gcc/libgo/go/runtime/stubs.go
Ian Lance Taylor 58f7dab40d runtime: copy mstats code from Go 1.7 runtime
This replaces mem.go and the C runtime_ReadMemStats function with the Go
    1.7 mstats.go.
    
    The GCStats code is commented out for now.  The corresponding gccgo code
    is in runtime/mgc0.c.
    
    The variables memstats and worldsema are shared between the Go code and
    the C code, but are not exported.  To make this work, add temporary
    accessor functions acquireWorldsema, releaseWorldsema, getMstats (the
    latter known as mstats in the C code).
    
    Check the preemptoff field of m when allocating and when considering
    whether to start a GC.  This works with the new stopTheWorld and
    startTheWorld functions in Go, which are essentially the Go 1.7
    versions.
    
    Change the compiler to stack allocate closures when compiling the
    runtime package.  Within the runtime packages closures do not escape.
    This is similar to what the gc compiler does, except that the gc
    compiler, when compiling the runtime package, gives an error if escape
    analysis shows that a closure does escape.  I added this here because
    the Go version of ReadMemStats calls systemstack with a closure, and
    having that allocate memory was causing some tests that measure memory
    allocations to fail.
    
    Reviewed-on: https://go-review.googlesource.com/30972

From-SVN: r241124
2016-10-13 15:24:50 +00:00

417 lines
13 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"runtime/internal/atomic"
"runtime/internal/sys"
"unsafe"
)
// Should be a built-in for unsafe.Pointer?
//go:nosplit
func add(p unsafe.Pointer, x uintptr) unsafe.Pointer {
return unsafe.Pointer(uintptr(p) + x)
}
// getg returns the pointer to the current g.
// The compiler rewrites calls to this function into instructions
// that fetch the g directly (from TLS or from the dedicated register).
func getg() *g
// mcall switches from the g to the g0 stack and invokes fn(g),
// where g is the goroutine that made the call.
// mcall saves g's current PC/SP in g->sched so that it can be restored later.
// It is up to fn to arrange for that later execution, typically by recording
// g in a data structure, causing something to call ready(g) later.
// mcall returns to the original goroutine g later, when g has been rescheduled.
// fn must not return at all; typically it ends by calling schedule, to let the m
// run other goroutines.
//
// mcall can only be called from g stacks (not g0, not gsignal).
//
// This must NOT be go:noescape: if fn is a stack-allocated closure,
// fn puts g on a run queue, and g executes before fn returns, the
// closure will be invalidated while it is still executing.
func mcall(fn func(*g))
// systemstack runs fn on a system stack.
//
// It is common to use a func literal as the argument, in order
// to share inputs and outputs with the code around the call
// to system stack:
//
// ... set up y ...
// systemstack(func() {
// x = bigcall(y)
// })
// ... use x ...
//
// For the gc toolchain this permits running a function that requires
// additional stack space in a context where the stack can not be
// split. For gccgo, however, stack splitting is not managed by the
// Go runtime. In effect, all stacks are system stacks. So this gccgo
// version just runs the function.
func systemstack(fn func()) {
fn()
}
func badsystemstack() {
throw("systemstack called from unexpected goroutine")
}
// memclr clears n bytes starting at ptr.
// in memclr_*.s
//go:noescape
func memclr(ptr unsafe.Pointer, n uintptr)
//go:linkname reflect_memclr reflect.memclr
func reflect_memclr(ptr unsafe.Pointer, n uintptr) {
memclr(ptr, n)
}
// memmove copies n bytes from "from" to "to".
// in memmove_*.s
//go:noescape
func memmove(to, from unsafe.Pointer, n uintptr)
//go:linkname reflect_memmove reflect.memmove
func reflect_memmove(to, from unsafe.Pointer, n uintptr) {
memmove(to, from, n)
}
// exported value for testing
var hashLoad = loadFactor
// in asm_*.s
func fastrand1() uint32
// in asm_*.s
//go:noescape
func memequal(a, b unsafe.Pointer, size uintptr) bool
// noescape hides a pointer from escape analysis. noescape is
// the identity function but escape analysis doesn't think the
// output depends on the input. noescape is inlined and currently
// compiles down to a single xor instruction.
// USE CAREFULLY!
//go:nosplit
func noescape(p unsafe.Pointer) unsafe.Pointer {
x := uintptr(p)
return unsafe.Pointer(x ^ 0)
}
func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32
//go:noescape
func jmpdefer(fv *funcval, argp uintptr)
func exit1(code int32)
func asminit()
func setg(gg *g)
func breakpoint()
