
The following testcase ends up with SIGFPE in __divmodbitint4. The problem is a thinko in my attempt to implement Knuth's algorithm. The algorithm does (where b is 65536, i.e. one larger than what fits in their unsigned short word): // Compute estimate qhat of q[j]. qhat = (un[j+n]*b + un[j+n-1])/vn[n-1]; rhat = (un[j+n]*b + un[j+n-1]) - qhat*vn[n-1]; again: if (qhat >= b || qhat*vn[n-2] > b*rhat + un[j+n-2]) { qhat = qhat - 1; rhat = rhat + vn[n-1]; if (rhat < b) goto again; } The problem is that it uses a double-word / word -> double-word division (and modulo), while all we have is udiv_qrnnd unless we'd want to do further library calls, and udiv_qrnnd is a double-word / word -> word division and modulo. Now, as the algorithm description says, it can produce at most word bits + 1 bit quotient. And I believe that actually the highest qhat the original algorithm can produce is (1 << word_bits) + 1. The algorithm performs earlier canonicalization where both the divisor and dividend are shifted left such that divisor has msb set. If it has msb set already before, no shifting occurs but we start with added 0 limb, so in the first uv1:uv0 double-word uv1 is 0 and so we can't get too high qhat, if shifting occurs, the first limb of dividend is shifted right by UWtype bits - shift count into a new limb, so again in the first iteration in the uv1:uv0 double-word uv1 doesn't have msb set while vv1 does and qhat has to fit into word. In the following iterations, previous iteration should guarantee that the previous quotient digit is correct. Even if the divisor was the maximal possible vv1:all_ones_in_all_lower_limbs, if the old uv0:lower_limbs would be larger or equal to the divisor, the previous quotient digit would increase and another divisor would be subtracted, which I think implies that in the next iteration in uv1:uv0 double-word uv1 <= vv1, but uv0 could be up to all ones, e.g. in case of all lower limbs of divisor being all ones and at least one dividend limb below uv0 being not all ones. So, we can e.g. for 64-bit UWtype see uv1:uv0 / vv1 0x8000000000000000UL:0xffffffffffffffffUL / 0x8000000000000000UL or 0xffffffffffffffffUL:0xffffffffffffffffUL / 0xffffffffffffffffUL In all these cases (when uv1 == vv1 && uv0 >= uv1), qhat is 0x10000000000000001UL, i.e. 2 more than fits into UWtype result, if uv1 == vv1 && uv0 < uv1 it would be 0x10000000000000000UL, i.e. 1 more than fits into UWtype result. Because we only have udiv_qrnnd which can't deal with those too large cases (SIGFPEs or otherwise invokes undefined behavior on those), I've tried to handle the uv1 >= vv1 case separately, but for one thing I thought it would be at most 1 larger than what fits, and for two have actually subtracted vv1:vv1 from uv1:uv0 instead of subtracting 0:vv1 from uv1:uv0. For the uv1 < vv1 case, the implementation already performs roughly what the algorithm does. Now, let's see what happens with the two possible extra cases in the original algorithm. If uv1 == vv1 && uv0 < uv1, qhat above would be b, so we take if (qhat >= b, decrement qhat by 1 (it becomes b - 1), add vn[n-1] aka vv1 to rhat and goto again if rhat < b (but because qhat already fits we can goto to the again label in the uv1 < vv1 code). rhat in this case is uv0 and rhat + vv1 can but doesn't have to overflow, say for uv0 42UL and vv1 0x8000000000000000UL it will not (and so we should goto again), while for uv0 0x8000000000000000UL and vv1 0x8000000000000001UL it will (and we shouldn't goto again). If uv1 == vv1 && uv0 >= uv1, qhat above would be b + 1, so we take if (qhat >= b, decrement qhat by 1 (it becomes b), add vn[n-1] aka vv1 to rhat. But because vv1 has msb set and rhat in this case is uv0 - vv1, the rhat + vv1 addition certainly doesn't overflow, because (uv0 - vv1) + vv1 is uv0, so in the algorithm we goto again, again take if (qhat >= b and decrement qhat so it finally becomes b - 1, and add vn[n-1] aka vv1 to rhat again. But this time I believe it must always overflow, simply because we added (uv0 - vv1) + vv1 + vv1 and vv1 has msb set, so already vv1 + vv1 must overflow. And because it overflowed, it will not goto again. So, I believe the following patch implements this correctly, by subtracting vv1 from uv1:uv0 double-word once, then comparing again if uv1 >= vv1. If that is true, subtract vv1 from uv1:uv0 again and add 2 * vv1 to rhat, no __builtin_add_overflow is needed as we know it always overflowed and so won't goto again. If after the first subtraction uv1 < vv1, use __builtin_add_overflow when adding vv1 to rhat, because it can but doesn't have to overflow. I've added an extra testcase which tests the behavior of all the changed cases, so it has a case where uv1:uv0 / vv1 is 1:1, where it is 1:0 and rhat + vv1 overflows and where it is 1:0 and rhat + vv1 does not overflow, and includes tests also from Zdenek's other failing tests. 2024-02-02 Jakub Jelinek <jakub@redhat.com> PR libgcc/113604 * libgcc2.c (__divmodbitint4): If uv1 >= vv1, subtract vv1 from uv1:uv0 once or twice as needed, rather than subtracting vv1:vv1. * gcc.dg/torture/bitint-53.c: New test. * gcc.dg/torture/bitint-55.c: New test.
3174 lines
72 KiB
C
3174 lines
72 KiB
C
/* More subroutines needed by GCC output code on some machines. */
|
||
/* Compile this one with gcc. */
|
||
/* Copyright (C) 1989-2024 Free Software Foundation, Inc.
|
||
|
||
This file is part of GCC.
|
||
|
||
GCC is free software; you can redistribute it and/or modify it under
|
||
the terms of the GNU General Public License as published by the Free
|
||
Software Foundation; either version 3, or (at your option) any later
|
||
version.
|
||
|
||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||
for more details.
|
||
|
||
Under Section 7 of GPL version 3, you are granted additional
|
||
permissions described in the GCC Runtime Library Exception, version
|
||
3.1, as published by the Free Software Foundation.
|
||
|
||
You should have received a copy of the GNU General Public License and
|
||
a copy of the GCC Runtime Library Exception along with this program;
|
||
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
|
||
<http://www.gnu.org/licenses/>. */
|
||
|
||
#include "tconfig.h"
|
||
#include "tsystem.h"
|
||
#include "coretypes.h"
|
||
#include "tm.h"
|
||
#include "libgcc_tm.h"
|
||
|
||
#ifdef HAVE_GAS_HIDDEN
|
||
#define ATTRIBUTE_HIDDEN __attribute__ ((__visibility__ ("hidden")))
|
||
#else
|
||
#define ATTRIBUTE_HIDDEN
|
||
#endif
|
||
|
||
/* Work out the largest "word" size that we can deal with on this target. */
|
||
#if MIN_UNITS_PER_WORD > 4
|
||
# define LIBGCC2_MAX_UNITS_PER_WORD 8
|
||
#elif (MIN_UNITS_PER_WORD > 2 \
|
||
|| (MIN_UNITS_PER_WORD > 1 && __SIZEOF_LONG_LONG__ > 4))
|
||
# define LIBGCC2_MAX_UNITS_PER_WORD 4
|
||
#else
|
||
# define LIBGCC2_MAX_UNITS_PER_WORD MIN_UNITS_PER_WORD
|
||
#endif
|
||
|
||
/* Work out what word size we are using for this compilation.
