = *pexpr;
|
|
if (!expr->is_constant()
|
|
&& (expr->call_expression() != NULL
|
|
|| expr->receive_expression() != NULL))
|
|
{
|
|
this->found_ = true;
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Return whether calling len or cap on EXPR, of array type, is a
|
|
// constant. The language spec says "the expressions len(s) and
|
|
// cap(s) are constants if the type of s is an array or pointer to an
|
|
// array and the expression s does not contain channel receives or
|
|
// (non-constant) function calls."
|
|
|
|
bool
|
|
Builtin_call_expression::array_len_is_constant(Expression* expr)
|
|
{
|
|
go_assert(expr->type()->deref()->array_type() != NULL
|
|
&& !expr->type()->deref()->is_slice_type());
|
|
if (expr->is_constant())
|
|
return true;
|
|
Find_call_expression find_call;
|
|
Expression::traverse(&expr, &find_call);
|
|
return !find_call.found();
|
|
}
|
|
|
|
// Return whether this is constant: len of a string constant, or len
|
|
// or cap of an array, or unsafe.Sizeof, unsafe.Offsetof,
|
|
// unsafe.Alignof.
|
|
|
|
bool
|
|
Builtin_call_expression::do_is_constant() const
|
|
{
|
|
if (this->is_error_expression())
|
|
return true;
|
|
switch (this->code_)
|
|
{
|
|
case BUILTIN_LEN:
|
|
case BUILTIN_CAP:
|
|
{
|
|
if (this->seen_)
|
|
return false;
|
|
|
|
Expression* arg = this->one_arg();
|
|
if (arg == NULL)
|
|
return false;
|
|
Type* arg_type = arg->type();
|
|
|
|
if (arg_type->points_to() != NULL
|
|
&& arg_type->points_to()->array_type() != NULL
|
|
&& !arg_type->points_to()->is_slice_type())
|
|
arg_type = arg_type->points_to();
|
|
|
|
if (arg_type->array_type() != NULL
|
|
&& arg_type->array_type()->length() != NULL)
|
|
{
|
|
this->seen_ = true;
|
|
bool ret = Builtin_call_expression::array_len_is_constant(arg);
|
|
this->seen_ = false;
|
|
return ret;
|
|
}
|
|
|
|
if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
|
|
{
|
|
this->seen_ = true;
|
|
bool ret = arg->is_constant();
|
|
this->seen_ = false;
|
|
return ret;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_SIZEOF:
|
|
case BUILTIN_ALIGNOF:
|
|
return this->one_arg() != NULL;
|
|
|
|
case BUILTIN_OFFSETOF:
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
if (arg == NULL)
|
|
return false;
|
|
return arg->field_reference_expression() != NULL;
|
|
}
|
|
|
|
case BUILTIN_COMPLEX:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args != NULL && args->size() == 2)
|
|
return args->front()->is_constant() && args->back()->is_constant();
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_REAL:
|
|
case BUILTIN_IMAG:
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
return arg != NULL && arg->is_constant();
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Return a numeric constant if possible.
|
|
|
|
bool
|
|
Builtin_call_expression::do_numeric_constant_value(Numeric_constant* nc) const
|
|
{
|
|
if (this->code_ == BUILTIN_LEN
|
|
|| this->code_ == BUILTIN_CAP)
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
if (arg == NULL)
|
|
return false;
|
|
Type* arg_type = arg->type();
|
|
|
|
if (this->code_ == BUILTIN_LEN && arg_type->is_string_type())
|
|
{
|
|
std::string sval;
|
|
if (arg->string_constant_value(&sval))
|
|
{
|
|
nc->set_unsigned_long(Type::lookup_integer_type("int"),
|
|
sval.length());
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (arg_type->points_to() != NULL
|
|
&& arg_type->points_to()->array_type() != NULL
|
|
&& !arg_type->points_to()->is_slice_type())
|
|
arg_type = arg_type->points_to();
|
|
|
|
if (arg_type->array_type() != NULL
|
|
&& arg_type->array_type()->length() != NULL)
|
|
{
|
|
if (this->seen_)
|
|
return false;
|
|
Expression* e = arg_type->array_type()->length();
|
|
this->seen_ = true;
|
|
bool r = e->numeric_constant_value(nc);
|
|
this->seen_ = false;
|
|
if (r)
|
|
{
|
|
if (!nc->set_type(Type::lookup_integer_type("int"), false,
|
|
this->location()))
|
|
r = false;
|
|
}
|
|
return r;
|
|
}
|
|
}
|
|
else if (this->code_ == BUILTIN_SIZEOF
|
|
|| this->code_ == BUILTIN_ALIGNOF)
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
if (arg == NULL)
|
|
return false;
|
|
Type* arg_type = arg->type();
|
|
if (arg_type->is_error())
|
|
return false;
|
|
if (arg_type->is_abstract())
|
|
arg_type = arg_type->make_non_abstract_type();
|
|
if (this->seen_)
|
|
return false;
|
|
|
|
int64_t ret;
|
|
if (this->code_ == BUILTIN_SIZEOF)
|
|
{
|
|
this->seen_ = true;
|
|
bool ok = arg_type->backend_type_size(this->gogo_, &ret);
|
|
this->seen_ = false;
|
|
if (!ok)
|
|
return false;
|
|
}
|
|
else if (this->code_ == BUILTIN_ALIGNOF)
|
|
{
|
|
bool ok;
|
|
this->seen_ = true;
|
|
if (arg->field_reference_expression() == NULL)
|
|
ok = arg_type->backend_type_align(this->gogo_, &ret);
|
|
else
|
|
{
|
|
// Calling unsafe.Alignof(s.f) returns the alignment of
|
|
// the type of f when it is used as a field in a struct.
|
|
ok = arg_type->backend_type_field_align(this->gogo_, &ret);
|
|
}
|
|
this->seen_ = false;
|
|
if (!ok)
|
|
return false;
|
|
}
|
|
else
|
|
go_unreachable();
|
|
|
|
mpz_t zval;
|
|
set_mpz_from_int64(&zval, ret);
|
|
nc->set_int(Type::lookup_integer_type("uintptr"), zval);
|
|
mpz_clear(zval);
|
|
return true;
|
|
}
|
|
else if (this->code_ == BUILTIN_OFFSETOF)
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
if (arg == NULL)
|
|
return false;
|
|
Field_reference_expression* farg = arg->field_reference_expression();
|
|
if (farg == NULL)
|
|
return false;
|
|
if (this->seen_)
|
|
return false;
|
|
|
|
int64_t total_offset = 0;
|
|
while (true)
|
|
{
|
|
Expression* struct_expr = farg->expr();
|
|
Type* st = struct_expr->type();
|
|
if (st->struct_type() == NULL)
|
|
return false;
|
|
if (st->named_type() != NULL)
|
|
st->named_type()->convert(this->gogo_);
|
|
if (st->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return false;
|
|
}
|
|
int64_t offset;
|
|
this->seen_ = true;
|
|
bool ok = st->struct_type()->backend_field_offset(this->gogo_,
|
|
farg->field_index(),
|
|
&offset);
|
|
this->seen_ = false;
|
|
if (!ok)
|
|
return false;
|
|
total_offset += offset;
|
|
if (farg->implicit() && struct_expr->field_reference_expression() != NULL)
|
|
{
|
|
// Go up until we reach the original base.
|
|
farg = struct_expr->field_reference_expression();
|
|
continue;
|
|
}
|
|
break;
|
|
}
|
|
mpz_t zval;
|
|
set_mpz_from_int64(&zval, total_offset);
|
|
nc->set_int(Type::lookup_integer_type("uintptr"), zval);
|
|
mpz_clear(zval);
|
|
return true;
|
|
}
|
|
else if (this->code_ == BUILTIN_REAL || this->code_ == BUILTIN_IMAG)
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
if (arg == NULL)
|
|
return false;
|
|
|
|
Numeric_constant argnc;
|
|
if (!arg->numeric_constant_value(&argnc))
|
|
return false;
|
|
|
|
mpc_t val;
|
|
if (!argnc.to_complex(&val))
|
|
return false;
|
|
|
|
Type* type = Builtin_call_expression::real_imag_type(argnc.type());
|
|
if (this->code_ == BUILTIN_REAL)
|
|
nc->set_float(type, mpc_realref(val));
|
|
else
|
|
nc->set_float(type, mpc_imagref(val));
|
|
mpc_clear(val);
|
|
return true;
|
|
}
|
|
else if (this->code_ == BUILTIN_COMPLEX)
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() != 2)
|
|
return false;
|
|
|
|
Numeric_constant rnc;
|
|
if (!args->front()->numeric_constant_value(&rnc))
|
|
return false;
|
|
Numeric_constant inc;
|
|
if (!args->back()->numeric_constant_value(&inc))
|
|
return false;
|
|
|
|
if (rnc.type() != NULL
|
|
&& !rnc.type()->is_abstract()
|
|
&& inc.type() != NULL
|
|
&& !inc.type()->is_abstract()
|
|
&& !Type::are_identical(rnc.type(), inc.type(),
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
return false;
|
|
|
|
mpfr_t r;
|
|
if (!rnc.to_float(&r))
|
|
return false;
|
|
mpfr_t i;
|
|
if (!inc.to_float(&i))
|
|
{
|
|
mpfr_clear(r);
|
|
return false;
|
|
}
|
|
|
|
Type* arg_type = rnc.type();
|
|
if (arg_type == NULL || arg_type->is_abstract())
|
|
arg_type = inc.type();
|
|
|
|
mpc_t val;
|
|
mpc_init2(val, mpc_precision);
|
|
mpc_set_fr_fr(val, r, i, MPC_RNDNN);
|
|
mpfr_clear(r);
|
|
mpfr_clear(i);
|
|
|
|
Type* type = Builtin_call_expression::complex_type(arg_type);
|
|
nc->set_complex(type, val);
|
|
|
|
mpc_clear(val);
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Give an error if we are discarding the value of an expression which
|
|
// should not normally be discarded. We don't give an error for
|
|
// discarding the value of an ordinary function call, but we do for
|
|
// builtin functions, purely for consistency with the gc compiler.
|
|
|
|
bool
|
|
Builtin_call_expression::do_discarding_value()
|
|
{
|
|
switch (this->code_)
|
|
{
|
|
case BUILTIN_INVALID:
|
|
default:
|
|
go_unreachable();
|
|
|
|
case BUILTIN_APPEND:
|
|
case BUILTIN_CAP:
|
|
case BUILTIN_COMPLEX:
|
|
case BUILTIN_IMAG:
|
|
case BUILTIN_LEN:
|
|
case BUILTIN_MAKE:
|
|
case BUILTIN_NEW:
|
|
case BUILTIN_REAL:
|
|
case BUILTIN_ALIGNOF:
|
|
case BUILTIN_OFFSETOF:
|
|
case BUILTIN_SIZEOF:
|
|
this->unused_value_error();
|
|
return false;
|
|
|
|
case BUILTIN_CLOSE:
|
|
case BUILTIN_COPY:
|
|
case BUILTIN_DELETE:
|
|
case BUILTIN_PANIC:
|
|
case BUILTIN_PRINT:
|
|
case BUILTIN_PRINTLN:
|
|
case BUILTIN_RECOVER:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Return the type.
|
|
|
|
Type*
|
|
Builtin_call_expression::do_type()
|
|
{
|
|
if (this->is_error_expression())
|
|
return Type::make_error_type();
|
|
switch (this->code_)
|
|
{
|
|
case BUILTIN_INVALID:
|
|
default:
|
|
return Type::make_error_type();
|
|
|
|
case BUILTIN_NEW:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->empty())
|
|
return Type::make_error_type();
|
|
return Type::make_pointer_type(args->front()->type());
|
|
}
|
|
|
|
case BUILTIN_MAKE:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->empty())
|
|
return Type::make_error_type();
|
|
return args->front()->type();
|
|
}
|
|
|
|
case BUILTIN_CAP:
|
|
case BUILTIN_COPY:
|
|
case BUILTIN_LEN:
|
|
return Type::lookup_integer_type("int");
|
|
|
|
case BUILTIN_ALIGNOF:
|
|
case BUILTIN_OFFSETOF:
|
|
case BUILTIN_SIZEOF:
|
|
return Type::lookup_integer_type("uintptr");
|
|
|
|
case BUILTIN_CLOSE:
|
|
case BUILTIN_DELETE:
|
|
case BUILTIN_PANIC:
|
|
case BUILTIN_PRINT:
|
|
case BUILTIN_PRINTLN:
|
|
return Type::make_void_type();
|
|
|
|
case BUILTIN_RECOVER:
|
|
return Type::make_empty_interface_type(Linemap::predeclared_location());
|
|
|
|
case BUILTIN_APPEND:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->empty())
|
|
return Type::make_error_type();
|
|
Type *ret = args->front()->type();
|
|
if (!ret->is_slice_type())
|
|
return Type::make_error_type();
|
|
return ret;
|
|
}
|
|
|
|
case BUILTIN_REAL:
|
|
case BUILTIN_IMAG:
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
if (arg == NULL)
|
|
return Type::make_error_type();
|
|
Type* t = arg->type();
|
|
if (t->is_abstract())
|
|
t = t->make_non_abstract_type();
|
|
t = Builtin_call_expression::real_imag_type(t);
|
|
if (t == NULL)
|
|
t = Type::make_error_type();
|
|
return t;
|
|
}
|
|
|
|
case BUILTIN_COMPLEX:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() != 2)
|
|
return Type::make_error_type();
|
|
Type* t = args->front()->type();
|
|
if (t->is_abstract())
|
|
{
|
|
t = args->back()->type();
|
|
if (t->is_abstract())
|
|
t = t->make_non_abstract_type();
|
|
}
|
|
t = Builtin_call_expression::complex_type(t);
|
|
if (t == NULL)
|
|
t = Type::make_error_type();
|
|
return t;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Determine the type.
|
|
|
|
void
|
|
Builtin_call_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
if (!this->determining_types())
|
|
return;
|
|
|
|
this->fn()->determine_type_no_context();
|
|
|
|
const Expression_list* args = this->args();
|
|
|
|
bool is_print;
|
|
Type* arg_type = NULL;
|
|
Type* trailing_arg_types = NULL;
|
|
switch (this->code_)
|
|
{
|
|
case BUILTIN_PRINT:
|
|
case BUILTIN_PRINTLN:
|
|
// Do not force a large integer constant to "int".
|
|
is_print = true;
|
|
break;
|
|
|
|
case BUILTIN_REAL:
|
|
case BUILTIN_IMAG:
|
|
arg_type = Builtin_call_expression::complex_type(context->type);
|
|
if (arg_type == NULL)
|
|
arg_type = Type::lookup_complex_type("complex128");
|
|
is_print = false;
|
|
break;
|
|
|
|
case BUILTIN_COMPLEX:
|
|
{
|
|
// For the complex function the type of one operand can
|
|
// determine the type of the other, as in a binary expression.
|
|
arg_type = Builtin_call_expression::real_imag_type(context->type);
|
|
if (arg_type == NULL)
|
|
arg_type = Type::lookup_float_type("float64");
|
|
if (args != NULL && args->size() == 2)
|
|
{
|
|
Type* t1 = args->front()->type();
|
|
Type* t2 = args->back()->type();
|
|
if (!t1->is_abstract())
|
|
arg_type = t1;
|
|
else if (!t2->is_abstract())
|
|
arg_type = t2;
|
|
}
|
|
is_print = false;
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_APPEND:
|
|
if (!this->is_varargs()
|
|
&& args != NULL
|
|
&& !args->empty()
|
|
&& args->front()->type()->is_slice_type())
|
|
trailing_arg_types =
|
|
args->front()->type()->array_type()->element_type();
|
|
is_print = false;
|
|
break;
|
|
|
|
default:
|
|
is_print = false;
|
|
break;
|
|
}
|
|
|
|
if (args != NULL)
|
|
{
|
|
for (Expression_list::const_iterator pa = args->begin();
|
|
pa != args->end();
|
|
++pa)
|
|
{
|
|
Type_context subcontext;
|
|
subcontext.type = arg_type;
|
|
|
|
if (is_print)
|
|
{
|
|
// We want to print large constants, we so can't just
|
|
// use the appropriate nonabstract type. Use uint64 for
|
|
// an integer if we know it is nonnegative, otherwise
|
|
// use int64 for a integer, otherwise use float64 for a
|
|
// float or complex128 for a complex.
|
|
Type* want_type = NULL;
|
|
Type* atype = (*pa)->type();
|
|
if (atype->is_abstract())
|
|
{
|
|
if (atype->integer_type() != NULL)
|
|
{
|
|
Numeric_constant nc;
|
|
if (this->numeric_constant_value(&nc))
|
|
{
|
|
mpz_t val;
|
|
if (nc.to_int(&val))
|
|
{
|
|
if (mpz_sgn(val) >= 0)
|
|
want_type = Type::lookup_integer_type("uint64");
|
|
mpz_clear(val);
|
|
}
|
|
}
|
|
if (want_type == NULL)
|
|
want_type = Type::lookup_integer_type("int64");
|
|
}
|
|
else if (atype->float_type() != NULL)
|
|
want_type = Type::lookup_float_type("float64");
|
|
else if (atype->complex_type() != NULL)
|
|
want_type = Type::lookup_complex_type("complex128");
|
|
else if (atype->is_abstract_string_type())
|
|
want_type = Type::lookup_string_type();
|
|
else if (atype->is_abstract_boolean_type())
|
|
want_type = Type::lookup_bool_type();
|
|
else
|
|
go_unreachable();
|
|
subcontext.type = want_type;
|
|
}
|
|
}
|
|
|
|
(*pa)->determine_type(&subcontext);
|
|
|
|
if (trailing_arg_types != NULL)
|
|
{
|
|
arg_type = trailing_arg_types;
|
|
trailing_arg_types = NULL;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If there is exactly one argument, return true. Otherwise give an
|
|
// error message and return false.
|
|
|
|
bool
|
|
Builtin_call_expression::check_one_arg()
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() < 1)
|
|
{
|
|
this->report_error(_("not enough arguments"));
|
|
return false;
|
|
}
|
|
else if (args->size() > 1)
|
|
{
|
|
this->report_error(_("too many arguments"));
|
|
return false;
|
|
}
|
|
if (args->front()->is_error_expression()
|
|
|| args->front()->type()->is_error())
|
|
{
|
|
this->set_is_error();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check argument types for a builtin function.
|
|
|
|
void
|
|
Builtin_call_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->is_error_expression())
|
|
return;
|
|
switch (this->code_)
|
|
{
|
|
case BUILTIN_INVALID:
|
|
case BUILTIN_NEW:
|
|
case BUILTIN_MAKE:
|
|
case BUILTIN_DELETE:
|
|
return;
|
|
|
|
case BUILTIN_LEN:
|
|
case BUILTIN_CAP:
|
|
{
|
|
// The single argument may be either a string or an array or a
|
|
// map or a channel, or a pointer to a closed array.
|
|
if (this->check_one_arg())
|
|
{
|
|
Type* arg_type = this->one_arg()->type();
|
|
if (arg_type->points_to() != NULL
|
|
&& arg_type->points_to()->array_type() != NULL
|
|
&& !arg_type->points_to()->is_slice_type())
|
|
arg_type = arg_type->points_to();
|
|
if (this->code_ == BUILTIN_CAP)
|
|
{
|
|
if (!arg_type->is_error()
|
|
&& arg_type->array_type() == NULL
|
|
&& arg_type->channel_type() == NULL)
|
|
this->report_error(_("argument must be array or slice "
|
|
"or channel"));
|
|
}
|
|
else
|
|
{
|
|
if (!arg_type->is_error()
|
|
&& !arg_type->is_string_type()
|
|
&& arg_type->array_type() == NULL
|
|
&& arg_type->map_type() == NULL
|
|
&& arg_type->channel_type() == NULL)
|
|
this->report_error(_("argument must be string or "
|
|
"array or slice or map or channel"));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_PRINT:
|
|
case BUILTIN_PRINTLN:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL)
|
|
{
|
|
if (this->code_ == BUILTIN_PRINT)
|
|
go_warning_at(this->location(), 0,
|
|
"no arguments for builtin function %<%s%>",
|
|
(this->code_ == BUILTIN_PRINT
|
|
? "print"
|
|
: "println"));
|
|
}
|
|
else
|
|
{
|
|
for (Expression_list::const_iterator p = args->begin();
|
|
p != args->end();
|
|
++p)
|
|
{
|
|
Type* type = (*p)->type();
|
|
if (type->is_error()
|
|
|| type->is_string_type()
|
|
|| type->integer_type() != NULL
|
|
|| type->float_type() != NULL
|
|
|| type->complex_type() != NULL
|
|
|| type->is_boolean_type()
|
|
|| type->points_to() != NULL
|
|
|| type->interface_type() != NULL
|
|
|| type->channel_type() != NULL
|
|
|| type->map_type() != NULL
|
|
|| type->function_type() != NULL
|
|
|| type->is_slice_type())
|
|
;
|
|
else if ((*p)->is_type_expression())
|
|
{
|
|
// If this is a type expression it's going to give
|
|
// an error anyhow, so we don't need one here.
|
|
}
|
|
else
|
|
this->report_error(_("unsupported argument type to "
|
|
"builtin function"));
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_CLOSE:
|
|
if (this->check_one_arg())
|
|
{
|
|
if (this->one_arg()->type()->channel_type() == NULL)
|
|
this->report_error(_("argument must be channel"));
|
|
else if (!this->one_arg()->type()->channel_type()->may_send())
|
|
this->report_error(_("cannot close receive-only channel"));
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_PANIC:
|
|
case BUILTIN_SIZEOF:
|
|
case BUILTIN_ALIGNOF:
|
|
this->check_one_arg();
|
|
break;
|
|
|
|
case BUILTIN_RECOVER:
|
|
if (this->args() != NULL
|
|
&& !this->args()->empty()
|
|
&& !this->recover_arg_is_set_)
|
|
this->report_error(_("too many arguments"));
|
|
break;
|
|
|
|
case BUILTIN_OFFSETOF:
|
|
if (this->check_one_arg())
|
|
{
|
|
Expression* arg = this->one_arg();
|
|
if (arg->field_reference_expression() == NULL)
|
|
this->report_error(_("argument must be a field reference"));
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_COPY:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() < 2)
|
|
{
|
|
this->report_error(_("not enough arguments"));
|
|
break;
|
|
}
|
|
else if (args->size() > 2)
|
|
{
|
|
this->report_error(_("too many arguments"));
|
|
break;
|
|
}
|
|
Type* arg1_type = args->front()->type();
|
|
Type* arg2_type = args->back()->type();
|
|
if (arg1_type->is_error() || arg2_type->is_error())
|
|
{
|
|
this->set_is_error();
|
|
break;
|
|
}
|
|
|
|
Type* e1;
|
|
if (arg1_type->is_slice_type())
|
|
e1 = arg1_type->array_type()->element_type();
|
|
else
|
|
{
|
|
this->report_error(_("left argument must be a slice"));
|
|
break;
|
|
}
|
|
|
|
if (arg2_type->is_slice_type())
|
|
{
|
|
Type* e2 = arg2_type->array_type()->element_type();
|
|
if (!Type::are_identical(e1, e2, Type::COMPARE_TAGS, NULL))
|
|
this->report_error(_("element types must be the same"));
|
|
}
|
|
else if (arg2_type->is_string_type())
|
|
{
|
|
if (e1->integer_type() == NULL || !e1->integer_type()->is_byte())
|
|
this->report_error(_("first argument must be []byte"));
|
|
}
|
|
else
|
|
this->report_error(_("second argument must be slice or string"));
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_APPEND:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->empty())
|
|
{
|
|
this->report_error(_("not enough arguments"));
|
|
break;
|
|
}
|
|
|
|
Type* slice_type = args->front()->type();
|
|
if (!slice_type->is_slice_type())
|
|
{
|
|
if (slice_type->is_error_type())
|
|
break;
|
|
if (slice_type->is_nil_type())
|
|
go_error_at(args->front()->location(), "use of untyped nil");
|
|
else
|
|
go_error_at(args->front()->location(),
|
|
"argument 1 must be a slice");
|
|
this->set_is_error();
|
|
break;
|
|
}
|
|
|
|
Type* element_type = slice_type->array_type()->element_type();
|
|
if (!element_type->in_heap())
|
|
go_error_at(args->front()->location(),
|
|
"can't append to slice of go:notinheap type");
|
|
if (this->is_varargs())
|
|
{
|
|
if (!args->back()->type()->is_slice_type()
|
|
&& !args->back()->type()->is_string_type())
|
|
{
|
|
go_error_at(args->back()->location(),
|
|
"invalid use of %<...%> with non-slice/non-string");
|
|
this->set_is_error();
|
|
break;
|
|
}
|
|
|
|
if (args->size() < 2)
|
|
{
|
|
this->report_error(_("not enough arguments"));
|
|
break;
|
|
}
|
|
if (args->size() > 2)
|
|
{
|
|
this->report_error(_("too many arguments"));
|
|
break;
|
|
}
|
|
|
|
if (args->back()->type()->is_string_type()
|
|
&& element_type->integer_type() != NULL
|
|
&& element_type->integer_type()->is_byte())
|
|
{
|
|
// Permit append(s1, s2...) when s1 is a slice of
|
|
// bytes and s2 is a string type.
|
|
}
|
|
else
|
|
{
|
|
// We have to test for assignment compatibility to a
|
|
// slice of the element type, which is not necessarily
|
|
// the same as the type of the first argument: the
|
|
// first argument might have a named type.
|
|
Type* check_type = Type::make_array_type(element_type, NULL);
|
|
std::string reason;
|
|
if (!Type::are_assignable(check_type, args->back()->type(),
|
|
&reason))
|
|
{
|
|
if (reason.empty())
|
|
go_error_at(args->back()->location(),
|
|
"argument 2 has invalid type");
|
|
else
|
|
go_error_at(args->back()->location(),
|
|
"argument 2 has invalid type (%s)",
|
|
reason.c_str());
|
|
this->set_is_error();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
Expression_list::const_iterator pa = args->begin();
|
|
int i = 2;
|
|
for (++pa; pa != args->end(); ++pa, ++i)
|
|
{
|
|
std::string reason;
|
|
if (!Type::are_assignable(element_type, (*pa)->type(),
|
|
&reason))
|
|
{
|
|
if (reason.empty())
|
|
go_error_at((*pa)->location(),
|
|
"argument %d has incompatible type", i);
|
|
else
|
|
go_error_at((*pa)->location(),
|
|
"argument %d has incompatible type (%s)",
|
|
i, reason.c_str());
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_REAL:
|
|
case BUILTIN_IMAG:
|
|
if (this->check_one_arg())
|
|
{
|
|
if (this->one_arg()->type()->complex_type() == NULL)
|
|
this->report_error(_("argument must have complex type"));
|
|
}
|
|
break;
|
|
|
|
case BUILTIN_COMPLEX:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
if (args == NULL || args->size() < 2)
|
|
this->report_error(_("not enough arguments"));
|
|
else if (args->size() > 2)
|
|
this->report_error(_("too many arguments"));
|
|
else if (args->front()->is_error_expression()
|
|
|| args->front()->type()->is_error()
|
|
|| args->back()->is_error_expression()
|
|
|| args->back()->type()->is_error())
|
|
this->set_is_error();
|
|
else if (!Type::are_identical(args->front()->type(),
|
|
args->back()->type(),
|
|
Type::COMPARE_TAGS, NULL))
|
|
this->report_error(_("complex arguments must have identical types"));
|
|
else if (args->front()->type()->float_type() == NULL)
|
|
this->report_error(_("complex arguments must have "
|
|
"floating-point type"));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
Expression*
|
|
Builtin_call_expression::do_copy()
|
|
{
|
|
Call_expression* bce =
|
|
new Builtin_call_expression(this->gogo_, this->fn()->copy(),
|
|
(this->args() == NULL
|
|
? NULL
|
|
: this->args()->copy()),
|
|
this->is_varargs(),
|
|
this->location());
|
|
|
|
if (this->varargs_are_lowered())
|
|
bce->set_varargs_are_lowered();
|
|
if (this->is_deferred())
|
|
bce->set_is_deferred();
|
|
if (this->is_concurrent())
|
|
bce->set_is_concurrent();
|
|
return bce;
|
|
}
|
|
|
|
// Return the backend representation for a builtin function.
|
|
|
|
Bexpression*
|
|
Builtin_call_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Location location = this->location();
|
|
|
|
if (this->is_erroneous_call())
|
|
{
|
|
go_assert(saw_errors());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
|
|
switch (this->code_)
|
|
{
|
|
case BUILTIN_INVALID:
|
|
case BUILTIN_NEW:
|
|
case BUILTIN_MAKE:
|
|
go_unreachable();
|
|
|
|
case BUILTIN_LEN:
|
|
case BUILTIN_CAP:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && args->size() == 1);
|
|
Expression* arg = args->front();
|
|
Type* arg_type = arg->type();
|
|
|
|
if (this->seen_)
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
this->seen_ = true;
|
|
this->seen_ = false;
|
|
if (arg_type->points_to() != NULL)
|
|
{
|
|
arg_type = arg_type->points_to();
|
|
go_assert(arg_type->array_type() != NULL
|
|
&& !arg_type->is_slice_type());
|
|
arg = Expression::make_dereference(arg, NIL_CHECK_DEFAULT,
|
|
location);
|
|
}
|
|
|
|
Type* int_type = Type::lookup_integer_type("int");
|
|
Expression* val;
|
|
if (this->code_ == BUILTIN_LEN)
|
|
{
|
|
if (arg_type->is_string_type())
|
|
val = Expression::make_string_info(arg, STRING_INFO_LENGTH,
|
|
location);
|
|
else if (arg_type->array_type() != NULL)
|
|
{
|
|
if (this->seen_)
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
this->seen_ = true;
|
|
val = arg_type->array_type()->get_length(gogo, arg);
|
|
this->seen_ = false;
|
|
}
|
|
else if (arg_type->map_type() != NULL
|
|
|| arg_type->channel_type() != NULL)
|
|
{
|
|
// The first field is the length. If the pointer is
|
|
// nil, the length is zero.
|
|
Type* pint_type = Type::make_pointer_type(int_type);
|
|
arg = Expression::make_unsafe_cast(pint_type, arg, location);
|
|
Expression* nil = Expression::make_nil(location);
|
|
nil = Expression::make_cast(pint_type, nil, location);
|
|
Expression* cmp = Expression::make_binary(OPERATOR_EQEQ,
|
|
arg, nil, location);
|
|
Expression* zero = Expression::make_integer_ul(0, int_type,
|
|
location);
|
|
Expression* indir =
|
|
Expression::make_dereference(arg, NIL_CHECK_NOT_NEEDED,
|
|
location);
|
|
val = Expression::make_conditional(cmp, zero, indir, location);
|
|
}
|
|
else
|
|
go_unreachable();
|
|
}
|
|
else
|
|
{
|
|
if (arg_type->array_type() != NULL)
|
|
{
|
|
if (this->seen_)
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
this->seen_ = true;
|
|
val = arg_type->array_type()->get_capacity(gogo, arg);
|
|
this->seen_ = false;
|
|
}
|
|
else if (arg_type->channel_type() != NULL)
|
|
{
|
|
// The second field is the capacity. If the pointer
|
|
// is nil, the capacity is zero.
|
|
Type* uintptr_type = Type::lookup_integer_type("uintptr");
|
|
Type* pint_type = Type::make_pointer_type(int_type);
|
|
Expression* parg = Expression::make_unsafe_cast(uintptr_type,
|
|
arg,
|
|
location);
|
|
int off = int_type->integer_type()->bits() / 8;
|
|
Expression* eoff = Expression::make_integer_ul(off,
|
|
uintptr_type,
|
|
location);
|
|
parg = Expression::make_binary(OPERATOR_PLUS, parg, eoff,
|
|
location);
|
|
parg = Expression::make_unsafe_cast(pint_type, parg, location);
|
|
Expression* nil = Expression::make_nil(location);
|
|
nil = Expression::make_cast(pint_type, nil, location);
|
|
Expression* cmp = Expression::make_binary(OPERATOR_EQEQ,
|
|
arg, nil, location);
|
|
Expression* zero = Expression::make_integer_ul(0, int_type,
|
|
location);
|
|
Expression* indir =
|
|
Expression::make_dereference(parg, NIL_CHECK_NOT_NEEDED,
|
|
location);
|
|
val = Expression::make_conditional(cmp, zero, indir, location);
|
|
}
|
|
else
|
|
go_unreachable();
|
|
}
|
|
|
|
return Expression::make_cast(int_type, val,
|
|
location)->get_backend(context);
|
|
}
|
|
|
|
case BUILTIN_PRINT:
|
|
case BUILTIN_PRINTLN:
|
|
{
|
|
const bool is_ln = this->code_ == BUILTIN_PRINTLN;
|
|
|
|
Expression* print_stmts = Runtime::make_call(Runtime::PRINTLOCK,
|
|
location, 0);
|
|
|
|
const Expression_list* call_args = this->args();
|
|
if (call_args != NULL)
|
|
{
|
|
for (Expression_list::const_iterator p = call_args->begin();
|
|
p != call_args->end();
|
|
++p)
|
|
{
|
|
if (is_ln && p != call_args->begin())
|
|
{
|
|
Expression* print_space =
|
|
Runtime::make_call(Runtime::PRINTSP, location, 0);
|
|
|
|
print_stmts =
|
|
Expression::make_compound(print_stmts, print_space,
|
|
location);
|
|
}
|
|
|
|
Expression* arg = *p;
|
|
Type* type = arg->type();
|
|
Runtime::Function code;
|
|
if (type->is_string_type())
|
|
code = Runtime::PRINTSTRING;
|
|
else if (type->integer_type() != NULL
|
|
&& type->integer_type()->is_unsigned())
|
|
{
|
|
Type* itype = Type::lookup_integer_type("uint64");
|
|
arg = Expression::make_cast(itype, arg, location);
|
|
code = Runtime::PRINTUINT;
|
|
}
|
|
else if (type->integer_type() != NULL)
|
|
{
|
|
Type* itype = Type::lookup_integer_type("int64");
|
|
arg = Expression::make_cast(itype, arg, location);
|
|
code = Runtime::PRINTINT;
|
|
}
|
|
else if (type->float_type() != NULL)
|
|
{
|
|
Type* dtype = Type::lookup_float_type("float64");
|
|
arg = Expression::make_cast(dtype, arg, location);
|
|
code = Runtime::PRINTFLOAT;
|
|
}
|
|
else if (type->complex_type() != NULL)
|
|
{
|
|
Type* ctype = Type::lookup_complex_type("complex128");
|
|
arg = Expression::make_cast(ctype, arg, location);
|
|
code = Runtime::PRINTCOMPLEX;
|
|
}
|
|
else if (type->is_boolean_type())
|
|
code = Runtime::PRINTBOOL;
|
|
else if (type->points_to() != NULL
|
|
|| type->channel_type() != NULL
|
|
|| type->map_type() != NULL
|
|
|| type->function_type() != NULL)
|
|
{
|
|
arg = Expression::make_cast(type, arg, location);
|
|
code = Runtime::PRINTPOINTER;
|
|
}
|
|
else if (type->interface_type() != NULL)
|
|
{
|
|
if (type->interface_type()->is_empty())
|
|
code = Runtime::PRINTEFACE;
|
|
else
|
|
code = Runtime::PRINTIFACE;
|
|
}
|
|
else if (type->is_slice_type())
|
|
code = Runtime::PRINTSLICE;
|
|
else
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
Expression* call = Runtime::make_call(code, location, 1, arg);
|
|
print_stmts = Expression::make_compound(print_stmts, call,
|
|
location);
|
|
}
|
|
}
|
|
|
|
if (is_ln)
|
|
{
|
|
Expression* print_nl =
|
|
Runtime::make_call(Runtime::PRINTNL, location, 0);
|
|
print_stmts = Expression::make_compound(print_stmts, print_nl,
|
|
location);
|
|
}
|
|
|
|
Expression* unlock = Runtime::make_call(Runtime::PRINTUNLOCK,
|
|
location, 0);
|
|
print_stmts = Expression::make_compound(print_stmts, unlock, location);
|
|
|
|
return print_stmts->get_backend(context);
|
|
}
|
|
|
|
case BUILTIN_PANIC:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && args->size() == 1);
|
|
Expression* arg = args->front();
|
|
Type *empty =
|
|
Type::make_empty_interface_type(Linemap::predeclared_location());
|
|
arg = Expression::convert_for_assignment(gogo, empty, arg, location);
|
|
|
|
Expression* panic =
|
|
Runtime::make_call(Runtime::GOPANIC, location, 1, arg);
|
|
return panic->get_backend(context);
|
|
}
|
|
|
|
case BUILTIN_RECOVER:
|
|
{
|
|
// The argument is set when building recover thunks. It's a
|
|
// boolean value which is true if we can recover a value now.