// reflectcall calls fn with a copy of the n argument bytes pointed at by arg.
// After fn returns, reflectcall copies n-retoffset result bytes
// back into arg+retoffset before returning. If copying result bytes back,
// the caller should pass the argument frame type as argtype, so that
// call can execute appropriate write barriers during the copy.
// Package reflect passes a frame type. In package runtime, there is only
// one call that copies results back, in cgocallbackg1, and it does NOT pass a
// frame type, meaning there are no write barriers invoked. See that call
// site for justification.
func reflectcall(argtype *_type, fn, arg unsafe.Pointer, argsize uint32, retoffset uint32)
func procyield(cycles uint32)
type neverCallThisFunction struct{}
// goexit is the return stub at the top of every goroutine call stack.
// Each goroutine stack is constructed as if goexit called the
// goroutine's entry point function, so that when the entry point
// function returns, it will return to goexit, which will call goexit1
// to perform the actual exit.
//
// This function must never be called directly. Call goexit1 instead.
// gentraceback assumes that goexit terminates the stack. A direct
// call on the stack will cause gentraceback to stop walking the stack
// prematurely and if there are leftover stack barriers it may panic.
func goexit(neverCallThisFunction)
// publicationBarrier performs a store/store barrier (a "publication"
// or "export" barrier). Some form of synchronization is required
// between initializing an object and making that object accessible to
// another processor. Without synchronization, the initialization
// writes and the "publication" write may be reordered, allowing the
// other processor to follow the pointer and observe an uninitialized
// object. In general, higher-level synchronization should be used,
// such as locking or an atomic pointer write. publicationBarrier is
// for when those aren't an option, such as in the implementation of
// the memory manager.
//
// There's no corresponding barrier for the read side because the read
// side naturally has a data dependency order. All architectures that
// Go supports or seems likely to ever support automatically enforce
// data dependency ordering.
func publicationBarrier()
//go:noescape
func setcallerpc(argp unsafe.Pointer, pc uintptr)
// getcallerpc returns the program counter (PC) of its caller's caller.
// getcallersp returns the stack pointer (SP) of its caller's caller.
// For both, the argp must be a pointer to the caller's first function argument.
// The implementation may or may not use argp, depending on
// the architecture.
//
// For example:
//
// func f(arg1, arg2, arg3 int) {
// pc := getcallerpc(unsafe.Pointer(&arg1))
// sp := getcallersp(unsafe.Pointer(&arg1))
// }
//
// These two lines find the PC and SP immediately following
// the call to f (where f will return).
//
// The call to getcallerpc and getcallersp must be done in the
// frame being asked about. It would not be correct for f to pass &arg1
// to another function g and let g call getcallerpc/getcallersp.
// The call inside g might return information about g's caller or
// information about f's caller or complete garbage.
//
// The result of getcallersp is correct at the time of the return,
// but it may be invalidated by any subsequent call to a function
// that might relocate the stack in order to grow or shrink it.
// A general rule is that the result of getcallersp should be used
// immediately and can only be passed to nosplit functions.
//go:noescape
func getcallerpc(argp unsafe.Pointer) uintptr
//go:noescape
func getcallersp(argp unsafe.Pointer) uintptr
// argp used in Defer structs when there is no argp.
const _NoArgs = ^uintptr(0)
// //go:linkname time_now time.now
// func time_now() (sec int64, nsec int32)
/*
func unixnanotime() int64 {
sec, nsec := time_now()
return sec*1e9 + int64(nsec)
}
*/
// round n up to a multiple of a. a must be a power of 2.
func round(n, a uintptr) uintptr {
return (n + a - 1) &^ (a - 1)
}
// checkASM returns whether assembly runtime checks have passed.
func checkASM() bool {
return true
}
// For gccgo this is in the C code.
func osyield()
// For gccgo this can be called directly.
//extern syscall
func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr
// throw crashes the program.
// For gccgo unless and until we port panic.go.
func throw(string)
// newobject allocates a new object.
// For gccgo unless and until we port malloc.go.
func newobject(*_type) unsafe.Pointer
// newarray allocates a new array of objects.
// For gccgo unless and until we port malloc.go.
func newarray(*_type, int) unsafe.Pointer