|
||
The value can be set on the command line. */
|
||
#ifndef LIBGCC2_UNITS_PER_WORD
|
||
#define LIBGCC2_UNITS_PER_WORD LIBGCC2_MAX_UNITS_PER_WORD
|
||
#endif
|
||
|
||
#if LIBGCC2_UNITS_PER_WORD <= LIBGCC2_MAX_UNITS_PER_WORD
|
||
|
||
#include "libgcc2.h"
|
||
|
||
#ifdef DECLARE_LIBRARY_RENAMES
|
||
DECLARE_LIBRARY_RENAMES
|
||
#endif
|
||
|
||
#if defined (L_negdi2)
|
||
DWtype
|
||
__negdi2 (DWtype u)
|
||
{
|
||
const DWunion uu = {.ll = u};
|
||
const DWunion w = { {.low = -uu.s.low,
|
||
.high = -uu.s.high - ((UWtype) -uu.s.low > 0) } };
|
||
|
||
return w.ll;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_addvsi3
|
||
Wtype
|
||
__addvSI3 (Wtype a, Wtype b)
|
||
{
|
||
Wtype w;
|
||
|
||
if (__builtin_add_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
|
||
SItype
|
||
__addvsi3 (SItype a, SItype b)
|
||
{
|
||
SItype w;
|
||
|
||
if (__builtin_add_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
|
||
#endif
|
||
|
||
#ifdef L_addvdi3
|
||
DWtype
|
||
__addvDI3 (DWtype a, DWtype b)
|
||
{
|
||
DWtype w;
|
||
|
||
if (__builtin_add_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_subvsi3
|
||
Wtype
|
||
__subvSI3 (Wtype a, Wtype b)
|
||
{
|
||
Wtype w;
|
||
|
||
if (__builtin_sub_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
|
||
SItype
|
||
__subvsi3 (SItype a, SItype b)
|
||
{
|
||
SItype w;
|
||
|
||
if (__builtin_sub_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
|
||
#endif
|
||
|
||
#ifdef L_subvdi3
|
||
DWtype
|
||
__subvDI3 (DWtype a, DWtype b)
|
||
{
|
||
DWtype w;
|
||
|
||
if (__builtin_sub_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_mulvsi3
|
||
Wtype
|
||
__mulvSI3 (Wtype a, Wtype b)
|
||
{
|
||
Wtype w;
|
||
|
||
if (__builtin_mul_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
|
||
SItype
|
||
__mulvsi3 (SItype a, SItype b)
|
||
{
|
||
SItype w;
|
||
|
||
if (__builtin_mul_overflow (a, b, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
|
||
#endif
|
||
|
||
#ifdef L_negvsi2
|
||
Wtype
|
||
__negvSI2 (Wtype a)
|
||
{
|
||
Wtype w;
|
||
|
||
if (__builtin_sub_overflow (0, a, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
|
||
SItype
|
||
__negvsi2 (SItype a)
|
||
{
|
||
SItype w;
|
||
|
||
if (__builtin_sub_overflow (0, a, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
|
||
#endif
|
||
|
||
#ifdef L_negvdi2
|
||
DWtype
|
||
__negvDI2 (DWtype a)
|
||
{
|
||
DWtype w;
|
||
|
||
if (__builtin_sub_overflow (0, a, &w))
|
||
abort ();
|
||
|
||
return w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_absvsi2
|
||
Wtype
|
||
__absvSI2 (Wtype a)
|
||
{
|
||
const Wtype v = 0 - (a < 0);
|
||
Wtype w;
|
||
|
||
if (__builtin_add_overflow (a, v, &w))
|
||
abort ();
|
||
|
||
return v ^ w;
|
||
}
|
||
#ifdef COMPAT_SIMODE_TRAPPING_ARITHMETIC
|
||
SItype
|
||
__absvsi2 (SItype a)
|
||
{
|
||
const SItype v = 0 - (a < 0);
|
||
SItype w;
|
||
|
||
if (__builtin_add_overflow (a, v, &w))
|
||
abort ();
|
||
|
||
return v ^ w;
|
||
}
|
||
#endif /* COMPAT_SIMODE_TRAPPING_ARITHMETIC */
|
||
#endif
|
||
|
||
#ifdef L_absvdi2
|
||
DWtype
|
||
__absvDI2 (DWtype a)
|
||
{
|
||
const DWtype v = 0 - (a < 0);
|
||
DWtype w;
|
||
|
||
if (__builtin_add_overflow (a, v, &w))
|
||
abort ();
|
||
|
||
return v ^ w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_mulvdi3
|
||
DWtype
|
||
__mulvDI3 (DWtype u, DWtype v)
|
||
{
|
||
/* The unchecked multiplication needs 3 Wtype x Wtype multiplications,
|
||
but the checked multiplication needs only two. */
|
||
const DWunion uu = {.ll = u};
|
||
const DWunion vv = {.ll = v};
|
||
|
||
if (__builtin_expect (uu.s.high == uu.s.low >> (W_TYPE_SIZE - 1), 1))
|
||
{
|
||
/* u fits in a single Wtype. */
|
||
if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
|
||
{
|
||
/* v fits in a single Wtype as well. */
|
||
/* A single multiplication. No overflow risk. */
|
||
return (DWtype) uu.s.low * (DWtype) vv.s.low;
|
||
}
|
||
else
|
||
{
|
||
/* Two multiplications. */
|
||
DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
|
||
* (UDWtype) (UWtype) vv.s.low};
|
||
DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.low
|
||
* (UDWtype) (UWtype) vv.s.high};
|
||
|
||
if (vv.s.high < 0)
|
||
w1.s.high -= uu.s.low;
|
||
if (uu.s.low < 0)
|
||
w1.ll -= vv.ll;
|
||
w1.ll += (UWtype) w0.s.high;
|
||
if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
|
||
{
|
||
w0.s.high = w1.s.low;
|
||
return w0.ll;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (__builtin_expect (vv.s.high == vv.s.low >> (W_TYPE_SIZE - 1), 1))
|
||
{
|
||
/* v fits into a single Wtype. */
|
||
/* Two multiplications. */
|
||
DWunion w0 = {.ll = (UDWtype) (UWtype) uu.s.low
|
||
* (UDWtype) (UWtype) vv.s.low};
|
||
DWunion w1 = {.ll = (UDWtype) (UWtype) uu.s.high
|
||
* (UDWtype) (UWtype) vv.s.low};
|
||
|
||
if (uu.s.high < 0)
|
||
w1.s.high -= vv.s.low;
|
||
if (vv.s.low < 0)
|
||
w1.ll -= uu.ll;
|
||
w1.ll += (UWtype) w0.s.high;
|
||
if (__builtin_expect (w1.s.high == w1.s.low >> (W_TYPE_SIZE - 1), 1))
|
||
{
|
||
w0.s.high = w1.s.low;
|
||
return w0.ll;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* A few sign checks and a single multiplication. */
|
||
if (uu.s.high >= 0)
|
||
{
|
||
if (vv.s.high >= 0)
|
||
{
|
||
if (uu.s.high == 0 && vv.s.high == 0)
|
||
{
|
||
const DWtype w = (UDWtype) (UWtype) uu.s.low
|
||
* (UDWtype) (UWtype) vv.s.low;
|
||
if (__builtin_expect (w >= 0, 1))
|
||
return w;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (uu.s.high == 0 && vv.s.high == (Wtype) -1)
|
||
{
|
||
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
|
||
* (UDWtype) (UWtype) vv.s.low};
|
||
|
||
ww.s.high -= uu.s.low;
|
||
if (__builtin_expect (ww.s.high < 0, 1))
|
||
return ww.ll;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (vv.s.high >= 0)
|
||
{
|
||
if (uu.s.high == (Wtype) -1 && vv.s.high == 0)