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && args->size() == 1);
|
|
Expression* arg = args->front();
|
|
Type *empty =
|
|
Type::make_empty_interface_type(Linemap::predeclared_location());
|
|
|
|
Expression* nil = Expression::make_nil(location);
|
|
nil = Expression::convert_for_assignment(gogo, empty, nil, location);
|
|
|
|
// We need to handle a deferred call to recover specially,
|
|
// because it changes whether it can recover a panic or not.
|
|
// See test7 in test/recover1.go.
|
|
Expression* recover = Runtime::make_call((this->is_deferred()
|
|
? Runtime::DEFERREDRECOVER
|
|
: Runtime::GORECOVER),
|
|
location, 0);
|
|
Expression* cond =
|
|
Expression::make_conditional(arg, recover, nil, location);
|
|
return cond->get_backend(context);
|
|
}
|
|
|
|
case BUILTIN_CLOSE:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && args->size() == 1);
|
|
Expression* arg = args->front();
|
|
Expression* close = Runtime::make_call(Runtime::CLOSE, location,
|
|
1, arg);
|
|
return close->get_backend(context);
|
|
}
|
|
|
|
case BUILTIN_SIZEOF:
|
|
case BUILTIN_OFFSETOF:
|
|
case BUILTIN_ALIGNOF:
|
|
{
|
|
Numeric_constant nc;
|
|
unsigned long val;
|
|
if (!this->numeric_constant_value(&nc)
|
|
|| nc.to_unsigned_long(&val) != Numeric_constant::NC_UL_VALID)
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
Type* uintptr_type = Type::lookup_integer_type("uintptr");
|
|
mpz_t ival;
|
|
nc.get_int(&ival);
|
|
Expression* int_cst =
|
|
Expression::make_integer_z(&ival, uintptr_type, location);
|
|
mpz_clear(ival);
|
|
return int_cst->get_backend(context);
|
|
}
|
|
|
|
case BUILTIN_COPY:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && args->size() == 2);
|
|
Expression* arg1 = args->front();
|
|
Expression* arg2 = args->back();
|
|
|
|
Type* arg1_type = arg1->type();
|
|
Array_type* at = arg1_type->array_type();
|
|
go_assert(arg1->is_variable());
|
|
|
|
Expression* call;
|
|
|
|
Type* arg2_type = arg2->type();
|
|
go_assert(arg2->is_variable());
|
|
if (arg2_type->is_string_type())
|
|
call = Runtime::make_call(Runtime::SLICESTRINGCOPY, location,
|
|
2, arg1, arg2);
|
|
else
|
|
{
|
|
Type* et = at->element_type();
|
|
if (et->has_pointer())
|
|
{
|
|
Expression* td = Expression::make_type_descriptor(et,
|
|
location);
|
|
call = Runtime::make_call(Runtime::TYPEDSLICECOPY, location,
|
|
3, td, arg1, arg2);
|
|
}
|
|
else
|
|
{
|
|
Expression* sz = Expression::make_type_info(et,
|
|
TYPE_INFO_SIZE);
|
|
call = Runtime::make_call(Runtime::SLICECOPY, location, 3,
|
|
arg1, arg2, sz);
|
|
}
|
|
}
|
|
|
|
return call->get_backend(context);
|
|
}
|
|
|
|
case BUILTIN_APPEND:
|
|
// Handled in Builtin_call_expression::flatten_append.
|
|
go_unreachable();
|
|
|
|
case BUILTIN_REAL:
|
|
case BUILTIN_IMAG:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && args->size() == 1);
|
|
|
|
Bexpression* ret;
|
|
Bexpression* bcomplex = args->front()->get_backend(context);
|
|
if (this->code_ == BUILTIN_REAL)
|
|
ret = gogo->backend()->real_part_expression(bcomplex, location);
|
|
else
|
|
ret = gogo->backend()->imag_part_expression(bcomplex, location);
|
|
return ret;
|
|
}
|
|
|
|
case BUILTIN_COMPLEX:
|
|
{
|
|
const Expression_list* args = this->args();
|
|
go_assert(args != NULL && args->size() == 2);
|
|
Bexpression* breal = args->front()->get_backend(context);
|
|
Bexpression* bimag = args->back()->get_backend(context);
|
|
return gogo->backend()->complex_expression(breal, bimag, location);
|
|
}
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// We have to support exporting a builtin call expression, because
|
|
// code can set a constant to the result of a builtin expression.
|
|
|
|
void
|
|
Builtin_call_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
Numeric_constant nc;
|
|
if (!this->numeric_constant_value(&nc))
|
|
{
|
|
go_error_at(this->location(), "value is not constant");
|
|
return;
|
|
}
|
|
|
|
if (nc.is_int())
|
|
{
|
|
mpz_t val;
|
|
nc.get_int(&val);
|
|
Integer_expression::export_integer(efb, val);
|
|
mpz_clear(val);
|
|
}
|
|
else if (nc.is_float())
|
|
{
|
|
mpfr_t fval;
|
|
nc.get_float(&fval);
|
|
Float_expression::export_float(efb, fval);
|
|
mpfr_clear(fval);
|
|
}
|
|
else if (nc.is_complex())
|
|
{
|
|
mpc_t cval;
|
|
nc.get_complex(&cval);
|
|
Complex_expression::export_complex(efb, cval);
|
|
mpc_clear(cval);
|
|
}
|
|
else
|
|
go_unreachable();
|
|
|
|
// A trailing space lets us reliably identify the end of the number.
|
|
efb->write_c_string(" ");
|
|
}
|
|
|
|
// Class Call_expression.
|
|
|
|
// A Go function can be viewed in a couple of different ways. The
|
|
// code of a Go function becomes a backend function with parameters
|
|
// whose types are simply the backend representation of the Go types.
|
|
// If there are multiple results, they are returned as a backend
|
|
// struct.
|
|
|
|
// However, when Go code refers to a function other than simply
|
|
// calling it, the backend type of that function is actually a struct.
|
|
// The first field of the struct points to the Go function code
|
|
// (sometimes a wrapper as described below). The remaining fields
|
|
// hold addresses of closed-over variables. This struct is called a
|
|
// closure.
|
|
|
|
// There are a few cases to consider.
|
|
|
|
// A direct function call of a known function in package scope. In
|
|
// this case there are no closed-over variables, and we know the name
|
|
// of the function code. We can simply produce a backend call to the
|
|
// function directly, and not worry about the closure.
|
|
|
|
// A direct function call of a known function literal. In this case
|
|
// we know the function code and we know the closure. We generate the
|
|
// function code such that it expects an additional final argument of
|
|
// the closure type. We pass the closure as the last argument, after
|
|
// the other arguments.
|
|
|
|
// An indirect function call. In this case we have a closure. We
|
|
// load the pointer to the function code from the first field of the
|
|
// closure. We pass the address of the closure as the last argument.
|
|
|
|
// A call to a method of an interface. Type methods are always at
|
|
// package scope, so we call the function directly, and don't worry
|
|
// about the closure.
|
|
|
|
// This means that for a function at package scope we have two cases.
|
|
// One is the direct call, which has no closure. The other is the
|
|
// indirect call, which does have a closure. We can't simply ignore
|
|
// the closure, even though it is the last argument, because that will
|
|
// fail on targets where the function pops its arguments. So when
|
|
// generating a closure for a package-scope function we set the
|
|
// function code pointer in the closure to point to a wrapper
|
|
// function. This wrapper function accepts a final argument that
|
|
// points to the closure, ignores it, and calls the real function as a
|
|
// direct function call. This wrapper will normally be efficient, and
|
|
// can often simply be a tail call to the real function.
|
|
|
|
// We don't use GCC's static chain pointer because 1) we don't need
|
|
// it; 2) GCC only permits using a static chain to call a known
|
|
// function, so we can't use it for an indirect call anyhow. Since we
|
|
// can't use it for an indirect call, we may as well not worry about
|
|
// using it for a direct call either.
|
|
|
|
// We pass the closure last rather than first because it means that
|
|
// the function wrapper we put into a closure for a package-scope
|
|
// function can normally just be a tail call to the real function.
|
|
|
|
// For method expressions we generate a wrapper that loads the
|
|
// receiver from the closure and then calls the method. This
|
|
// unfortunately forces reshuffling the arguments, since there is a
|
|
// new first argument, but we can't avoid reshuffling either for
|
|
// method expressions or for indirect calls of package-scope
|
|
// functions, and since the latter are more common we reshuffle for
|
|
// method expressions.
|
|
|
|
// Note that the Go code retains the Go types. The extra final
|
|
// argument only appears when we convert to the backend
|
|
// representation.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Call_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
// If we are calling a function in a different package that returns
|
|
// an unnamed type, this may be the only chance we get to traverse
|
|
// that type. We don't traverse this->type_ because it may be a
|
|
// Call_multiple_result_type that will just lead back here.
|
|
if (this->type_ != NULL && !this->type_->is_error_type())
|
|
{
|
|
Function_type *fntype = this->get_function_type();
|
|
if (fntype != NULL && Type::traverse(fntype, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
if (Expression::traverse(&this->fn_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (this->args_ != NULL)
|
|
{
|
|
if (this->args_->traverse(traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Lower a call statement.
|
|
|
|
Expression*
|
|
Call_expression::do_lower(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter, int)
|
|
{
|
|
Location loc = this->location();
|
|
|
|
// A type cast can look like a function call.
|
|
if (this->fn_->is_type_expression()
|
|
&& this->args_ != NULL
|
|
&& this->args_->size() == 1)
|
|
return Expression::make_cast(this->fn_->type(), this->args_->front(),
|
|
loc);
|
|
|
|
// Because do_type will return an error type and thus prevent future
|
|
// errors, check for that case now to ensure that the error gets
|
|
// reported.
|
|
Function_type* fntype = this->get_function_type();
|
|
if (fntype == NULL)
|
|
{
|
|
if (!this->fn_->type()->is_error())
|
|
this->report_error(_("expected function"));
|
|
this->set_is_error();
|
|
return this;
|
|
}
|
|
|
|
// Handle an argument which is a call to a function which returns
|
|
// multiple results.
|
|
if (this->args_ != NULL
|
|
&& this->args_->size() == 1
|
|
&& this->args_->front()->call_expression() != NULL)
|
|
{
|
|
size_t rc = this->args_->front()->call_expression()->result_count();
|
|
if (rc > 1
|
|
&& ((fntype->parameters() != NULL
|
|
&& (fntype->parameters()->size() == rc
|
|
|| (fntype->is_varargs()
|
|
&& fntype->parameters()->size() - 1 <= rc)))
|
|
|| fntype->is_builtin()))
|
|
{
|
|
Call_expression* call = this->args_->front()->call_expression();
|
|
call->set_is_multi_value_arg();
|
|
if (this->is_varargs_)
|
|
{
|
|
// It is not clear which result of a multiple result call
|
|
// the ellipsis operator should be applied to. If we unpack the
|
|
// the call into its individual results here, the ellipsis will be
|
|
// applied to the last result.
|
|
go_error_at(call->location(),
|
|
_("multiple-value argument in single-value context"));
|
|
return Expression::make_error(call->location());
|
|
}
|
|
|
|
Expression_list* args = new Expression_list;
|
|
for (size_t i = 0; i < rc; ++i)
|
|
args->push_back(Expression::make_call_result(call, i));
|
|
// We can't return a new call expression here, because this
|
|
// one may be referenced by Call_result expressions. We
|
|
// also can't delete the old arguments, because we may still
|
|
// traverse them somewhere up the call stack. FIXME.
|
|
this->args_ = args;
|
|
}
|
|
}
|
|
|
|
// Recognize a call to a builtin function.
|
|
if (fntype->is_builtin())
|
|
{
|
|
Builtin_call_expression* bce =
|
|
new Builtin_call_expression(gogo, this->fn_, this->args_,
|
|
this->is_varargs_, loc);
|
|
if (this->is_deferred_)
|
|
bce->set_is_deferred();
|
|
if (this->is_concurrent_)
|
|
bce->set_is_concurrent();
|
|
return bce;
|
|
}
|
|
|
|
// If this call returns multiple results, create a temporary
|
|
// variable to hold them.
|
|
if (this->result_count() > 1 && this->call_temp_ == NULL)
|
|
{
|
|
Struct_field_list* sfl = new Struct_field_list();
|
|
Function_type* fntype = this->get_function_type();
|
|
const Typed_identifier_list* results = fntype->results();
|
|
Location loc = this->location();
|
|
|
|
int i = 0;
|
|
char buf[20];
|
|
for (Typed_identifier_list::const_iterator p = results->begin();
|
|
p != results->end();
|
|
++p, ++i)
|
|
{
|
|
snprintf(buf, sizeof buf, "res%d", i);
|
|
sfl->push_back(Struct_field(Typed_identifier(buf, p->type(), loc)));
|
|
}
|
|
|
|
Struct_type* st = Type::make_struct_type(sfl, loc);
|
|
st->set_is_struct_incomparable();
|
|
this->call_temp_ = Statement::make_temporary(st, NULL, loc);
|
|
inserter->insert(this->call_temp_);
|
|
}
|
|
|
|
// Handle a call to a varargs function by packaging up the extra
|
|
// parameters.
|
|
if (fntype->is_varargs())
|
|
{
|
|
const Typed_identifier_list* parameters = fntype->parameters();
|
|
go_assert(parameters != NULL && !parameters->empty());
|
|
Type* varargs_type = parameters->back().type();
|
|
this->lower_varargs(gogo, function, inserter, varargs_type,
|
|
parameters->size(), SLICE_STORAGE_MAY_ESCAPE);
|
|
}
|
|
|
|
// If this is call to a method, call the method directly passing the
|
|
// object as the first parameter.
|
|
Bound_method_expression* bme = this->fn_->bound_method_expression();
|
|
if (bme != NULL)
|
|
{
|
|
Named_object* methodfn = bme->function();
|
|
Expression* first_arg = bme->first_argument();
|
|
|
|
// We always pass a pointer when calling a method.
|
|
if (first_arg->type()->points_to() == NULL
|
|
&& !first_arg->type()->is_error())
|
|
{
|
|
first_arg = Expression::make_unary(OPERATOR_AND, first_arg, loc);
|
|
// We may need to create a temporary variable so that we can
|
|
// take the address. We can't do that here because it will
|
|
// mess up the order of evaluation.
|
|
Unary_expression* ue = static_cast<Unary_expression*>(first_arg);
|
|
ue->set_create_temp();
|
|
}
|
|
|
|
// If we are calling a method which was inherited from an
|
|
// embedded struct, and the method did not get a stub, then the
|
|
// first type may be wrong.
|
|
Type* fatype = bme->first_argument_type();
|
|
if (fatype != NULL)
|
|
{
|
|
if (fatype->points_to() == NULL)
|
|
fatype = Type::make_pointer_type(fatype);
|
|
first_arg = Expression::make_unsafe_cast(fatype, first_arg, loc);
|
|
}
|
|
|
|
Expression_list* new_args = new Expression_list();
|
|
new_args->push_back(first_arg);
|
|
if (this->args_ != NULL)
|
|
{
|
|
for (Expression_list::const_iterator p = this->args_->begin();
|
|
p != this->args_->end();
|
|
++p)
|
|
new_args->push_back(*p);
|
|
}
|
|
|
|
// We have to change in place because this structure may be
|
|
// referenced by Call_result_expressions. We can't delete the
|
|
// old arguments, because we may be traversing them up in some
|
|
// caller. FIXME.
|
|
this->args_ = new_args;
|
|
this->fn_ = Expression::make_func_reference(methodfn, NULL,
|
|
bme->location());
|
|
}
|
|
|
|
// Handle a couple of special runtime functions. In the runtime
|
|
// package, getcallerpc returns the PC of the caller, and
|
|
// getcallersp returns the frame pointer of the caller. Implement
|
|
// these by turning them into calls to GCC builtin functions. We
|
|
// could implement them in normal code, but then we would have to
|
|
// explicitly unwind the stack. These functions are intended to be
|
|
// efficient. Note that this technique obviously only works for
|
|
// direct calls, but that is the only way they are used.
|
|
if (gogo->compiling_runtime() && gogo->package_name() == "runtime")
|
|
{
|
|
Func_expression* fe = this->fn_->func_expression();
|
|
if (fe != NULL
|
|
&& fe->named_object()->is_function_declaration()
|
|
&& fe->named_object()->package() == NULL)
|
|
{
|
|
std::string n = Gogo::unpack_hidden_name(fe->named_object()->name());
|
|
if ((this->args_ == NULL || this->args_->size() == 0)
|
|
&& n == "getcallerpc")
|
|
{
|
|
static Named_object* builtin_return_address;
|
|
return this->lower_to_builtin(&builtin_return_address,
|
|
"__builtin_return_address",
|
|
0);
|
|
}
|
|
else if ((this->args_ == NULL || this->args_->size() == 0)
|
|
&& n == "getcallersp")
|
|
{
|
|
static Named_object* builtin_frame_address;
|
|
return this->lower_to_builtin(&builtin_frame_address,
|
|
"__builtin_frame_address",
|
|
1);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If this is a call to an imported function for which we have an
|
|
// inlinable function body, add it to the list of functions to give
|
|
// to the backend as inlining opportunities.
|
|
Func_expression* fe = this->fn_->func_expression();
|
|
if (fe != NULL
|
|
&& fe->named_object()->is_function_declaration()
|
|
&& fe->named_object()->func_declaration_value()->has_imported_body())
|
|
gogo->add_imported_inlinable_function(fe->named_object());
|
|
|
|
return this;
|
|
}
|
|
|
|
// Lower a call to a varargs function. FUNCTION is the function in
|
|
// which the call occurs--it's not the function we are calling.
|
|
// VARARGS_TYPE is the type of the varargs parameter, a slice type.
|
|
// PARAM_COUNT is the number of parameters of the function we are
|
|
// calling; the last of these parameters will be the varargs
|
|
// parameter.
|
|
|
|
void
|
|
Call_expression::lower_varargs(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter,
|
|
Type* varargs_type, size_t param_count,
|
|
Slice_storage_escape_disp escape_disp)
|
|
{
|
|
if (this->varargs_are_lowered_)
|
|
return;
|
|
|
|
Location loc = this->location();
|
|
|
|
go_assert(param_count > 0);
|
|
go_assert(varargs_type->is_slice_type());
|
|
|
|
size_t arg_count = this->args_ == NULL ? 0 : this->args_->size();
|
|
if (arg_count < param_count - 1)
|
|
{
|
|
// Not enough arguments; will be caught in check_types.
|
|
return;
|
|
}
|
|
|
|
Expression_list* old_args = this->args_;
|
|
Expression_list* new_args = new Expression_list();
|
|
bool push_empty_arg = false;
|
|
if (old_args == NULL || old_args->empty())
|
|
{
|
|
go_assert(param_count == 1);
|
|
push_empty_arg = true;
|
|
}
|
|
else
|
|
{
|
|
Expression_list::const_iterator pa;
|
|
int i = 1;
|
|
for (pa = old_args->begin(); pa != old_args->end(); ++pa, ++i)
|
|
{
|
|
if (static_cast<size_t>(i) == param_count)
|
|
break;
|
|
new_args->push_back(*pa);
|
|
}
|
|
|
|
// We have reached the varargs parameter.
|
|
|
|
bool issued_error = false;
|
|
if (pa == old_args->end())
|
|
push_empty_arg = true;
|
|
else if (pa + 1 == old_args->end() && this->is_varargs_)
|
|
new_args->push_back(*pa);
|
|
else if (this->is_varargs_)
|
|
{
|
|
if ((*pa)->type()->is_slice_type())
|
|
this->report_error(_("too many arguments"));
|
|
else
|
|
{
|
|
go_error_at(this->location(),
|
|
_("invalid use of %<...%> with non-slice"));
|
|
this->set_is_error();
|
|
}
|
|
return;
|
|
}
|
|
else
|
|
{
|
|
Type* element_type = varargs_type->array_type()->element_type();
|
|
Expression_list* vals = new Expression_list;
|
|
for (; pa != old_args->end(); ++pa, ++i)
|
|
{
|
|
// Check types here so that we get a better message.
|
|
Type* patype = (*pa)->type();
|
|
Location paloc = (*pa)->location();
|
|
if (!this->check_argument_type(i, element_type, patype,
|
|
paloc, issued_error))
|
|
continue;
|
|
vals->push_back(*pa);
|
|
}
|
|
Slice_construction_expression* sce =
|
|
Expression::make_slice_composite_literal(varargs_type, vals, loc);
|
|
if (escape_disp == SLICE_STORAGE_DOES_NOT_ESCAPE)
|
|
sce->set_storage_does_not_escape();
|
|
Expression* val = sce;
|
|
gogo->lower_expression(function, inserter, &val);
|
|
new_args->push_back(val);
|
|
}
|
|
}
|
|
|
|
if (push_empty_arg)
|
|
new_args->push_back(Expression::make_nil(loc));
|
|
|
|
// We can't return a new call expression here, because this one may
|
|
// be referenced by Call_result expressions. FIXME. We can't
|
|
// delete OLD_ARGS because we may have both a Call_expression and a
|
|
// Builtin_call_expression which refer to them. FIXME.
|
|
this->args_ = new_args;
|
|
this->varargs_are_lowered_ = true;
|
|
}
|
|
|
|
// Return a call to __builtin_return_address or __builtin_frame_address.
|
|
|
|
Expression*
|
|
Call_expression::lower_to_builtin(Named_object** pno, const char* name,
|
|
int arg)
|
|
{
|
|
if (*pno == NULL)
|
|
*pno = Gogo::declare_builtin_rf_address(name);
|
|
|
|
Location loc = this->location();
|
|
|
|
Expression* fn = Expression::make_func_reference(*pno, NULL, loc);
|
|
Expression* a = Expression::make_integer_ul(arg, NULL, loc);
|
|
Expression_list *args = new Expression_list();
|
|
args->push_back(a);
|
|
Expression* call = Expression::make_call(fn, args, false, loc);
|
|
|
|
// The builtin functions return void*, but the Go functions return uintptr.
|
|
Type* uintptr_type = Type::lookup_integer_type("uintptr");
|
|
return Expression::make_cast(uintptr_type, call, loc);
|
|
}
|
|
|
|
// Flatten a call with multiple results into a temporary.
|
|
|
|
Expression*
|
|
Call_expression::do_flatten(Gogo* gogo, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->is_erroneous_call())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
if (this->is_flattened_)
|
|
return this;
|
|
this->is_flattened_ = true;
|
|
|
|
// Add temporary variables for all arguments that require type
|
|
// conversion.
|
|
Function_type* fntype = this->get_function_type();
|
|
if (fntype == NULL)
|
|
{
|
|
go_assert(saw_errors());
|
|
return this;
|
|
}
|
|
if (this->args_ != NULL && !this->args_->empty()
|
|
&& fntype->parameters() != NULL && !fntype->parameters()->empty())
|
|
{
|
|
bool is_interface_method =
|
|
this->fn_->interface_field_reference_expression() != NULL;
|
|
|
|
Expression_list *args = new Expression_list();
|
|
Typed_identifier_list::const_iterator pp = fntype->parameters()->begin();
|
|
Expression_list::const_iterator pa = this->args_->begin();
|
|
if (!is_interface_method && fntype->is_method())
|
|
{
|
|
// The receiver argument.
|
|
args->push_back(*pa);
|
|
++pa;
|
|
}
|
|
for (; pa != this->args_->end(); ++pa, ++pp)
|
|
{
|
|
go_assert(pp != fntype->parameters()->end());
|
|
if (Type::are_identical(pp->type(), (*pa)->type(),
|
|
Type::COMPARE_TAGS, NULL))
|
|
args->push_back(*pa);
|
|
else
|
|
{
|
|
Location loc = (*pa)->location();
|
|
Expression* arg = *pa;
|
|
if (!arg->is_variable())
|
|
{
|
|
Temporary_statement *temp =
|
|
Statement::make_temporary(NULL, arg, loc);
|
|
inserter->insert(temp);
|
|
arg = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
arg = Expression::convert_for_assignment(gogo, pp->type(), arg,
|
|
loc);
|
|
args->push_back(arg);
|
|
}
|
|
}
|
|
delete this->args_;
|
|
this->args_ = args;
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Get the function type. This can return NULL in error cases.
|
|
|
|
Function_type*
|
|
Call_expression::get_function_type() const
|
|
{
|
|
return this->fn_->type()->function_type();
|
|
}
|
|
|
|
// Return the number of values which this call will return.
|
|
|
|
size_t
|
|
Call_expression::result_count() const
|
|
{
|
|
const Function_type* fntype = this->get_function_type();
|
|
if (fntype == NULL)
|
|
return 0;
|
|
if (fntype->results() == NULL)
|
|
return 0;
|
|
return fntype->results()->size();
|
|
}
|
|
|
|
// Return the temporary that holds the result for a call with multiple
|
|
// results.
|
|
|
|
Temporary_statement*
|
|
Call_expression::results() const
|
|
{
|
|
if (this->call_temp_ == NULL)
|
|
{
|
|
go_assert(saw_errors());
|
|
return NULL;
|
|
}
|
|
return this->call_temp_;
|
|
}
|
|
|
|
// Set the number of results expected from a call expression.
|
|
|
|
void
|
|
Call_expression::set_expected_result_count(size_t count)
|
|
{
|
|
go_assert(this->expected_result_count_ == 0);
|
|
this->expected_result_count_ = count;
|
|
}
|
|
|
|
// Return whether this is a call to the predeclared function recover.
|
|
|
|
bool
|
|
Call_expression::is_recover_call() const
|
|
{
|
|
return this->do_is_recover_call();
|
|
}
|
|
|
|
// Set the argument to the recover function.
|
|
|
|
void
|
|
Call_expression::set_recover_arg(Expression* arg)
|
|
{
|
|
this->do_set_recover_arg(arg);
|
|
}
|
|
|
|
// Virtual functions also implemented by Builtin_call_expression.
|
|
|
|
bool
|
|
Call_expression::do_is_recover_call() const
|
|
{
|
|
return false;
|
|
}
|
|
|
|
void
|
|
Call_expression::do_set_recover_arg(Expression*)
|
|
{
|
|
go_unreachable();
|
|
}
|
|
|
|
// We have found an error with this call expression; return true if
|
|
// we should report it.
|
|
|
|
bool
|
|
Call_expression::issue_error()
|
|
{
|
|
if (this->issued_error_)
|
|
return false;
|
|
else
|
|
{
|
|
this->issued_error_ = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Whether or not this call contains errors, either in the call or the
|
|
// arguments to the call.
|
|
|
|
bool
|
|
Call_expression::is_erroneous_call()
|
|
{
|
|
if (this->is_error_expression() || this->fn()->is_error_expression())
|
|
return true;
|
|
|
|
if (this->args() == NULL)
|
|
return false;
|
|
for (Expression_list::iterator pa = this->args()->begin();
|
|
pa != this->args()->end();
|
|
++pa)
|
|
{
|
|
if ((*pa)->type()->is_error_type() || (*pa)->is_error_expression())
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Get the type.
|
|
|
|
Type*
|
|
Call_expression::do_type()
|
|
{
|
|
if (this->type_ != NULL)
|
|
return this->type_;
|
|
|
|
Type* ret;
|
|
Function_type* fntype = this->get_function_type();
|
|
if (fntype == NULL)
|
|
return Type::make_error_type();
|
|
|
|
const Typed_identifier_list* results = fntype->results();
|
|
if (results == NULL)
|
|
ret = Type::make_void_type();
|
|
else if (results->size() == 1)
|
|
ret = results->begin()->type();
|
|
else
|
|
ret = Type::make_call_multiple_result_type(this);
|
|
|
|
this->type_ = ret;
|
|
|
|
return this->type_;
|
|
}
|
|
|
|
// Determine types for a call expression. We can use the function
|
|
// parameter types to set the types of the arguments.
|
|
|
|
void
|
|
Call_expression::do_determine_type(const Type_context*)
|
|
{
|
|
if (!this->determining_types())
|
|
return;
|
|
|
|
this->fn_->determine_type_no_context();
|
|
Function_type* fntype = this->get_function_type();
|
|
const Typed_identifier_list* parameters = NULL;
|
|
if (fntype != NULL)
|
|
parameters = fntype->parameters();
|
|
if (this->args_ != NULL)
|
|
{
|
|
Typed_identifier_list::const_iterator pt;
|
|
if (parameters != NULL)
|
|
pt = parameters->begin();
|
|
bool first = true;
|
|
for (Expression_list::const_iterator pa = this->args_->begin();
|
|
pa != this->args_->end();
|
|
++pa)
|
|
{
|
|
if (first)
|
|
{
|
|
first = false;
|
|
// If this is a method, the first argument is the
|
|
// receiver.
|
|
if (fntype != NULL && fntype->is_method())
|
|
{
|
|
Type* rtype = fntype->receiver()->type();
|
|
// The receiver is always passed as a pointer.
|
|
if (rtype->points_to() == NULL)
|
|
rtype = Type::make_pointer_type(rtype);
|
|
Type_context subcontext(rtype, false);
|
|
(*pa)->determine_type(&subcontext);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (parameters != NULL && pt != parameters->end())
|
|
{
|
|
Type_context subcontext(pt->type(), false);
|
|
(*pa)->determine_type(&subcontext);
|
|
++pt;
|
|
}
|
|
else
|
|
(*pa)->determine_type_no_context();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Called when determining types for a Call_expression. Return true
|
|
// if we should go ahead, false if they have already been determined.
|
|
|
|
bool
|
|
Call_expression::determining_types()
|
|
{
|
|
if (this->types_are_determined_)
|
|
return false;
|
|
else
|
|
{
|
|
this->types_are_determined_ = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check types for parameter I.
|
|
|
|
bool
|
|
Call_expression::check_argument_type(int i, const Type* parameter_type,
|
|
const Type* argument_type,
|
|
Location argument_location,
|
|
bool issued_error)
|
|
{
|
|
std::string reason;
|
|
if (!Type::are_assignable(parameter_type, argument_type, &reason))
|
|
{
|
|
if (!issued_error)
|
|
{
|
|
if (reason.empty())
|
|
go_error_at(argument_location, "argument %d has incompatible type", i);
|
|
else
|
|
go_error_at(argument_location,
|
|
"argument %d has incompatible type (%s)",
|
|
i, reason.c_str());
|
|
}
|
|
this->set_is_error();
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check types.
|
|
|
|
void
|
|
Call_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->classification() == EXPRESSION_ERROR)
|
|
return;
|
|
|
|
Function_type* fntype = this->get_function_type();
|
|
if (fntype == NULL)
|
|
{
|
|
if (!this->fn_->type()->is_error())
|
|
this->report_error(_("expected function"));
|
|
return;
|
|
}
|
|
|
|
if (this->expected_result_count_ != 0
|
|
&& this->expected_result_count_ != this->result_count())
|
|
{
|
|
if (this->issue_error())
|
|
this->report_error(_("function result count mismatch"));
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
|
|
bool is_method = fntype->is_method();
|
|
if (is_method)
|
|
{
|
|
go_assert(this->args_ != NULL && !this->args_->empty());
|
|
Type* rtype = fntype->receiver()->type();
|
|
Expression* first_arg = this->args_->front();
|
|
// We dereference the values since receivers are always passed
|
|
// as pointers.
|
|
std::string reason;
|
|
if (!Type::are_assignable(rtype->deref(), first_arg->type()->deref(),
|
|
&reason))
|
|
{
|
|
if (reason.empty())
|
|
this->report_error(_("incompatible type for receiver"));
|
|
else
|
|
{
|
|
go_error_at(this->location(),
|
|
"incompatible type for receiver (%s)",
|
|
reason.c_str());
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Note that varargs was handled by the lower_varargs() method, so
|
|
// we don't have to worry about it here unless something is wrong.