// funcPC returns the entry PC of the function f.
// It assumes that f is a func value. Otherwise the behavior is undefined.
// For gccgo here unless and until we port proc.go.
//go:nosplit
func funcPC(f interface{}) uintptr {
return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize))
}
// typedmemmove copies a typed value.
// For gccgo for now.
//go:nosplit
func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
memmove(dst, src, typ.size)
}
// Here for gccgo unless and until we port slice.go.
type slice struct {
array unsafe.Pointer
len int
cap int
}
// Here for gccgo until we port malloc.go.
const (
_64bit = 1 << (^uintptr(0) >> 63) / 2
_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*32
_MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
)
// Here for gccgo until we port malloc.go.
//extern runtime_mallocgc
func c_mallocgc(size uintptr, typ uintptr, flag uint32) unsafe.Pointer
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
flag := uint32(0)
if !needzero {
flag = 1 << 3
}
return c_mallocgc(size, uintptr(unsafe.Pointer(typ)), flag)
}
// Here for gccgo until we port mgc.go.
var writeBarrier struct {
enabled bool // compiler emits a check of this before calling write barrier
needed bool // whether we need a write barrier for current GC phase
cgo bool // whether we need a write barrier for a cgo check
alignme uint64 // guarantee alignment so that compiler can use a 32 or 64-bit load
}
// Here for gccgo until we port atomic_pointer.go and mgc.go.
//go:nosplit
func casp(ptr *unsafe.Pointer, old, new unsafe.Pointer) bool {
if !atomic.Casp1((*unsafe.Pointer)(noescape(unsafe.Pointer(ptr))), noescape(old), new) {
return false
}
return true
}
// Here for gccgo until we port lock_*.go.
func lock(l *mutex)
func unlock(l *mutex)
// Here for gccgo for Solaris.
func errno() int
// Temporary for gccgo until we port proc.go.
func entersyscall(int32)
func entersyscallblock(int32)
func exitsyscall(int32)
func gopark(func(*g, unsafe.Pointer) bool, unsafe.Pointer, string, byte, int)
func goparkunlock(*mutex, string, byte, int)
func goready(*g, int)
// Temporary for gccgo until we port mprof.go.
var blockprofilerate uint64
func blockevent(cycles int64, skip int) {}
// Temporary hack for gccgo until we port proc.go.
//go:nosplit
func acquireSudog() *sudog {
mp := acquirem()
pp := mp.p.ptr()
if len(pp.sudogcache) == 0 {
pp.sudogcache = append(pp.sudogcache, new(sudog))
}
n := len(pp.sudogcache)
s := pp.sudogcache[n-1]
pp.sudogcache[n-1] = nil
pp.sudogcache = pp.sudogcache[:n-1]
if s.elem != nil {
throw("acquireSudog: found s.elem != nil in cache")
}
releasem(mp)
return s
}
// Temporary hack for gccgo until we port proc.go.
//go:nosplit
func releaseSudog(s *sudog) {
if s.elem != nil {
throw("runtime: sudog with non-nil elem")
}
if s.selectdone != nil {
throw("runtime: sudog with non-nil selectdone")
}
if s.next != nil {
throw("runtime: sudog with non-nil next")
}
if s.prev != nil {
throw("runtime: sudog with non-nil prev")
}
if s.waitlink != nil {
throw("runtime: sudog with non-nil waitlink")
}
if s.c != nil {
throw("runtime: sudog with non-nil c")
}
gp := getg()
if gp.param != nil {
throw("runtime: releaseSudog with non-nil gp.param")
}
mp := acquirem() // avoid rescheduling to another P
pp := mp.p.ptr()
pp.sudogcache = append(pp.sudogcache, s)
releasem(mp)
}
// Temporary hack for gccgo until we port the garbage collector.
func typeBitsBulkBarrier(typ *_type, p, size uintptr) {}
// Here for gccgo until we port msize.go.
func roundupsize(uintptr) uintptr
// Here for gccgo until we port mgc.go.
func GC()
// Here for gccgo until we port proc.go.
var worldsema uint32 = 1
func stopTheWorldWithSema()
func startTheWorldWithSema()
// For gccgo to call from C code.
//go:linkname acquireWorldsema runtime.acquireWorldsema
func acquireWorldsema() {
semacquire(&worldsema, false)
}
// For gccgo to call from C code.
//go:linkname releaseWorldsema runtime.releaseWorldsema
func releaseWorldsema() {
semrelease(&worldsema)
}
// Here for gccgo until we port proc.go.
func stopTheWorld(reason string) {
semacquire(&worldsema, false)
getg().m.preemptoff = reason
getg().m.gcing = 1
systemstack(stopTheWorldWithSema)
}
// Here for gccgo until we port proc.go.
func startTheWorld() {
getg().m.gcing = 0
getg().m.locks++
systemstack(startTheWorldWithSema)
// worldsema must be held over startTheWorldWithSema to ensure
// gomaxprocs cannot change while worldsema is held.
semrelease(&worldsema)
getg().m.preemptoff = ""
getg().m.locks--
}
// For gccgo to call from C code, so that the C code and the Go code
// can share the memstats variable for now.
//go:linkname getMstats runtime.getMstats
func getMstats() *mstats {
return &memstats
}