|
||
{
|
||
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
|
||
* (UDWtype) (UWtype) vv.s.low};
|
||
|
||
ww.s.high -= vv.s.low;
|
||
if (__builtin_expect (ww.s.high < 0, 1))
|
||
return ww.ll;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if ((uu.s.high & vv.s.high) == (Wtype) -1
|
||
&& (uu.s.low | vv.s.low) != 0)
|
||
{
|
||
DWunion ww = {.ll = (UDWtype) (UWtype) uu.s.low
|
||
* (UDWtype) (UWtype) vv.s.low};
|
||
|
||
ww.s.high -= uu.s.low;
|
||
ww.s.high -= vv.s.low;
|
||
if (__builtin_expect (ww.s.high >= 0, 1))
|
||
return ww.ll;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Overflow. */
|
||
abort ();
|
||
}
|
||
#endif
|
||
|
||
|
||
/* Unless shift functions are defined with full ANSI prototypes,
|
||
parameter b will be promoted to int if shift_count_type is smaller than an int. */
|
||
#ifdef L_lshrdi3
|
||
DWtype
|
||
__lshrdi3 (DWtype u, shift_count_type b)
|
||
{
|
||
if (b == 0)
|
||
return u;
|
||
|
||
const DWunion uu = {.ll = u};
|
||
const shift_count_type bm = W_TYPE_SIZE - b;
|
||
DWunion w;
|
||
|
||
if (bm <= 0)
|
||
{
|
||
w.s.high = 0;
|
||
w.s.low = (UWtype) uu.s.high >> -bm;
|
||
}
|
||
else
|
||
{
|
||
const UWtype carries = (UWtype) uu.s.high << bm;
|
||
|
||
w.s.high = (UWtype) uu.s.high >> b;
|
||
w.s.low = ((UWtype) uu.s.low >> b) | carries;
|
||
}
|
||
|
||
return w.ll;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_ashldi3
|
||
DWtype
|
||
__ashldi3 (DWtype u, shift_count_type b)
|
||
{
|
||
if (b == 0)
|
||
return u;
|
||
|
||
const DWunion uu = {.ll = u};
|
||
const shift_count_type bm = W_TYPE_SIZE - b;
|
||
DWunion w;
|
||
|
||
if (bm <= 0)
|
||
{
|
||
w.s.low = 0;
|
||
w.s.high = (UWtype) uu.s.low << -bm;
|
||
}
|
||
else
|
||
{
|
||
const UWtype carries = (UWtype) uu.s.low >> bm;
|
||
|
||
w.s.low = (UWtype) uu.s.low << b;
|
||
w.s.high = ((UWtype) uu.s.high << b) | carries;
|
||
}
|
||
|
||
return w.ll;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_ashrdi3
|
||
DWtype
|
||
__ashrdi3 (DWtype u, shift_count_type b)
|
||
{
|
||
if (b == 0)
|
||
return u;
|
||
|
||
const DWunion uu = {.ll = u};
|
||
const shift_count_type bm = W_TYPE_SIZE - b;
|
||
DWunion w;
|
||
|
||
if (bm <= 0)
|
||
{
|
||
/* w.s.high = 1..1 or 0..0 */
|
||
w.s.high = uu.s.high >> (W_TYPE_SIZE - 1);
|
||
w.s.low = uu.s.high >> -bm;
|
||
}
|
||
else
|
||
{
|
||
const UWtype carries = (UWtype) uu.s.high << bm;
|
||
|
||
w.s.high = uu.s.high >> b;
|
||
w.s.low = ((UWtype) uu.s.low >> b) | carries;
|
||
}
|
||
|
||
return w.ll;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_bswapsi2
|
||
SItype
|
||
__bswapsi2 (SItype u)
|
||
{
|
||
return ((((u) & 0xff000000u) >> 24)
|
||
| (((u) & 0x00ff0000u) >> 8)
|
||
| (((u) & 0x0000ff00u) << 8)
|
||
| (((u) & 0x000000ffu) << 24));
|
||
}
|
||
#endif
|
||
#ifdef L_bswapdi2
|
||
DItype
|
||
__bswapdi2 (DItype u)
|
||
{
|
||
return ((((u) & 0xff00000000000000ull) >> 56)
|
||
| (((u) & 0x00ff000000000000ull) >> 40)
|
||
| (((u) & 0x0000ff0000000000ull) >> 24)
|
||
| (((u) & 0x000000ff00000000ull) >> 8)
|
||
| (((u) & 0x00000000ff000000ull) << 8)
|
||
| (((u) & 0x0000000000ff0000ull) << 24)
|
||
| (((u) & 0x000000000000ff00ull) << 40)
|
||
| (((u) & 0x00000000000000ffull) << 56));
|
||
}
|
||
#endif
|
||
#ifdef L_ffssi2
|
||
#undef int
|
||
int
|
||
__ffsSI2 (UWtype u)
|
||
{
|
||
UWtype count;
|
||
|
||
if (u == 0)
|
||
return 0;
|
||
|
||
count_trailing_zeros (count, u);
|
||
return count + 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_ffsdi2
|
||
#undef int
|
||
int
|
||
__ffsDI2 (DWtype u)
|
||
{
|
||
const DWunion uu = {.ll = u};
|
||
UWtype word, count, add;
|
||
|
||
if (uu.s.low != 0)
|
||
word = uu.s.low, add = 0;
|
||
else if (uu.s.high != 0)
|
||
word = uu.s.high, add = W_TYPE_SIZE;
|
||
else
|
||
return 0;
|
||
|
||
count_trailing_zeros (count, word);
|
||
return count + add + 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_muldi3
|
||
DWtype
|
||
__muldi3 (DWtype u, DWtype v)
|
||
{
|
||
const DWunion uu = {.ll = u};
|
||
const DWunion vv = {.ll = v};
|
||
DWunion w = {.ll = __umulsidi3 (uu.s.low, vv.s.low)};
|
||
|
||
w.s.high += ((UWtype) uu.s.low * (UWtype) vv.s.high
|
||
+ (UWtype) uu.s.high * (UWtype) vv.s.low);
|
||
|
||
return w.ll;
|
||
}
|
||
#endif
|
||
|
||
#if (defined (L_udivdi3) || defined (L_divdi3) || \
|
||
defined (L_umoddi3) || defined (L_moddi3))
|
||
#if defined (sdiv_qrnnd)
|
||
#define L_udiv_w_sdiv
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef L_udiv_w_sdiv
|
||
#if defined (sdiv_qrnnd)
|
||
#if (defined (L_udivdi3) || defined (L_divdi3) || \
|
||
defined (L_umoddi3) || defined (L_moddi3))
|
||
static inline __attribute__ ((__always_inline__))
|
||
#endif
|
||
UWtype
|
||
__udiv_w_sdiv (UWtype *rp, UWtype a1, UWtype a0, UWtype d)
|
||
{
|
||
UWtype q, r;
|
||
UWtype c0, c1, b1;
|
||
|
||
if ((Wtype) d >= 0)
|
||
{
|
||
if (a1 < d - a1 - (a0 >> (W_TYPE_SIZE - 1)))
|
||
{
|
||
/* Dividend, divisor, and quotient are nonnegative. */
|
||
sdiv_qrnnd (q, r, a1, a0, d);
|
||
}
|
||
else
|
||
{
|
||
/* Compute c1*2^32 + c0 = a1*2^32 + a0 - 2^31*d. */
|
||
sub_ddmmss (c1, c0, a1, a0, d >> 1, d << (W_TYPE_SIZE - 1));
|
||
/* Divide (c1*2^32 + c0) by d. */
|
||
sdiv_qrnnd (q, r, c1, c0, d);
|
||
/* Add 2^31 to quotient. */
|
||
q += (UWtype) 1 << (W_TYPE_SIZE - 1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
b1 = d >> 1; /* d/2, between 2^30 and 2^31 - 1 */
|
||
c1 = a1 >> 1; /* A/2 */
|
||
c0 = (a1 << (W_TYPE_SIZE - 1)) + (a0 >> 1);
|
||
|
||
if (a1 < b1) /* A < 2^32*b1, so A/2 < 2^31*b1 */
|
||
{
|
||
sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
|
||
|
||
r = 2*r + (a0 & 1); /* Remainder from A/(2*b1) */
|
||
if ((d & 1) != 0)
|
||
{
|
||
if (r >= q)
|
||
r = r - q;
|
||
else if (q - r <= d)
|
||
{
|
||
r = r - q + d;
|
||
q--;
|
||
}
|
||
else
|
||
{
|
||
r = r - q + 2*d;