|
|
if (this->is_varargs_ && !this->varargs_are_lowered_)
|
|
{
|
|
if (!fntype->is_varargs())
|
|
{
|
|
go_error_at(this->location(),
|
|
_("invalid use of %<...%> calling non-variadic function"));
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
}
|
|
|
|
const Typed_identifier_list* parameters = fntype->parameters();
|
|
if (this->args_ == NULL || this->args_->size() == 0)
|
|
{
|
|
if (parameters != NULL && !parameters->empty())
|
|
this->report_error(_("not enough arguments"));
|
|
}
|
|
else if (parameters == NULL)
|
|
{
|
|
if (!is_method || this->args_->size() > 1)
|
|
this->report_error(_("too many arguments"));
|
|
}
|
|
else if (this->args_->size() == 1
|
|
&& this->args_->front()->call_expression() != NULL
|
|
&& this->args_->front()->call_expression()->result_count() > 1)
|
|
{
|
|
// This is F(G()) when G returns more than one result. If the
|
|
// results can be matched to parameters, it would have been
|
|
// lowered in do_lower. If we get here we know there is a
|
|
// mismatch.
|
|
if (this->args_->front()->call_expression()->result_count()
|
|
< parameters->size())
|
|
this->report_error(_("not enough arguments"));
|
|
else
|
|
this->report_error(_("too many arguments"));
|
|
}
|
|
else
|
|
{
|
|
int i = 0;
|
|
Expression_list::const_iterator pa = this->args_->begin();
|
|
if (is_method)
|
|
++pa;
|
|
for (Typed_identifier_list::const_iterator pt = parameters->begin();
|
|
pt != parameters->end();
|
|
++pt, ++pa, ++i)
|
|
{
|
|
if (pa == this->args_->end())
|
|
{
|
|
this->report_error(_("not enough arguments"));
|
|
return;
|
|
}
|
|
this->check_argument_type(i + 1, pt->type(), (*pa)->type(),
|
|
(*pa)->location(), false);
|
|
}
|
|
if (pa != this->args_->end())
|
|
this->report_error(_("too many arguments"));
|
|
}
|
|
}
|
|
|
|
Expression*
|
|
Call_expression::do_copy()
|
|
{
|
|
Call_expression* call =
|
|
Expression::make_call(this->fn_->copy(),
|
|
(this->args_ == NULL
|
|
? NULL
|
|
: this->args_->copy()),
|
|
this->is_varargs_, this->location());
|
|
|
|
if (this->varargs_are_lowered_)
|
|
call->set_varargs_are_lowered();
|
|
if (this->is_deferred_)
|
|
call->set_is_deferred();
|
|
if (this->is_concurrent_)
|
|
call->set_is_concurrent();
|
|
return call;
|
|
}
|
|
|
|
// Return whether we have to use a temporary variable to ensure that
|
|
// we evaluate this call expression in order. If the call returns no
|
|
// results then it will inevitably be executed last.
|
|
|
|
bool
|
|
Call_expression::do_must_eval_in_order() const
|
|
{
|
|
return this->result_count() > 0;
|
|
}
|
|
|
|
// Get the function and the first argument to use when calling an
|
|
// interface method.
|
|
|
|
Expression*
|
|
Call_expression::interface_method_function(
|
|
Interface_field_reference_expression* interface_method,
|
|
Expression** first_arg_ptr,
|
|
Location location)
|
|
{
|
|
Expression* object = interface_method->get_underlying_object();
|
|
Type* unsafe_ptr_type = Type::make_pointer_type(Type::make_void_type());
|
|
*first_arg_ptr =
|
|
Expression::make_unsafe_cast(unsafe_ptr_type, object, location);
|
|
return interface_method->get_function();
|
|
}
|
|
|
|
// Build the call expression.
|
|
|
|
Bexpression*
|
|
Call_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Location location = this->location();
|
|
|
|
if (this->call_ != NULL)
|
|
{
|
|
// If the call returns multiple results, make a new reference to
|
|
// the temporary.
|
|
if (this->call_temp_ != NULL)
|
|
{
|
|
Expression* ref =
|
|
Expression::make_temporary_reference(this->call_temp_, location);
|
|
return ref->get_backend(context);
|
|
}
|
|
|
|
return this->call_;
|
|
}
|
|
|
|
Function_type* fntype = this->get_function_type();
|
|
if (fntype == NULL)
|
|
return context->backend()->error_expression();
|
|
|
|
if (this->fn_->is_error_expression())
|
|
return context->backend()->error_expression();
|
|
|
|
Gogo* gogo = context->gogo();
|
|
|
|
Func_expression* func = this->fn_->func_expression();
|
|
Interface_field_reference_expression* interface_method =
|
|
this->fn_->interface_field_reference_expression();
|
|
const bool has_closure = func != NULL && func->closure() != NULL;
|
|
const bool is_interface_method = interface_method != NULL;
|
|
|
|
bool has_closure_arg;
|
|
if (has_closure)
|
|
has_closure_arg = true;
|
|
else if (func != NULL)
|
|
has_closure_arg = false;
|
|
else if (is_interface_method)
|
|
has_closure_arg = false;
|
|
else
|
|
has_closure_arg = true;
|
|
|
|
int nargs;
|
|
std::vector<Bexpression*> fn_args;
|
|
if (this->args_ == NULL || this->args_->empty())
|
|
{
|
|
nargs = is_interface_method ? 1 : 0;
|
|
if (nargs > 0)
|
|
fn_args.resize(1);
|
|
}
|
|
else if (fntype->parameters() == NULL || fntype->parameters()->empty())
|
|
{
|
|
// Passing a receiver parameter.
|
|
go_assert(!is_interface_method
|
|
&& fntype->is_method()
|
|
&& this->args_->size() == 1);
|
|
nargs = 1;
|
|
fn_args.resize(1);
|
|
fn_args[0] = this->args_->front()->get_backend(context);
|
|
}
|
|
else
|
|
{
|
|
const Typed_identifier_list* params = fntype->parameters();
|
|
|
|
nargs = this->args_->size();
|
|
int i = is_interface_method ? 1 : 0;
|
|
nargs += i;
|
|
fn_args.resize(nargs);
|
|
|
|
Typed_identifier_list::const_iterator pp = params->begin();
|
|
Expression_list::const_iterator pe = this->args_->begin();
|
|
if (!is_interface_method && fntype->is_method())
|
|
{
|
|
fn_args[i] = (*pe)->get_backend(context);
|
|
++pe;
|
|
++i;
|
|
}
|
|
for (; pe != this->args_->end(); ++pe, ++pp, ++i)
|
|
{
|
|
go_assert(pp != params->end());
|
|
Expression* arg =
|
|
Expression::convert_for_assignment(gogo, pp->type(), *pe,
|
|
location);
|
|
fn_args[i] = arg->get_backend(context);
|
|
}
|
|
go_assert(pp == params->end());
|
|
go_assert(i == nargs);
|
|
}
|
|
|
|
Expression* fn;
|
|
Expression* closure = NULL;
|
|
if (func != NULL)
|
|
{
|
|
Named_object* no = func->named_object();
|
|
fn = Expression::make_func_code_reference(no, location);
|
|
if (has_closure)
|
|
closure = func->closure();
|
|
}
|
|
else if (!is_interface_method)
|
|
{
|
|
closure = this->fn_;
|
|
|
|
// The backend representation of this function type is a pointer
|
|
// to a struct whose first field is the actual function to call.
|
|
Type* pfntype =
|
|
Type::make_pointer_type(
|
|
Type::make_pointer_type(Type::make_void_type()));
|
|
fn = Expression::make_unsafe_cast(pfntype, this->fn_, location);
|
|
fn = Expression::make_dereference(fn, NIL_CHECK_NOT_NEEDED, location);
|
|
}
|
|
else
|
|
{
|
|
Expression* first_arg;
|
|
fn = this->interface_method_function(interface_method, &first_arg,
|
|
location);
|
|
fn_args[0] = first_arg->get_backend(context);
|
|
}
|
|
|
|
Bexpression* bclosure = NULL;
|
|
if (has_closure_arg)
|
|
bclosure = closure->get_backend(context);
|
|
else
|
|
go_assert(closure == NULL);
|
|
|
|
Bexpression* bfn = fn->get_backend(context);
|
|
|
|
// When not calling a named function directly, use a type conversion
|
|
// in case the type of the function is a recursive type which refers
|
|
// to itself. We don't do this for an interface method because 1)
|
|
// an interface method never refers to itself, so we always have a
|
|
// function type here; 2) we pass an extra first argument to an
|
|
// interface method, so fntype is not correct.
|
|
if (func == NULL && !is_interface_method)
|
|
{
|
|
Btype* bft = fntype->get_backend_fntype(gogo);
|
|
bfn = gogo->backend()->convert_expression(bft, bfn, location);
|
|
}
|
|
|
|
Bfunction* bfunction = NULL;
|
|
if (context->function())
|
|
bfunction = context->function()->func_value()->get_decl();
|
|
Bexpression* call = gogo->backend()->call_expression(bfunction, bfn,
|
|
fn_args, bclosure,
|
|
location);
|
|
|
|
if (this->call_temp_ != NULL)
|
|
{
|
|
// This case occurs when the call returns multiple results.
|
|
|
|
Expression* ref = Expression::make_temporary_reference(this->call_temp_,
|
|
location);
|
|
Bexpression* bref = ref->get_backend(context);
|
|
Bstatement* bassn = gogo->backend()->assignment_statement(bfunction,
|
|
bref, call,
|
|
location);
|
|
|
|
ref = Expression::make_temporary_reference(this->call_temp_, location);
|
|
this->call_ = ref->get_backend(context);
|
|
|
|
return gogo->backend()->compound_expression(bassn, this->call_,
|
|
location);
|
|
}
|
|
|
|
this->call_ = call;
|
|
return this->call_;
|
|
}
|
|
|
|
// Dump ast representation for a call expressin.
|
|
|
|
void
|
|
Call_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
this->fn_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << "(";
|
|
if (args_ != NULL)
|
|
ast_dump_context->dump_expression_list(this->args_);
|
|
|
|
ast_dump_context->ostream() << ") ";
|
|
}
|
|
|
|
// Make a call expression.
|
|
|
|
Call_expression*
|
|
Expression::make_call(Expression* fn, Expression_list* args, bool is_varargs,
|
|
Location location)
|
|
{
|
|
return new Call_expression(fn, args, is_varargs, location);
|
|
}
|
|
|
|
// Class Call_result_expression.
|
|
|
|
// Traverse a call result.
|
|
|
|
int
|
|
Call_result_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (traverse->remember_expression(this->call_))
|
|
{
|
|
// We have already traversed the call expression.
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
return Expression::traverse(&this->call_, traverse);
|
|
}
|
|
|
|
// Get the type.
|
|
|
|
Type*
|
|
Call_result_expression::do_type()
|
|
{
|
|
if (this->classification() == EXPRESSION_ERROR)
|
|
return Type::make_error_type();
|
|
|
|
// THIS->CALL_ can be replaced with a temporary reference due to
|
|
// Call_expression::do_must_eval_in_order when there is an error.
|
|
Call_expression* ce = this->call_->call_expression();
|
|
if (ce == NULL)
|
|
{
|
|
this->set_is_error();
|
|
return Type::make_error_type();
|
|
}
|
|
Function_type* fntype = ce->get_function_type();
|
|
if (fntype == NULL)
|
|
{
|
|
if (ce->issue_error())
|
|
{
|
|
if (!ce->fn()->type()->is_error())
|
|
this->report_error(_("expected function"));
|
|
}
|
|
this->set_is_error();
|
|
return Type::make_error_type();
|
|
}
|
|
const Typed_identifier_list* results = fntype->results();
|
|
if (results == NULL || results->size() < 2)
|
|
{
|
|
if (ce->issue_error())
|
|
this->report_error(_("number of results does not match "
|
|
"number of values"));
|
|
return Type::make_error_type();
|
|
}
|
|
Typed_identifier_list::const_iterator pr = results->begin();
|
|
for (unsigned int i = 0; i < this->index_; ++i)
|
|
{
|
|
if (pr == results->end())
|
|
break;
|
|
++pr;
|
|
}
|
|
if (pr == results->end())
|
|
{
|
|
if (ce->issue_error())
|
|
this->report_error(_("number of results does not match "
|
|
"number of values"));
|
|
return Type::make_error_type();
|
|
}
|
|
return pr->type();
|
|
}
|
|
|
|
// Check the type. Just make sure that we trigger the warning in
|
|
// do_type.
|
|
|
|
void
|
|
Call_result_expression::do_check_types(Gogo*)
|
|
{
|
|
this->type();
|
|
}
|
|
|
|
// Determine the type. We have nothing to do here, but the 0 result
|
|
// needs to pass down to the caller.
|
|
|
|
void
|
|
Call_result_expression::do_determine_type(const Type_context*)
|
|
{
|
|
this->call_->determine_type_no_context();
|
|
}
|
|
|
|
// Return the backend representation. We just refer to the temporary set by the
|
|
// call expression. We don't do this at lowering time because it makes it
|
|
// hard to evaluate the call at the right time.
|
|
|
|
Bexpression*
|
|
Call_result_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Call_expression* ce = this->call_->call_expression();
|
|
if (ce == NULL)
|
|
{
|
|
go_assert(this->call_->is_error_expression());
|
|
return context->backend()->error_expression();
|
|
}
|
|
Temporary_statement* ts = ce->results();
|
|
if (ts == NULL)
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
Expression* ref = Expression::make_temporary_reference(ts, this->location());
|
|
ref = Expression::make_field_reference(ref, this->index_, this->location());
|
|
return ref->get_backend(context);
|
|
}
|
|
|
|
// Dump ast representation for a call result expression.
|
|
|
|
void
|
|
Call_result_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
// FIXME: Wouldn't it be better if the call is assigned to a temporary
|
|
// (struct) and the fields are referenced instead.
|
|
ast_dump_context->ostream() << this->index_ << "@(";
|
|
ast_dump_context->dump_expression(this->call_);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make a reference to a single result of a call which returns
|
|
// multiple results.
|
|
|
|
Expression*
|
|
Expression::make_call_result(Call_expression* call, unsigned int index)
|
|
{
|
|
return new Call_result_expression(call, index);
|
|
}
|
|
|
|
// Class Index_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Index_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->left_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT
|
|
|| (this->end_ != NULL
|
|
&& Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
|
|
|| (this->cap_ != NULL
|
|
&& Expression::traverse(&this->cap_, traverse) == TRAVERSE_EXIT))
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Lower an index expression. This converts the generic index
|
|
// expression into an array index, a string index, or a map index.
|
|
|
|
Expression*
|
|
Index_expression::do_lower(Gogo*, Named_object*, Statement_inserter*, int)
|
|
{
|
|
Location location = this->location();
|
|
Expression* left = this->left_;
|
|
Expression* start = this->start_;
|
|
Expression* end = this->end_;
|
|
Expression* cap = this->cap_;
|
|
|
|
Type* type = left->type();
|
|
if (type->is_error())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(location);
|
|
}
|
|
else if (left->is_type_expression())
|
|
{
|
|
go_error_at(location, "attempt to index type expression");
|
|
return Expression::make_error(location);
|
|
}
|
|
else if (type->array_type() != NULL)
|
|
return Expression::make_array_index(left, start, end, cap, location);
|
|
else if (type->points_to() != NULL
|
|
&& type->points_to()->array_type() != NULL
|
|
&& !type->points_to()->is_slice_type())
|
|
{
|
|
Expression* deref =
|
|
Expression::make_dereference(left, NIL_CHECK_DEFAULT, location);
|
|
|
|
// For an ordinary index into the array, the pointer will be
|
|
// dereferenced. For a slice it will not--the resulting slice
|
|
// will simply reuse the pointer, which is incorrect if that
|
|
// pointer is nil.
|
|
if (end != NULL || cap != NULL)
|
|
deref->issue_nil_check();
|
|
|
|
return Expression::make_array_index(deref, start, end, cap, location);
|
|
}
|
|
else if (type->is_string_type())
|
|
{
|
|
if (cap != NULL)
|
|
{
|
|
go_error_at(location, "invalid 3-index slice of string");
|
|
return Expression::make_error(location);
|
|
}
|
|
return Expression::make_string_index(left, start, end, location);
|
|
}
|
|
else if (type->map_type() != NULL)
|
|
{
|
|
if (end != NULL || cap != NULL)
|
|
{
|
|
go_error_at(location, "invalid slice of map");
|
|
return Expression::make_error(location);
|
|
}
|
|
return Expression::make_map_index(left, start, location);
|
|
}
|
|
else if (cap != NULL)
|
|
{
|
|
go_error_at(location,
|
|
"invalid 3-index slice of object that is not a slice");
|
|
return Expression::make_error(location);
|
|
}
|
|
else if (end != NULL)
|
|
{
|
|
go_error_at(location,
|
|
("attempt to slice object that is not "
|
|
"array, slice, or string"));
|
|
return Expression::make_error(location);
|
|
}
|
|
else
|
|
{
|
|
go_error_at(location,
|
|
("attempt to index object that is not "
|
|
"array, slice, string, or map"));
|
|
return Expression::make_error(location);
|
|
}
|
|
}
|
|
|
|
// Write an indexed expression
|
|
// (expr[expr:expr:expr], expr[expr:expr] or expr[expr]) to a dump context.
|
|
|
|
void
|
|
Index_expression::dump_index_expression(Ast_dump_context* ast_dump_context,
|
|
const Expression* expr,
|
|
const Expression* start,
|
|
const Expression* end,
|
|
const Expression* cap)
|
|
{
|
|
expr->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << "[";
|
|
start->dump_expression(ast_dump_context);
|
|
if (end != NULL)
|
|
{
|
|
ast_dump_context->ostream() << ":";
|
|
end->dump_expression(ast_dump_context);
|
|
}
|
|
if (cap != NULL)
|
|
{
|
|
ast_dump_context->ostream() << ":";
|
|
cap->dump_expression(ast_dump_context);
|
|
}
|
|
ast_dump_context->ostream() << "]";
|
|
}
|
|
|
|
// Dump ast representation for an index expression.
|
|
|
|
void
|
|
Index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
Index_expression::dump_index_expression(ast_dump_context, this->left_,
|
|
this->start_, this->end_, this->cap_);
|
|
}
|
|
|
|
// Make an index expression.
|
|
|
|
Expression*
|
|
Expression::make_index(Expression* left, Expression* start, Expression* end,
|
|
Expression* cap, Location location)
|
|
{
|
|
return new Index_expression(left, start, end, cap, location);
|
|
}
|
|
|
|
// Class Array_index_expression.
|
|
|
|
// Array index traversal.
|
|
|
|
int
|
|
Array_index_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->array_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (this->end_ != NULL)
|
|
{
|
|
if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
if (this->cap_ != NULL)
|
|
{
|
|
if (Expression::traverse(&this->cap_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Return the type of an array index.
|
|
|
|
Type*
|
|
Array_index_expression::do_type()
|
|
{
|
|
if (this->type_ == NULL)
|
|
{
|
|
Array_type* type = this->array_->type()->array_type();
|
|
if (type == NULL)
|
|
this->type_ = Type::make_error_type();
|
|
else if (this->end_ == NULL)
|
|
this->type_ = type->element_type();
|
|
else if (type->is_slice_type())
|
|
{
|
|
// A slice of a slice has the same type as the original
|
|
// slice.
|
|
this->type_ = this->array_->type()->deref();
|
|
}
|
|
else
|
|
{
|
|
// A slice of an array is a slice.
|
|
this->type_ = Type::make_array_type(type->element_type(), NULL);
|
|
}
|
|
}
|
|
return this->type_;
|
|
}
|
|
|
|
// Set the type of an array index.
|
|
|
|
void
|
|
Array_index_expression::do_determine_type(const Type_context*)
|
|
{
|
|
this->array_->determine_type_no_context();
|
|
|
|
Type_context index_context(Type::lookup_integer_type("int"), false);
|
|
if (this->start_->is_constant())
|
|
this->start_->determine_type(&index_context);
|
|
else
|
|
this->start_->determine_type_no_context();
|
|
if (this->end_ != NULL)
|
|
{
|
|
if (this->end_->is_constant())
|
|
this->end_->determine_type(&index_context);
|
|
else
|
|
this->end_->determine_type_no_context();
|
|
}
|
|
if (this->cap_ != NULL)
|
|
{
|
|
if (this->cap_->is_constant())
|
|
this->cap_->determine_type(&index_context);
|
|
else
|
|
this->cap_->determine_type_no_context();
|
|
}
|
|
}
|
|
|
|
// Check types of an array index.
|
|
|
|
void
|
|
Array_index_expression::do_check_types(Gogo*)
|
|
{
|
|
Numeric_constant nc;
|
|
unsigned long v;
|
|
if (this->start_->type()->integer_type() == NULL
|
|
&& !this->start_->type()->is_error()
|
|
&& (!this->start_->numeric_constant_value(&nc)
|
|
|| nc.to_unsigned_long(&v) == Numeric_constant::NC_UL_NOTINT))
|
|
this->report_error(_("index must be integer"));
|
|
if (this->end_ != NULL
|
|
&& this->end_->type()->integer_type() == NULL
|
|
&& !this->end_->type()->is_error()
|
|
&& !this->end_->is_nil_expression()
|
|
&& !this->end_->is_error_expression()
|
|
&& (!this->end_->numeric_constant_value(&nc)
|
|
|| nc.to_unsigned_long(&v) == Numeric_constant::NC_UL_NOTINT))
|
|
this->report_error(_("slice end must be integer"));
|
|
if (this->cap_ != NULL
|
|
&& this->cap_->type()->integer_type() == NULL
|
|
&& !this->cap_->type()->is_error()
|
|
&& !this->cap_->is_nil_expression()
|
|
&& !this->cap_->is_error_expression()
|
|
&& (!this->cap_->numeric_constant_value(&nc)
|
|
|| nc.to_unsigned_long(&v) == Numeric_constant::NC_UL_NOTINT))
|
|
this->report_error(_("slice capacity must be integer"));
|
|
|
|
Array_type* array_type = this->array_->type()->array_type();
|
|
if (array_type == NULL)
|
|
{
|
|
go_assert(this->array_->type()->is_error());
|
|
return;
|
|
}
|
|
|
|
unsigned int int_bits =
|
|
Type::lookup_integer_type("int")->integer_type()->bits();
|
|
|
|
Numeric_constant lvalnc;
|
|
mpz_t lval;
|
|
bool lval_valid = (array_type->length() != NULL
|
|
&& array_type->length()->numeric_constant_value(&lvalnc)
|
|
&& lvalnc.to_int(&lval));
|
|
Numeric_constant inc;
|
|
mpz_t ival;
|
|
bool ival_valid = false;
|
|
if (this->start_->numeric_constant_value(&inc) && inc.to_int(&ival))
|
|
{
|
|
ival_valid = true;
|
|
if (mpz_sgn(ival) < 0
|
|
|| mpz_sizeinbase(ival, 2) >= int_bits
|
|
|| (lval_valid
|
|
&& (this->end_ == NULL
|
|
? mpz_cmp(ival, lval) >= 0
|
|
: mpz_cmp(ival, lval) > 0)))
|
|
{
|
|
go_error_at(this->start_->location(), "array index out of bounds");
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
if (this->end_ != NULL && !this->end_->is_nil_expression())
|
|
{
|
|
Numeric_constant enc;
|
|
mpz_t eval;
|
|
bool eval_valid = false;
|
|
if (this->end_->numeric_constant_value(&enc) && enc.to_int(&eval))
|
|
{
|
|
eval_valid = true;
|
|
if (mpz_sgn(eval) < 0
|
|
|| mpz_sizeinbase(eval, 2) >= int_bits
|
|
|| (lval_valid && mpz_cmp(eval, lval) > 0))
|
|
{
|
|
go_error_at(this->end_->location(), "array index out of bounds");
|
|
this->set_is_error();
|
|
}
|
|
else if (ival_valid && mpz_cmp(ival, eval) > 0)
|
|
this->report_error(_("inverted slice range"));
|
|
}
|
|
|
|
Numeric_constant cnc;
|
|
mpz_t cval;
|
|
if (this->cap_ != NULL
|
|
&& this->cap_->numeric_constant_value(&cnc) && cnc.to_int(&cval))
|
|
{
|
|
if (mpz_sgn(cval) < 0
|
|
|| mpz_sizeinbase(cval, 2) >= int_bits
|
|
|| (lval_valid && mpz_cmp(cval, lval) > 0))
|
|
{
|
|
go_error_at(this->cap_->location(), "array index out of bounds");
|
|
this->set_is_error();
|
|
}
|
|
else if (ival_valid && mpz_cmp(ival, cval) > 0)
|
|
{
|
|
go_error_at(this->cap_->location(),
|
|
"invalid slice index: capacity less than start");
|
|
this->set_is_error();
|
|
}
|
|
else if (eval_valid && mpz_cmp(eval, cval) > 0)
|
|
{
|
|
go_error_at(this->cap_->location(),
|
|
"invalid slice index: capacity less than length");
|
|
this->set_is_error();
|
|
}
|
|
mpz_clear(cval);
|
|
}
|
|
|
|
if (eval_valid)
|
|
mpz_clear(eval);
|
|
}
|
|
if (ival_valid)
|
|
mpz_clear(ival);
|
|
if (lval_valid)
|
|
mpz_clear(lval);
|
|
|
|
// A slice of an array requires an addressable array. A slice of a
|
|
// slice is always possible.
|
|
if (this->end_ != NULL && !array_type->is_slice_type())
|
|
{
|
|
if (!this->array_->is_addressable())
|
|
this->report_error(_("slice of unaddressable value"));
|
|
else
|
|
// Set the array address taken but not escape. The escape
|
|
// analysis will make it escape to heap when needed.
|
|
this->array_->address_taken(false);
|
|
}
|
|
}
|
|
|
|
// The subexpressions of an array index must be evaluated in order.
|
|
// If this is indexing into an array, rather than a slice, then only
|
|
// the index should be evaluated. Since this is called for values on
|
|
// the left hand side of an assigment, evaluating the array, meaning
|
|
// copying the array, will cause a different array to be modified.
|
|
|
|
bool
|
|
Array_index_expression::do_must_eval_subexpressions_in_order(
|
|
int* skip) const
|
|
{
|
|
*skip = this->array_->type()->is_slice_type() ? 0 : 1;
|
|
return true;
|
|
}
|
|
|
|
// Flatten array indexing by using temporary variables for slices and indexes.
|
|
|
|
Expression*
|
|
Array_index_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
Expression* array = this->array_;
|
|
Expression* start = this->start_;
|
|
Expression* end = this->end_;
|
|
Expression* cap = this->cap_;
|
|
if (array->is_error_expression()
|
|
|| array->type()->is_error_type()
|
|
|| start->is_error_expression()
|
|
|| start->type()->is_error_type()
|
|
|| (end != NULL
|
|
&& (end->is_error_expression() || end->type()->is_error_type()))
|
|
|| (cap != NULL
|
|
&& (cap->is_error_expression() || cap->type()->is_error_type())))
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
|
|
Temporary_statement* temp;
|
|
if (array->type()->is_slice_type() && !array->is_variable())
|
|
{
|
|
temp = Statement::make_temporary(NULL, array, loc);
|
|
inserter->insert(temp);
|
|
this->array_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
if (!start->is_variable())
|
|
{
|
|
temp = Statement::make_temporary(NULL, start, loc);
|
|
inserter->insert(temp);
|
|
this->start_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
if (end != NULL
|
|
&& !end->is_nil_expression()
|
|
&& !end->is_variable())
|
|
{
|
|
temp = Statement::make_temporary(NULL, end, loc);
|
|
inserter->insert(temp);
|
|
this->end_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
if (cap != NULL && !cap->is_variable())
|
|
{
|
|
temp = Statement::make_temporary(NULL, cap, loc);
|
|
inserter->insert(temp);
|
|
this->cap_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Return whether this expression is addressable.
|
|
|
|
bool
|
|
Array_index_expression::do_is_addressable() const
|
|
{
|
|
// A slice expression is not addressable.
|
|
if (this->end_ != NULL)
|
|
return false;
|
|
|
|
// An index into a slice is addressable.
|
|
if (this->array_->type()->is_slice_type())
|
|
return true;
|
|
|
|
// An index into an array is addressable if the array is
|
|
// addressable.
|
|
return this->array_->is_addressable();
|
|
}
|
|
|
|
void
|
|
Array_index_expression::do_address_taken(bool escapes)
|
|
{
|
|
// In &x[0], if x is a slice, then x's address is not taken.
|
|
if (!this->array_->type()->is_slice_type())
|
|
this->array_->address_taken(escapes);
|
|
}
|
|
|
|
// Get the backend representation for an array index.
|
|
|
|
Bexpression*
|
|
Array_index_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Array_type* array_type = this->array_->type()->array_type();
|
|
if (array_type == NULL)
|
|
{
|
|
go_assert(this->array_->type()->is_error());
|
|
return context->backend()->error_expression();
|
|
}
|
|
go_assert(!array_type->is_slice_type() || this->array_->is_variable());
|
|
|
|
Location loc = this->location();
|
|
Gogo* gogo = context->gogo();
|
|
|
|
Type* int_type = Type::lookup_integer_type("int");
|
|
Btype* int_btype = int_type->get_backend(gogo);
|
|
|
|
// We need to convert the length and capacity to the Go "int" type here
|
|
// because the length of a fixed-length array could be of type "uintptr"
|
|
// and gimple disallows binary operations between "uintptr" and other
|
|
// integer types. FIXME.
|
|
Bexpression* length = NULL;
|
|
if (this->end_ == NULL || this->end_->is_nil_expression())
|
|
{
|
|
Expression* len = array_type->get_length(gogo, this->array_);
|
|
length = len->get_backend(context);
|
|
length = gogo->backend()->convert_expression(int_btype, length, loc);
|
|
}
|
|
|
|
Bexpression* capacity = NULL;
|
|
if (this->end_ != NULL)
|
|
{
|
|
Expression* cap = array_type->get_capacity(gogo, this->array_);
|
|
capacity = cap->get_backend(context);
|
|
capacity = gogo->backend()->convert_expression(int_btype, capacity, loc);
|
|
}
|
|
|
|
Bexpression* cap_arg = capacity;
|
|
if (this->cap_ != NULL)
|
|
{
|
|
cap_arg = this->cap_->get_backend(context);
|
|
cap_arg = gogo->backend()->convert_expression(int_btype, cap_arg, loc);
|
|
}
|
|
|
|
if (length == NULL)
|
|
length = cap_arg;
|
|
|
|
int code = (array_type->length() != NULL
|
|
? (this->end_ == NULL
|
|
? RUNTIME_ERROR_ARRAY_INDEX_OUT_OF_BOUNDS
|
|
: RUNTIME_ERROR_ARRAY_SLICE_OUT_OF_BOUNDS)
|
|
: (this->end_ == NULL
|
|
? RUNTIME_ERROR_SLICE_INDEX_OUT_OF_BOUNDS
|
|
: RUNTIME_ERROR_SLICE_SLICE_OUT_OF_BOUNDS));
|
|
Bexpression* crash = gogo->runtime_error(code, loc)->get_backend(context);
|
|
|
|
if (this->start_->type()->integer_type() == NULL
|
|
&& !Type::are_convertible(int_type, this->start_->type(), NULL))
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
Bexpression* bad_index =
|
|
Expression::check_bounds(this->start_, loc)->get_backend(context);
|
|
|
|
Bexpression* start = this->start_->get_backend(context);
|
|
start = gogo->backend()->convert_expression(int_btype, start, loc);
|
|
Bexpression* start_too_large =
|
|
gogo->backend()->binary_expression((this->end_ == NULL
|
|
? OPERATOR_GE
|
|
: OPERATOR_GT),
|
|
start,
|
|
(this->end_ == NULL
|
|
? length
|
|
: capacity),
|
|
loc);
|
|
bad_index = gogo->backend()->binary_expression(OPERATOR_OROR, start_too_large,
|
|
bad_index, loc);
|
|
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
if (this->end_ == NULL)
|
|
{
|
|
// Simple array indexing. This has to return an l-value, so
|
|
// wrap the index check into START.
|
|
start =
|
|
gogo->backend()->conditional_expression(bfn, int_btype, bad_index,
|
|
crash, start, loc);
|
|
|
|
Bexpression* ret;
|
|
if (array_type->length() != NULL)
|
|
{
|
|
Bexpression* array = this->array_->get_backend(context);
|
|
ret = gogo->backend()->array_index_expression(array, start, loc);
|
|
}
|
|
else
|
|
{
|
|
// Slice.
|
|
Expression* valptr =
|
|
array_type->get_value_pointer(gogo, this->array_,
|
|
this->is_lvalue_);
|
|
Bexpression* ptr = valptr->get_backend(context);
|
|
ptr = gogo->backend()->pointer_offset_expression(ptr, start, loc);
|
|
|
|
Type* ele_type = this->array_->type()->array_type()->element_type();
|
|
Btype* ele_btype = ele_type->get_backend(gogo);
|
|
ret = gogo->backend()->indirect_expression(ele_btype, ptr, true, loc);
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Array slice.
|
|
|
|
if (this->cap_ != NULL)
|
|
{
|
|
Bexpression* bounds_bcheck =
|
|
Expression::check_bounds(this->cap_, loc)->get_backend(context);
|
|
bad_index =
|
|
gogo->backend()->binary_expression(OPERATOR_OROR, bounds_bcheck,
|
|
bad_index, loc);
|
|
cap_arg = gogo->backend()->convert_expression(int_btype, cap_arg, loc);
|
|
|
|
Bexpression* cap_too_small =
|
|
gogo->backend()->binary_expression(OPERATOR_LT, cap_arg, start, loc);
|
|
Bexpression* cap_too_large =
|
|
gogo->backend()->binary_expression(OPERATOR_GT, cap_arg, capacity, loc);
|
|
Bexpression* bad_cap =
|
|
gogo->backend()->binary_expression(OPERATOR_OROR, cap_too_small,
|
|
cap_too_large, loc);
|
|
bad_index = gogo->backend()->binary_expression(OPERATOR_OROR, bad_cap,
|
|
bad_index, loc);
|
|
}
|
|
|
|
Bexpression* end;
|
|
if (this->end_->is_nil_expression())
|
|
end = length;
|
|
else
|
|
{
|
|
Bexpression* bounds_bcheck =
|
|
Expression::check_bounds(this->end_, loc)->get_backend(context);
|
|
|
|
bad_index =
|
|
gogo->backend()->binary_expression(OPERATOR_OROR, bounds_bcheck,
|
|
bad_index, loc);
|
|
|
|
end = this->end_->get_backend(context);
|
|
end = gogo->backend()->convert_expression(int_btype, end, loc);
|
|
Bexpression* end_too_small =
|
|
gogo->backend()->binary_expression(OPERATOR_LT, end, start, loc);
|
|
Bexpression* end_too_large =
|
|
gogo->backend()->binary_expression(OPERATOR_GT, end, cap_arg, loc);
|
|
Bexpression* bad_end =
|
|
gogo->backend()->binary_expression(OPERATOR_OROR, end_too_small,
|
|
end_too_large, loc);
|
|
bad_index = gogo->backend()->binary_expression(OPERATOR_OROR, bad_end,
|
|
bad_index, loc);
|
|
}
|
|
|
|
Bexpression* result_length =
|
|
gogo->backend()->binary_expression(OPERATOR_MINUS, end, start, loc);
|
|
|
|
Bexpression* result_capacity =
|
|
gogo->backend()->binary_expression(OPERATOR_MINUS, cap_arg, start, loc);
|
|
|
|
// If the new capacity is zero, don't change val. Otherwise we can
|
|
// get a pointer to the next object in memory, keeping it live
|
|
// unnecessarily. When the capacity is zero, the actual pointer
|
|
// value doesn't matter.
|
|
Bexpression* zero =
|
|
Expression::make_integer_ul(0, int_type, loc)->get_backend(context);
|
|
Bexpression* cond =
|
|
gogo->backend()->binary_expression(OPERATOR_EQEQ, result_capacity, zero,
|
|
loc);
|
|
Bexpression* offset = gogo->backend()->conditional_expression(bfn, int_btype,
|
|
cond, zero,
|
|
start, loc);
|
|
Expression* valptr = array_type->get_value_pointer(gogo, this->array_,
|
|
this->is_lvalue_);
|
|
Bexpression* val = valptr->get_backend(context);
|
|
val = gogo->backend()->pointer_offset_expression(val, offset, loc);
|
|
|
|
Btype* struct_btype = this->type()->get_backend(gogo);
|
|
std::vector<Bexpression*> init;
|
|
init.push_back(val);
|
|
init.push_back(result_length);
|
|
init.push_back(result_capacity);
|
|
|
|
Bexpression* ctor =
|
|
gogo->backend()->constructor_expression(struct_btype, init, loc);
|
|
return gogo->backend()->conditional_expression(bfn, struct_btype, bad_index,
|
|
crash, ctor, loc);
|
|
}
|
|
|
|
// Dump ast representation for an array index expression.
|
|
|
|
void
|
|
Array_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
Index_expression::dump_index_expression(ast_dump_context, this->array_,
|
|
this->start_, this->end_, this->cap_);
|
|
}
|
|
|
|
// Make an array index expression. END and CAP may be NULL.
|
|
|
|
Expression*
|
|
Expression::make_array_index(Expression* array, Expression* start,
|
|
Expression* end, Expression* cap,
|
|
Location location)
|
|
{
|
|
return new Array_index_expression(array, start, end, cap, location);
|
|
}
|
|
|
|
// Class String_index_expression.
|
|
|
|
// String index traversal.
|
|
|
|
int
|
|
String_index_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->string_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (Expression::traverse(&this->start_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (this->end_ != NULL)
|
|
{
|
|
if (Expression::traverse(&this->end_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
Expression*
|
|
String_index_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
Expression* string = this->string_;
|
|
Expression* start = this->start_;
|
|
Expression* end = this->end_;
|
|
if (string->is_error_expression()
|
|
|| string->type()->is_error_type()
|
|
|| start->is_error_expression()
|
|
|| start->type()->is_error_type()
|
|
|| (end != NULL
|
|
&& (end->is_error_expression() || end->type()->is_error_type())))
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
|
|
Temporary_statement* temp;
|
|
if (!this->string_->is_variable())
|
|
{
|
|
temp = Statement::make_temporary(NULL, this->string_, loc);
|
|
inserter->insert(temp);
|
|
this->string_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
if (!this->start_->is_variable())
|
|
{
|
|
temp = Statement::make_temporary(NULL, this->start_, loc);
|
|
inserter->insert(temp);
|
|
this->start_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
if (this->end_ != NULL
|
|
&& !this->end_->is_nil_expression()
|
|
&& !this->end_->is_variable())
|
|
{
|
|
temp = Statement::make_temporary(NULL, this->end_, loc);
|
|
inserter->insert(temp);
|
|
this->end_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Return the type of a string index.
|
|
|
|
Type*
|
|
String_index_expression::do_type()
|
|
{
|
|
if (this->end_ == NULL)
|
|
return Type::lookup_integer_type("uint8");
|
|
else
|
|
return this->string_->type();
|
|
}
|
|
|
|
// Determine the type of a string index.
|
|
|
|
void
|
|
String_index_expression::do_determine_type(const Type_context*)
|
|
{
|
|
this->string_->determine_type_no_context();
|
|
|
|
Type_context index_context(Type::lookup_integer_type("int"), false);
|
|
if (this->start_->is_constant())
|
|
this->start_->determine_type(&index_context);
|
|
else
|
|
this->start_->determine_type_no_context();
|
|
if (this->end_ != NULL)
|
|
{
|
|
if (this->end_->is_constant())
|
|
this->end_->determine_type(&index_context);
|
|
else
|
|
this->end_->determine_type_no_context();
|
|
}
|
|
}
|
|
|
|
// Check types of a string index.
|
|
|
|
void
|
|
String_index_expression::do_check_types(Gogo*)
|
|
{
|
|
Numeric_constant nc;
|
|
unsigned long v;
|
|
if (this->start_->type()->integer_type() == NULL
|
|
&& !this->start_->type()->is_error()
|
|
&& (!this->start_->numeric_constant_value(&nc)
|
|
|| nc.to_unsigned_long(&v) == Numeric_constant::NC_UL_NOTINT))
|
|
this->report_error(_("index must be integer"));
|
|
if (this->end_ != NULL
|
|
&& this->end_->type()->integer_type() == NULL
|
|
&& !this->end_->type()->is_error()
|
|
&& !this->end_->is_nil_expression()
|
|
&& !this->end_->is_error_expression()
|
|
&& (!this->end_->numeric_constant_value(&nc)
|
|
|| nc.to_unsigned_long(&v) == Numeric_constant::NC_UL_NOTINT))
|
|
this->report_error(_("slice end must be integer"));
|
|
|
|
std::string sval;
|
|
bool sval_valid = this->string_->string_constant_value(&sval);
|
|
|
|
Numeric_constant inc;
|
|
mpz_t ival;
|
|
bool ival_valid = false;
|
|
if (this->start_->numeric_constant_value(&inc) && inc.to_int(&ival))
|
|
{
|
|
ival_valid = true;
|
|
if (mpz_sgn(ival) < 0
|
|
|| (sval_valid
|
|
&& (this->end_ == NULL
|
|
? mpz_cmp_ui(ival, sval.length()) >= 0
|
|
: mpz_cmp_ui(ival, sval.length()) > 0)))
|
|
{
|
|
go_error_at(this->start_->location(), "string index out of bounds");
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
if (this->end_ != NULL && !this->end_->is_nil_expression())
|
|
{
|
|
Numeric_constant enc;
|
|
mpz_t eval;
|
|
if (this->end_->numeric_constant_value(&enc) && enc.to_int(&eval))
|
|
{
|
|
if (mpz_sgn(eval) < 0
|
|
|| (sval_valid && mpz_cmp_ui(eval, sval.length()) > 0))
|
|
{
|
|
go_error_at(this->end_->location(), "string index out of bounds");
|
|
this->set_is_error();
|
|
}
|
|
else if (ival_valid && mpz_cmp(ival, eval) > 0)
|
|
this->report_error(_("inverted slice range"));
|
|
mpz_clear(eval);
|
|
}
|
|
}
|
|
if (ival_valid)
|
|
mpz_clear(ival);
|
|
}
|
|
|
|
// Get the backend representation for a string index.
|
|
|
|
Bexpression*
|
|
String_index_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Location loc = this->location();
|
|
Expression* string_arg = this->string_;
|
|
if (this->string_->type()->points_to() != NULL)
|
|
string_arg = Expression::make_dereference(this->string_,
|
|
NIL_CHECK_NOT_NEEDED, loc);
|
|
|
|
Expression* bad_index = Expression::check_bounds(this->start_, loc);
|
|
|
|
int code = (this->end_ == NULL
|
|
? RUNTIME_ERROR_STRING_INDEX_OUT_OF_BOUNDS
|
|
: RUNTIME_ERROR_STRING_SLICE_OUT_OF_BOUNDS);
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Bexpression* crash = gogo->runtime_error(code, loc)->get_backend(context);
|
|
|
|
Type* int_type = Type::lookup_integer_type("int");
|
|
|
|
// It is possible that an error occurred earlier because the start index
|
|
// cannot be represented as an integer type. In this case, we shouldn't
|
|
// try casting the starting index into an integer since
|
|
// Type_conversion_expression will fail to get the backend representation.
|
|
// FIXME.
|
|
if (this->start_->type()->integer_type() == NULL
|
|
&& !Type::are_convertible(int_type, this->start_->type(), NULL))
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
Expression* start = Expression::make_cast(int_type, this->start_, loc);
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
|
|
if (this->end_ == NULL)
|
|
{
|
|
Expression* length =
|
|
Expression::make_string_info(this->string_, STRING_INFO_LENGTH, loc);
|
|
|
|
Expression* start_too_large =
|
|
Expression::make_binary(OPERATOR_GE, start, length, loc);
|
|
bad_index = Expression::make_binary(OPERATOR_OROR, start_too_large,
|
|
bad_index, loc);
|
|
Expression* bytes =
|
|
Expression::make_string_info(this->string_, STRING_INFO_DATA, loc);
|
|
|
|
Bexpression* bstart = start->get_backend(context);
|
|
Bexpression* ptr = bytes->get_backend(context);
|
|
ptr = gogo->backend()->pointer_offset_expression(ptr, bstart, loc);
|
|
Btype* ubtype = Type::lookup_integer_type("uint8")->get_backend(gogo);
|
|
Bexpression* index =
|
|
gogo->backend()->indirect_expression(ubtype, ptr, true, loc);
|
|
|
|
Btype* byte_btype = bytes->type()->points_to()->get_backend(gogo);
|
|
Bexpression* index_error = bad_index->get_backend(context);
|
|
return gogo->backend()->conditional_expression(bfn, byte_btype,
|
|
index_error, crash,
|
|
index, loc);
|
|
}
|
|
|
|
Expression* end = NULL;
|
|
if (this->end_->is_nil_expression())
|
|
end = Expression::make_integer_sl(-1, int_type, loc);
|
|
else
|
|
{
|
|
Expression* bounds_check = Expression::check_bounds(this->end_, loc);
|
|
bad_index =
|
|
Expression::make_binary(OPERATOR_OROR, bounds_check, bad_index, loc);
|
|
end = Expression::make_cast(int_type, this->end_, loc);
|
|
}
|
|
|
|
Expression* strslice = Runtime::make_call(Runtime::STRING_SLICE, loc, 3,
|
|
string_arg, start, end);
|
|
Bexpression* bstrslice = strslice->get_backend(context);
|
|
|
|
Btype* str_btype = strslice->type()->get_backend(gogo);
|
|
Bexpression* index_error = bad_index->get_backend(context);
|
|
return gogo->backend()->conditional_expression(bfn, str_btype, index_error,
|
|
crash, bstrslice, loc);
|
|
}
|
|
|
|
// Dump ast representation for a string index expression.
|
|
|
|
void
|
|
String_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
Index_expression::dump_index_expression(ast_dump_context, this->string_,
|
|
this->start_, this->end_, NULL);
|
|
}
|
|
|
|
// Make a string index expression. END may be NULL.
|
|
|
|
Expression*
|
|
Expression::make_string_index(Expression* string, Expression* start,
|
|
Expression* end, Location location)
|
|
{
|
|
return new String_index_expression(string, start, end, location);
|
|
}
|
|
|
|
// Class Map_index.
|
|
|
|
// Get the type of the map.
|
|
|
|
Map_type*
|
|
Map_index_expression::get_map_type() const
|
|
{
|
|
Map_type* mt = this->map_->type()->map_type();
|
|
if (mt == NULL)
|
|
go_assert(saw_errors());
|
|
return mt;
|
|
}
|
|
|
|
// Map index traversal.
|
|
|
|
int
|
|
Map_index_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->map_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return Expression::traverse(&this->index_, traverse);
|
|
}
|
|
|
|
// We need to pass in a pointer to the key, so flatten the index into a
|
|
// temporary variable if it isn't already. The value pointer will be
|
|
// dereferenced and checked for nil, so flatten into a temporary to avoid
|
|
// recomputation.
|
|
|
|
Expression*
|
|
Map_index_expression::do_flatten(Gogo* gogo, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Location loc = this->location();
|
|
Map_type* mt = this->get_map_type();
|
|
if (this->index()->is_error_expression()
|
|
|| this->index()->type()->is_error_type()
|
|
|| mt->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
|
|
if (!Type::are_identical(mt->key_type(), this->index_->type(),
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
{
|
|
if (this->index_->type()->interface_type() != NULL
|
|
&& !this->index_->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, this->index_, loc);
|
|
inserter->insert(temp);
|
|
this->index_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
this->index_ = Expression::convert_for_assignment(gogo, mt->key_type(),
|
|
this->index_, loc);
|
|
}
|
|
|
|
if (!this->index_->is_variable())
|
|
{
|
|
Temporary_statement* temp = Statement::make_temporary(NULL, this->index_,
|
|
loc);
|
|
inserter->insert(temp);
|
|
this->index_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
|
|
if (this->value_pointer_ == NULL)
|
|
this->get_value_pointer(gogo);
|
|
if (this->value_pointer_->is_error_expression()
|
|
|| this->value_pointer_->type()->is_error_type())
|
|
return Expression::make_error(loc);
|
|
if (!this->value_pointer_->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, this->value_pointer_, loc);
|
|
inserter->insert(temp);
|
|
this->value_pointer_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Return the type of a map index.
|
|
|
|
Type*
|
|
Map_index_expression::do_type()
|
|
{
|
|
Map_type* mt = this->get_map_type();
|
|
if (mt == NULL)
|
|
return Type::make_error_type();
|
|
return mt->val_type();
|
|
}
|
|
|
|
// Fix the type of a map index.
|
|
|
|
void
|
|
Map_index_expression::do_determine_type(const Type_context*)
|
|
{
|
|
this->map_->determine_type_no_context();
|
|
Map_type* mt = this->get_map_type();
|
|
Type* key_type = mt == NULL ? NULL : mt->key_type();
|
|
Type_context subcontext(key_type, false);
|
|
this->index_->determine_type(&subcontext);
|
|
}
|
|
|
|
// Check types of a map index.
|
|
|
|
void
|
|
Map_index_expression::do_check_types(Gogo*)
|
|
{
|
|
std::string reason;
|
|
Map_type* mt = this->get_map_type();
|
|
if (mt == NULL)
|
|
return;
|
|
if (!Type::are_assignable(mt->key_type(), this->index_->type(), &reason))
|
|
{
|
|
if (reason.empty())
|
|
this->report_error(_("incompatible type for map index"));
|
|
else
|
|
{
|
|
go_error_at(this->location(), "incompatible type for map index (%s)",
|
|
reason.c_str());
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get the backend representation for a map index.
|
|
|
|
Bexpression*
|
|
Map_index_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Map_type* type = this->get_map_type();
|
|
if (type == NULL)
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
go_assert(this->value_pointer_ != NULL
|
|
&& this->value_pointer_->is_variable());
|
|
|
|
Expression* val = Expression::make_dereference(this->value_pointer_,
|
|
NIL_CHECK_NOT_NEEDED,
|
|
this->location());
|
|
return val->get_backend(context);
|
|
}
|
|
|
|
// Get an expression for the map index. This returns an expression
|
|
// that evaluates to a pointer to a value. If the key is not in the
|
|
// map, the pointer will point to a zero value.
|
|
|
|
Expression*
|
|
Map_index_expression::get_value_pointer(Gogo* gogo)
|
|
{
|
|
if (this->value_pointer_ == NULL)
|
|
{
|
|
Map_type* type = this->get_map_type();
|
|
if (type == NULL)
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
Location loc = this->location();
|
|
Expression* map_ref = this->map_;
|
|
|
|
Expression* index_ptr = Expression::make_unary(OPERATOR_AND,
|
|
this->index_,
|
|
loc);
|
|
|
|
Expression* zero = type->fat_zero_value(gogo);
|
|
|
|
Expression* map_index;
|
|
|
|
if (zero == NULL)
|
|
map_index =
|
|
Runtime::make_call(Runtime::MAPACCESS1, loc, 3,
|
|
Expression::make_type_descriptor(type, loc),
|
|
map_ref, index_ptr);
|
|
else
|
|
map_index =
|
|
Runtime::make_call(Runtime::MAPACCESS1_FAT, loc, 4,
|
|
Expression::make_type_descriptor(type, loc),
|
|
map_ref, index_ptr, zero);
|
|
|
|
Type* val_type = type->val_type();
|
|
this->value_pointer_ =
|
|
Expression::make_unsafe_cast(Type::make_pointer_type(val_type),
|
|
map_index, this->location());
|
|
}
|
|
|
|
return this->value_pointer_;
|
|
}
|
|
|
|
// Dump ast representation for a map index expression
|
|
|
|
void
|
|
Map_index_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
Index_expression::dump_index_expression(ast_dump_context, this->map_,
|
|
this->index_, NULL, NULL);
|
|
}
|
|
|
|
// Make a map index expression.
|
|
|
|
Map_index_expression*
|
|
Expression::make_map_index(Expression* map, Expression* index,
|
|
Location location)
|
|
{
|
|
return new Map_index_expression(map, index, location);
|
|
}
|
|
|
|
// Class Field_reference_expression.
|
|
|
|
// Lower a field reference expression. There is nothing to lower, but
|
|
// this is where we generate the tracking information for fields with
|
|
// the magic go:"track" tag.
|
|
|
|
Expression*
|
|
Field_reference_expression::do_lower(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter, int)
|
|
{
|
|
Struct_type* struct_type = this->expr_->type()->struct_type();
|
|
if (struct_type == NULL)
|
|
{
|
|
// Error will be reported elsewhere.
|
|
return this;
|
|
}
|
|
const Struct_field* field = struct_type->field(this->field_index_);
|
|
if (field == NULL)
|
|
return this;
|
|
if (!field->has_tag())
|
|
return this;
|
|
if (field->tag().find("go:\"track\"") == std::string::npos)
|
|
return this;
|
|
|
|
// References from functions generated by the compiler don't count.
|
|
if (function != NULL && function->func_value()->is_type_specific_function())
|
|
return this;
|
|
|
|
// We have found a reference to a tracked field. Build a call to
|
|
// the runtime function __go_fieldtrack with a string that describes
|
|
// the field. FIXME: We should only call this once per referenced
|
|
// field per function, not once for each reference to the field.
|
|
|
|
if (this->called_fieldtrack_)
|
|
return this;
|
|
this->called_fieldtrack_ = true;
|
|
|
|
Location loc = this->location();
|
|
|
|
std::string s = "fieldtrack \"";
|
|
Named_type* nt = this->expr_->type()->unalias()->named_type();
|
|
if (nt == NULL || nt->named_object()->package() == NULL)
|
|
s.append(gogo->pkgpath());
|
|
else
|
|
s.append(nt->named_object()->package()->pkgpath());
|
|
s.push_back('.');
|
|
if (nt != NULL)
|
|
s.append(Gogo::unpack_hidden_name(nt->name()));
|
|
s.push_back('.');
|
|
s.append(field->field_name());
|
|
s.push_back('"');
|
|
|
|
// We can't use a string here, because internally a string holds a
|
|
// pointer to the actual bytes; when the linker garbage collects the
|
|
// string, it won't garbage collect the bytes. So we use a
|
|
// [...]byte.
|
|
|
|
Expression* length_expr = Expression::make_integer_ul(s.length(), NULL, loc);
|
|
|
|
Type* byte_type = gogo->lookup_global("byte")->type_value();
|
|
Array_type* array_type = Type::make_array_type(byte_type, length_expr);
|
|
array_type->set_is_array_incomparable();
|
|
|
|
Expression_list* bytes = new Expression_list();
|
|
for (std::string::const_iterator p = s.begin(); p != s.end(); p++)
|
|
{
|
|
unsigned char c = static_cast<unsigned char>(*p);
|
|
bytes->push_back(Expression::make_integer_ul(c, NULL, loc));
|
|
}
|
|
|
|
Expression* e = Expression::make_composite_literal(array_type, 0, false,
|
|
bytes, false, loc);
|
|
|
|
Variable* var = new Variable(array_type, e, true, false, false, loc);
|
|
|
|
static int count;
|
|
char buf[50];
|
|
snprintf(buf, sizeof buf, "fieldtrack.%d", count);
|
|
++count;
|
|
|
|
Named_object* no = gogo->add_variable(buf, var);
|
|
e = Expression::make_var_reference(no, loc);
|
|
e = Expression::make_unary(OPERATOR_AND, e, loc);
|
|
|
|
Expression* call = Runtime::make_call(Runtime::FIELDTRACK, loc, 1, e);
|
|
gogo->lower_expression(function, inserter, &call);
|
|
inserter->insert(Statement::make_statement(call, false));
|
|
|
|
// Put this function, and the global variable we just created, into
|
|
// unique sections. This will permit the linker to garbage collect
|
|
// them if they are not referenced. The effect is that the only
|
|
// strings, indicating field references, that will wind up in the
|
|
// executable will be those for functions that are actually needed.
|
|
if (function != NULL)
|
|
function->func_value()->set_in_unique_section();
|
|
var->set_in_unique_section();
|
|
|
|
return this;
|
|
}
|
|
|
|
// Return the type of a field reference.
|
|
|
|
Type*
|
|
Field_reference_expression::do_type()
|
|
{
|
|
Type* type = this->expr_->type();
|
|
if (type->is_error())
|
|
return type;
|
|
Struct_type* struct_type = type->struct_type();
|
|
go_assert(struct_type != NULL);
|
|
return struct_type->field(this->field_index_)->type();
|
|
}
|
|
|
|
// Check the types for a field reference.
|
|
|
|
void
|
|
Field_reference_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->expr_->type();
|
|
if (type->is_error())
|
|
return;
|
|
Struct_type* struct_type = type->struct_type();
|
|
go_assert(struct_type != NULL);
|
|
go_assert(struct_type->field(this->field_index_) != NULL);
|
|
}
|
|
|
|
// Get the backend representation for a field reference.
|
|
|
|
Bexpression*
|
|
Field_reference_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Bexpression* bstruct = this->expr_->get_backend(context);
|
|
return context->gogo()->backend()->struct_field_expression(bstruct,
|
|
this->field_index_,
|
|
this->location());
|
|
}
|
|
|
|
// Dump ast representation for a field reference expression.
|
|
|
|
void
|
|
Field_reference_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
this->expr_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << "." << this->field_index_;
|
|
}
|
|
|
|
// Make a reference to a qualified identifier in an expression.
|
|
|
|
Field_reference_expression*
|
|
Expression::make_field_reference(Expression* expr, unsigned int field_index,
|
|
Location location)
|
|
{
|
|
return new Field_reference_expression(expr, field_index, location);
|
|
}
|
|
|
|
// Class Interface_field_reference_expression.
|
|
|
|
// Return an expression for the pointer to the function to call.
|
|
|
|
Expression*
|
|
Interface_field_reference_expression::get_function()
|
|
{
|
|
Expression* ref = this->expr_;
|
|
Location loc = this->location();
|
|
if (ref->type()->points_to() != NULL)
|
|
ref = Expression::make_dereference(ref, NIL_CHECK_DEFAULT, loc);
|
|
|
|
Expression* mtable =
|
|
Expression::make_interface_info(ref, INTERFACE_INFO_METHODS, loc);
|
|
Struct_type* mtable_type = mtable->type()->points_to()->struct_type();
|
|
|
|
std::string name = Gogo::unpack_hidden_name(this->name_);
|
|
unsigned int index;
|
|
const Struct_field* field = mtable_type->find_local_field(name, &index);
|
|
go_assert(field != NULL);
|
|
|
|
mtable = Expression::make_dereference(mtable, NIL_CHECK_NOT_NEEDED, loc);
|
|
return Expression::make_field_reference(mtable, index, loc);
|
|
}
|
|
|
|
// Return an expression for the first argument to pass to the interface
|
|
// function.
|
|
|
|
Expression*
|
|
Interface_field_reference_expression::get_underlying_object()
|
|
{
|
|
Expression* expr = this->expr_;
|
|
if (expr->type()->points_to() != NULL)
|
|
expr = Expression::make_dereference(expr, NIL_CHECK_DEFAULT,
|
|
this->location());
|
|
return Expression::make_interface_info(expr, INTERFACE_INFO_OBJECT,
|
|
this->location());
|
|
}
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Interface_field_reference_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
return Expression::traverse(&this->expr_, traverse);
|
|
}
|
|
|
|
// Lower the expression. If this expression is not called, we need to
|
|
// evaluate the expression twice when converting to the backend
|
|
// interface. So introduce a temporary variable if necessary.
|
|
|
|
Expression*
|
|
Interface_field_reference_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->expr_->is_error_expression()
|
|
|| this->expr_->type()->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
if (!this->expr_->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, this->expr_, this->location());
|
|
inserter->insert(temp);
|
|
this->expr_ = Expression::make_temporary_reference(temp, this->location());
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Return the type of an interface field reference.
|
|
|
|
Type*
|
|
Interface_field_reference_expression::do_type()
|
|
{
|
|
Type* expr_type = this->expr_->type();
|
|
|
|
Type* points_to = expr_type->points_to();
|
|
if (points_to != NULL)
|
|
expr_type = points_to;
|
|
|
|
Interface_type* interface_type = expr_type->interface_type();
|
|
if (interface_type == NULL)
|
|
return Type::make_error_type();
|
|
|
|
const Typed_identifier* method = interface_type->find_method(this->name_);
|
|
if (method == NULL)
|
|
return Type::make_error_type();
|
|
|
|
return method->type();
|
|
}
|
|
|
|
// Determine types.
|
|
|
|
void
|
|
Interface_field_reference_expression::do_determine_type(const Type_context*)
|
|
{
|
|
this->expr_->determine_type_no_context();
|
|
}
|
|
|
|
// Check the types for an interface field reference.
|
|
|
|
void
|
|
Interface_field_reference_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->expr_->type();
|
|
|
|
Type* points_to = type->points_to();
|
|
if (points_to != NULL)
|
|
type = points_to;
|
|
|
|
Interface_type* interface_type = type->interface_type();
|
|
if (interface_type == NULL)
|
|
{
|
|
if (!type->is_error_type())
|
|
this->report_error(_("expected interface or pointer to interface"));
|
|
}
|
|
else
|
|
{
|
|
const Typed_identifier* method =
|
|
interface_type->find_method(this->name_);
|
|
if (method == NULL)
|
|
{
|
|
go_error_at(this->location(), "method %qs not in interface",
|
|
Gogo::message_name(this->name_).c_str());
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
// If an interface field reference is not simply called, then it is
|
|
// represented as a closure. The closure will hold a single variable,
|
|
// the value of the interface on which the method should be called.
|
|
// The function will be a simple thunk that pulls the value from the
|
|
// closure and calls the method with the remaining arguments.
|
|
|
|
// Because method values are not common, we don't build all thunks for
|
|
// all possible interface methods, but instead only build them as we
|
|
// need them. In particular, we even build them on demand for
|
|
// interface methods defined in other packages.
|
|
|
|
Interface_field_reference_expression::Interface_method_thunks
|
|
Interface_field_reference_expression::interface_method_thunks;
|
|
|
|
// Find or create the thunk to call method NAME on TYPE.
|
|
|
|
Named_object*
|
|
Interface_field_reference_expression::create_thunk(Gogo* gogo,
|
|
Interface_type* type,
|
|
const std::string& name)
|
|
{
|
|
std::pair<Interface_type*, Method_thunks*> val(type, NULL);
|
|
std::pair<Interface_method_thunks::iterator, bool> ins =
|
|
Interface_field_reference_expression::interface_method_thunks.insert(val);
|
|
if (ins.second)
|
|
{
|
|
// This is the first time we have seen this interface.
|
|
ins.first->second = new Method_thunks();
|
|
}
|
|
|
|
for (Method_thunks::const_iterator p = ins.first->second->begin();
|
|
p != ins.first->second->end();
|
|
p++)
|
|
if (p->first == name)
|
|
return p->second;
|
|
|
|
Location loc = type->location();
|
|
|
|
const Typed_identifier* method_id = type->find_method(name);
|
|
if (method_id == NULL)
|
|
return Named_object::make_erroneous_name(gogo->thunk_name());
|
|
|
|
Function_type* orig_fntype = method_id->type()->function_type();
|
|
if (orig_fntype == NULL)
|
|
return Named_object::make_erroneous_name(gogo->thunk_name());
|
|
|
|
Struct_field_list* sfl = new Struct_field_list();
|
|
// The type here is wrong--it should be the C function type. But it
|
|
// doesn't really matter.
|
|
Type* vt = Type::make_pointer_type(Type::make_void_type());
|
|
sfl->push_back(Struct_field(Typed_identifier("fn", vt, loc)));
|
|
sfl->push_back(Struct_field(Typed_identifier("val", type, loc)));
|
|
Struct_type* st = Type::make_struct_type(sfl, loc);
|
|
st->set_is_struct_incomparable();
|
|
Type* closure_type = Type::make_pointer_type(st);
|
|
|
|
Function_type* new_fntype = orig_fntype->copy_with_names();
|
|
|
|
std::string thunk_name = gogo->thunk_name();
|
|
Named_object* new_no = gogo->start_function(thunk_name, new_fntype,
|
|
false, loc);
|
|
|
|
Variable* cvar = new Variable(closure_type, NULL, false, false, false, loc);
|
|
cvar->set_is_used();
|
|
cvar->set_is_closure();
|
|
Named_object* cp = Named_object::make_variable("$closure" + thunk_name,
|
|
NULL, cvar);
|
|
new_no->func_value()->set_closure_var(cp);
|
|
|
|
gogo->start_block(loc);
|
|
|
|
// Field 0 of the closure is the function code pointer, field 1 is
|
|
// the value on which to invoke the method.
|
|
Expression* arg = Expression::make_var_reference(cp, loc);
|
|
arg = Expression::make_dereference(arg, NIL_CHECK_NOT_NEEDED, loc);
|
|
arg = Expression::make_field_reference(arg, 1, loc);
|
|
|
|
Expression *ifre = Expression::make_interface_field_reference(arg, name,
|
|
loc);
|
|
|
|
const Typed_identifier_list* orig_params = orig_fntype->parameters();
|
|
Expression_list* args;
|
|
if (orig_params == NULL || orig_params->empty())
|
|
args = NULL;
|
|
else
|
|
{
|
|
const Typed_identifier_list* new_params = new_fntype->parameters();
|
|
args = new Expression_list();
|
|
for (Typed_identifier_list::const_iterator p = new_params->begin();
|
|
p != new_params->end();
|
|
++p)
|
|
{
|
|
Named_object* p_no = gogo->lookup(p->name(), NULL);
|
|
go_assert(p_no != NULL
|
|
&& p_no->is_variable()
|
|
&& p_no->var_value()->is_parameter());
|
|
args->push_back(Expression::make_var_reference(p_no, loc));
|
|
}
|
|
}
|
|
|
|
Call_expression* call = Expression::make_call(ifre, args,
|
|
orig_fntype->is_varargs(),
|
|
loc);
|
|
call->set_varargs_are_lowered();
|
|
|
|
Statement* s = Statement::make_return_from_call(call, loc);
|
|
gogo->add_statement(s);
|
|
Block* b = gogo->finish_block(loc);
|
|
gogo->add_block(b, loc);
|
|
gogo->lower_block(new_no, b);
|
|
gogo->flatten_block(new_no, b);
|
|
gogo->finish_function(loc);
|
|
|
|
ins.first->second->push_back(std::make_pair(name, new_no));
|
|
return new_no;
|
|
}
|
|
|
|
// Get the backend representation for a method value.
|
|
|
|
Bexpression*
|
|
Interface_field_reference_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Interface_type* type = this->expr_->type()->interface_type();
|
|
if (type == NULL)
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
Named_object* thunk =
|
|
Interface_field_reference_expression::create_thunk(context->gogo(),
|
|
type, this->name_);
|
|
if (thunk->is_erroneous())
|
|
{
|
|
go_assert(saw_errors());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
// FIXME: We should lower this earlier, but we can't it lower it in
|
|
// the lowering pass because at that point we don't know whether we
|
|
// need to create the thunk or not. If the expression is called, we
|
|
// don't need the thunk.
|
|
|
|
Location loc = this->location();
|
|
|
|
Struct_field_list* fields = new Struct_field_list();
|
|
fields->push_back(Struct_field(Typed_identifier("fn",
|
|
thunk->func_value()->type(),
|
|
loc)));
|
|
fields->push_back(Struct_field(Typed_identifier("val",
|
|
this->expr_->type(),
|
|
loc)));
|
|
Struct_type* st = Type::make_struct_type(fields, loc);
|
|
st->set_is_struct_incomparable();
|
|
|
|
Expression_list* vals = new Expression_list();
|
|
vals->push_back(Expression::make_func_code_reference(thunk, loc));
|
|
vals->push_back(this->expr_);
|
|
|
|
Expression* expr = Expression::make_struct_composite_literal(st, vals, loc);
|
|
Bexpression* bclosure =
|
|
Expression::make_heap_expression(expr, loc)->get_backend(context);
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = this->type()->get_backend(gogo);
|
|
bclosure = gogo->backend()->convert_expression(btype, bclosure, loc);
|
|
|
|
Expression* nil_check =
|
|
Expression::make_binary(OPERATOR_EQEQ, this->expr_,
|
|
Expression::make_nil(loc), loc);
|
|
Bexpression* bnil_check = nil_check->get_backend(context);
|
|
|
|
Bexpression* bcrash = gogo->runtime_error(RUNTIME_ERROR_NIL_DEREFERENCE,
|
|
loc)->get_backend(context);
|
|
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
Bexpression* bcond =
|
|
gogo->backend()->conditional_expression(bfn, NULL,
|
|
bnil_check, bcrash, NULL, loc);
|
|
Bfunction* bfunction = context->function()->func_value()->get_decl();
|
|
Bstatement* cond_statement =
|
|
gogo->backend()->expression_statement(bfunction, bcond);
|
|
return gogo->backend()->compound_expression(cond_statement, bclosure, loc);
|
|
}
|
|
|
|
// Dump ast representation for an interface field reference.