|
||
q -= 2;
|
||
}
|
||
}
|
||
}
|
||
else if (c1 < b1) /* So 2^31 <= (A/2)/b1 < 2^32 */
|
||
{
|
||
c1 = (b1 - 1) - c1;
|
||
c0 = ~c0; /* logical NOT */
|
||
|
||
sdiv_qrnnd (q, r, c1, c0, b1); /* (A/2) / (d/2) */
|
||
|
||
q = ~q; /* (A/2)/b1 */
|
||
r = (b1 - 1) - r;
|
||
|
||
r = 2*r + (a0 & 1); /* A/(2*b1) */
|
||
|
||
if ((d & 1) != 0)
|
||
{
|
||
if (r >= q)
|
||
r = r - q;
|
||
else if (q - r <= d)
|
||
{
|
||
r = r - q + d;
|
||
q--;
|
||
}
|
||
else
|
||
{
|
||
r = r - q + 2*d;
|
||
q -= 2;
|
||
}
|
||
}
|
||
}
|
||
else /* Implies c1 = b1 */
|
||
{ /* Hence a1 = d - 1 = 2*b1 - 1 */
|
||
if (a0 >= -d)
|
||
{
|
||
q = -1;
|
||
r = a0 + d;
|
||
}
|
||
else
|
||
{
|
||
q = -2;
|
||
r = a0 + 2*d;
|
||
}
|
||
}
|
||
}
|
||
|
||
*rp = r;
|
||
return q;
|
||
}
|
||
#else
|
||
/* If sdiv_qrnnd doesn't exist, define dummy __udiv_w_sdiv. */
|
||
UWtype
|
||
__udiv_w_sdiv (UWtype *rp __attribute__ ((__unused__)),
|
||
UWtype a1 __attribute__ ((__unused__)),
|
||
UWtype a0 __attribute__ ((__unused__)),
|
||
UWtype d __attribute__ ((__unused__)))
|
||
{
|
||
return 0;
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#if (defined (L_udivdi3) || defined (L_divdi3) || \
|
||
defined (L_umoddi3) || defined (L_moddi3) || \
|
||
defined (L_divmoddi4))
|
||
#define L_udivmoddi4
|
||
#endif
|
||
|
||
#ifdef L_clz
|
||
const UQItype __clz_tab[256] =
|
||
{
|
||
0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,
|
||
6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,
|
||
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
||
7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
|
||
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8
|
||
};
|
||
#endif
|
||
|
||
#ifdef L_clzsi2
|
||
#undef int
|
||
int
|
||
__clzSI2 (UWtype x)
|
||
{
|
||
Wtype ret;
|
||
|
||
count_leading_zeros (ret, x);
|
||
|
||
return ret;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_clzdi2
|
||
#undef int
|
||
int
|
||
__clzDI2 (UDWtype x)
|
||
{
|
||
const DWunion uu = {.ll = x};
|
||
UWtype word;
|
||
Wtype ret, add;
|
||
|
||
if (uu.s.high)
|
||
word = uu.s.high, add = 0;
|
||
else
|
||
word = uu.s.low, add = W_TYPE_SIZE;
|
||
|
||
count_leading_zeros (ret, word);
|
||
return ret + add;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_ctzsi2
|
||
#undef int
|
||
int
|
||
__ctzSI2 (UWtype x)
|
||
{
|
||
Wtype ret;
|
||
|
||
count_trailing_zeros (ret, x);
|
||
|
||
return ret;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_ctzdi2
|
||
#undef int
|
||
int
|
||
__ctzDI2 (UDWtype x)
|
||
{
|
||
const DWunion uu = {.ll = x};
|
||
UWtype word;
|
||
Wtype ret, add;
|
||
|
||
if (uu.s.low)
|
||
word = uu.s.low, add = 0;
|
||
else
|
||
word = uu.s.high, add = W_TYPE_SIZE;
|
||
|
||
count_trailing_zeros (ret, word);
|
||
return ret + add;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_clrsbsi2
|
||
#undef int
|
||
int
|
||
__clrsbSI2 (Wtype x)
|
||
{
|
||
Wtype ret;
|
||
|
||
if (x < 0)
|
||
x = ~x;
|
||
if (x == 0)
|
||
return W_TYPE_SIZE - 1;
|
||
count_leading_zeros (ret, x);
|
||
return ret - 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_clrsbdi2
|
||
#undef int
|
||
int
|
||
__clrsbDI2 (DWtype x)
|
||
{
|
||
const DWunion uu = {.ll = x};
|
||
UWtype word;
|
||
Wtype ret, add;
|
||
|
||
if (uu.s.high == 0)
|
||
word = uu.s.low, add = W_TYPE_SIZE;
|
||
else if (uu.s.high == -1)
|
||
word = ~uu.s.low, add = W_TYPE_SIZE;
|
||
else if (uu.s.high >= 0)
|
||
word = uu.s.high, add = 0;
|
||
else
|
||
word = ~uu.s.high, add = 0;
|
||
|
||
if (word == 0)
|
||
ret = W_TYPE_SIZE;
|
||
else
|
||
count_leading_zeros (ret, word);
|
||
|
||
return ret + add - 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_popcount_tab
|
||
const UQItype __popcount_tab[256] =
|
||
{
|
||
0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4,1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,
|
||
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
|
||
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
|
||
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
|
||
1,2,2,3,2,3,3,4,2,3,3,4,3,4,4,5,2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,
|
||
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
|
||
2,3,3,4,3,4,4,5,3,4,4,5,4,5,5,6,3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,
|
||
3,4,4,5,4,5,5,6,4,5,5,6,5,6,6,7,4,5,5,6,5,6,6,7,5,6,6,7,6,7,7,8
|
||
};
|
||
#endif
|
||
|
||
#if defined(L_popcountsi2) || defined(L_popcountdi2)
|
||
#define POPCOUNTCST2(x) (((UWtype) x << __CHAR_BIT__) | x)
|
||
#define POPCOUNTCST4(x) (((UWtype) x << (2 * __CHAR_BIT__)) | x)
|
||
#define POPCOUNTCST8(x) (((UWtype) x << (4 * __CHAR_BIT__)) | x)
|
||
#if W_TYPE_SIZE == __CHAR_BIT__
|
||
#define POPCOUNTCST(x) x
|
||
#elif W_TYPE_SIZE == 2 * __CHAR_BIT__
|
||
#define POPCOUNTCST(x) POPCOUNTCST2 (x)
|
||
#elif W_TYPE_SIZE == 4 * __CHAR_BIT__
|
||
#define POPCOUNTCST(x) POPCOUNTCST4 (POPCOUNTCST2 (x))
|
||
#elif W_TYPE_SIZE == 8 * __CHAR_BIT__
|
||
#define POPCOUNTCST(x) POPCOUNTCST8 (POPCOUNTCST4 (POPCOUNTCST2 (x)))
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef L_popcountsi2
|
||
#undef int
|
||
int
|
||
__popcountSI2 (UWtype x)
|
||
{
|
||
/* Force table lookup on targets like AVR and RL78 which only
|
||
pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
|
||
have 1, and other small word targets. */
|
||
#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
|
||
x = x - ((x >> 1) & POPCOUNTCST (0x55));
|
||
x = (x & POPCOUNTCST (0x33)) + ((x >> 2) & POPCOUNTCST (0x33));
|
||
x = (x + (x >> 4)) & POPCOUNTCST (0x0F);
|
||
return (x * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
|
||
#else
|
||
int i, ret = 0;
|
||
|
||
for (i = 0; i < W_TYPE_SIZE; i += 8)
|
||
ret += __popcount_tab[(x >> i) & 0xff];
|
||
|
||
return ret;
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_popcountdi2
|