|
|
|
|
void
|
|
Interface_field_reference_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
this->expr_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << "." << this->name_;
|
|
}
|
|
|
|
// Make a reference to a field in an interface.
|
|
|
|
Expression*
|
|
Expression::make_interface_field_reference(Expression* expr,
|
|
const std::string& field,
|
|
Location location)
|
|
{
|
|
return new Interface_field_reference_expression(expr, field, location);
|
|
}
|
|
|
|
// A general selector. This is a Parser_expression for LEFT.NAME. It
|
|
// is lowered after we know the type of the left hand side.
|
|
|
|
class Selector_expression : public Parser_expression
|
|
{
|
|
public:
|
|
Selector_expression(Expression* left, const std::string& name,
|
|
Location location)
|
|
: Parser_expression(EXPRESSION_SELECTOR, location),
|
|
left_(left), name_(name)
|
|
{ }
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse* traverse)
|
|
{ return Expression::traverse(&this->left_, traverse); }
|
|
|
|
Expression*
|
|
do_lower(Gogo*, Named_object*, Statement_inserter*, int);
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return new Selector_expression(this->left_->copy(), this->name_,
|
|
this->location());
|
|
}
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context* ast_dump_context) const;
|
|
|
|
private:
|
|
Expression*
|
|
lower_method_expression(Gogo*);
|
|
|
|
// The expression on the left hand side.
|
|
Expression* left_;
|
|
// The name on the right hand side.
|
|
std::string name_;
|
|
};
|
|
|
|
// Lower a selector expression once we know the real type of the left
|
|
// hand side.
|
|
|
|
Expression*
|
|
Selector_expression::do_lower(Gogo* gogo, Named_object*, Statement_inserter*,
|
|
int)
|
|
{
|
|
Expression* left = this->left_;
|
|
if (left->is_type_expression())
|
|
return this->lower_method_expression(gogo);
|
|
return Type::bind_field_or_method(gogo, left->type(), left, this->name_,
|
|
this->location());
|
|
}
|
|
|
|
// Lower a method expression T.M or (*T).M. We turn this into a
|
|
// function literal.
|
|
|
|
Expression*
|
|
Selector_expression::lower_method_expression(Gogo* gogo)
|
|
{
|
|
Location location = this->location();
|
|
Type* left_type = this->left_->type();
|
|
Type* type = left_type;
|
|
const std::string& name(this->name_);
|
|
|
|
bool is_pointer;
|
|
if (type->points_to() == NULL)
|
|
is_pointer = false;
|
|
else
|
|
{
|
|
is_pointer = true;
|
|
type = type->points_to();
|
|
}
|
|
Named_type* nt = type->named_type();
|
|
if (nt == NULL)
|
|
{
|
|
go_error_at(location,
|
|
("method expression requires named type or "
|
|
"pointer to named type"));
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
bool is_ambiguous;
|
|
Method* method = nt->method_function(name, &is_ambiguous);
|
|
const Typed_identifier* imethod = NULL;
|
|
if (method == NULL && !is_pointer)
|
|
{
|
|
Interface_type* it = nt->interface_type();
|
|
if (it != NULL)
|
|
imethod = it->find_method(name);
|
|
}
|
|
|
|
if ((method == NULL && imethod == NULL)
|
|
|| (left_type->named_type() != NULL && left_type->points_to() != NULL))
|
|
{
|
|
if (!is_ambiguous)
|
|
go_error_at(location, "type %<%s%s%> has no method %<%s%>",
|
|
is_pointer ? "*" : "",
|
|
nt->message_name().c_str(),
|
|
Gogo::message_name(name).c_str());
|
|
else
|
|
go_error_at(location, "method %<%s%s%> is ambiguous in type %<%s%>",
|
|
Gogo::message_name(name).c_str(),
|
|
is_pointer ? "*" : "",
|
|
nt->message_name().c_str());
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
if (method != NULL && !is_pointer && !method->is_value_method())
|
|
{
|
|
go_error_at(location, "method requires pointer (use %<(*%s).%s%>)",
|
|
nt->message_name().c_str(),
|
|
Gogo::message_name(name).c_str());
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
// Build a new function type in which the receiver becomes the first
|
|
// argument.
|
|
Function_type* method_type;
|
|
if (method != NULL)
|
|
{
|
|
method_type = method->type();
|
|
go_assert(method_type->is_method());
|
|
}
|
|
else
|
|
{
|
|
method_type = imethod->type()->function_type();
|
|
go_assert(method_type != NULL && !method_type->is_method());
|
|
}
|
|
|
|
const char* const receiver_name = "$this";
|
|
Typed_identifier_list* parameters = new Typed_identifier_list();
|
|
parameters->push_back(Typed_identifier(receiver_name, this->left_->type(),
|
|
location));
|
|
|
|
const Typed_identifier_list* method_parameters = method_type->parameters();
|
|
if (method_parameters != NULL)
|
|
{
|
|
int i = 0;
|
|
for (Typed_identifier_list::const_iterator p = method_parameters->begin();
|
|
p != method_parameters->end();
|
|
++p, ++i)
|
|
{
|
|
if (!p->name().empty())
|
|
parameters->push_back(*p);
|
|
else
|
|
{
|
|
char buf[20];
|
|
snprintf(buf, sizeof buf, "$param%d", i);
|
|
parameters->push_back(Typed_identifier(buf, p->type(),
|
|
p->location()));
|
|
}
|
|
}
|
|
}
|
|
|
|
const Typed_identifier_list* method_results = method_type->results();
|
|
Typed_identifier_list* results;
|
|
if (method_results == NULL)
|
|
results = NULL;
|
|
else
|
|
{
|
|
results = new Typed_identifier_list();
|
|
for (Typed_identifier_list::const_iterator p = method_results->begin();
|
|
p != method_results->end();
|
|
++p)
|
|
results->push_back(*p);
|
|
}
|
|
|
|
Function_type* fntype = Type::make_function_type(NULL, parameters, results,
|
|
location);
|
|
if (method_type->is_varargs())
|
|
fntype->set_is_varargs();
|
|
|
|
// We generate methods which always takes a pointer to the receiver
|
|
// as their first argument. If this is for a pointer type, we can
|
|
// simply reuse the existing function. We use an internal hack to
|
|
// get the right type.
|
|
// FIXME: This optimization is disabled because it doesn't yet work
|
|
// with function descriptors when the method expression is not
|
|
// directly called.
|
|
if (method != NULL && is_pointer && false)
|
|
{
|
|
Named_object* mno = (method->needs_stub_method()
|
|
? method->stub_object()
|
|
: method->named_object());
|
|
Expression* f = Expression::make_func_reference(mno, NULL, location);
|
|
f = Expression::make_cast(fntype, f, location);
|
|
Type_conversion_expression* tce =
|
|
static_cast<Type_conversion_expression*>(f);
|
|
tce->set_may_convert_function_types();
|
|
return f;
|
|
}
|
|
|
|
Named_object* no = gogo->start_function(gogo->thunk_name(), fntype, false,
|
|
location);
|
|
|
|
Named_object* vno = gogo->lookup(receiver_name, NULL);
|
|
go_assert(vno != NULL);
|
|
Expression* ve = Expression::make_var_reference(vno, location);
|
|
Expression* bm;
|
|
if (method != NULL)
|
|
bm = Type::bind_field_or_method(gogo, nt, ve, name, location);
|
|
else
|
|
bm = Expression::make_interface_field_reference(ve, name, location);
|
|
|
|
// Even though we found the method above, if it has an error type we
|
|
// may see an error here.
|
|
if (bm->is_error_expression())
|
|
{
|
|
gogo->finish_function(location);
|
|
return bm;
|
|
}
|
|
|
|
Expression_list* args;
|
|
if (parameters->size() <= 1)
|
|
args = NULL;
|
|
else
|
|
{
|
|
args = new Expression_list();
|
|
Typed_identifier_list::const_iterator p = parameters->begin();
|
|
++p;
|
|
for (; p != parameters->end(); ++p)
|
|
{
|
|
vno = gogo->lookup(p->name(), NULL);
|
|
go_assert(vno != NULL);
|
|
args->push_back(Expression::make_var_reference(vno, location));
|
|
}
|
|
}
|
|
|
|
gogo->start_block(location);
|
|
|
|
Call_expression* call = Expression::make_call(bm, args,
|
|
method_type->is_varargs(),
|
|
location);
|
|
|
|
Statement* s = Statement::make_return_from_call(call, location);
|
|
gogo->add_statement(s);
|
|
|
|
Block* b = gogo->finish_block(location);
|
|
|
|
gogo->add_block(b, location);
|
|
|
|
// Lower the call in case there are multiple results.
|
|
gogo->lower_block(no, b);
|
|
gogo->flatten_block(no, b);
|
|
|
|
gogo->finish_function(location);
|
|
|
|
return Expression::make_func_reference(no, NULL, location);
|
|
}
|
|
|
|
// Dump the ast for a selector expression.
|
|
|
|
void
|
|
Selector_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
ast_dump_context->dump_expression(this->left_);
|
|
ast_dump_context->ostream() << ".";
|
|
ast_dump_context->ostream() << this->name_;
|
|
}
|
|
|
|
// Make a selector expression.
|
|
|
|
Expression*
|
|
Expression::make_selector(Expression* left, const std::string& name,
|
|
Location location)
|
|
{
|
|
return new Selector_expression(left, name, location);
|
|
}
|
|
|
|
// Class Allocation_expression.
|
|
|
|
int
|
|
Allocation_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
return Type::traverse(this->type_, traverse);
|
|
}
|
|
|
|
Type*
|
|
Allocation_expression::do_type()
|
|
{
|
|
return Type::make_pointer_type(this->type_);
|
|
}
|
|
|
|
void
|
|
Allocation_expression::do_check_types(Gogo*)
|
|
{
|
|
if (!this->type_->in_heap())
|
|
go_error_at(this->location(), "can't heap allocate go:notinheap type");
|
|
}
|
|
|
|
// Make a copy of an allocation expression.
|
|
|
|
Expression*
|
|
Allocation_expression::do_copy()
|
|
{
|
|
Allocation_expression* alloc =
|
|
new Allocation_expression(this->type_->copy_expressions(),
|
|
this->location());
|
|
if (this->allocate_on_stack_)
|
|
alloc->set_allocate_on_stack();
|
|
return alloc;
|
|
}
|
|
|
|
// Return the backend representation for an allocation expression.
|
|
|
|
Bexpression*
|
|
Allocation_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Location loc = this->location();
|
|
Btype* btype = this->type_->get_backend(gogo);
|
|
|
|
if (this->allocate_on_stack_)
|
|
{
|
|
int64_t size;
|
|
bool ok = this->type_->backend_type_size(gogo, &size);
|
|
if (!ok)
|
|
{
|
|
go_assert(saw_errors());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
Bstatement* decl;
|
|
Named_object* fn = context->function();
|
|
go_assert(fn != NULL);
|
|
Bfunction* fndecl = fn->func_value()->get_or_make_decl(gogo, fn);
|
|
Bexpression* zero = gogo->backend()->zero_expression(btype);
|
|
Bvariable* temp =
|
|
gogo->backend()->temporary_variable(fndecl, context->bblock(), btype,
|
|
zero, true, loc, &decl);
|
|
Bexpression* ret = gogo->backend()->var_expression(temp, loc);
|
|
ret = gogo->backend()->address_expression(ret, loc);
|
|
ret = gogo->backend()->compound_expression(decl, ret, loc);
|
|
return ret;
|
|
}
|
|
|
|
Bexpression* space =
|
|
gogo->allocate_memory(this->type_, loc)->get_backend(context);
|
|
Btype* pbtype = gogo->backend()->pointer_type(btype);
|
|
return gogo->backend()->convert_expression(pbtype, space, loc);
|
|
}
|
|
|
|
// Dump ast representation for an allocation expression.
|
|
|
|
void
|
|
Allocation_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
ast_dump_context->ostream() << "new(";
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make an allocation expression.
|
|
|
|
Expression*
|
|
Expression::make_allocation(Type* type, Location location)
|
|
{
|
|
return new Allocation_expression(type, location);
|
|
}
|
|
|
|
// Class Ordered_value_list.
|
|
|
|
int
|
|
Ordered_value_list::traverse_vals(Traverse* traverse)
|
|
{
|
|
if (this->vals_ != NULL)
|
|
{
|
|
if (this->traverse_order_ == NULL)
|
|
{
|
|
if (this->vals_->traverse(traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
else
|
|
{
|
|
for (std::vector<unsigned long>::const_iterator p =
|
|
this->traverse_order_->begin();
|
|
p != this->traverse_order_->end();
|
|
++p)
|
|
{
|
|
if (Expression::traverse(&this->vals_->at(*p), traverse)
|
|
== TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
}
|
|
}
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Class Struct_construction_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Struct_construction_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (this->traverse_vals(traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Return whether this is a constant initializer.
|
|
|
|
bool
|
|
Struct_construction_expression::is_constant_struct() const
|
|
{
|
|
if (this->vals() == NULL)
|
|
return true;
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
if (*pv != NULL
|
|
&& !(*pv)->is_constant()
|
|
&& (!(*pv)->is_composite_literal()
|
|
|| (*pv)->is_nonconstant_composite_literal()))
|
|
return false;
|
|
}
|
|
|
|
const Struct_field_list* fields = this->type_->struct_type()->fields();
|
|
for (Struct_field_list::const_iterator pf = fields->begin();
|
|
pf != fields->end();
|
|
++pf)
|
|
{
|
|
// There are no constant constructors for interfaces.
|
|
if (pf->type()->interface_type() != NULL)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Return whether this struct can be used as a constant initializer.
|
|
|
|
bool
|
|
Struct_construction_expression::do_is_static_initializer() const
|
|
{
|
|
if (this->vals() == NULL)
|
|
return true;
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
if (*pv != NULL && !(*pv)->is_static_initializer())
|
|
return false;
|
|
}
|
|
|
|
const Struct_field_list* fields = this->type_->struct_type()->fields();
|
|
for (Struct_field_list::const_iterator pf = fields->begin();
|
|
pf != fields->end();
|
|
++pf)
|
|
{
|
|
// There are no constant constructors for interfaces.
|
|
if (pf->type()->interface_type() != NULL)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Final type determination.
|
|
|
|
void
|
|
Struct_construction_expression::do_determine_type(const Type_context*)
|
|
{
|
|
if (this->vals() == NULL)
|
|
return;
|
|
const Struct_field_list* fields = this->type_->struct_type()->fields();
|
|
Expression_list::const_iterator pv = this->vals()->begin();
|
|
for (Struct_field_list::const_iterator pf = fields->begin();
|
|
pf != fields->end();
|
|
++pf, ++pv)
|
|
{
|
|
if (pv == this->vals()->end())
|
|
return;
|
|
if (*pv != NULL)
|
|
{
|
|
Type_context subcontext(pf->type(), false);
|
|
(*pv)->determine_type(&subcontext);
|
|
}
|
|
}
|
|
// Extra values are an error we will report elsewhere; we still want
|
|
// to determine the type to avoid knockon errors.
|
|
for (; pv != this->vals()->end(); ++pv)
|
|
(*pv)->determine_type_no_context();
|
|
}
|
|
|
|
// Check types.
|
|
|
|
void
|
|
Struct_construction_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->vals() == NULL)
|
|
return;
|
|
|
|
Struct_type* st = this->type_->struct_type();
|
|
if (this->vals()->size() > st->field_count())
|
|
{
|
|
this->report_error(_("too many expressions for struct"));
|
|
return;
|
|
}
|
|
|
|
const Struct_field_list* fields = st->fields();
|
|
Expression_list::const_iterator pv = this->vals()->begin();
|
|
int i = 0;
|
|
for (Struct_field_list::const_iterator pf = fields->begin();
|
|
pf != fields->end();
|
|
++pf, ++pv, ++i)
|
|
{
|
|
if (pv == this->vals()->end())
|
|
{
|
|
this->report_error(_("too few expressions for struct"));
|
|
break;
|
|
}
|
|
|
|
if (*pv == NULL)
|
|
continue;
|
|
|
|
std::string reason;
|
|
if (!Type::are_assignable(pf->type(), (*pv)->type(), &reason))
|
|
{
|
|
if (reason.empty())
|
|
go_error_at((*pv)->location(),
|
|
"incompatible type for field %d in struct construction",
|
|
i + 1);
|
|
else
|
|
go_error_at((*pv)->location(),
|
|
("incompatible type for field %d in "
|
|
"struct construction (%s)"),
|
|
i + 1, reason.c_str());
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
go_assert(pv == this->vals()->end());
|
|
}
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Struct_construction_expression::do_copy()
|
|
{
|
|
Struct_construction_expression* ret =
|
|
new Struct_construction_expression(this->type_->copy_expressions(),
|
|
(this->vals() == NULL
|
|
? NULL
|
|
: this->vals()->copy()),
|
|
this->location());
|
|
if (this->traverse_order() != NULL)
|
|
ret->set_traverse_order(this->traverse_order());
|
|
return ret;
|
|
}
|
|
|
|
// Flatten a struct construction expression. Store the values into
|
|
// temporaries in case they need interface conversion.
|
|
|
|
Expression*
|
|
Struct_construction_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->vals() == NULL)
|
|
return this;
|
|
|
|
// If this is a constant struct, we don't need temporaries.
|
|
if (this->is_constant_struct() || this->is_static_initializer())
|
|
return this;
|
|
|
|
Location loc = this->location();
|
|
for (Expression_list::iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
if (*pv != NULL)
|
|
{
|
|
if ((*pv)->is_error_expression() || (*pv)->type()->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
if (!(*pv)->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, *pv, loc);
|
|
inserter->insert(temp);
|
|
*pv = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Return the backend representation for constructing a struct.
|
|
|
|
Bexpression*
|
|
Struct_construction_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
|
|
Btype* btype = this->type_->get_backend(gogo);
|
|
if (this->vals() == NULL)
|
|
return gogo->backend()->zero_expression(btype);
|
|
|
|
const Struct_field_list* fields = this->type_->struct_type()->fields();
|
|
Expression_list::const_iterator pv = this->vals()->begin();
|
|
std::vector<Bexpression*> init;
|
|
for (Struct_field_list::const_iterator pf = fields->begin();
|
|
pf != fields->end();
|
|
++pf)
|
|
{
|
|
Btype* fbtype = pf->type()->get_backend(gogo);
|
|
if (pv == this->vals()->end())
|
|
init.push_back(gogo->backend()->zero_expression(fbtype));
|
|
else if (*pv == NULL)
|
|
{
|
|
init.push_back(gogo->backend()->zero_expression(fbtype));
|
|
++pv;
|
|
}
|
|
else
|
|
{
|
|
Expression* val =
|
|
Expression::convert_for_assignment(gogo, pf->type(),
|
|
*pv, this->location());
|
|
init.push_back(val->get_backend(context));
|
|
++pv;
|
|
}
|
|
}
|
|
return gogo->backend()->constructor_expression(btype, init, this->location());
|
|
}
|
|
|
|
// Export a struct construction.
|
|
|
|
void
|
|
Struct_construction_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
efb->write_c_string("convert(");
|
|
efb->write_type(this->type_);
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
efb->write_c_string(", ");
|
|
if (*pv != NULL)
|
|
(*pv)->export_expression(efb);
|
|
}
|
|
efb->write_c_string(")");
|
|
}
|
|
|
|
// Dump ast representation of a struct construction expression.
|
|
|
|
void
|
|
Struct_construction_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << "{";
|
|
ast_dump_context->dump_expression_list(this->vals());
|
|
ast_dump_context->ostream() << "}";
|
|
}
|
|
|
|
// Make a struct composite literal. This used by the thunk code.
|
|
|
|
Expression*
|
|
Expression::make_struct_composite_literal(Type* type, Expression_list* vals,
|
|
Location location)
|
|
{
|
|
go_assert(type->struct_type() != NULL);
|
|
return new Struct_construction_expression(type, vals, location);
|
|
}
|
|
|
|
// Class Array_construction_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Array_construction_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (this->traverse_vals(traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Return whether this is a constant initializer.
|
|
|
|
bool
|
|
Array_construction_expression::is_constant_array() const
|
|
{
|
|
if (this->vals() == NULL)
|
|
return true;
|
|
|
|
// There are no constant constructors for interfaces.
|
|
if (this->type_->array_type()->element_type()->interface_type() != NULL)
|
|
return false;
|
|
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
if (*pv != NULL
|
|
&& !(*pv)->is_constant()
|
|
&& (!(*pv)->is_composite_literal()
|
|
|| (*pv)->is_nonconstant_composite_literal()))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Return whether this can be used a constant initializer.
|
|
|
|
bool
|
|
Array_construction_expression::do_is_static_initializer() const
|
|
{
|
|
if (this->vals() == NULL)
|
|
return true;
|
|
|
|
// There are no constant constructors for interfaces.
|
|
if (this->type_->array_type()->element_type()->interface_type() != NULL)
|
|
return false;
|
|
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
if (*pv != NULL && !(*pv)->is_static_initializer())
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Final type determination.
|
|
|
|
void
|
|
Array_construction_expression::do_determine_type(const Type_context*)
|
|
{
|
|
if (this->vals() == NULL)
|
|
return;
|
|
Type_context subcontext(this->type_->array_type()->element_type(), false);
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
if (*pv != NULL)
|
|
(*pv)->determine_type(&subcontext);
|
|
}
|
|
}
|
|
|
|
// Check types.
|
|
|
|
void
|
|
Array_construction_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->vals() == NULL)
|
|
return;
|
|
|
|
Array_type* at = this->type_->array_type();
|
|
int i = 0;
|
|
Type* element_type = at->element_type();
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv, ++i)
|
|
{
|
|
if (*pv != NULL
|
|
&& !Type::are_assignable(element_type, (*pv)->type(), NULL))
|
|
{
|
|
go_error_at((*pv)->location(),
|
|
"incompatible type for element %d in composite literal",
|
|
i + 1);
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Flatten an array construction expression. Store the values into
|
|
// temporaries in case they need interface conversion.
|
|
|
|
Expression*
|
|
Array_construction_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->vals() == NULL)
|
|
return this;
|
|
|
|
// If this is a constant array, we don't need temporaries.
|
|
if (this->is_constant_array() || this->is_static_initializer())
|
|
return this;
|
|
|
|
Location loc = this->location();
|
|
for (Expression_list::iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
if (*pv != NULL)
|
|
{
|
|
if ((*pv)->is_error_expression() || (*pv)->type()->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
if (!(*pv)->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, *pv, loc);
|
|
inserter->insert(temp);
|
|
*pv = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
}
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Get a constructor expression for the array values.
|
|
|
|
Bexpression*
|
|
Array_construction_expression::get_constructor(Translate_context* context,
|
|
Btype* array_btype)
|
|
{
|
|
Type* element_type = this->type_->array_type()->element_type();
|
|
|
|
std::vector<unsigned long> indexes;
|
|
std::vector<Bexpression*> vals;
|
|
Gogo* gogo = context->gogo();
|
|
if (this->vals() != NULL)
|
|
{
|
|
size_t i = 0;
|
|
std::vector<unsigned long>::const_iterator pi;
|
|
if (this->indexes_ != NULL)
|
|
pi = this->indexes_->begin();
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv, ++i)
|
|
{
|
|
if (this->indexes_ != NULL)
|
|
go_assert(pi != this->indexes_->end());
|
|
|
|
if (this->indexes_ == NULL)
|
|
indexes.push_back(i);
|
|
else
|
|
indexes.push_back(*pi);
|
|
if (*pv == NULL)
|
|
{
|
|
Btype* ebtype = element_type->get_backend(gogo);
|
|
Bexpression *zv = gogo->backend()->zero_expression(ebtype);
|
|
vals.push_back(zv);
|
|
}
|
|
else
|
|
{
|
|
Expression* val_expr =
|
|
Expression::convert_for_assignment(gogo, element_type, *pv,
|
|
this->location());
|
|
vals.push_back(val_expr->get_backend(context));
|
|
}
|
|
if (this->indexes_ != NULL)
|
|
++pi;
|
|
}
|
|
if (this->indexes_ != NULL)
|
|
go_assert(pi == this->indexes_->end());
|
|
}
|
|
return gogo->backend()->array_constructor_expression(array_btype, indexes,
|
|
vals, this->location());
|
|
}
|
|
|
|
// Export an array construction.
|
|
|
|
void
|
|
Array_construction_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
efb->write_c_string("convert(");
|
|
efb->write_type(this->type_);
|
|
if (this->vals() != NULL)
|
|
{
|
|
std::vector<unsigned long>::const_iterator pi;
|
|
if (this->indexes_ != NULL)
|
|
pi = this->indexes_->begin();
|
|
for (Expression_list::const_iterator pv = this->vals()->begin();
|
|
pv != this->vals()->end();
|
|
++pv)
|
|
{
|
|
efb->write_c_string(", ");
|
|
|
|
if (this->indexes_ != NULL)
|
|
{
|
|
char buf[100];
|
|
snprintf(buf, sizeof buf, "%lu", *pi);
|
|
efb->write_c_string(buf);
|
|
efb->write_c_string(":");
|
|
}
|
|
|
|
if (*pv != NULL)
|
|
(*pv)->export_expression(efb);
|
|
|
|
if (this->indexes_ != NULL)
|
|
++pi;
|
|
}
|
|
}
|
|
efb->write_c_string(")");
|
|
}
|
|
|
|
// Dump ast representation of an array construction expression.
|
|
|
|
void
|
|
Array_construction_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
Expression* length = this->type_->array_type()->length();
|
|
|
|
ast_dump_context->ostream() << "[" ;
|
|
if (length != NULL)
|
|
{
|
|
ast_dump_context->dump_expression(length);
|
|
}
|
|
ast_dump_context->ostream() << "]" ;
|
|
ast_dump_context->dump_type(this->type_);
|
|
this->dump_slice_storage_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << "{" ;
|
|
if (this->indexes_ == NULL)
|
|
ast_dump_context->dump_expression_list(this->vals());
|
|
else
|
|
{
|
|
Expression_list::const_iterator pv = this->vals()->begin();
|
|
for (std::vector<unsigned long>::const_iterator pi =
|
|
this->indexes_->begin();
|
|
pi != this->indexes_->end();
|
|
++pi, ++pv)
|
|
{
|
|
if (pi != this->indexes_->begin())
|
|
ast_dump_context->ostream() << ", ";
|
|
ast_dump_context->ostream() << *pi << ':';
|
|
ast_dump_context->dump_expression(*pv);
|
|
}
|
|
}
|
|
ast_dump_context->ostream() << "}" ;
|
|
|
|
}
|
|
|
|
// Class Fixed_array_construction_expression.
|
|
|
|
Fixed_array_construction_expression::Fixed_array_construction_expression(
|
|
Type* type, const std::vector<unsigned long>* indexes,
|
|
Expression_list* vals, Location location)
|
|
: Array_construction_expression(EXPRESSION_FIXED_ARRAY_CONSTRUCTION,
|
|
type, indexes, vals, location)
|
|
{ go_assert(type->array_type() != NULL && !type->is_slice_type()); }
|
|
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Fixed_array_construction_expression::do_copy()
|
|
{
|
|
Type* t = this->type()->copy_expressions();
|
|
return new Fixed_array_construction_expression(t, this->indexes(),
|
|
(this->vals() == NULL
|
|
? NULL
|
|
: this->vals()->copy()),
|
|
this->location());
|
|
}
|
|
|
|
// Return the backend representation for constructing a fixed array.
|
|
|
|
Bexpression*
|
|
Fixed_array_construction_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Type* type = this->type();
|
|
Btype* btype = type->get_backend(context->gogo());
|
|
return this->get_constructor(context, btype);
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_array_composite_literal(Type* type, Expression_list* vals,
|
|
Location location)
|
|
{
|
|
go_assert(type->array_type() != NULL && !type->is_slice_type());
|
|
return new Fixed_array_construction_expression(type, NULL, vals, location);
|
|
}
|
|
|
|
// Class Slice_construction_expression.
|
|
|
|
Slice_construction_expression::Slice_construction_expression(
|
|
Type* type, const std::vector<unsigned long>* indexes,
|
|
Expression_list* vals, Location location)
|
|
: Array_construction_expression(EXPRESSION_SLICE_CONSTRUCTION,
|
|
type, indexes, vals, location),
|
|
valtype_(NULL), array_val_(NULL), slice_storage_(NULL),
|
|
storage_escapes_(true)
|
|
{
|
|
go_assert(type->is_slice_type());
|
|
|
|
unsigned long lenval;
|
|
Expression* length;
|
|
if (vals == NULL || vals->empty())
|
|
lenval = 0;
|
|
else
|
|
{
|
|
if (this->indexes() == NULL)
|
|
lenval = vals->size();
|
|
else
|
|
lenval = indexes->back() + 1;
|
|
}
|
|
Type* int_type = Type::lookup_integer_type("int");
|
|
length = Expression::make_integer_ul(lenval, int_type, location);
|
|
Type* element_type = type->array_type()->element_type();
|
|
Array_type* array_type = Type::make_array_type(element_type, length);
|
|
array_type->set_is_array_incomparable();
|
|
this->valtype_ = array_type;
|
|
}
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Slice_construction_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (this->Array_construction_expression::do_traverse(traverse)
|
|
== TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (Type::traverse(this->valtype_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (this->array_val_ != NULL
|
|
&& Expression::traverse(&this->array_val_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (this->slice_storage_ != NULL
|
|
&& Expression::traverse(&this->slice_storage_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Helper routine to create fixed array value underlying the slice literal.
|
|
// May be called during flattening, or later during do_get_backend().
|
|
|
|
Expression*
|
|
Slice_construction_expression::create_array_val()
|
|
{
|
|
Array_type* array_type = this->type()->array_type();
|
|
if (array_type == NULL)
|
|
{
|
|
go_assert(this->type()->is_error());
|
|
return NULL;
|
|
}
|
|
|
|
Location loc = this->location();
|
|
go_assert(this->valtype_ != NULL);
|
|
|
|
Expression_list* vals = this->vals();
|
|
return new Fixed_array_construction_expression(
|
|
this->valtype_, this->indexes(), vals, loc);
|
|
}
|
|
|
|
// If we're previous established that the slice storage does not
|
|
// escape, then create a separate array temp val here for it. We
|
|
// need to do this as part of flattening so as to be able to insert
|
|
// the new temp statement.
|
|
|
|
Expression*
|
|
Slice_construction_expression::do_flatten(Gogo* gogo, Named_object* no,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->type()->array_type() == NULL)
|
|
return NULL;
|
|
|
|
// Base class flattening first
|
|
this->Array_construction_expression::do_flatten(gogo, no, inserter);
|
|
|
|
// Create a stack-allocated storage temp if storage won't escape
|
|
if (!this->storage_escapes_
|
|
&& this->slice_storage_ == NULL
|
|
&& this->element_count() > 0)
|
|
{
|
|
Location loc = this->location();
|
|
this->array_val_ = this->create_array_val();
|
|
go_assert(this->array_val_);
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(this->valtype_, this->array_val_, loc);
|
|
inserter->insert(temp);
|
|
this->slice_storage_ = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// When dumping a slice construction expression that has an explicit
|
|
// storeage temp, emit the temp here (if we don't do this the storage
|
|
// temp appears unused in the AST dump).
|
|
|
|
void
|
|
Slice_construction_expression::
|
|
dump_slice_storage_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
if (this->slice_storage_ == NULL)
|
|
return;
|
|
ast_dump_context->ostream() << "storage=" ;
|
|
ast_dump_context->dump_expression(this->slice_storage_);
|
|
}
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Slice_construction_expression::do_copy()
|
|
{
|
|
return new Slice_construction_expression(this->type()->copy_expressions(),
|
|
this->indexes(),
|
|
(this->vals() == NULL
|
|
? NULL
|
|
: this->vals()->copy()),
|
|
this->location());
|
|
}
|
|
|
|
// Return the backend representation for constructing a slice.
|
|
|
|
Bexpression*
|
|
Slice_construction_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
if (this->array_val_ == NULL)
|
|
this->array_val_ = this->create_array_val();
|
|
if (this->array_val_ == NULL)
|
|
{
|
|
go_assert(this->type()->is_error());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
Location loc = this->location();
|
|
|
|
bool is_static_initializer = this->array_val_->is_static_initializer();
|
|
|
|
// We have to copy the initial values into heap memory if we are in
|
|
// a function or if the values are not constants.
|
|
bool copy_to_heap = context->function() != NULL || !is_static_initializer;
|
|
|
|
Expression* space;
|
|
|
|
if (this->slice_storage_ != NULL)
|
|
{
|
|
go_assert(!this->storage_escapes_);
|
|
space = Expression::make_unary(OPERATOR_AND, this->slice_storage_, loc);
|
|
}
|
|
else if (!copy_to_heap)
|
|
{
|
|
// The initializer will only run once.
|
|
space = Expression::make_unary(OPERATOR_AND, this->array_val_, loc);
|
|
space->unary_expression()->set_is_slice_init();
|
|
}
|
|
else
|
|
{
|
|
go_assert(this->storage_escapes_ || this->element_count() == 0);
|
|
space = Expression::make_heap_expression(this->array_val_, loc);
|
|
}
|
|
|
|
// Build a constructor for the slice.
|
|
Expression* len = this->valtype_->array_type()->length();
|
|
Expression* slice_val =
|
|
Expression::make_slice_value(this->type(), space, len, len, loc);
|
|
return slice_val->get_backend(context);
|
|
}
|
|
|
|
// Make a slice composite literal. This is used by the type
|
|
// descriptor code.
|
|
|
|
Slice_construction_expression*
|
|
Expression::make_slice_composite_literal(Type* type, Expression_list* vals,
|
|
Location location)
|
|
{
|
|
go_assert(type->is_slice_type());
|
|
return new Slice_construction_expression(type, NULL, vals, location);
|
|
}
|
|
|
|
// Class Map_construction_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Map_construction_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (this->vals_ != NULL
|
|
&& this->vals_->traverse(traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Flatten constructor initializer into a temporary variable since
|
|
// we need to take its address for __go_construct_map.