||
#undef int
|
||
int
|
||
__popcountDI2 (UDWtype x)
|
||
{
|
||
/* Force table lookup on targets like AVR and RL78 which only
|
||
pretend they have LIBGCC2_UNITS_PER_WORD 4, but actually
|
||
have 1, and other small word targets. */
|
||
#if __SIZEOF_INT__ > 2 && defined (POPCOUNTCST) && __CHAR_BIT__ == 8
|
||
const DWunion uu = {.ll = x};
|
||
UWtype x1 = uu.s.low, x2 = uu.s.high;
|
||
x1 = x1 - ((x1 >> 1) & POPCOUNTCST (0x55));
|
||
x2 = x2 - ((x2 >> 1) & POPCOUNTCST (0x55));
|
||
x1 = (x1 & POPCOUNTCST (0x33)) + ((x1 >> 2) & POPCOUNTCST (0x33));
|
||
x2 = (x2 & POPCOUNTCST (0x33)) + ((x2 >> 2) & POPCOUNTCST (0x33));
|
||
x1 = (x1 + (x1 >> 4)) & POPCOUNTCST (0x0F);
|
||
x2 = (x2 + (x2 >> 4)) & POPCOUNTCST (0x0F);
|
||
x1 += x2;
|
||
return (x1 * POPCOUNTCST (0x01)) >> (W_TYPE_SIZE - __CHAR_BIT__);
|
||
#else
|
||
int i, ret = 0;
|
||
|
||
for (i = 0; i < 2*W_TYPE_SIZE; i += 8)
|
||
ret += __popcount_tab[(x >> i) & 0xff];
|
||
|
||
return ret;
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_paritysi2
|
||
#undef int
|
||
int
|
||
__paritySI2 (UWtype x)
|
||
{
|
||
#if W_TYPE_SIZE > 64
|
||
# error "fill out the table"
|
||
#endif
|
||
#if W_TYPE_SIZE > 32
|
||
x ^= x >> 32;
|
||
#endif
|
||
#if W_TYPE_SIZE > 16
|
||
x ^= x >> 16;
|
||
#endif
|
||
x ^= x >> 8;
|
||
x ^= x >> 4;
|
||
x &= 0xf;
|
||
return (0x6996 >> x) & 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_paritydi2
|
||
#undef int
|
||
int
|
||
__parityDI2 (UDWtype x)
|
||
{
|
||
const DWunion uu = {.ll = x};
|
||
UWtype nx = uu.s.low ^ uu.s.high;
|
||
|
||
#if W_TYPE_SIZE > 64
|
||
# error "fill out the table"
|
||
#endif
|
||
#if W_TYPE_SIZE > 32
|
||
nx ^= nx >> 32;
|
||
#endif
|
||
#if W_TYPE_SIZE > 16
|
||
nx ^= nx >> 16;
|
||
#endif
|
||
nx ^= nx >> 8;
|
||
nx ^= nx >> 4;
|
||
nx &= 0xf;
|
||
return (0x6996 >> nx) & 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_udivmoddi4
|
||
#ifdef TARGET_HAS_NO_HW_DIVIDE
|
||
|
||
#if (defined (L_udivdi3) || defined (L_divdi3) || \
|
||
defined (L_umoddi3) || defined (L_moddi3) || \
|
||
defined (L_divmoddi4))
|
||
static inline __attribute__ ((__always_inline__))
|
||
#endif
|
||
UDWtype
|
||
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
|
||
{
|
||
UDWtype q = 0, r = n, y = d;
|
||
UWtype lz1, lz2, i, k;
|
||
|
||
/* Implements align divisor shift dividend method. This algorithm
|
||
aligns the divisor under the dividend and then perform number of
|
||
test-subtract iterations which shift the dividend left. Number of
|
||
iterations is k + 1 where k is the number of bit positions the
|
||
divisor must be shifted left to align it under the dividend.
|
||
quotient bits can be saved in the rightmost positions of the dividend
|
||
as it shifts left on each test-subtract iteration. */
|
||
|
||
if (y <= r)
|
||
{
|
||
lz1 = __builtin_clzll (d);
|
||
lz2 = __builtin_clzll (n);
|
||
|
||
k = lz1 - lz2;
|
||
y = (y << k);
|
||
|
||
/* Dividend can exceed 2 ^ (width - 1) - 1 but still be less than the
|
||
aligned divisor. Normal iteration can drops the high order bit
|
||
of the dividend. Therefore, first test-subtract iteration is a
|
||
special case, saving its quotient bit in a separate location and
|
||
not shifting the dividend. */
|
||
if (r >= y)
|
||
{
|
||
r = r - y;
|
||
q = (1ULL << k);
|
||
}
|
||
|
||
if (k > 0)
|
||
{
|
||
y = y >> 1;
|
||
|
||
/* k additional iterations where k regular test subtract shift
|
||
dividend iterations are done. */
|
||
i = k;
|
||
do
|
||
{
|
||
if (r >= y)
|
||
r = ((r - y) << 1) + 1;
|
||
else
|
||
r = (r << 1);
|
||
i = i - 1;
|
||
} while (i != 0);
|
||
|
||
/* First quotient bit is combined with the quotient bits resulting
|
||
from the k regular iterations. */
|
||
q = q + r;
|
||
r = r >> k;
|
||
q = q - (r << k);
|
||
}
|
||
}
|
||
|
||
if (rp)
|
||
*rp = r;
|
||
return q;
|
||
}
|
||
#else
|
||
|
||
#if (defined (L_udivdi3) || defined (L_divdi3) || \
|
||
defined (L_umoddi3) || defined (L_moddi3) || \
|
||
defined (L_divmoddi4))
|
||
static inline __attribute__ ((__always_inline__))
|
||
#endif
|
||
UDWtype
|
||
__udivmoddi4 (UDWtype n, UDWtype d, UDWtype *rp)
|
||
{
|
||
const DWunion nn = {.ll = n};
|
||
const DWunion dd = {.ll = d};
|
||
DWunion rr;
|
||
UWtype d0, d1, n0, n1, n2;
|
||
UWtype q0, q1;
|
||
UWtype b, bm;
|
||
|
||
d0 = dd.s.low;
|
||
d1 = dd.s.high;
|
||
n0 = nn.s.low;
|
||
n1 = nn.s.high;
|
||
|
||
#if !UDIV_NEEDS_NORMALIZATION
|
||
if (d1 == 0)
|
||
{
|
||
if (d0 > n1)
|
||
{
|
||
/* 0q = nn / 0D */
|
||
|
||
udiv_qrnnd (q0, n0, n1, n0, d0);
|
||
q1 = 0;
|
||
|
||
/* Remainder in n0. */
|
||
}
|
||
else
|
||
{
|
||
/* qq = NN / 0d */
|
||
|
||
if (d0 == 0)
|
||
d0 = 1 / d0; /* Divide intentionally by zero. */
|
||
|
||
udiv_qrnnd (q1, n1, 0, n1, d0);
|
||
udiv_qrnnd (q0, n0, n1, n0, d0);
|
||
|
||
/* Remainder in n0. */
|
||
}
|
||
|
||
if (rp != 0)
|
||
{
|
||
rr.s.low = n0;
|
||
rr.s.high = 0;
|
||
*rp = rr.ll;
|
||
}
|
||
}
|
||
|
||
#else /* UDIV_NEEDS_NORMALIZATION */
|
||
|
||
if (d1 == 0)
|
||
{
|
||
if (d0 > n1)
|
||
{
|
||
/* 0q = nn / 0D */
|
||
|
||
count_leading_zeros (bm, d0);
|
||
|
||
if (bm != 0)
|
||
{
|
||
/* Normalize, i.e. make the most significant bit of the
|
||
denominator set. */
|
||
|
||
d0 = d0 << bm;
|
||
n1 = (n1 << bm) | (n0 >> (W_TYPE_SIZE - bm));
|
||
n0 = n0 << bm;
|
||
}
|
||
|
||
udiv_qrnnd (q0, n0, n1, n0, d0);
|
||
q1 = 0;
|
||
|
||
/* Remainder in n0 >> bm. */
|
||
}
|
||
else
|
||
{
|
||
/* qq = NN / 0d */
|
||
|
||
if (d0 == 0)
|
||
d0 = 1 / d0; /* Divide intentionally by zero. */
|
||
|
||
count_leading_zeros (bm, d0);
|
||
|
||
if (bm == 0)
|
||
{
|
||
/* From (n1 >= d0) /\ (the most significant bit of d0 is set),
|
||
conclude (the most significant bit of n1 is set) /\ (the
|
||
leading quotient digit q1 = 1).
|
||
|
||
This special case is necessary, not an optimization.