|
|
|
|
Expression*
|
|
Map_construction_expression::do_flatten(Gogo* gogo, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (!this->is_error_expression()
|
|
&& this->vals_ != NULL
|
|
&& !this->vals_->empty()
|
|
&& this->constructor_temp_ == NULL)
|
|
{
|
|
Map_type* mt = this->type_->map_type();
|
|
Type* key_type = mt->key_type();
|
|
Type* val_type = mt->val_type();
|
|
this->element_type_ = Type::make_builtin_struct_type(2,
|
|
"__key", key_type,
|
|
"__val", val_type);
|
|
|
|
Expression_list* value_pairs = new Expression_list();
|
|
Location loc = this->location();
|
|
|
|
size_t i = 0;
|
|
for (Expression_list::const_iterator pv = this->vals_->begin();
|
|
pv != this->vals_->end();
|
|
++pv, ++i)
|
|
{
|
|
Expression_list* key_value_pair = new Expression_list();
|
|
Expression* key = *pv;
|
|
if (key->is_error_expression() || key->type()->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
if (key->type()->interface_type() != NULL && !key->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, key, loc);
|
|
inserter->insert(temp);
|
|
key = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
key = Expression::convert_for_assignment(gogo, key_type, key, loc);
|
|
|
|
++pv;
|
|
Expression* val = *pv;
|
|
if (val->is_error_expression() || val->type()->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
}
|
|
if (val->type()->interface_type() != NULL && !val->is_variable())
|
|
{
|
|
Temporary_statement* temp =
|
|
Statement::make_temporary(NULL, val, loc);
|
|
inserter->insert(temp);
|
|
val = Expression::make_temporary_reference(temp, loc);
|
|
}
|
|
val = Expression::convert_for_assignment(gogo, val_type, val, loc);
|
|
|
|
key_value_pair->push_back(key);
|
|
key_value_pair->push_back(val);
|
|
value_pairs->push_back(
|
|
Expression::make_struct_composite_literal(this->element_type_,
|
|
key_value_pair, loc));
|
|
}
|
|
|
|
Expression* element_count = Expression::make_integer_ul(i, NULL, loc);
|
|
Array_type* ctor_type =
|
|
Type::make_array_type(this->element_type_, element_count);
|
|
ctor_type->set_is_array_incomparable();
|
|
Expression* constructor =
|
|
new Fixed_array_construction_expression(ctor_type, NULL,
|
|
value_pairs, loc);
|
|
|
|
this->constructor_temp_ =
|
|
Statement::make_temporary(NULL, constructor, loc);
|
|
constructor->issue_nil_check();
|
|
this->constructor_temp_->set_is_address_taken();
|
|
inserter->insert(this->constructor_temp_);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Final type determination.
|
|
|
|
void
|
|
Map_construction_expression::do_determine_type(const Type_context*)
|
|
{
|
|
if (this->vals_ == NULL)
|
|
return;
|
|
|
|
Map_type* mt = this->type_->map_type();
|
|
Type_context key_context(mt->key_type(), false);
|
|
Type_context val_context(mt->val_type(), false);
|
|
for (Expression_list::const_iterator pv = this->vals_->begin();
|
|
pv != this->vals_->end();
|
|
++pv)
|
|
{
|
|
(*pv)->determine_type(&key_context);
|
|
++pv;
|
|
(*pv)->determine_type(&val_context);
|
|
}
|
|
}
|
|
|
|
// Check types.
|
|
|
|
void
|
|
Map_construction_expression::do_check_types(Gogo*)
|
|
{
|
|
if (this->vals_ == NULL)
|
|
return;
|
|
|
|
Map_type* mt = this->type_->map_type();
|
|
int i = 0;
|
|
Type* key_type = mt->key_type();
|
|
Type* val_type = mt->val_type();
|
|
for (Expression_list::const_iterator pv = this->vals_->begin();
|
|
pv != this->vals_->end();
|
|
++pv, ++i)
|
|
{
|
|
if (!Type::are_assignable(key_type, (*pv)->type(), NULL))
|
|
{
|
|
go_error_at((*pv)->location(),
|
|
"incompatible type for element %d key in map construction",
|
|
i + 1);
|
|
this->set_is_error();
|
|
}
|
|
++pv;
|
|
if (!Type::are_assignable(val_type, (*pv)->type(), NULL))
|
|
{
|
|
go_error_at((*pv)->location(),
|
|
("incompatible type for element %d value "
|
|
"in map construction"),
|
|
i + 1);
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Map_construction_expression::do_copy()
|
|
{
|
|
return new Map_construction_expression(this->type_->copy_expressions(),
|
|
(this->vals_ == NULL
|
|
? NULL
|
|
: this->vals_->copy()),
|
|
this->location());
|
|
}
|
|
|
|
// Return the backend representation for constructing a map.
|
|
|
|
Bexpression*
|
|
Map_construction_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
if (this->is_error_expression())
|
|
return context->backend()->error_expression();
|
|
Location loc = this->location();
|
|
|
|
size_t i = 0;
|
|
Expression* ventries;
|
|
if (this->vals_ == NULL || this->vals_->empty())
|
|
ventries = Expression::make_nil(loc);
|
|
else
|
|
{
|
|
go_assert(this->constructor_temp_ != NULL);
|
|
i = this->vals_->size() / 2;
|
|
|
|
Expression* ctor_ref =
|
|
Expression::make_temporary_reference(this->constructor_temp_, loc);
|
|
ventries = Expression::make_unary(OPERATOR_AND, ctor_ref, loc);
|
|
}
|
|
|
|
Map_type* mt = this->type_->map_type();
|
|
if (this->element_type_ == NULL)
|
|
this->element_type_ =
|
|
Type::make_builtin_struct_type(2,
|
|
"__key", mt->key_type(),
|
|
"__val", mt->val_type());
|
|
Expression* descriptor = Expression::make_type_descriptor(mt, loc);
|
|
|
|
Type* uintptr_t = Type::lookup_integer_type("uintptr");
|
|
Expression* count = Expression::make_integer_ul(i, uintptr_t, loc);
|
|
|
|
Expression* entry_size =
|
|
Expression::make_type_info(this->element_type_, TYPE_INFO_SIZE);
|
|
|
|
unsigned int field_index;
|
|
const Struct_field* valfield =
|
|
this->element_type_->find_local_field("__val", &field_index);
|
|
Expression* val_offset =
|
|
Expression::make_struct_field_offset(this->element_type_, valfield);
|
|
|
|
Expression* map_ctor =
|
|
Runtime::make_call(Runtime::CONSTRUCT_MAP, loc, 5, descriptor, count,
|
|
entry_size, val_offset, ventries);
|
|
return map_ctor->get_backend(context);
|
|
}
|
|
|
|
// Export an array construction.
|
|
|
|
void
|
|
Map_construction_expression::do_export(Export_function_body* efb) const
|
|
{
|
|
efb->write_c_string("convert(");
|
|
efb->write_type(this->type_);
|
|
for (Expression_list::const_iterator pv = this->vals_->begin();
|
|
pv != this->vals_->end();
|
|
++pv)
|
|
{
|
|
efb->write_c_string(", ");
|
|
(*pv)->export_expression(efb);
|
|
}
|
|
efb->write_c_string(")");
|
|
}
|
|
|
|
// Dump ast representation for a map construction expression.
|
|
|
|
void
|
|
Map_construction_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "{" ;
|
|
ast_dump_context->dump_expression_list(this->vals_, true);
|
|
ast_dump_context->ostream() << "}";
|
|
}
|
|
|
|
// Class Composite_literal_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Composite_literal_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
|
|
// If this is a struct composite literal with keys, then the keys
|
|
// are field names, not expressions. We don't want to traverse them
|
|
// in that case. If we do, we can give an erroneous error "variable
|
|
// initializer refers to itself." See bug482.go in the testsuite.
|
|
if (this->has_keys_ && this->vals_ != NULL)
|
|
{
|
|
// The type may not be resolvable at this point.
|
|
Type* type = this->type_;
|
|
|
|
for (int depth = 0; depth < this->depth_; ++depth)
|
|
{
|
|
if (type->array_type() != NULL)
|
|
type = type->array_type()->element_type();
|
|
else if (type->map_type() != NULL)
|
|
{
|
|
if (this->key_path_[depth])
|
|
type = type->map_type()->key_type();
|
|
else
|
|
type = type->map_type()->val_type();
|
|
}
|
|
else
|
|
{
|
|
// This error will be reported during lowering.
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
}
|
|
|
|
while (true)
|
|
{
|
|
if (type->classification() == Type::TYPE_NAMED)
|
|
type = type->named_type()->real_type();
|
|
else if (type->classification() == Type::TYPE_FORWARD)
|
|
{
|
|
Type* t = type->forwarded();
|
|
if (t == type)
|
|
break;
|
|
type = t;
|
|
}
|
|
else
|
|
break;
|
|
}
|
|
|
|
if (type->classification() == Type::TYPE_STRUCT)
|
|
{
|
|
Expression_list::iterator p = this->vals_->begin();
|
|
while (p != this->vals_->end())
|
|
{
|
|
// Skip key.
|
|
++p;
|
|
go_assert(p != this->vals_->end());
|
|
if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
++p;
|
|
}
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
}
|
|
|
|
if (this->vals_ != NULL)
|
|
return this->vals_->traverse(traverse);
|
|
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Lower a generic composite literal into a specific version based on
|
|
// the type.
|
|
|
|
Expression*
|
|
Composite_literal_expression::do_lower(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter, int)
|
|
{
|
|
Type* type = this->type_;
|
|
|
|
for (int depth = 0; depth < this->depth_; ++depth)
|
|
{
|
|
type = type->deref();
|
|
if (type->array_type() != NULL)
|
|
type = type->array_type()->element_type();
|
|
else if (type->map_type() != NULL)
|
|
{
|
|
if (this->key_path_[depth])
|
|
type = type->map_type()->key_type();
|
|
else
|
|
type = type->map_type()->val_type();
|
|
}
|
|
else
|
|
{
|
|
if (!type->is_error())
|
|
go_error_at(this->location(),
|
|
("may only omit types within composite literals "
|
|
"of slice, array, or map type"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
}
|
|
|
|
Type *pt = type->points_to();
|
|
bool is_pointer = false;
|
|
if (pt != NULL)
|
|
{
|
|
is_pointer = true;
|
|
type = pt;
|
|
}
|
|
|
|
Expression* ret;
|
|
if (type->is_error())
|
|
return Expression::make_error(this->location());
|
|
else if (type->struct_type() != NULL)
|
|
ret = this->lower_struct(gogo, type);
|
|
else if (type->array_type() != NULL)
|
|
ret = this->lower_array(type);
|
|
else if (type->map_type() != NULL)
|
|
ret = this->lower_map(gogo, function, inserter, type);
|
|
else
|
|
{
|
|
go_error_at(this->location(),
|
|
("expected struct, slice, array, or map type "
|
|
"for composite literal"));
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
if (is_pointer)
|
|
ret = Expression::make_heap_expression(ret, this->location());
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Lower a struct composite literal.
|
|
|
|
Expression*
|
|
Composite_literal_expression::lower_struct(Gogo* gogo, Type* type)
|
|
{
|
|
Location location = this->location();
|
|
Struct_type* st = type->struct_type();
|
|
if (this->vals_ == NULL || !this->has_keys_)
|
|
{
|
|
if (this->vals_ != NULL
|
|
&& !this->vals_->empty()
|
|
&& type->named_type() != NULL
|
|
&& type->named_type()->named_object()->package() != NULL)
|
|
{
|
|
for (Struct_field_list::const_iterator pf = st->fields()->begin();
|
|
pf != st->fields()->end();
|
|
++pf)
|
|
{
|
|
if (Gogo::is_hidden_name(pf->field_name())
|
|
|| pf->is_embedded_builtin(gogo))
|
|
go_error_at(this->location(),
|
|
"assignment of unexported field %qs in %qs literal",
|
|
Gogo::message_name(pf->field_name()).c_str(),
|
|
type->named_type()->message_name().c_str());
|
|
}
|
|
}
|
|
|
|
return new Struct_construction_expression(type, this->vals_, location);
|
|
}
|
|
|
|
size_t field_count = st->field_count();
|
|
std::vector<Expression*> vals(field_count);
|
|
std::vector<unsigned long>* traverse_order = new(std::vector<unsigned long>);
|
|
Expression_list::const_iterator p = this->vals_->begin();
|
|
Expression* external_expr = NULL;
|
|
const Named_object* external_no = NULL;
|
|
while (p != this->vals_->end())
|
|
{
|
|
Expression* name_expr = *p;
|
|
|
|
++p;
|
|
go_assert(p != this->vals_->end());
|
|
Expression* val = *p;
|
|
|
|
++p;
|
|
|
|
if (name_expr == NULL)
|
|
{
|
|
go_error_at(val->location(),
|
|
"mixture of field and value initializers");
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
bool bad_key = false;
|
|
std::string name;
|
|
const Named_object* no = NULL;
|
|
switch (name_expr->classification())
|
|
{
|
|
case EXPRESSION_UNKNOWN_REFERENCE:
|
|
name = name_expr->unknown_expression()->name();
|
|
if (type->named_type() != NULL)
|
|
{
|
|
// If the named object found for this field name comes from a
|
|
// different package than the struct it is a part of, do not count
|
|
// this incorrect lookup as a usage of the object's package.
|
|
no = name_expr->unknown_expression()->named_object();
|
|
if (no->package() != NULL
|
|
&& no->package() != type->named_type()->named_object()->package())
|
|
no->package()->forget_usage(name_expr);
|
|
}
|
|
break;
|
|
|
|
case EXPRESSION_CONST_REFERENCE:
|
|
no = static_cast<Const_expression*>(name_expr)->named_object();
|
|
break;
|
|
|
|
case EXPRESSION_TYPE:
|
|
{
|
|
Type* t = name_expr->type();
|
|
Named_type* nt = t->named_type();
|
|
if (nt == NULL)
|
|
bad_key = true;
|
|
else
|
|
no = nt->named_object();
|
|
}
|
|
break;
|
|
|
|
case EXPRESSION_VAR_REFERENCE:
|
|
no = name_expr->var_expression()->named_object();
|
|
break;
|
|
|
|
case EXPRESSION_ENCLOSED_VAR_REFERENCE:
|
|
no = name_expr->enclosed_var_expression()->variable();
|
|
break;
|
|
|
|
case EXPRESSION_FUNC_REFERENCE:
|
|
no = name_expr->func_expression()->named_object();
|
|
break;
|
|
|
|
default:
|
|
bad_key = true;
|
|
break;
|
|
}
|
|
if (bad_key)
|
|
{
|
|
go_error_at(name_expr->location(), "expected struct field name");
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
if (no != NULL)
|
|
{
|
|
if (no->package() != NULL && external_expr == NULL)
|
|
{
|
|
external_expr = name_expr;
|
|
external_no = no;
|
|
}
|
|
|
|
name = no->name();
|
|
|
|
// A predefined name won't be packed. If it starts with a
|
|
// lower case letter we need to check for that case, because
|
|
// the field name will be packed. FIXME.
|
|
if (!Gogo::is_hidden_name(name)
|
|
&& name[0] >= 'a'
|
|
&& name[0] <= 'z')
|
|
{
|
|
Named_object* gno = gogo->lookup_global(name.c_str());
|
|
if (gno == no)
|
|
name = gogo->pack_hidden_name(name, false);
|
|
}
|
|
}
|
|
|
|
unsigned int index;
|
|
const Struct_field* sf = st->find_local_field(name, &index);
|
|
if (sf == NULL)
|
|
{
|
|
go_error_at(name_expr->location(), "unknown field %qs in %qs",
|
|
Gogo::message_name(name).c_str(),
|
|
(type->named_type() != NULL
|
|
? type->named_type()->message_name().c_str()
|
|
: "unnamed struct"));
|
|
return Expression::make_error(location);
|
|
}
|
|
if (vals[index] != NULL)
|
|
{
|
|
go_error_at(name_expr->location(),
|
|
"duplicate value for field %qs in %qs",
|
|
Gogo::message_name(name).c_str(),
|
|
(type->named_type() != NULL
|
|
? type->named_type()->message_name().c_str()
|
|
: "unnamed struct"));
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
if (type->named_type() != NULL
|
|
&& type->named_type()->named_object()->package() != NULL
|
|
&& (Gogo::is_hidden_name(sf->field_name())
|
|
|| sf->is_embedded_builtin(gogo)))
|
|
go_error_at(name_expr->location(),
|
|
"assignment of unexported field %qs in %qs literal",
|
|
Gogo::message_name(sf->field_name()).c_str(),
|
|
type->named_type()->message_name().c_str());
|
|
|
|
vals[index] = val;
|
|
traverse_order->push_back(static_cast<unsigned long>(index));
|
|
}
|
|
|
|
if (!this->all_are_names_)
|
|
{
|
|
// This is a weird case like bug462 in the testsuite.
|
|
if (external_expr == NULL)
|
|
go_error_at(this->location(), "unknown field in %qs literal",
|
|
(type->named_type() != NULL
|
|
? type->named_type()->message_name().c_str()
|
|
: "unnamed struct"));
|
|
else
|
|
go_error_at(external_expr->location(), "unknown field %qs in %qs",
|
|
external_no->message_name().c_str(),
|
|
(type->named_type() != NULL
|
|
? type->named_type()->message_name().c_str()
|
|
: "unnamed struct"));
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
Expression_list* list = new Expression_list;
|
|
list->reserve(field_count);
|
|
for (size_t i = 0; i < field_count; ++i)
|
|
list->push_back(vals[i]);
|
|
|
|
Struct_construction_expression* ret =
|
|
new Struct_construction_expression(type, list, location);
|
|
ret->set_traverse_order(traverse_order);
|
|
return ret;
|
|
}
|
|
|
|
// Index/value/traversal-order triple.
|
|
|
|
struct IVT_triple {
|
|
unsigned long index;
|
|
unsigned long traversal_order;
|
|
Expression* expr;
|
|
IVT_triple(unsigned long i, unsigned long to, Expression *e)
|
|
: index(i), traversal_order(to), expr(e) { }
|
|
bool operator<(const IVT_triple& other) const
|
|
{ return this->index < other.index; }
|
|
};
|
|
|
|
// Lower an array composite literal.
|
|
|
|
Expression*
|
|
Composite_literal_expression::lower_array(Type* type)
|
|
{
|
|
Location location = this->location();
|
|
if (this->vals_ == NULL || !this->has_keys_)
|
|
return this->make_array(type, NULL, this->vals_);
|
|
|
|
std::vector<unsigned long>* indexes = new std::vector<unsigned long>;
|
|
indexes->reserve(this->vals_->size());
|
|
bool indexes_out_of_order = false;
|
|
Expression_list* vals = new Expression_list();
|
|
vals->reserve(this->vals_->size());
|
|
unsigned long index = 0;
|
|
Expression_list::const_iterator p = this->vals_->begin();
|
|
while (p != this->vals_->end())
|
|
{
|
|
Expression* index_expr = *p;
|
|
|
|
++p;
|
|
go_assert(p != this->vals_->end());
|
|
Expression* val = *p;
|
|
|
|
++p;
|
|
|
|
if (index_expr == NULL)
|
|
{
|
|
if (!indexes->empty())
|
|
indexes->push_back(index);
|
|
}
|
|
else
|
|
{
|
|
if (indexes->empty() && !vals->empty())
|
|
{
|
|
for (size_t i = 0; i < vals->size(); ++i)
|
|
indexes->push_back(i);
|
|
}
|
|
|
|
Numeric_constant nc;
|
|
if (!index_expr->numeric_constant_value(&nc))
|
|
{
|
|
go_error_at(index_expr->location(),
|
|
"index expression is not integer constant");
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
switch (nc.to_unsigned_long(&index))
|
|
{
|
|
case Numeric_constant::NC_UL_VALID:
|
|
break;
|
|
case Numeric_constant::NC_UL_NOTINT:
|
|
go_error_at(index_expr->location(),
|
|
"index expression is not integer constant");
|
|
return Expression::make_error(location);
|
|
case Numeric_constant::NC_UL_NEGATIVE:
|
|
go_error_at(index_expr->location(),
|
|
"index expression is negative");
|
|
return Expression::make_error(location);
|
|
case Numeric_constant::NC_UL_BIG:
|
|
go_error_at(index_expr->location(), "index value overflow");
|
|
return Expression::make_error(location);
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
Named_type* ntype = Type::lookup_integer_type("int");
|
|
Integer_type* inttype = ntype->integer_type();
|
|
if (sizeof(index) <= static_cast<size_t>(inttype->bits() * 8)
|
|
&& index >> (inttype->bits() - 1) != 0)
|
|
{
|
|
go_error_at(index_expr->location(), "index value overflow");
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
if (std::find(indexes->begin(), indexes->end(), index)
|
|
!= indexes->end())
|
|
{
|
|
go_error_at(index_expr->location(),
|
|
"duplicate value for index %lu",
|
|
index);
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
if (!indexes->empty() && index < indexes->back())
|
|
indexes_out_of_order = true;
|
|
|
|
indexes->push_back(index);
|
|
}
|
|
|
|
vals->push_back(val);
|
|
|
|
++index;
|
|
}
|
|
|
|
if (indexes->empty())
|
|
{
|
|
delete indexes;
|
|
indexes = NULL;
|
|
}
|
|
|
|
std::vector<unsigned long>* traverse_order = NULL;
|
|
if (indexes_out_of_order)
|
|
{
|
|
typedef std::vector<IVT_triple> V;
|
|
|
|
V v;
|
|
v.reserve(indexes->size());
|
|
std::vector<unsigned long>::const_iterator pi = indexes->begin();
|
|
unsigned long torder = 0;
|
|
for (Expression_list::const_iterator pe = vals->begin();
|
|
pe != vals->end();
|
|
++pe, ++pi, ++torder)
|
|
v.push_back(IVT_triple(*pi, torder, *pe));
|
|
|
|
std::sort(v.begin(), v.end());
|
|
|
|
delete indexes;
|
|
delete vals;
|
|
|
|
indexes = new std::vector<unsigned long>();
|
|
indexes->reserve(v.size());
|
|
vals = new Expression_list();
|
|
vals->reserve(v.size());
|
|
traverse_order = new std::vector<unsigned long>();
|
|
traverse_order->reserve(v.size());
|
|
|
|
for (V::const_iterator p = v.begin(); p != v.end(); ++p)
|
|
{
|
|
indexes->push_back(p->index);
|
|
vals->push_back(p->expr);
|
|
traverse_order->push_back(p->traversal_order);
|
|
}
|
|
}
|
|
|
|
Expression* ret = this->make_array(type, indexes, vals);
|
|
Array_construction_expression* ace = ret->array_literal();
|
|
if (ace != NULL && traverse_order != NULL)
|
|
ace->set_traverse_order(traverse_order);
|
|
return ret;
|
|
}
|
|
|
|
// Actually build the array composite literal. This handles
|
|
// [...]{...}.
|
|
|
|
Expression*
|
|
Composite_literal_expression::make_array(
|
|
Type* type,
|
|
const std::vector<unsigned long>* indexes,
|
|
Expression_list* vals)
|
|
{
|
|
Location location = this->location();
|
|
Array_type* at = type->array_type();
|
|
|
|
if (at->length() != NULL && at->length()->is_nil_expression())
|
|
{
|
|
size_t size;
|
|
if (vals == NULL)
|
|
size = 0;
|
|
else if (indexes != NULL)
|
|
size = indexes->back() + 1;
|
|
else
|
|
{
|
|
size = vals->size();
|
|
Integer_type* it = Type::lookup_integer_type("int")->integer_type();
|
|
if (sizeof(size) <= static_cast<size_t>(it->bits() * 8)
|
|
&& size >> (it->bits() - 1) != 0)
|
|
{
|
|
go_error_at(location, "too many elements in composite literal");
|
|
return Expression::make_error(location);
|
|
}
|
|
}
|
|
|
|
Expression* elen = Expression::make_integer_ul(size, NULL, location);
|
|
at = Type::make_array_type(at->element_type(), elen);
|
|
type = at;
|
|
}
|
|
else if (at->length() != NULL
|
|
&& !at->length()->is_error_expression()
|
|
&& this->vals_ != NULL)
|
|
{
|
|
Numeric_constant nc;
|
|
unsigned long val;
|
|
if (at->length()->numeric_constant_value(&nc)
|
|
&& nc.to_unsigned_long(&val) == Numeric_constant::NC_UL_VALID)
|
|
{
|
|
if (indexes == NULL)
|
|
{
|
|
if (this->vals_->size() > val)
|
|
{
|
|
go_error_at(location,
|
|
"too many elements in composite literal");
|
|
return Expression::make_error(location);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
unsigned long max = indexes->back();
|
|
if (max >= val)
|
|
{
|
|
go_error_at(location,
|
|
("some element keys in composite literal "
|
|
"are out of range"));
|
|
return Expression::make_error(location);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (at->length() != NULL)
|
|
return new Fixed_array_construction_expression(type, indexes, vals,
|
|
location);
|
|
else
|
|
return new Slice_construction_expression(type, indexes, vals, location);
|
|
}
|
|
|
|
// Lower a map composite literal.
|
|
|
|
Expression*
|
|
Composite_literal_expression::lower_map(Gogo* gogo, Named_object* function,
|
|
Statement_inserter* inserter,
|
|
Type* type)
|
|
{
|
|
Location location = this->location();
|
|
if (this->vals_ != NULL)
|
|
{
|
|
if (!this->has_keys_)
|
|
{
|
|
go_error_at(location, "map composite literal must have keys");
|
|
return Expression::make_error(location);
|
|
}
|
|
|
|
for (Expression_list::iterator p = this->vals_->begin();
|
|
p != this->vals_->end();
|
|
p += 2)
|
|
{
|
|
if (*p == NULL)
|
|
{
|
|
++p;
|
|
go_error_at((*p)->location(),
|
|
("map composite literal must "
|
|
"have keys for every value"));
|
|
return Expression::make_error(location);
|
|
}
|
|
// Make sure we have lowered the key; it may not have been
|
|
// lowered in order to handle keys for struct composite
|
|
// literals. Lower it now to get the right error message.
|
|
if ((*p)->unknown_expression() != NULL)
|
|
{
|
|
(*p)->unknown_expression()->clear_is_composite_literal_key();
|
|
gogo->lower_expression(function, inserter, &*p);
|
|
go_assert((*p)->is_error_expression());
|
|
return Expression::make_error(location);
|
|
}
|
|
}
|
|
}
|
|
|
|
return new Map_construction_expression(type, this->vals_, location);
|
|
}
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Composite_literal_expression::do_copy()
|
|
{
|
|
Composite_literal_expression* ret =
|
|
new Composite_literal_expression(this->type_->copy_expressions(),
|
|
this->depth_, this->has_keys_,
|
|
(this->vals_ == NULL
|
|
? NULL
|
|
: this->vals_->copy()),
|
|
this->all_are_names_,
|
|
this->location());
|
|
ret->key_path_ = this->key_path_;
|
|
return ret;
|
|
}
|
|
|
|
// Dump ast representation for a composite literal expression.
|
|
|
|
void
|
|
Composite_literal_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "composite(";
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << ", {";
|
|
ast_dump_context->dump_expression_list(this->vals_, this->has_keys_);
|
|
ast_dump_context->ostream() << "})";
|
|
}
|
|
|
|
// Make a composite literal expression.
|
|
|
|
Expression*
|
|
Expression::make_composite_literal(Type* type, int depth, bool has_keys,
|
|
Expression_list* vals, bool all_are_names,
|
|
Location location)
|
|
{
|
|
return new Composite_literal_expression(type, depth, has_keys, vals,
|
|
all_are_names, location);
|
|
}
|
|
|
|
// Return whether this expression is a composite literal.
|
|
|
|
bool
|
|
Expression::is_composite_literal() const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case EXPRESSION_COMPOSITE_LITERAL:
|
|
case EXPRESSION_STRUCT_CONSTRUCTION:
|
|
case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
|
|
case EXPRESSION_SLICE_CONSTRUCTION:
|
|
case EXPRESSION_MAP_CONSTRUCTION:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return whether this expression is a composite literal which is not
|
|
// constant.
|
|
|
|
bool
|
|
Expression::is_nonconstant_composite_literal() const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case EXPRESSION_STRUCT_CONSTRUCTION:
|
|
{
|
|
const Struct_construction_expression *psce =
|
|
static_cast<const Struct_construction_expression*>(this);
|
|
return !psce->is_constant_struct();
|
|
}
|
|
case EXPRESSION_FIXED_ARRAY_CONSTRUCTION:
|
|
{
|
|
const Fixed_array_construction_expression *pace =
|
|
static_cast<const Fixed_array_construction_expression*>(this);
|
|
return !pace->is_constant_array();
|
|
}
|
|
case EXPRESSION_SLICE_CONSTRUCTION:
|
|
{
|
|
const Slice_construction_expression *pace =
|
|
static_cast<const Slice_construction_expression*>(this);
|
|
return !pace->is_constant_array();
|
|
}
|
|
case EXPRESSION_MAP_CONSTRUCTION:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return true if this is a variable or temporary_variable.
|
|
|
|
bool
|
|
Expression::is_variable() const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case EXPRESSION_VAR_REFERENCE:
|
|
case EXPRESSION_TEMPORARY_REFERENCE:
|
|
case EXPRESSION_SET_AND_USE_TEMPORARY:
|
|
case EXPRESSION_ENCLOSED_VAR_REFERENCE:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Return true if this is a reference to a local variable.
|
|
|
|
bool
|
|
Expression::is_local_variable() const
|
|
{
|
|
const Var_expression* ve = this->var_expression();
|
|
if (ve == NULL)
|
|
return false;
|
|
const Named_object* no = ve->named_object();
|
|
return (no->is_result_variable()
|
|
|| (no->is_variable() && !no->var_value()->is_global()));
|
|
}
|
|
|
|
// Class Type_guard_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Type_guard_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT
|
|
|| Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
Expression*
|
|
Type_guard_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
if (this->expr_->is_error_expression()
|
|
|| this->expr_->type()->is_error_type())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
if (!this->expr_->is_variable())
|
|
{
|
|
Temporary_statement* temp = Statement::make_temporary(NULL, this->expr_,
|
|
this->location());
|
|
inserter->insert(temp);
|
|
this->expr_ =
|
|
Expression::make_temporary_reference(temp, this->location());
|
|
}
|
|
return this;
|
|
}
|
|
|
|
// Check types of a type guard expression. The expression must have
|
|
// an interface type, but the actual type conversion is checked at run
|
|
// time.
|
|
|
|
void
|
|
Type_guard_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* expr_type = this->expr_->type();
|
|
if (expr_type->interface_type() == NULL)
|
|
{
|
|
if (!expr_type->is_error() && !this->type_->is_error())
|
|
this->report_error(_("type assertion only valid for interface types"));
|
|
this->set_is_error();
|
|
}
|
|
else if (this->type_->interface_type() == NULL)
|
|
{
|
|
std::string reason;
|
|
if (!expr_type->interface_type()->implements_interface(this->type_,
|
|
&reason))
|
|
{
|
|
if (!this->type_->is_error())
|
|
{
|
|
if (reason.empty())
|
|
this->report_error(_("impossible type assertion: "
|
|
"type does not implement interface"));
|
|
else
|
|
go_error_at(this->location(),
|
|
("impossible type assertion: "
|
|
"type does not implement interface (%s)"),
|
|
reason.c_str());
|
|
}
|
|
this->set_is_error();
|
|
}
|
|
}
|
|
}
|
|
|
|
// Copy.
|
|
|
|
Expression*
|
|
Type_guard_expression::do_copy()
|
|
{
|
|
return new Type_guard_expression(this->expr_->copy(),
|
|
this->type_->copy_expressions(),
|
|
this->location());
|
|
}
|
|
|
|
// Return the backend representation for a type guard expression.
|
|
|
|
Bexpression*
|
|
Type_guard_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Expression* conversion;
|
|
if (this->type_->interface_type() != NULL)
|
|
conversion =
|
|
Expression::convert_interface_to_interface(this->type_, this->expr_,
|
|
true, this->location());
|
|
else
|
|
conversion =
|
|
Expression::convert_for_assignment(context->gogo(), this->type_,
|
|
this->expr_, this->location());
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Btype* bt = this->type_->get_backend(gogo);
|
|
Bexpression* bexpr = conversion->get_backend(context);
|
|
return gogo->backend()->convert_expression(bt, bexpr, this->location());
|
|
}
|
|
|
|
// Dump ast representation for a type guard expression.
|
|
|
|
void
|
|
Type_guard_expression::do_dump_expression(Ast_dump_context* ast_dump_context)
|
|
const
|
|
{
|
|
this->expr_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ".";
|
|
ast_dump_context->dump_type(this->type_);
|
|
}
|
|
|
|
// Make a type guard expression.
|
|
|
|
Expression*
|
|
Expression::make_type_guard(Expression* expr, Type* type,
|
|
Location location)
|
|
{
|
|
return new Type_guard_expression(expr, type, location);
|
|
}
|
|
|
|
// Class Heap_expression.
|
|
|
|
// Return the type of the expression stored on the heap.
|
|
|
|
Type*
|
|
Heap_expression::do_type()
|
|
{ return Type::make_pointer_type(this->expr_->type()); }
|
|
|
|
// Return the backend representation for allocating an expression on the heap.
|
|
|
|
Bexpression*
|
|
Heap_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Type* etype = this->expr_->type();
|
|
if (this->expr_->is_error_expression() || etype->is_error())
|
|
return context->backend()->error_expression();
|
|
|
|
Location loc = this->location();
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = this->type()->get_backend(gogo);
|
|
|
|
Expression* alloc = Expression::make_allocation(etype, loc);
|
|
if (this->allocate_on_stack_)
|
|
alloc->allocation_expression()->set_allocate_on_stack();
|
|
Bexpression* space = alloc->get_backend(context);
|
|
|
|
Bstatement* decl;
|
|
Named_object* fn = context->function();
|
|
go_assert(fn != NULL);
|
|
Bfunction* fndecl = fn->func_value()->get_or_make_decl(gogo, fn);
|
|
Bvariable* space_temp =
|
|
gogo->backend()->temporary_variable(fndecl, context->bblock(), btype,
|
|
space, true, loc, &decl);
|
|
Btype* expr_btype = etype->get_backend(gogo);
|
|
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
|
|
// If this assignment needs a write barrier, call typedmemmove. We
|
|
// don't do this in the write barrier pass because in some cases
|
|
// backend conversion can introduce new Heap_expression values.