|
||
(Shifts counts of W_TYPE_SIZE are undefined.) */
|
||
|
||
n1 -= d0;
|
||
q1 = 1;
|
||
}
|
||
else
|
||
{
|
||
/* Normalize. */
|
||
|
||
b = W_TYPE_SIZE - bm;
|
||
|
||
d0 = d0 << bm;
|
||
n2 = n1 >> b;
|
||
n1 = (n1 << bm) | (n0 >> b);
|
||
n0 = n0 << bm;
|
||
|
||
udiv_qrnnd (q1, n1, n2, n1, d0);
|
||
}
|
||
|
||
/* n1 != d0... */
|
||
|
||
udiv_qrnnd (q0, n0, n1, n0, d0);
|
||
|
||
/* Remainder in n0 >> bm. */
|
||
}
|
||
|
||
if (rp != 0)
|
||
{
|
||
rr.s.low = n0 >> bm;
|
||
rr.s.high = 0;
|
||
*rp = rr.ll;
|
||
}
|
||
}
|
||
#endif /* UDIV_NEEDS_NORMALIZATION */
|
||
|
||
else
|
||
{
|
||
if (d1 > n1)
|
||
{
|
||
/* 00 = nn / DD */
|
||
|
||
q0 = 0;
|
||
q1 = 0;
|
||
|
||
/* Remainder in n1n0. */
|
||
if (rp != 0)
|
||
{
|
||
rr.s.low = n0;
|
||
rr.s.high = n1;
|
||
*rp = rr.ll;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* 0q = NN / dd */
|
||
|
||
count_leading_zeros (bm, d1);
|
||
if (bm == 0)
|
||
{
|
||
/* From (n1 >= d1) /\ (the most significant bit of d1 is set),
|
||
conclude (the most significant bit of n1 is set) /\ (the
|
||
quotient digit q0 = 0 or 1).
|
||
|
||
This special case is necessary, not an optimization. */
|
||
|
||
/* The condition on the next line takes advantage of that
|
||
n1 >= d1 (true due to program flow). */
|
||
if (n1 > d1 || n0 >= d0)
|
||
{
|
||
q0 = 1;
|
||
sub_ddmmss (n1, n0, n1, n0, d1, d0);
|
||
}
|
||
else
|
||
q0 = 0;
|
||
|
||
q1 = 0;
|
||
|
||
if (rp != 0)
|
||
{
|
||
rr.s.low = n0;
|
||
rr.s.high = n1;
|
||
*rp = rr.ll;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
UWtype m1, m0;
|
||
/* Normalize. */
|
||
|
||
b = W_TYPE_SIZE - bm;
|
||
|
||
d1 = (d1 << bm) | (d0 >> b);
|
||
d0 = d0 << bm;
|
||
n2 = n1 >> b;
|
||
n1 = (n1 << bm) | (n0 >> b);
|
||
n0 = n0 << bm;
|
||
|
||
udiv_qrnnd (q0, n1, n2, n1, d1);
|
||
umul_ppmm (m1, m0, q0, d0);
|
||
|
||
if (m1 > n1 || (m1 == n1 && m0 > n0))
|
||
{
|
||
q0--;
|
||
sub_ddmmss (m1, m0, m1, m0, d1, d0);
|
||
}
|
||
|
||
q1 = 0;
|
||
|
||
/* Remainder in (n1n0 - m1m0) >> bm. */
|
||
if (rp != 0)
|
||
{
|
||
sub_ddmmss (n1, n0, n1, n0, m1, m0);
|
||
rr.s.low = (n1 << b) | (n0 >> bm);
|
||
rr.s.high = n1 >> bm;
|
||
*rp = rr.ll;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
const DWunion ww = {{.low = q0, .high = q1}};
|
||
return ww.ll;
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef L_divdi3
|
||
DWtype
|
||
__divdi3 (DWtype u, DWtype v)
|
||
{
|
||
Wtype c = 0;
|
||
DWunion uu = {.ll = u};
|
||
DWunion vv = {.ll = v};
|
||
DWtype w;
|
||
|
||
if (uu.s.high < 0)
|
||
c = ~c,
|
||
uu.ll = -uu.ll;
|
||
if (vv.s.high < 0)
|
||
c = ~c,
|
||
vv.ll = -vv.ll;
|
||
|
||
w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype *) 0);
|
||
if (c)
|
||
w = -w;
|
||
|
||
return w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_moddi3
|
||
DWtype
|
||
__moddi3 (DWtype u, DWtype v)
|
||
{
|
||
Wtype c = 0;
|
||
DWunion uu = {.ll = u};
|
||
DWunion vv = {.ll = v};
|
||
DWtype w;
|
||
|
||
if (uu.s.high < 0)
|
||
c = ~c,
|
||
uu.ll = -uu.ll;
|
||
if (vv.s.high < 0)
|
||
vv.ll = -vv.ll;
|
||
|
||
(void) __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&w);
|
||
if (c)
|
||
w = -w;
|
||
|
||
return w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_divmoddi4
|
||
DWtype
|
||
__divmoddi4 (DWtype u, DWtype v, DWtype *rp)
|
||
{
|
||
Wtype c1 = 0, c2 = 0;
|
||
DWunion uu = {.ll = u};
|
||
DWunion vv = {.ll = v};
|
||
DWtype w;
|
||
DWtype r;
|
||
|
||
if (uu.s.high < 0)
|
||
c1 = ~c1, c2 = ~c2,
|
||
uu.ll = -uu.ll;
|
||
if (vv.s.high < 0)
|
||
c1 = ~c1,
|
||
vv.ll = -vv.ll;
|
||
|
||
w = __udivmoddi4 (uu.ll, vv.ll, (UDWtype*)&r);
|
||
if (c1)
|
||
w = -w;
|
||
if (c2)
|
||
r = -r;
|
||
|
||
*rp = r;
|
||
return w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_umoddi3
|
||
UDWtype
|
||
__umoddi3 (UDWtype u, UDWtype v)
|
||
{
|
||
UDWtype w;
|
||
|
||
(void) __udivmoddi4 (u, v, &w);
|
||
|
||
return w;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_udivdi3
|
||
UDWtype
|
||
__udivdi3 (UDWtype n, UDWtype d)
|
||
{
|
||
return __udivmoddi4 (n, d, (UDWtype *) 0);
|
||
}
|
||
#endif
|
||
|
||
#if (defined(__BITINT_MAXWIDTH__) \
|
||
&& (defined(L_mulbitint3) || defined(L_divmodbitint4)))
|
||
/* _BitInt support. */
|
||
|
||
/* If *P is zero or sign extended (the latter only for PREC < 0) from
|
||
some narrower _BitInt value, reduce precision. */
|
||
|
||
static inline __attribute__((__always_inline__)) SItype
|
||
bitint_reduce_prec (const UBILtype **p, SItype prec)
|
||
{
|
||
UWtype mslimb;
|
||
SItype i;
|
||
if (prec < 0)
|
||
{
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
i = 0;
|
||
#else
|
||
i = ((USItype) -1 - prec) / W_TYPE_SIZE;
|
||
#endif
|
||
mslimb = (*p)[i];
|
||
if (mslimb & ((UWtype) 1 << (((USItype) -1 - prec) % W_TYPE_SIZE)))
|
||
{
|
||
SItype n = ((USItype) -prec) % W_TYPE_SIZE;
|
||
if (n)
|
||
{
|
||
mslimb |= ((UWtype) -1 << (((USItype) -1 - prec) % W_TYPE_SIZE));
|
||
if (mslimb == (UWtype) -1)
|
||
{
|
||
prec += n;
|
||
if (prec >= -1)
|
||
return -2;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
++p;
|
||
#else
|
||
--i;
|
||
#endif
|
||
mslimb = (*p)[i];
|
||
n = 0;
|
||
}
|
||
}
|
||
while (mslimb == (UWtype) -1)
|
||
{
|
||
prec += W_TYPE_SIZE;
|
||
if (prec >= -1)
|
||
return -2;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
++p;
|
||
#else
|
||
--i;
|
||
#endif
|
||
mslimb = (*p)[i];
|
||
}
|
||
if (n == 0)
|
||
{
|
||
if ((Wtype) mslimb >= 0)
|
||
{
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
--p;
|
||
#endif
|
||
return prec - 1;
|
||
}
|
||
}
|
||
return prec;
|
||
}
|
||
else
|
||
prec = -prec;
|
||
}
|
||
else
|
||
{
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
i = 0;
|
||
#else
|
||
i = ((USItype) prec - 1) / W_TYPE_SIZE;
|
||
#endif
|
||
mslimb = (*p)[i];
|
||
}
|
||
SItype n = ((USItype) prec) % W_TYPE_SIZE;
|
||
if (n)
|
||
{
|
||
mslimb &= ((UWtype) 1 << (((USItype) prec) % W_TYPE_SIZE)) - 1;
|
||
if (mslimb == 0)
|
||
{
|
||
prec -= n;
|
||
if (prec == 0)
|
||
return 1;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
++p;
|
||
#else
|
||
--i;
|
||
#endif
|
||
mslimb = (*p)[i];
|
||
}
|
||
}
|
||
while (mslimb == 0)
|
||
{
|
||
prec -= W_TYPE_SIZE;
|
||
if (prec == 0)
|
||
return 1;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
++p;
|
||
#else
|
||
--i;
|
||
#endif
|
||
mslimb = (*p)[i];
|
||
}
|
||
return prec;
|
||
}
|
||
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
# define BITINT_INC -1
|
||
# define BITINT_END(be, le) (be)
|
||
#else
|
||
# define BITINT_INC 1
|
||
# define BITINT_END(be, le) (le)
|
||
#endif
|
||
|
||
#ifdef L_mulbitint3
|
||
/* D = S * L. */
|
||
|
||
static UWtype
|
||
bitint_mul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
|
||
{
|
||
UWtype sv, hi, lo, c = 0;
|
||
do
|
||
{
|
||
sv = *s;
|
||
s += BITINT_INC;
|
||
umul_ppmm (hi, lo, sv, l);
|
||
c = __builtin_add_overflow (lo, c, &lo) + hi;
|
||
*d = lo;
|
||
d += BITINT_INC;
|
||
}
|
||
while (--n);
|
||
return c;
|
||
}
|
||
|
||
/* D += S * L. */
|
||
|
||
static UWtype
|
||
bitint_addmul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
|
||
{
|
||
UWtype sv, hi, lo, c = 0;
|
||
do
|
||
{
|
||
sv = *s;
|
||
s += BITINT_INC;
|
||
umul_ppmm (hi, lo, sv, l);
|
||
hi += __builtin_add_overflow (lo, *d, &lo);
|
||
c = __builtin_add_overflow (lo, c, &lo) + hi;
|
||
*d = lo;
|
||
d += BITINT_INC;
|
||
}
|
||
while (--n);
|
||
return c;
|
||
}
|
||
|
||
/* If XPREC is positive, it is precision in bits
|
||
of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
|
||
full limbs and if Xprec%W_TYPE_SIZE one partial limb.
|
||
If Xprec is negative, -XPREC is precision in bits
|
||
of a signed _BitInt operand. RETPREC should be always
|
||
positive. */
|
||
|
||
void
|
||
__mulbitint3 (UBILtype *ret, SItype retprec,
|
||
const UBILtype *u, SItype uprec,
|
||
const UBILtype *v, SItype vprec)
|
||
{
|
||
uprec = bitint_reduce_prec (&u, uprec);
|
||
vprec = bitint_reduce_prec (&v, vprec);
|
||
USItype auprec = uprec < 0 ? -uprec : uprec;
|
||
USItype avprec = vprec < 0 ? -vprec : vprec;
|
||
|
||
/* Prefer non-negative U.
|
||
Otherwise make sure V doesn't have higher precision than U. */
|
||
if ((uprec < 0 && vprec >= 0)
|
||
|| (avprec > auprec && !(uprec >= 0 && vprec < 0)))
|
||
{
|
||
SItype p;
|
||
const UBILtype *t;
|
||
p = uprec; uprec = vprec; vprec = p;
|
||
p = auprec; auprec = avprec; avprec = p;
|
||
t = u; u = v; v = t;
|
||
}
|
||
|
||
USItype un = auprec / W_TYPE_SIZE;
|
||
USItype un2 = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
|
||
USItype vn = avprec / W_TYPE_SIZE;
|
||
USItype vn2 = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
|
||
USItype retn = ((USItype) retprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
|
||
USItype retidx, uidx, vidx;
|
||
UWtype vv;
|
||
/* Indexes of least significant limb. */
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
retidx = retn - 1;
|
||
uidx = un2 - 1;
|
||
vidx = vn2 - 1;
|
||
#else
|
||
retidx = 0;
|
||
uidx = 0;
|
||
vidx = 0;
|
||
#endif
|
||
if (__builtin_expect (auprec <= W_TYPE_SIZE, 0) && vprec < 0)
|
||
{
|
||
UWtype uu = u[uidx];
|
||
if (__builtin_expect (auprec < W_TYPE_SIZE, 0))
|
||
uu &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
|
||
if (uu == 0)
|
||
{
|
||
/* 0 * negative would be otherwise mishandled below, so
|
||
handle it specially. */
|
||
__builtin_memset (ret, 0, retn * sizeof (UWtype));
|
||
return;
|
||
}
|
||
}
|
||
vv = v[vidx];
|
||
if (__builtin_expect (avprec < W_TYPE_SIZE, 0))
|
||
{
|
||
if (vprec > 0)
|
||
vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
|
||
else
|
||
vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
|
||
}
|
||
|
||
USItype n = un > retn ? retn : un;
|
||
USItype n2 = n;
|
||
USItype retidx2 = retidx + n * BITINT_INC;
|
||
UWtype c = 0, uv = 0;
|
||
if (n)
|
||
c = bitint_mul_1 (ret + retidx, u + uidx, vv, n);
|
||
if (retn > un && un2 != un)
|
||
{
|
||
UWtype hi, lo;
|
||
uv = u[uidx + n * BITINT_INC];
|
||
if (uprec > 0)
|
||
uv &= ((UWtype) 1 << (auprec % W_TYPE_SIZE)) - 1;
|
||
else
|
||
uv |= (UWtype) -1 << (auprec % W_TYPE_SIZE);
|
||
umul_ppmm (hi, lo, uv, vv);
|
||
c = __builtin_add_overflow (lo, c, &lo) + hi;
|
||
ret[retidx2] = lo;
|
||
retidx2 += BITINT_INC;
|
||
++n2;
|
||
}
|
||
if (retn > un2)
|
||
{
|
||
if (uprec < 0)
|
||
{
|
||
while (n2 < retn)
|
||
{
|
||
if (n2 >= un2 + vn2)
|
||
break;
|
||
UWtype hi, lo;
|
||
umul_ppmm (hi, lo, (UWtype) -1, vv);
|
||
c = __builtin_add_overflow (lo, c, &lo) + hi;
|
||
ret[retidx2] = lo;
|
||
retidx2 += BITINT_INC;
|
||
++n2;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
ret[retidx2] = c;
|
||
retidx2 += BITINT_INC;
|
||
++n2;
|
||
}
|
||
/* If RET has more limbs than U after precision reduction,
|
||
fill in the remaining limbs. */
|
||
while (n2 < retn)
|
||
{
|
||
if (n2 < un2 + vn2 || (uprec ^ vprec) >= 0)
|
||
c = 0;
|
||
else
|
||
c = (UWtype) -1;
|
||
ret[retidx2] = c;
|
||
retidx2 += BITINT_INC;
|
||
++n2;
|
||
}
|
||
}
|
||
/* N is now number of possibly non-zero limbs in RET (ignoring
|
||
limbs above UN2 + VN2 which if any have been finalized already). */
|
||
USItype end = vprec < 0 ? un2 + vn2 : vn2;
|
||
if (retn > un2 + vn2) retn = un2 + vn2;
|
||
if (end > retn) end = retn;
|
||
for (USItype m = 1; m < end; ++m)
|
||
{
|
||
retidx += BITINT_INC;
|
||
vidx += BITINT_INC;
|
||
if (m < vn2)
|
||
{
|
||
vv = v[vidx];
|
||
if (__builtin_expect (m == vn, 0))
|
||
{
|
||
if (vprec > 0)
|
||
vv &= ((UWtype) 1 << (avprec % W_TYPE_SIZE)) - 1;
|
||
else
|
||
vv |= (UWtype) -1 << (avprec % W_TYPE_SIZE);
|
||
}
|
||
}
|
||
else
|
||
vv = (UWtype) -1;
|
||
if (m + n > retn)
|
||
n = retn - m;
|
||
c = 0;
|
||
if (n)
|
||
c = bitint_addmul_1 (ret + retidx, u + uidx, vv, n);
|
||
n2 = m + n;
|
||
retidx2 = retidx + n * BITINT_INC;
|
||
if (n2 < retn && un2 != un)
|
||
{
|
||
UWtype hi, lo;
|
||
umul_ppmm (hi, lo, uv, vv);
|
||
hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
|
||
c = __builtin_add_overflow (lo, c, &lo) + hi;
|
||
ret[retidx2] = lo;
|
||
retidx2 += BITINT_INC;
|
||
++n2;
|
||
}
|
||
if (uprec < 0)
|
||
while (n2 < retn)
|
||
{
|
||
UWtype hi, lo;
|
||
umul_ppmm (hi, lo, (UWtype) -1, vv);
|
||
hi += __builtin_add_overflow (lo, ret[retidx2], &lo);
|
||
c = __builtin_add_overflow (lo, c, &lo) + hi;
|
||
ret[retidx2] = lo;
|
||
retidx2 += BITINT_INC;
|
||
++n2;
|
||
}
|
||
else if (n2 < retn)
|
||
{
|
||
ret[retidx2] = c;
|
||
retidx2 += BITINT_INC;
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_divmodbitint4
|