|
|
Bstatement* assn;
|
|
if (!etype->has_pointer() || this->allocate_on_stack_)
|
|
{
|
|
space = gogo->backend()->var_expression(space_temp, loc);
|
|
Bexpression* ref =
|
|
gogo->backend()->indirect_expression(expr_btype, space, true, loc);
|
|
assn = gogo->backend()->assignment_statement(fndecl, ref, bexpr, loc);
|
|
}
|
|
else
|
|
{
|
|
Bstatement* edecl;
|
|
Bvariable* btemp =
|
|
gogo->backend()->temporary_variable(fndecl, context->bblock(),
|
|
expr_btype, bexpr, true, loc,
|
|
&edecl);
|
|
Bexpression* btempref = gogo->backend()->var_expression(btemp,
|
|
loc);
|
|
Bexpression* addr = gogo->backend()->address_expression(btempref, loc);
|
|
|
|
Expression* td = Expression::make_type_descriptor(etype, loc);
|
|
Type* etype_ptr = Type::make_pointer_type(etype);
|
|
space = gogo->backend()->var_expression(space_temp, loc);
|
|
Expression* elhs = Expression::make_backend(space, etype_ptr, loc);
|
|
Expression* erhs = Expression::make_backend(addr, etype_ptr, loc);
|
|
Expression* call = Runtime::make_call(Runtime::TYPEDMEMMOVE, loc, 3,
|
|
td, elhs, erhs);
|
|
Bexpression* bcall = call->get_backend(context);
|
|
Bstatement* s = gogo->backend()->expression_statement(fndecl, bcall);
|
|
assn = gogo->backend()->compound_statement(edecl, s);
|
|
}
|
|
decl = gogo->backend()->compound_statement(decl, assn);
|
|
space = gogo->backend()->var_expression(space_temp, loc);
|
|
return gogo->backend()->compound_expression(decl, space, loc);
|
|
}
|
|
|
|
// Dump ast representation for a heap expression.
|
|
|
|
void
|
|
Heap_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "&(";
|
|
ast_dump_context->dump_expression(this->expr_);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Allocate an expression on the heap.
|
|
|
|
Expression*
|
|
Expression::make_heap_expression(Expression* expr, Location location)
|
|
{
|
|
return new Heap_expression(expr, location);
|
|
}
|
|
|
|
// Class Receive_expression.
|
|
|
|
// Return the type of a receive expression.
|
|
|
|
Type*
|
|
Receive_expression::do_type()
|
|
{
|
|
if (this->is_error_expression())
|
|
return Type::make_error_type();
|
|
Channel_type* channel_type = this->channel_->type()->channel_type();
|
|
if (channel_type == NULL)
|
|
{
|
|
this->report_error(_("expected channel"));
|
|
return Type::make_error_type();
|
|
}
|
|
return channel_type->element_type();
|
|
}
|
|
|
|
// Check types for a receive expression.
|
|
|
|
void
|
|
Receive_expression::do_check_types(Gogo*)
|
|
{
|
|
Type* type = this->channel_->type();
|
|
if (type->is_error())
|
|
{
|
|
go_assert(saw_errors());
|
|
this->set_is_error();
|
|
return;
|
|
}
|
|
if (type->channel_type() == NULL)
|
|
{
|
|
this->report_error(_("expected channel"));
|
|
return;
|
|
}
|
|
if (!type->channel_type()->may_receive())
|
|
{
|
|
this->report_error(_("invalid receive on send-only channel"));
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Flattening for receive expressions creates a temporary variable to store
|
|
// received data in for receives.
|
|
|
|
Expression*
|
|
Receive_expression::do_flatten(Gogo*, Named_object*,
|
|
Statement_inserter* inserter)
|
|
{
|
|
Channel_type* channel_type = this->channel_->type()->channel_type();
|
|
if (channel_type == NULL)
|
|
{
|
|
go_assert(saw_errors());
|
|
return this;
|
|
}
|
|
else if (this->channel_->is_error_expression())
|
|
{
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(this->location());
|
|
}
|
|
|
|
Type* element_type = channel_type->element_type();
|
|
if (this->temp_receiver_ == NULL)
|
|
{
|
|
this->temp_receiver_ = Statement::make_temporary(element_type, NULL,
|
|
this->location());
|
|
this->temp_receiver_->set_is_address_taken();
|
|
inserter->insert(this->temp_receiver_);
|
|
}
|
|
|
|
return this;
|
|
}
|
|
|
|
// Get the backend representation for a receive expression.
|
|
|
|
Bexpression*
|
|
Receive_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Location loc = this->location();
|
|
|
|
Channel_type* channel_type = this->channel_->type()->channel_type();
|
|
if (channel_type == NULL)
|
|
{
|
|
go_assert(this->channel_->type()->is_error());
|
|
return context->backend()->error_expression();
|
|
}
|
|
|
|
Expression* recv_ref =
|
|
Expression::make_temporary_reference(this->temp_receiver_, loc);
|
|
Expression* recv_addr =
|
|
Expression::make_temporary_reference(this->temp_receiver_, loc);
|
|
recv_addr = Expression::make_unary(OPERATOR_AND, recv_addr, loc);
|
|
Expression* recv = Runtime::make_call(Runtime::CHANRECV1, loc, 2,
|
|
this->channel_, recv_addr);
|
|
return Expression::make_compound(recv, recv_ref, loc)->get_backend(context);
|
|
}
|
|
|
|
// Dump ast representation for a receive expression.
|
|
|
|
void
|
|
Receive_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << " <- " ;
|
|
ast_dump_context->dump_expression(channel_);
|
|
}
|
|
|
|
// Make a receive expression.
|
|
|
|
Receive_expression*
|
|
Expression::make_receive(Expression* channel, Location location)
|
|
{
|
|
return new Receive_expression(channel, location);
|
|
}
|
|
|
|
// An expression which evaluates to a pointer to the type descriptor
|
|
// of a type.
|
|
|
|
class Type_descriptor_expression : public Expression
|
|
{
|
|
public:
|
|
Type_descriptor_expression(Type* type, Location location)
|
|
: Expression(EXPRESSION_TYPE_DESCRIPTOR, location),
|
|
type_(type)
|
|
{ }
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse*);
|
|
|
|
Type*
|
|
do_type()
|
|
{ return Type::make_type_descriptor_ptr_type(); }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context)
|
|
{
|
|
return this->type_->type_descriptor_pointer(context->gogo(),
|
|
this->location());
|
|
}
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type for which this is the descriptor.
|
|
Type* type_;
|
|
};
|
|
|
|
int
|
|
Type_descriptor_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Dump ast representation for a type descriptor expression.
|
|
|
|
void
|
|
Type_descriptor_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->dump_type(this->type_);
|
|
}
|
|
|
|
// Make a type descriptor expression.
|
|
|
|
Expression*
|
|
Expression::make_type_descriptor(Type* type, Location location)
|
|
{
|
|
return new Type_descriptor_expression(type, location);
|
|
}
|
|
|
|
// An expression which evaluates to a pointer to the Garbage Collection symbol
|
|
// of a type.
|
|
|
|
class GC_symbol_expression : public Expression
|
|
{
|
|
public:
|
|
GC_symbol_expression(Type* type)
|
|
: Expression(EXPRESSION_GC_SYMBOL, Linemap::predeclared_location()),
|
|
type_(type)
|
|
{}
|
|
|
|
protected:
|
|
Type*
|
|
do_type()
|
|
{ return Type::make_pointer_type(Type::lookup_integer_type("uint8")); }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context)
|
|
{ return this->type_->gc_symbol_pointer(context->gogo()); }
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type which this gc symbol describes.
|
|
Type* type_;
|
|
};
|
|
|
|
// Dump ast representation for a gc symbol expression.
|
|
|
|
void
|
|
GC_symbol_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "gcdata(";
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make a gc symbol expression.
|
|
|
|
Expression*
|
|
Expression::make_gc_symbol(Type* type)
|
|
{
|
|
return new GC_symbol_expression(type);
|
|
}
|
|
|
|
// An expression that evaluates to a pointer to a symbol holding the
|
|
// ptrmask data of a type.
|
|
|
|
class Ptrmask_symbol_expression : public Expression
|
|
{
|
|
public:
|
|
Ptrmask_symbol_expression(Type* type)
|
|
: Expression(EXPRESSION_PTRMASK_SYMBOL, Linemap::predeclared_location()),
|
|
type_(type)
|
|
{}
|
|
|
|
protected:
|
|
Type*
|
|
do_type()
|
|
{ return Type::make_pointer_type(Type::lookup_integer_type("uint8")); }
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context*);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type that this ptrmask symbol describes.
|
|
Type* type_;
|
|
};
|
|
|
|
// Return the ptrmask variable.
|
|
|
|
Bexpression*
|
|
Ptrmask_symbol_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
|
|
// If this type does not need a gcprog, then we can use the standard
|
|
// GC symbol.
|
|
int64_t ptrsize, ptrdata;
|
|
if (!this->type_->needs_gcprog(gogo, &ptrsize, &ptrdata))
|
|
return this->type_->gc_symbol_pointer(gogo);
|
|
|
|
// Otherwise we have to build a ptrmask variable, and return a
|
|
// pointer to it.
|
|
|
|
Bvariable* bvar = this->type_->gc_ptrmask_var(gogo, ptrsize, ptrdata);
|
|
Location bloc = Linemap::predeclared_location();
|
|
Bexpression* bref = gogo->backend()->var_expression(bvar, bloc);
|
|
Bexpression* baddr = gogo->backend()->address_expression(bref, bloc);
|
|
|
|
Type* uint8_type = Type::lookup_integer_type("uint8");
|
|
Type* pointer_uint8_type = Type::make_pointer_type(uint8_type);
|
|
Btype* ubtype = pointer_uint8_type->get_backend(gogo);
|
|
return gogo->backend()->convert_expression(ubtype, baddr, bloc);
|
|
}
|
|
|
|
// Dump AST for a ptrmask symbol expression.
|
|
|
|
void
|
|
Ptrmask_symbol_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "ptrmask(";
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make a ptrmask symbol expression.
|
|
|
|
Expression*
|
|
Expression::make_ptrmask_symbol(Type* type)
|
|
{
|
|
return new Ptrmask_symbol_expression(type);
|
|
}
|
|
|
|
// An expression which evaluates to some characteristic of a type.
|
|
// This is only used to initialize fields of a type descriptor. Using
|
|
// a new expression class is slightly inefficient but gives us a good
|
|
// separation between the frontend and the middle-end with regard to
|
|
// how types are laid out.
|
|
|
|
class Type_info_expression : public Expression
|
|
{
|
|
public:
|
|
Type_info_expression(Type* type, Type_info type_info)
|
|
: Expression(EXPRESSION_TYPE_INFO, Linemap::predeclared_location()),
|
|
type_(type), type_info_(type_info)
|
|
{ }
|
|
|
|
protected:
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type for which we are getting information.
|
|
Type* type_;
|
|
// What information we want.
|
|
Type_info type_info_;
|
|
};
|
|
|
|
// The type is chosen to match what the type descriptor struct
|
|
// expects.
|
|
|
|
Type*
|
|
Type_info_expression::do_type()
|
|
{
|
|
switch (this->type_info_)
|
|
{
|
|
case TYPE_INFO_SIZE:
|
|
case TYPE_INFO_BACKEND_PTRDATA:
|
|
case TYPE_INFO_DESCRIPTOR_PTRDATA:
|
|
return Type::lookup_integer_type("uintptr");
|
|
case TYPE_INFO_ALIGNMENT:
|
|
case TYPE_INFO_FIELD_ALIGNMENT:
|
|
return Type::lookup_integer_type("uint8");
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Return the backend representation for type information.
|
|
|
|
Bexpression*
|
|
Type_info_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
bool ok = true;
|
|
int64_t val;
|
|
switch (this->type_info_)
|
|
{
|
|
case TYPE_INFO_SIZE:
|
|
ok = this->type_->backend_type_size(gogo, &val);
|
|
break;
|
|
case TYPE_INFO_ALIGNMENT:
|
|
ok = this->type_->backend_type_align(gogo, &val);
|
|
break;
|
|
case TYPE_INFO_FIELD_ALIGNMENT:
|
|
ok = this->type_->backend_type_field_align(gogo, &val);
|
|
break;
|
|
case TYPE_INFO_BACKEND_PTRDATA:
|
|
ok = this->type_->backend_type_ptrdata(gogo, &val);
|
|
break;
|
|
case TYPE_INFO_DESCRIPTOR_PTRDATA:
|
|
ok = this->type_->descriptor_ptrdata(gogo, &val);
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
if (!ok)
|
|
{
|
|
go_assert(saw_errors());
|
|
return gogo->backend()->error_expression();
|
|
}
|
|
Expression* e = Expression::make_integer_int64(val, this->type(),
|
|
this->location());
|
|
return e->get_backend(context);
|
|
}
|
|
|
|
// Dump ast representation for a type info expression.
|
|
|
|
void
|
|
Type_info_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "typeinfo(";
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << ",";
|
|
ast_dump_context->ostream() <<
|
|
(this->type_info_ == TYPE_INFO_ALIGNMENT ? "alignment"
|
|
: this->type_info_ == TYPE_INFO_FIELD_ALIGNMENT ? "field alignment"
|
|
: this->type_info_ == TYPE_INFO_SIZE ? "size"
|
|
: this->type_info_ == TYPE_INFO_BACKEND_PTRDATA ? "backend_ptrdata"
|
|
: this->type_info_ == TYPE_INFO_DESCRIPTOR_PTRDATA ? "descriptor_ptrdata"
|
|
: "unknown");
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make a type info expression.
|
|
|
|
Expression*
|
|
Expression::make_type_info(Type* type, Type_info type_info)
|
|
{
|
|
return new Type_info_expression(type, type_info);
|
|
}
|
|
|
|
// An expression that evaluates to some characteristic of a slice.
|
|
// This is used when indexing, bound-checking, or nil checking a slice.
|
|
|
|
class Slice_info_expression : public Expression
|
|
{
|
|
public:
|
|
Slice_info_expression(Expression* slice, Slice_info slice_info,
|
|
Location location)
|
|
: Expression(EXPRESSION_SLICE_INFO, location),
|
|
slice_(slice), slice_info_(slice_info)
|
|
{ }
|
|
|
|
protected:
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return new Slice_info_expression(this->slice_->copy(), this->slice_info_,
|
|
this->location());
|
|
}
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
void
|
|
do_issue_nil_check()
|
|
{ this->slice_->issue_nil_check(); }
|
|
|
|
private:
|
|
// The slice for which we are getting information.
|
|
Expression* slice_;
|
|
// What information we want.
|
|
Slice_info slice_info_;
|
|
};
|
|
|
|
// Return the type of the slice info.
|
|
|
|
Type*
|
|
Slice_info_expression::do_type()
|
|
{
|
|
switch (this->slice_info_)
|
|
{
|
|
case SLICE_INFO_VALUE_POINTER:
|
|
return Type::make_pointer_type(
|
|
this->slice_->type()->array_type()->element_type());
|
|
case SLICE_INFO_LENGTH:
|
|
case SLICE_INFO_CAPACITY:
|
|
return Type::lookup_integer_type("int");
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Return the backend information for slice information.
|
|
|
|
Bexpression*
|
|
Slice_info_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Bexpression* bslice = this->slice_->get_backend(context);
|
|
switch (this->slice_info_)
|
|
{
|
|
case SLICE_INFO_VALUE_POINTER:
|
|
case SLICE_INFO_LENGTH:
|
|
case SLICE_INFO_CAPACITY:
|
|
return gogo->backend()->struct_field_expression(bslice, this->slice_info_,
|
|
this->location());
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Dump ast representation for a type info expression.
|
|
|
|
void
|
|
Slice_info_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "sliceinfo(";
|
|
this->slice_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ",";
|
|
ast_dump_context->ostream() <<
|
|
(this->slice_info_ == SLICE_INFO_VALUE_POINTER ? "values"
|
|
: this->slice_info_ == SLICE_INFO_LENGTH ? "length"
|
|
: this->slice_info_ == SLICE_INFO_CAPACITY ? "capacity "
|
|
: "unknown");
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make a slice info expression.
|
|
|
|
Expression*
|
|
Expression::make_slice_info(Expression* slice, Slice_info slice_info,
|
|
Location location)
|
|
{
|
|
return new Slice_info_expression(slice, slice_info, location);
|
|
}
|
|
|
|
// An expression that represents a slice value: a struct with value pointer,
|
|
// length, and capacity fields.
|
|
|
|
class Slice_value_expression : public Expression
|
|
{
|
|
public:
|
|
Slice_value_expression(Type* type, Expression* valptr, Expression* len,
|
|
Expression* cap, Location location)
|
|
: Expression(EXPRESSION_SLICE_VALUE, location),
|
|
type_(type), valptr_(valptr), len_(len), cap_(cap)
|
|
{ }
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse*);
|
|
|
|
Type*
|
|
do_type()
|
|
{ return this->type_; }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ go_unreachable(); }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return new Slice_value_expression(this->type_->copy_expressions(),
|
|
this->valptr_->copy(),
|
|
this->len_->copy(), this->cap_->copy(),
|
|
this->location());
|
|
}
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type of the slice value.
|
|
Type* type_;
|
|
// The pointer to the values in the slice.
|
|
Expression* valptr_;
|
|
// The length of the slice.
|
|
Expression* len_;
|
|
// The capacity of the slice.
|
|
Expression* cap_;
|
|
};
|
|
|
|
int
|
|
Slice_value_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Type::traverse(this->type_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->valptr_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->len_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->cap_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
Bexpression*
|
|
Slice_value_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
std::vector<Bexpression*> vals(3);
|
|
vals[0] = this->valptr_->get_backend(context);
|
|
vals[1] = this->len_->get_backend(context);
|
|
vals[2] = this->cap_->get_backend(context);
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = this->type_->get_backend(gogo);
|
|
return gogo->backend()->constructor_expression(btype, vals, this->location());
|
|
}
|
|
|
|
void
|
|
Slice_value_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "slicevalue(";
|
|
ast_dump_context->ostream() << "values: ";
|
|
this->valptr_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ", length: ";
|
|
this->len_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ", capacity: ";
|
|
this->cap_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_slice_value(Type* at, Expression* valptr, Expression* len,
|
|
Expression* cap, Location location)
|
|
{
|
|
go_assert(at->is_slice_type());
|
|
return new Slice_value_expression(at, valptr, len, cap, location);
|
|
}
|
|
|
|
// An expression that evaluates to some characteristic of a non-empty interface.
|
|
// This is used to access the method table or underlying object of an interface.
|
|
|
|
class Interface_info_expression : public Expression
|
|
{
|
|
public:
|
|
Interface_info_expression(Expression* iface, Interface_info iface_info,
|
|
Location location)
|
|
: Expression(EXPRESSION_INTERFACE_INFO, location),
|
|
iface_(iface), iface_info_(iface_info)
|
|
{ }
|
|
|
|
protected:
|
|
Type*
|
|
do_type();
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return new Interface_info_expression(this->iface_->copy(),
|
|
this->iface_info_, this->location());
|
|
}
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
void
|
|
do_issue_nil_check()
|
|
{ this->iface_->issue_nil_check(); }
|
|
|
|
private:
|
|
// The interface for which we are getting information.
|
|
Expression* iface_;
|
|
// What information we want.
|
|
Interface_info iface_info_;
|
|
};
|
|
|
|
// Return the type of the interface info.
|
|
|
|
Type*
|
|
Interface_info_expression::do_type()
|
|
{
|
|
switch (this->iface_info_)
|
|
{
|
|
case INTERFACE_INFO_METHODS:
|
|
{
|
|
typedef Unordered_map(Interface_type*, Type*) Hashtable;
|
|
static Hashtable result_types;
|
|
|
|
Interface_type* itype = this->iface_->type()->interface_type();
|
|
|
|
Hashtable::const_iterator p = result_types.find(itype);
|
|
if (p != result_types.end())
|
|
return p->second;
|
|
|
|
Type* pdt = Type::make_type_descriptor_ptr_type();
|
|
if (itype->is_empty())
|
|
{
|
|
result_types[itype] = pdt;
|
|
return pdt;
|
|
}
|
|
|
|
Location loc = this->location();
|
|
Struct_field_list* sfl = new Struct_field_list();
|
|
sfl->push_back(
|
|
Struct_field(Typed_identifier("__type_descriptor", pdt, loc)));
|
|
|
|
for (Typed_identifier_list::const_iterator p = itype->methods()->begin();
|
|
p != itype->methods()->end();
|
|
++p)
|
|
{
|
|
Function_type* ft = p->type()->function_type();
|
|
go_assert(ft->receiver() == NULL);
|
|
|
|
const Typed_identifier_list* params = ft->parameters();
|
|
Typed_identifier_list* mparams = new Typed_identifier_list();
|
|
if (params != NULL)
|
|
mparams->reserve(params->size() + 1);
|
|
Type* vt = Type::make_pointer_type(Type::make_void_type());
|
|
mparams->push_back(Typed_identifier("", vt, ft->location()));
|
|
if (params != NULL)
|
|
{
|
|
for (Typed_identifier_list::const_iterator pp = params->begin();
|
|
pp != params->end();
|
|
++pp)
|
|
mparams->push_back(*pp);
|
|
}
|
|
|
|
Typed_identifier_list* mresults = (ft->results() == NULL
|
|
? NULL
|
|
: ft->results()->copy());
|
|
Backend_function_type* mft =
|
|
Type::make_backend_function_type(NULL, mparams, mresults,
|
|
ft->location());
|
|
|
|
std::string fname = Gogo::unpack_hidden_name(p->name());
|
|
sfl->push_back(Struct_field(Typed_identifier(fname, mft, loc)));
|
|
}
|
|
|
|
Struct_type* st = Type::make_struct_type(sfl, loc);
|
|
st->set_is_struct_incomparable();
|
|
Pointer_type *pt = Type::make_pointer_type(st);
|
|
result_types[itype] = pt;
|
|
return pt;
|
|
}
|
|
case INTERFACE_INFO_OBJECT:
|
|
return Type::make_pointer_type(Type::make_void_type());
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Return the backend representation for interface information.
|
|
|
|
Bexpression*
|
|
Interface_info_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Bexpression* biface = this->iface_->get_backend(context);
|
|
switch (this->iface_info_)
|
|
{
|
|
case INTERFACE_INFO_METHODS:
|
|
case INTERFACE_INFO_OBJECT:
|
|
return gogo->backend()->struct_field_expression(biface, this->iface_info_,
|
|
this->location());
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Dump ast representation for an interface info expression.
|
|
|
|
void
|
|
Interface_info_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
bool is_empty = this->iface_->type()->interface_type()->is_empty();
|
|
ast_dump_context->ostream() << "interfaceinfo(";
|
|
this->iface_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ",";
|
|
ast_dump_context->ostream() <<
|
|
(this->iface_info_ == INTERFACE_INFO_METHODS && !is_empty ? "methods"
|
|
: this->iface_info_ == INTERFACE_INFO_TYPE_DESCRIPTOR ? "type_descriptor"
|
|
: this->iface_info_ == INTERFACE_INFO_OBJECT ? "object"
|
|
: "unknown");
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make an interface info expression.
|
|
|
|
Expression*
|
|
Expression::make_interface_info(Expression* iface, Interface_info iface_info,
|
|
Location location)
|
|
{
|
|
return new Interface_info_expression(iface, iface_info, location);
|
|
}
|
|
|
|
// An expression that represents an interface value. The first field is either
|
|
// a type descriptor for an empty interface or a pointer to the interface method
|
|
// table for a non-empty interface. The second field is always the object.
|
|
|
|
class Interface_value_expression : public Expression
|
|
{
|
|
public:
|
|
Interface_value_expression(Type* type, Expression* first_field,
|
|
Expression* obj, Location location)
|
|
: Expression(EXPRESSION_INTERFACE_VALUE, location),
|
|
type_(type), first_field_(first_field), obj_(obj)
|
|
{ }
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse*);
|
|
|
|
Type*
|
|
do_type()
|
|
{ return this->type_; }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ go_unreachable(); }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
return new Interface_value_expression(this->type_->copy_expressions(),
|
|
this->first_field_->copy(),
|
|
this->obj_->copy(), this->location());
|
|
}
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type of the interface value.
|
|
Type* type_;
|
|
// The first field of the interface (either a type descriptor or a pointer
|
|
// to the method table.
|
|
Expression* first_field_;
|
|
// The underlying object of the interface.
|
|
Expression* obj_;
|
|
};
|
|
|
|
int
|
|
Interface_value_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->first_field_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->obj_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
Bexpression*
|
|
Interface_value_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
std::vector<Bexpression*> vals(2);
|
|
vals[0] = this->first_field_->get_backend(context);
|
|
vals[1] = this->obj_->get_backend(context);
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = this->type_->get_backend(gogo);
|
|
return gogo->backend()->constructor_expression(btype, vals, this->location());
|
|
}
|
|
|
|
void
|
|
Interface_value_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "interfacevalue(";
|
|
ast_dump_context->ostream() <<
|
|
(this->type_->interface_type()->is_empty()
|
|
? "type_descriptor: "
|
|
: "methods: ");
|
|
this->first_field_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ", object: ";
|
|
this->obj_->dump_expression(ast_dump_context);
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_interface_value(Type* type, Expression* first_value,
|
|
Expression* object, Location location)
|
|
{
|
|
return new Interface_value_expression(type, first_value, object, location);
|
|
}
|
|
|
|
// An interface method table for a pair of types: an interface type and a type
|
|
// that implements that interface.
|
|
|
|
class Interface_mtable_expression : public Expression
|
|
{
|
|
public:
|
|
Interface_mtable_expression(Interface_type* itype, Type* type,
|
|
bool is_pointer, Location location)
|
|
: Expression(EXPRESSION_INTERFACE_MTABLE, location),
|
|
itype_(itype), type_(type), is_pointer_(is_pointer),
|
|
method_table_type_(NULL), bvar_(NULL)
|
|
{ }
|
|
|
|
protected:
|
|
int
|
|
do_traverse(Traverse*);
|
|
|
|
Type*
|
|
do_type();
|
|
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ go_unreachable(); }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{
|
|
Interface_type* itype = this->itype_->copy_expressions()->interface_type();
|
|
return new Interface_mtable_expression(itype,
|
|
this->type_->copy_expressions(),
|
|
this->is_pointer_, this->location());
|
|
}
|
|
|
|
bool
|
|
do_is_addressable() const
|
|
{ return true; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The interface type for which the methods are defined.
|
|
Interface_type* itype_;
|
|
// The type to construct the interface method table for.
|
|
Type* type_;
|
|
// Whether this table contains the method set for the receiver type or the
|
|
// pointer receiver type.
|
|
bool is_pointer_;
|
|
// The type of the method table.
|
|
Type* method_table_type_;
|
|
// The backend variable that refers to the interface method table.
|
|
Bvariable* bvar_;
|
|
};
|
|
|
|
int
|
|
Interface_mtable_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Type::traverse(this->itype_, traverse) == TRAVERSE_EXIT
|
|
|| Type::traverse(this->type_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
Type*
|
|
Interface_mtable_expression::do_type()
|
|
{
|
|
if (this->method_table_type_ != NULL)
|
|
return this->method_table_type_;
|
|
|
|
const Typed_identifier_list* interface_methods = this->itype_->methods();
|
|
go_assert(!interface_methods->empty());
|
|
|
|
Struct_field_list* sfl = new Struct_field_list;
|
|
Typed_identifier tid("__type_descriptor", Type::make_type_descriptor_ptr_type(),
|
|
this->location());
|
|
sfl->push_back(Struct_field(tid));
|
|
Type* unsafe_ptr_type = Type::make_pointer_type(Type::make_void_type());
|
|
for (Typed_identifier_list::const_iterator p = interface_methods->begin();
|
|
p != interface_methods->end();
|
|
++p)
|
|
{
|
|
// We want C function pointers here, not func descriptors; model
|
|
// using void* pointers.
|
|
Typed_identifier method(p->name(), unsafe_ptr_type, p->location());
|
|
sfl->push_back(Struct_field(method));
|
|
}
|
|
Struct_type* st = Type::make_struct_type(sfl, this->location());
|
|
st->set_is_struct_incomparable();
|
|
this->method_table_type_ = st;
|
|
return this->method_table_type_;
|
|
}
|
|
|
|
Bexpression*
|
|
Interface_mtable_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Location loc = Linemap::predeclared_location();
|
|
if (this->bvar_ != NULL)
|
|
return gogo->backend()->var_expression(this->bvar_, this->location());
|
|
|
|
const Typed_identifier_list* interface_methods = this->itype_->methods();
|
|
go_assert(!interface_methods->empty());
|
|
|
|
std::string mangled_name =
|
|
gogo->interface_method_table_name(this->itype_, this->type_,
|
|
this->is_pointer_);
|
|
|
|
// Set is_public if we are converting a named type to an interface
|
|
// type that is defined in the same package as the named type, and
|
|
// the interface has hidden methods. In that case the interface
|
|
// method table will be defined by the package that defines the
|
|
// types.
|
|
bool is_public = false;
|
|
if (this->type_->named_type() != NULL
|
|
&& (this->type_->named_type()->named_object()->package()
|
|
== this->itype_->package()))
|
|
{
|
|
for (Typed_identifier_list::const_iterator p = interface_methods->begin();
|
|
p != interface_methods->end();
|
|
++p)
|
|
{
|
|
if (Gogo::is_hidden_name(p->name()))
|
|
{
|
|
is_public = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (is_public
|
|
&& this->type_->named_type()->named_object()->package() != NULL)
|
|
{
|
|
// The interface conversion table is defined elsewhere.
|
|
Btype* btype = this->type()->get_backend(gogo);
|
|
std::string asm_name(go_selectively_encode_id(mangled_name));
|
|
this->bvar_ =
|
|
gogo->backend()->immutable_struct_reference(mangled_name, asm_name,
|
|
btype, loc);
|
|
return gogo->backend()->var_expression(this->bvar_, this->location());
|
|
}
|
|
|
|
// The first element is the type descriptor.
|
|
Type* td_type;
|
|
if (!this->is_pointer_)
|
|
td_type = this->type_;
|
|
else
|
|
td_type = Type::make_pointer_type(this->type_);
|
|
|
|
std::vector<Backend::Btyped_identifier> bstructfields;
|
|
|
|
// Build an interface method table for a type: a type descriptor followed by a
|
|
// list of function pointers, one for each interface method. This is used for
|
|
// interfaces.
|
|
Expression_list* svals = new Expression_list();
|
|
Expression* tdescriptor = Expression::make_type_descriptor(td_type, loc);
|
|
svals->push_back(tdescriptor);
|
|
|
|
Btype* tdesc_btype = tdescriptor->type()->get_backend(gogo);
|
|
Backend::Btyped_identifier btd("_type", tdesc_btype, loc);
|
|
bstructfields.push_back(btd);
|
|
|
|
Named_type* nt = this->type_->named_type();
|
|
Struct_type* st = this->type_->struct_type();
|
|
go_assert(nt != NULL || st != NULL);
|
|
|
|
for (Typed_identifier_list::const_iterator p = interface_methods->begin();
|
|
p != interface_methods->end();
|
|
++p)
|
|
{
|
|
bool is_ambiguous;
|
|
Method* m;
|
|
if (nt != NULL)
|
|
m = nt->method_function(p->name(), &is_ambiguous);
|
|
else
|
|
m = st->method_function(p->name(), &is_ambiguous);
|
|
go_assert(m != NULL);
|
|
Named_object* no = m->named_object();
|
|
|
|
go_assert(no->is_function() || no->is_function_declaration());
|
|
|
|
Btype* fcn_btype = m->type()->get_backend_fntype(gogo);
|
|
Backend::Btyped_identifier bmtype(p->name(), fcn_btype, loc);
|
|
bstructfields.push_back(bmtype);
|
|
|
|
svals->push_back(Expression::make_func_code_reference(no, loc));
|
|
}
|
|
|
|
Btype *btype = gogo->backend()->struct_type(bstructfields);
|
|
std::vector<Bexpression*> ctor_bexprs;
|
|
for (Expression_list::const_iterator pe = svals->begin();
|
|
pe != svals->end();
|
|
++pe)
|
|
{
|
|
ctor_bexprs.push_back((*pe)->get_backend(context));
|
|
}
|
|
Bexpression* ctor =
|
|
gogo->backend()->constructor_expression(btype, ctor_bexprs, loc);
|
|
|
|
std::string asm_name(go_selectively_encode_id(mangled_name));
|
|
this->bvar_ = gogo->backend()->immutable_struct(mangled_name, asm_name, false,
|
|
!is_public, btype, loc);
|
|
gogo->backend()->immutable_struct_set_init(this->bvar_, mangled_name, false,
|
|
!is_public, btype, loc, ctor);
|
|
return gogo->backend()->var_expression(this->bvar_, loc);
|
|
}
|
|
|
|
void
|
|
Interface_mtable_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "__go_"
|
|
<< (this->is_pointer_ ? "pimt__" : "imt_");
|
|
ast_dump_context->dump_type(this->itype_);
|
|
ast_dump_context->ostream() << "__";
|
|
ast_dump_context->dump_type(this->type_);
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_interface_mtable_ref(Interface_type* itype, Type* type,
|
|
bool is_pointer, Location location)
|
|
{
|
|
return new Interface_mtable_expression(itype, type, is_pointer, location);
|
|
}
|
|
|
|
// An expression which evaluates to the offset of a field within a
|
|
// struct. This, like Type_info_expression, q.v., is only used to
|
|
// initialize fields of a type descriptor.
|
|
|
|
class Struct_field_offset_expression : public Expression
|
|
{
|
|
public:
|
|
Struct_field_offset_expression(Struct_type* type, const Struct_field* field)
|
|
: Expression(EXPRESSION_STRUCT_FIELD_OFFSET,
|
|
Linemap::predeclared_location()),
|
|
type_(type), field_(field)
|
|
{ }
|
|
|
|
protected:
|
|
bool
|
|
do_is_static_initializer() const
|
|
{ return true; }
|
|
|
|
Type*
|
|
do_type()
|
|
{ return Type::lookup_integer_type("uintptr"); }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return this; }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context);
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context*) const;
|
|
|
|
private:
|
|
// The type of the struct.
|
|
Struct_type* type_;
|
|
// The field.
|
|
const Struct_field* field_;
|
|
};
|
|
|
|
// Return the backend representation for a struct field offset.
|
|
|
|
Bexpression*
|
|
Struct_field_offset_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
const Struct_field_list* fields = this->type_->fields();
|
|
Struct_field_list::const_iterator p;
|
|
unsigned i = 0;
|
|
for (p = fields->begin();
|
|
p != fields->end();
|
|
++p, ++i)
|
|
if (&*p == this->field_)
|
|
break;
|
|
go_assert(&*p == this->field_);
|
|
|
|
Gogo* gogo = context->gogo();
|
|
Btype* btype = this->type_->get_backend(gogo);
|
|
|
|
int64_t offset = gogo->backend()->type_field_offset(btype, i);
|
|
Type* uptr_type = Type::lookup_integer_type("uintptr");
|
|
Expression* ret =
|
|
Expression::make_integer_int64(offset, uptr_type,
|
|
Linemap::predeclared_location());
|
|
return ret->get_backend(context);
|
|
}
|
|
|
|
// Dump ast representation for a struct field offset expression.
|
|
|
|
void
|
|
Struct_field_offset_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "unsafe.Offsetof(";
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << '.';
|
|
ast_dump_context->ostream() <<
|
|
Gogo::message_name(this->field_->field_name());
|
|
ast_dump_context->ostream() << ")";
|
|
}
|
|
|
|
// Make an expression for a struct field offset.
|
|
|
|
Expression*
|
|
Expression::make_struct_field_offset(Struct_type* type,
|
|
const Struct_field* field)
|
|
{
|
|
return new Struct_field_offset_expression(type, field);
|
|
}
|
|
|
|
// An expression which evaluates to the address of an unnamed label.
|
|
|
|
class Label_addr_expression : public Expression
|
|
{
|
|
public:
|
|
Label_addr_expression(Label* label, Location location)
|
|
: Expression(EXPRESSION_LABEL_ADDR, location),
|
|
label_(label)
|
|
{ }
|
|
|
|
protected:
|
|
Type*
|
|
do_type()
|
|
{ return Type::make_pointer_type(Type::make_void_type()); }
|
|
|
|
void
|
|
do_determine_type(const Type_context*)
|
|
{ }
|
|
|
|
Expression*
|
|
do_copy()
|
|
{ return new Label_addr_expression(this->label_, this->location()); }
|
|
|
|
Bexpression*
|
|
do_get_backend(Translate_context* context)
|
|
{ return this->label_->get_addr(context, this->location()); }
|
|
|
|
void
|
|
do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{ ast_dump_context->ostream() << this->label_->name(); }
|
|
|
|
private:
|
|
// The label whose address we are taking.
|
|
Label* label_;
|
|
};
|
|
|
|
// Make an expression for the address of an unnamed label.
|
|
|
|
Expression*
|
|
Expression::make_label_addr(Label* label, Location location)
|
|
{
|
|
return new Label_addr_expression(label, location);
|
|
}
|
|
|
|
// Class Conditional_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Conditional_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->cond_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->then_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->else_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Return the type of the conditional expression.
|
|
|
|
Type*
|
|
Conditional_expression::do_type()
|
|
{
|
|
Type* result_type = Type::make_void_type();
|
|
if (Type::are_identical(this->then_->type(), this->else_->type(),
|
|
Type::COMPARE_ERRORS | Type::COMPARE_TAGS,
|
|
NULL))
|
|
result_type = this->then_->type();
|
|
else if (this->then_->is_nil_expression()
|
|
|| this->else_->is_nil_expression())
|
|
result_type = (!this->then_->is_nil_expression()
|
|
? this->then_->type()
|
|
: this->else_->type());
|
|
return result_type;
|
|
}
|
|
|
|
// Determine type for a conditional expression.
|
|
|
|
void
|
|
Conditional_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
this->cond_->determine_type_no_context();
|
|
this->then_->determine_type(context);
|
|
this->else_->determine_type(context);
|
|
}
|
|
|
|
// Get the backend representation of a conditional expression.
|
|
|
|
Bexpression*
|
|
Conditional_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Btype* result_btype = this->type()->get_backend(gogo);
|
|
Bexpression* cond = this->cond_->get_backend(context);
|
|
Bexpression* then = this->then_->get_backend(context);
|
|
Bexpression* belse = this->else_->get_backend(context);
|
|
Bfunction* bfn = context->function()->func_value()->get_decl();
|
|
return gogo->backend()->conditional_expression(bfn, result_btype, cond, then,
|
|
belse, this->location());
|
|
}
|
|
|
|
// Dump ast representation of a conditional expression.
|
|
|
|
void
|
|
Conditional_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "(";
|
|
ast_dump_context->dump_expression(this->cond_);
|
|
ast_dump_context->ostream() << " ? ";
|
|
ast_dump_context->dump_expression(this->then_);
|
|
ast_dump_context->ostream() << " : ";
|
|
ast_dump_context->dump_expression(this->else_);
|
|
ast_dump_context->ostream() << ") ";
|
|
}
|
|
|
|
// Make a conditional expression.
|
|
|
|
Expression*
|
|
Expression::make_conditional(Expression* cond, Expression* then,
|
|
Expression* else_expr, Location location)
|
|
{
|
|
return new Conditional_expression(cond, then, else_expr, location);
|
|
}
|
|
|
|
// Class Compound_expression.
|
|
|
|
// Traversal.
|
|
|
|
int
|
|
Compound_expression::do_traverse(Traverse* traverse)
|
|
{
|
|
if (Expression::traverse(&this->init_, traverse) == TRAVERSE_EXIT
|
|
|| Expression::traverse(&this->expr_, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Return the type of the compound expression.
|
|
|
|
Type*
|
|
Compound_expression::do_type()
|
|
{
|
|
return this->expr_->type();
|
|
}
|
|
|
|
// Determine type for a compound expression.
|
|
|
|
void
|
|
Compound_expression::do_determine_type(const Type_context* context)
|
|
{
|
|
this->init_->determine_type_no_context();
|
|
this->expr_->determine_type(context);
|
|
}
|
|
|
|
// Get the backend representation of a compound expression.
|
|
|
|
Bexpression*
|
|
Compound_expression::do_get_backend(Translate_context* context)
|
|
{
|
|
Gogo* gogo = context->gogo();
|
|
Bexpression* binit = this->init_->get_backend(context);
|
|
Bfunction* bfunction = context->function()->func_value()->get_decl();
|
|
Bstatement* init_stmt = gogo->backend()->expression_statement(bfunction,
|
|
binit);
|
|
Bexpression* bexpr = this->expr_->get_backend(context);
|
|
return gogo->backend()->compound_expression(init_stmt, bexpr,
|
|
this->location());
|
|
}
|
|
|
|
// Dump ast representation of a conditional expression.
|
|
|
|
void
|
|
Compound_expression::do_dump_expression(
|
|
Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "(";
|
|
ast_dump_context->dump_expression(this->init_);
|
|
ast_dump_context->ostream() << ",";
|
|
ast_dump_context->dump_expression(this->expr_);
|
|
ast_dump_context->ostream() << ") ";
|
|
}
|
|
|
|
// Make a compound expression.
|
|
|
|
Expression*
|
|
Expression::make_compound(Expression* init, Expression* expr, Location location)
|
|
{
|
|
return new Compound_expression(init, expr, location);
|
|
}
|
|
|
|
// Class Backend_expression.
|
|
|
|
int
|
|
Backend_expression::do_traverse(Traverse*)
|
|
{
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
Expression*
|
|
Backend_expression::do_copy()
|
|
{
|
|
return new Backend_expression(this->bexpr_, this->type_->copy_expressions(),
|
|
this->location());
|
|
}
|
|
|
|
void
|
|
Backend_expression::do_dump_expression(Ast_dump_context* ast_dump_context) const
|
|
{
|
|
ast_dump_context->ostream() << "backend_expression<";
|
|
ast_dump_context->dump_type(this->type_);
|
|
ast_dump_context->ostream() << ">";
|
|
}
|
|
|
|
Expression*
|
|
Expression::make_backend(Bexpression* bexpr, Type* type, Location location)
|
|
{
|
|
return new Backend_expression(bexpr, type, location);
|
|
}
|
|
|
|
// Import an expression. This comes at the end in order to see the
|
|
// various class definitions.
|
|
|
|
Expression*
|
|
Expression::import_expression(Import* imp)
|
|
{
|
|
int c = imp->peek_char();
|
|
if (imp->match_c_string("- ")
|
|
|| imp->match_c_string("! ")
|
|
|| imp->match_c_string("^ "))
|
|
return Unary_expression::do_import(imp);
|
|
else if (c == '(')
|
|
return Binary_expression::do_import(imp);
|
|
else if (imp->match_c_string("true")
|
|
|| imp->match_c_string("false"))
|
|
return Boolean_expression::do_import(imp);
|
|
else if (c == '"')
|
|
return String_expression::do_import(imp);
|
|
else if (c == '-' || (c >= '0' && c <= '9'))
|
|
{
|
|
// This handles integers, floats and complex constants.
|
|
return Integer_expression::do_import(imp);
|
|
}
|
|
else if (imp->match_c_string("nil"))
|
|
return Nil_expression::do_import(imp);
|
|
else if (imp->match_c_string("convert"))
|
|
return Type_conversion_expression::do_import(imp);
|
|
else
|
|
{
|
|
go_error_at(imp->location(), "import error: expected expression");
|
|
return Expression::make_error(imp->location());
|
|
}
|
|
}
|
|
|
|
// Class Expression_list.
|
|
|
|
// Traverse the list.
|
|
|
|
int
|
|
Expression_list::traverse(Traverse* traverse)
|
|
{
|
|
for (Expression_list::iterator p = this->begin();
|
|
p != this->end();
|
|
++p)
|
|
{
|
|
if (*p != NULL)
|
|
{
|
|
if (Expression::traverse(&*p, traverse) == TRAVERSE_EXIT)
|
|
return TRAVERSE_EXIT;
|
|
}
|
|
}
|
|
return TRAVERSE_CONTINUE;
|
|
}
|
|
|
|
// Copy the list.
|
|
|
|
Expression_list*
|
|
Expression_list::copy()
|
|
{
|
|
Expression_list* ret = new Expression_list();
|
|
for (Expression_list::iterator p = this->begin();
|
|
p != this->end();
|
|
++p)
|
|
{
|
|
if (*p == NULL)
|
|
ret->push_back(NULL);
|
|
else
|
|
ret->push_back((*p)->copy());
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
// Return whether an expression list has an error expression.
|
|
|
|
bool
|
|
Expression_list::contains_error() const
|
|
{
|
|
for (Expression_list::const_iterator p = this->begin();
|
|
p != this->end();
|
|
++p)
|
|
if (*p != NULL && (*p)->is_error_expression())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Class Numeric_constant.
|
|
|
|
// Destructor.
|
|
|
|
Numeric_constant::~Numeric_constant()
|
|
{
|
|
this->clear();
|
|
}
|
|
|
|
// Copy constructor.
|
|
|
|
Numeric_constant::Numeric_constant(const Numeric_constant& a)
|
|
: classification_(a.classification_), type_(a.type_)
|
|
{
|
|
switch (a.classification_)
|
|
{
|
|
case NC_INVALID:
|
|
break;
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpz_init_set(this->u_.int_val, a.u_.int_val);
|
|
break;
|
|
case NC_FLOAT:
|
|
mpfr_init_set(this->u_.float_val, a.u_.float_val, GMP_RNDN);
|
|
break;
|
|
case NC_COMPLEX:
|
|
mpc_init2(this->u_.complex_val, mpc_precision);
|
|
mpc_set(this->u_.complex_val, a.u_.complex_val, MPC_RNDNN);
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Assignment operator.
|
|
|
|
Numeric_constant&
|
|
Numeric_constant::operator=(const Numeric_constant& a)
|
|
{
|
|
this->clear();
|
|
this->classification_ = a.classification_;
|
|
this->type_ = a.type_;
|
|
switch (a.classification_)
|
|
{
|
|
case NC_INVALID:
|
|
break;
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpz_init_set(this->u_.int_val, a.u_.int_val);
|
|
break;
|
|
case NC_FLOAT:
|
|
mpfr_init_set(this->u_.float_val, a.u_.float_val, GMP_RNDN);
|
|
break;
|
|
case NC_COMPLEX:
|
|
mpc_init2(this->u_.complex_val, mpc_precision);
|
|
mpc_set(this->u_.complex_val, a.u_.complex_val, MPC_RNDNN);
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
return *this;
|
|
}
|
|
|
|
// Clear the contents.
|
|
|
|
void
|
|
Numeric_constant::clear()
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INVALID:
|
|
break;
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpz_clear(this->u_.int_val);
|
|
break;
|
|
case NC_FLOAT:
|
|
mpfr_clear(this->u_.float_val);
|
|
break;
|
|
case NC_COMPLEX:
|
|
mpc_clear(this->u_.complex_val);
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
this->classification_ = NC_INVALID;
|
|
}
|
|
|
|
// Set to an unsigned long value.
|
|
|
|
void
|
|
Numeric_constant::set_unsigned_long(Type* type, unsigned long val)
|
|
{
|
|
this->clear();
|
|
this->classification_ = NC_INT;
|
|
this->type_ = type;
|
|
mpz_init_set_ui(this->u_.int_val, val);
|
|
}
|
|
|
|
// Set to an integer value.
|
|
|
|
void
|
|
Numeric_constant::set_int(Type* type, const mpz_t val)
|
|
{
|
|
this->clear();
|
|
this->classification_ = NC_INT;
|
|
this->type_ = type;
|
|
mpz_init_set(this->u_.int_val, val);
|
|
}
|
|
|
|
// Set to a rune value.
|
|
|
|
void
|
|
Numeric_constant::set_rune(Type* type, const mpz_t val)
|
|
{
|
|
this->clear();
|
|
this->classification_ = NC_RUNE;
|
|
this->type_ = type;
|
|
mpz_init_set(this->u_.int_val, val);
|
|
}
|
|
|
|
// Set to a floating point value.
|
|
|
|
void
|
|
Numeric_constant::set_float(Type* type, const mpfr_t val)
|
|
{
|
|
this->clear();
|
|
this->classification_ = NC_FLOAT;
|
|
this->type_ = type;
|
|
|
|
// Numeric constants do not have negative zero values, so remove
|
|
// them here. They also don't have infinity or NaN values, but we
|
|
// should never see them here.
|
|
int bits = 0;
|
|
if (type != NULL
|
|
&& type->float_type() != NULL
|
|
&& !type->float_type()->is_abstract())
|
|
bits = type->float_type()->bits();
|
|
if (Numeric_constant::is_float_neg_zero(val, bits))
|
|
mpfr_init_set_ui(this->u_.float_val, 0, GMP_RNDN);
|
|
else
|
|
mpfr_init_set(this->u_.float_val, val, GMP_RNDN);
|
|
}
|
|
|
|
// Set to a complex value.
|
|
|
|
void
|
|
Numeric_constant::set_complex(Type* type, const mpc_t val)
|
|
{
|
|
this->clear();
|
|
this->classification_ = NC_COMPLEX;
|
|
this->type_ = type;
|
|
|
|
// Avoid negative zero as in set_float.
|
|
int bits = 0;
|
|
if (type != NULL
|
|
&& type->complex_type() != NULL
|
|
&& !type->complex_type()->is_abstract())
|
|
bits = type->complex_type()->bits() / 2;
|
|
|
|
mpfr_t real;
|
|
mpfr_init_set(real, mpc_realref(val), GMP_RNDN);
|
|
if (Numeric_constant::is_float_neg_zero(real, bits))
|
|
mpfr_set_ui(real, 0, GMP_RNDN);
|
|
|
|
mpfr_t imag;
|
|
mpfr_init_set(imag, mpc_imagref(val), GMP_RNDN);
|
|
if (Numeric_constant::is_float_neg_zero(imag, bits))
|
|
mpfr_set_ui(imag, 0, GMP_RNDN);
|
|
|
|
mpc_init2(this->u_.complex_val, mpc_precision);
|
|
mpc_set_fr_fr(this->u_.complex_val, real, imag, MPC_RNDNN);
|
|
|
|
mpfr_clear(real);
|
|
mpfr_clear(imag);
|
|
}
|
|
|
|
// Return whether VAL, at a precision of BITS, is a negative zero.
|
|
// BITS may be zero in which case it is ignored.
|
|
|
|
bool
|
|
Numeric_constant::is_float_neg_zero(const mpfr_t val, int bits)
|
|
{
|
|
if (!mpfr_signbit(val))
|
|
return false;
|
|
if (mpfr_zero_p(val))
|
|
return true;
|
|
mp_exp_t min_exp;
|
|
switch (bits)
|
|
{
|
|
case 0:
|
|
return false;
|
|
case 32:
|
|
// In a denormalized float32 the exponent is -126, and there are
|
|
// 24 bits of which at least the last must be 1, so the smallest
|
|
// representable non-zero exponent is -126 - (24 - 1) == -149.
|
|
min_exp = -149;
|
|
break;
|
|
case 64:
|
|
// Minimum exponent is -1022, there are 53 bits.
|
|
min_exp = -1074;
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
return mpfr_get_exp(val) < min_exp;
|
|
}
|
|
|
|
// Get an int value.
|
|
|
|
void
|
|
Numeric_constant::get_int(mpz_t* val) const
|
|
{
|
|
go_assert(this->is_int());
|
|
mpz_init_set(*val, this->u_.int_val);
|
|
}
|
|
|
|
// Get a rune value.
|
|
|
|
void
|
|
Numeric_constant::get_rune(mpz_t* val) const
|
|
{
|
|
go_assert(this->is_rune());
|
|
mpz_init_set(*val, this->u_.int_val);
|
|
}
|
|
|
|
// Get a floating point value.
|
|
|
|
void
|
|
Numeric_constant::get_float(mpfr_t* val) const
|
|
{
|
|
go_assert(this->is_float());
|
|
mpfr_init_set(*val, this->u_.float_val, GMP_RNDN);
|
|
}
|
|
|
|
// Get a complex value.
|
|
|
|
void
|
|
Numeric_constant::get_complex(mpc_t* val) const
|
|
{
|
|
go_assert(this->is_complex());
|
|
mpc_init2(*val, mpc_precision);
|
|
mpc_set(*val, this->u_.complex_val, MPC_RNDNN);
|
|
}
|
|
|
|
// Express value as unsigned long if possible.
|
|
|
|
Numeric_constant::To_unsigned_long
|
|
Numeric_constant::to_unsigned_long(unsigned long* val) const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
return this->mpz_to_unsigned_long(this->u_.int_val, val);
|
|
case NC_FLOAT:
|
|
return this->mpfr_to_unsigned_long(this->u_.float_val, val);
|
|
case NC_COMPLEX:
|
|
if (!mpfr_zero_p(mpc_imagref(this->u_.complex_val)))
|
|
return NC_UL_NOTINT;
|
|
return this->mpfr_to_unsigned_long(mpc_realref(this->u_.complex_val),
|
|
val);
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Express integer value as unsigned long if possible.
|
|
|
|
Numeric_constant::To_unsigned_long
|
|
Numeric_constant::mpz_to_unsigned_long(const mpz_t ival,
|
|
unsigned long *val) const
|
|
{
|
|
if (mpz_sgn(ival) < 0)
|
|
return NC_UL_NEGATIVE;
|
|
unsigned long ui = mpz_get_ui(ival);
|
|
if (mpz_cmp_ui(ival, ui) != 0)
|
|
return NC_UL_BIG;
|
|
*val = ui;
|
|
return NC_UL_VALID;
|
|
}
|
|
|
|
// Express floating point value as unsigned long if possible.
|
|
|
|
Numeric_constant::To_unsigned_long
|
|
Numeric_constant::mpfr_to_unsigned_long(const mpfr_t fval,
|
|
unsigned long *val) const
|
|
{
|
|
if (!mpfr_integer_p(fval))
|
|
return NC_UL_NOTINT;
|
|
mpz_t ival;
|
|
mpz_init(ival);
|
|
mpfr_get_z(ival, fval, GMP_RNDN);
|
|
To_unsigned_long ret = this->mpz_to_unsigned_long(ival, val);
|
|
mpz_clear(ival);
|
|
return ret;
|
|
}
|
|
|
|
// Express value as memory size if possible.
|
|
|
|
bool
|
|
Numeric_constant::to_memory_size(int64_t* val) const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
return this->mpz_to_memory_size(this->u_.int_val, val);
|
|
case NC_FLOAT:
|
|
return this->mpfr_to_memory_size(this->u_.float_val, val);
|
|
case NC_COMPLEX:
|
|
if (!mpfr_zero_p(mpc_imagref(this->u_.complex_val)))
|
|
return false;
|
|
return this->mpfr_to_memory_size(mpc_realref(this->u_.complex_val), val);
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Express integer as memory size if possible.
|
|
|
|
bool
|
|
Numeric_constant::mpz_to_memory_size(const mpz_t ival, int64_t* val) const
|
|
{
|
|
if (mpz_sgn(ival) < 0)
|
|
return false;
|
|
if (mpz_fits_slong_p(ival))
|
|
{
|
|
*val = static_cast<int64_t>(mpz_get_si(ival));
|
|
return true;
|
|
}
|
|
|
|
// Test >= 64, not > 64, because an int64_t can hold 63 bits of a
|
|
// positive value.
|
|
if (mpz_sizeinbase(ival, 2) >= 64)
|
|
return false;
|
|
|
|
mpz_t q, r;
|
|
mpz_init(q);
|
|
mpz_init(r);
|
|
mpz_tdiv_q_2exp(q, ival, 32);
|
|
mpz_tdiv_r_2exp(r, ival, 32);
|
|
go_assert(mpz_fits_ulong_p(q) && mpz_fits_ulong_p(r));
|
|
*val = ((static_cast<int64_t>(mpz_get_ui(q)) << 32)
|
|
+ static_cast<int64_t>(mpz_get_ui(r)));
|
|
mpz_clear(r);
|
|
mpz_clear(q);
|
|
return true;
|
|
}
|
|
|
|
// Express floating point value as memory size if possible.
|
|
|
|
bool
|
|
Numeric_constant::mpfr_to_memory_size(const mpfr_t fval, int64_t* val) const
|
|
{
|
|
if (!mpfr_integer_p(fval))
|
|
return false;
|
|
mpz_t ival;
|
|
mpz_init(ival);
|
|
mpfr_get_z(ival, fval, GMP_RNDN);
|
|
bool ret = this->mpz_to_memory_size(ival, val);
|
|
mpz_clear(ival);
|
|
return ret;
|
|
}
|
|
|
|
// Convert value to integer if possible.
|
|
|
|
bool
|
|
Numeric_constant::to_int(mpz_t* val) const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpz_init_set(*val, this->u_.int_val);
|
|
return true;
|
|
case NC_FLOAT:
|
|
if (!mpfr_integer_p(this->u_.float_val))
|
|
return false;
|
|
mpz_init(*val);
|
|
mpfr_get_z(*val, this->u_.float_val, GMP_RNDN);
|
|
return true;
|
|
case NC_COMPLEX:
|
|
if (!mpfr_zero_p(mpc_imagref(this->u_.complex_val))
|
|
|| !mpfr_integer_p(mpc_realref(this->u_.complex_val)))
|
|
return false;
|
|
mpz_init(*val);
|
|
mpfr_get_z(*val, mpc_realref(this->u_.complex_val), GMP_RNDN);
|
|
return true;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Convert value to floating point if possible.
|
|
|
|
bool
|
|
Numeric_constant::to_float(mpfr_t* val) const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpfr_init_set_z(*val, this->u_.int_val, GMP_RNDN);
|
|
return true;
|
|
case NC_FLOAT:
|
|
mpfr_init_set(*val, this->u_.float_val, GMP_RNDN);
|
|
return true;
|
|
case NC_COMPLEX:
|
|
if (!mpfr_zero_p(mpc_imagref(this->u_.complex_val)))
|
|
return false;
|
|
mpfr_init_set(*val, mpc_realref(this->u_.complex_val), GMP_RNDN);
|
|
return true;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Convert value to complex.
|
|
|
|
bool
|
|
Numeric_constant::to_complex(mpc_t* val) const
|
|
{
|
|
mpc_init2(*val, mpc_precision);
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpc_set_z(*val, this->u_.int_val, MPC_RNDNN);
|
|
return true;
|
|
case NC_FLOAT:
|
|
mpc_set_fr(*val, this->u_.float_val, MPC_RNDNN);
|
|
return true;
|
|
case NC_COMPLEX:
|
|
mpc_set(*val, this->u_.complex_val, MPC_RNDNN);
|
|
return true;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// Get the type.
|
|
|
|
Type*
|
|
Numeric_constant::type() const
|
|
{
|
|
if (this->type_ != NULL)
|
|
return this->type_;
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
return Type::make_abstract_integer_type();
|
|
case NC_RUNE:
|
|
return Type::make_abstract_character_type();
|
|
case NC_FLOAT:
|
|
return Type::make_abstract_float_type();
|
|
case NC_COMPLEX:
|
|
return Type::make_abstract_complex_type();
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|
|
|
|
// If the constant can be expressed in TYPE, then set the type of the
|
|
// constant to TYPE and return true. Otherwise return false, and, if
|
|
// ISSUE_ERROR is true, report an appropriate error message.
|
|
|
|
bool
|
|
Numeric_constant::set_type(Type* type, bool issue_error, Location loc)
|
|
{
|
|
bool ret;
|
|
if (type == NULL || type->is_error())
|
|
ret = true;
|
|
else if (type->integer_type() != NULL)
|
|
ret = this->check_int_type(type->integer_type(), issue_error, loc);
|
|
else if (type->float_type() != NULL)
|
|
ret = this->check_float_type(type->float_type(), issue_error, loc);
|
|
else if (type->complex_type() != NULL)
|
|
ret = this->check_complex_type(type->complex_type(), issue_error, loc);
|
|
else
|
|
{
|
|
ret = false;
|
|
if (issue_error)
|
|
go_assert(saw_errors());
|
|
}
|
|
if (ret)
|
|
this->type_ = type;
|
|
return ret;
|
|
}
|
|
|
|
// Check whether the constant can be expressed in an integer type.
|
|
|
|
bool
|
|
Numeric_constant::check_int_type(Integer_type* type, bool issue_error,
|
|
Location location)
|
|
{
|
|
mpz_t val;
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpz_init_set(val, this->u_.int_val);
|
|
break;
|
|
|
|
case NC_FLOAT:
|
|
if (!mpfr_integer_p(this->u_.float_val))
|
|
{
|
|
if (issue_error)
|
|
{
|
|
go_error_at(location,
|
|
"floating point constant truncated to integer");
|
|
this->set_invalid();
|
|
}
|
|
return false;
|
|
}
|
|
mpz_init(val);
|
|
mpfr_get_z(val, this->u_.float_val, GMP_RNDN);
|
|
break;
|
|
|
|
case NC_COMPLEX:
|
|
if (!mpfr_integer_p(mpc_realref(this->u_.complex_val))
|
|
|| !mpfr_zero_p(mpc_imagref(this->u_.complex_val)))
|
|
{
|
|
if (issue_error)
|
|
{
|
|
go_error_at(location, "complex constant truncated to integer");
|
|
this->set_invalid();
|
|
}
|
|
return false;
|
|
}
|
|
mpz_init(val);
|
|
mpfr_get_z(val, mpc_realref(this->u_.complex_val), GMP_RNDN);
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
bool ret;
|
|
if (type->is_abstract())
|
|
ret = true;
|
|
else
|
|
{
|
|
int bits = mpz_sizeinbase(val, 2);
|
|
if (type->is_unsigned())
|
|
{
|
|
// For an unsigned type we can only accept a nonnegative
|
|
// number, and we must be able to represents at least BITS.
|
|
ret = mpz_sgn(val) >= 0 && bits <= type->bits();
|
|
}
|
|
else
|
|
{
|
|
// For a signed type we need an extra bit to indicate the
|
|
// sign. We have to handle the most negative integer
|
|
// specially.
|
|
ret = (bits + 1 <= type->bits()
|
|
|| (bits <= type->bits()
|
|
&& mpz_sgn(val) < 0
|
|
&& (mpz_scan1(val, 0)
|
|
== static_cast<unsigned long>(type->bits() - 1))
|
|
&& mpz_scan0(val, type->bits()) == ULONG_MAX));
|
|
}
|
|
}
|
|
|
|
if (!ret && issue_error)
|
|
{
|
|
go_error_at(location, "integer constant overflow");
|
|
this->set_invalid();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Check whether the constant can be expressed in a floating point
|
|
// type.
|
|
|
|
bool
|
|
Numeric_constant::check_float_type(Float_type* type, bool issue_error,
|
|
Location location)
|
|
{
|
|
mpfr_t val;
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpfr_init_set_z(val, this->u_.int_val, GMP_RNDN);
|
|
break;
|
|
|
|
case NC_FLOAT:
|
|
mpfr_init_set(val, this->u_.float_val, GMP_RNDN);
|
|
break;
|
|
|
|
case NC_COMPLEX:
|
|
if (!mpfr_zero_p(mpc_imagref(this->u_.complex_val)))
|
|
{
|
|
if (issue_error)
|
|
{
|
|
this->set_invalid();
|
|
go_error_at(location, "complex constant truncated to float");
|
|
}
|
|
return false;
|
|
}
|
|
mpfr_init_set(val, mpc_realref(this->u_.complex_val), GMP_RNDN);
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
bool ret;
|
|
if (type->is_abstract())
|
|
ret = true;
|
|
else if (mpfr_nan_p(val) || mpfr_inf_p(val) || mpfr_zero_p(val))
|
|
{
|
|
// A NaN or Infinity always fits in the range of the type.
|
|
ret = true;
|
|
}
|
|
else
|
|
{
|
|
mp_exp_t exp = mpfr_get_exp(val);
|
|
mp_exp_t max_exp;
|
|
switch (type->bits())
|
|
{
|
|
case 32:
|
|
max_exp = 128;
|
|
break;
|
|
case 64:
|
|
max_exp = 1024;
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
ret = exp <= max_exp;
|
|
|
|
if (ret)
|
|
{
|
|
// Round the constant to the desired type.
|
|
mpfr_t t;
|
|
mpfr_init(t);
|
|
switch (type->bits())
|
|
{
|
|
case 32:
|
|
mpfr_set_prec(t, 24);
|
|
break;
|
|
case 64:
|
|
mpfr_set_prec(t, 53);
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
mpfr_set(t, val, GMP_RNDN);
|
|
mpfr_set(val, t, GMP_RNDN);
|
|
mpfr_clear(t);
|
|
|
|
this->set_float(type, val);
|
|
}
|
|
}
|
|
|
|
mpfr_clear(val);
|
|
|
|
if (!ret && issue_error)
|
|
{
|
|
go_error_at(location, "floating point constant overflow");
|
|
this->set_invalid();
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Check whether the constant can be expressed in a complex type.
|
|
|
|
bool
|
|
Numeric_constant::check_complex_type(Complex_type* type, bool issue_error,
|
|
Location location)
|
|
{
|
|
if (type->is_abstract())
|
|
return true;
|
|
|
|
mp_exp_t max_exp;
|
|
switch (type->bits())
|
|
{
|
|
case 64:
|
|
max_exp = 128;
|
|
break;
|
|
case 128:
|
|
max_exp = 1024;
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
mpc_t val;
|
|
mpc_init2(val, mpc_precision);
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
case NC_RUNE:
|
|
mpc_set_z(val, this->u_.int_val, MPC_RNDNN);
|
|
break;
|
|
|
|
case NC_FLOAT:
|
|
mpc_set_fr(val, this->u_.float_val, MPC_RNDNN);
|
|
break;
|
|
|
|
case NC_COMPLEX:
|
|
mpc_set(val, this->u_.complex_val, MPC_RNDNN);
|
|
break;
|
|
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
|
|
bool ret = true;
|
|
if (!mpfr_nan_p(mpc_realref(val))
|
|
&& !mpfr_inf_p(mpc_realref(val))
|
|
&& !mpfr_zero_p(mpc_realref(val))
|
|
&& mpfr_get_exp(mpc_realref(val)) > max_exp)
|
|
{
|
|
if (issue_error)
|
|
{
|
|
go_error_at(location, "complex real part overflow");
|
|
this->set_invalid();
|
|
}
|
|
ret = false;
|
|
}
|
|
|
|
if (!mpfr_nan_p(mpc_imagref(val))
|
|
&& !mpfr_inf_p(mpc_imagref(val))
|
|
&& !mpfr_zero_p(mpc_imagref(val))
|
|
&& mpfr_get_exp(mpc_imagref(val)) > max_exp)
|
|
{
|
|
if (issue_error)
|
|
{
|
|
go_error_at(location, "complex imaginary part overflow");
|
|
this->set_invalid();
|
|
}
|
|
ret = false;
|
|
}
|
|
|
|
if (ret)
|
|
{
|
|
// Round the constant to the desired type.
|
|
mpc_t t;
|
|
switch (type->bits())
|
|
{
|
|
case 64:
|
|
mpc_init2(t, 24);
|
|
break;
|
|
case 128:
|
|
mpc_init2(t, 53);
|
|
break;
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
mpc_set(t, val, MPC_RNDNN);
|
|
mpc_set(val, t, MPC_RNDNN);
|
|
mpc_clear(t);
|
|
|
|
this->set_complex(type, val);
|
|
}
|
|
|
|
mpc_clear(val);
|
|
|
|
return ret;
|
|
}
|
|
|
|
// Return an Expression for this value.
|
|
|
|
Expression*
|
|
Numeric_constant::expression(Location loc) const
|
|
{
|
|
switch (this->classification_)
|
|
{
|
|
case NC_INT:
|
|
return Expression::make_integer_z(&this->u_.int_val, this->type_, loc);
|
|
case NC_RUNE:
|
|
return Expression::make_character(&this->u_.int_val, this->type_, loc);
|
|
case NC_FLOAT:
|
|
return Expression::make_float(&this->u_.float_val, this->type_, loc);
|
|
case NC_COMPLEX:
|
|
return Expression::make_complex(&this->u_.complex_val, this->type_, loc);
|
|
case NC_INVALID:
|
|
go_assert(saw_errors());
|
|
return Expression::make_error(loc);
|
|
default:
|
|
go_unreachable();
|
|
}
|
|
}
|