||
/* D = -S. */
|
||
|
||
static void
|
||
bitint_negate (UBILtype *d, const UBILtype *s, SItype n)
|
||
{
|
||
UWtype c = 1;
|
||
do
|
||
{
|
||
UWtype sv = *s, lo;
|
||
s += BITINT_INC;
|
||
c = __builtin_add_overflow (~sv, c, &lo);
|
||
*d = lo;
|
||
d += BITINT_INC;
|
||
}
|
||
while (--n);
|
||
}
|
||
|
||
/* D -= S * L. */
|
||
|
||
static UWtype
|
||
bitint_submul_1 (UBILtype *d, const UBILtype *s, UWtype l, SItype n)
|
||
{
|
||
UWtype sv, hi, lo, c = 0;
|
||
do
|
||
{
|
||
sv = *s;
|
||
s += BITINT_INC;
|
||
umul_ppmm (hi, lo, sv, l);
|
||
hi += __builtin_sub_overflow (*d, lo, &lo);
|
||
c = __builtin_sub_overflow (lo, c, &lo) + hi;
|
||
*d = lo;
|
||
d += BITINT_INC;
|
||
}
|
||
while (--n);
|
||
return c;
|
||
}
|
||
|
||
/* If XPREC is positive, it is precision in bits
|
||
of an unsigned _BitInt operand (which has XPREC/W_TYPE_SIZE
|
||
full limbs and if Xprec%W_TYPE_SIZE one partial limb.
|
||
If Xprec is negative, -XPREC is precision in bits
|
||
of a signed _BitInt operand. QPREC and RPREC should be
|
||
always non-negative. If either Q or R is NULL (at least
|
||
one should be non-NULL), then corresponding QPREC or RPREC
|
||
should be 0. */
|
||
|
||
void
|
||
__divmodbitint4 (UBILtype *q, SItype qprec,
|
||
UBILtype *r, SItype rprec,
|
||
const UBILtype *u, SItype uprec,
|
||
const UBILtype *v, SItype vprec)
|
||
{
|
||
uprec = bitint_reduce_prec (&u, uprec);
|
||
vprec = bitint_reduce_prec (&v, vprec);
|
||
USItype auprec = uprec < 0 ? -uprec : uprec;
|
||
USItype avprec = vprec < 0 ? -vprec : vprec;
|
||
USItype un = (auprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
|
||
USItype vn = (avprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
|
||
USItype qn = ((USItype) qprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
|
||
USItype rn = ((USItype) rprec + W_TYPE_SIZE - 1) / W_TYPE_SIZE;
|
||
USItype up = auprec % W_TYPE_SIZE;
|
||
USItype vp = avprec % W_TYPE_SIZE;
|
||
if (__builtin_expect (un < vn, 0))
|
||
{
|
||
/* If abs(v) > abs(u), then q is 0 and r is u. */
|
||
if (q)
|
||
__builtin_memset (q, 0, qn * sizeof (UWtype));
|
||
if (r == NULL)
|
||
return;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
r += rn - 1;
|
||
u += un - 1;
|
||
#endif
|
||
if (up)
|
||
--un;
|
||
if (rn < un)
|
||
un = rn;
|
||
for (rn -= un; un; --un)
|
||
{
|
||
*r = *u;
|
||
r += BITINT_INC;
|
||
u += BITINT_INC;
|
||
}
|
||
if (!rn)
|
||
return;
|
||
if (up)
|
||
{
|
||
if (uprec > 0)
|
||
*r = *u & (((UWtype) 1 << up) - 1);
|
||
else
|
||
*r = *u | ((UWtype) -1 << up);
|
||
r += BITINT_INC;
|
||
if (!--rn)
|
||
return;
|
||
}
|
||
UWtype c = uprec < 0 ? (UWtype) -1 : (UWtype) 0;
|
||
for (; rn; --rn)
|
||
{
|
||
*r = c;
|
||
r += BITINT_INC;
|
||
}
|
||
return;
|
||
}
|
||
USItype qn2 = un - vn + 1;
|
||
if (qn >= qn2)
|
||
qn2 = 0;
|
||
USItype sz = un + 1 + vn + qn2;
|
||
UBILtype *buf = __builtin_alloca (sz * sizeof (UWtype));
|
||
USItype uidx, vidx;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
uidx = un - 1;
|
||
vidx = vn - 1;
|
||
#else
|
||
uidx = 0;
|
||
vidx = 0;
|
||
#endif
|
||
if (uprec < 0)
|
||
bitint_negate (buf + BITINT_END (uidx + 1, 0), u + uidx, un);
|
||
else
|
||
__builtin_memcpy (buf + BITINT_END (1, 0), u, un * sizeof (UWtype));
|
||
if (up)
|
||
buf[BITINT_END (1, un - 1)] &= (((UWtype) 1 << up) - 1);
|
||
if (vprec < 0)
|
||
bitint_negate (buf + un + 1 + vidx, v + vidx, vn);
|
||
else
|
||
__builtin_memcpy (buf + un + 1, v, vn * sizeof (UWtype));
|
||
if (vp)
|
||
buf[un + 1 + BITINT_END (0, vn - 1)] &= (((UWtype) 1 << vp) - 1);
|
||
UBILtype *u2 = buf;
|
||
UBILtype *v2 = u2 + un + 1;
|
||
UBILtype *q2 = v2 + vn;
|
||
if (!qn2)
|
||
q2 = q + BITINT_END (qn - (un - vn + 1), 0);
|
||
|
||
/* Knuth's algorithm. See also ../gcc/wide-int.cc (divmod_internal_2). */
|
||
|
||
#ifndef UDIV_NEEDS_NORMALIZATION
|
||
/* Handle single limb divisor first. */
|
||
if (vn == 1)
|
||
{
|
||
UWtype vv = v2[0];
|
||
if (vv == 0)
|
||
vv = 1 / vv; /* Divide intentionally by zero. */
|
||
UWtype k = 0;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
for (SItype i = 0; i <= un - 1; ++i)
|
||
#else
|
||
for (SItype i = un - 1; i >= 0; --i)
|
||
#endif
|
||
udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
|
||
if (r != NULL)
|
||
r[BITINT_END (rn - 1, 0)] = k;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
SItype s;
|
||
#ifdef UDIV_NEEDS_NORMALIZATION
|
||
if (vn == 1 && v2[0] == 0)
|
||
s = 0;
|
||
else
|
||
#endif
|
||
if (sizeof (0U) == sizeof (UWtype))
|
||
s = __builtin_clz (v2[BITINT_END (0, vn - 1)]);
|
||
else if (sizeof (0UL) == sizeof (UWtype))
|
||
s = __builtin_clzl (v2[BITINT_END (0, vn - 1)]);
|
||
else
|
||
s = __builtin_clzll (v2[BITINT_END (0, vn - 1)]);
|
||
if (s)
|
||
{
|
||
/* Normalize by shifting v2 left so that it has msb set. */
|
||
const SItype n = sizeof (UWtype) * __CHAR_BIT__;
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
for (SItype i = 0; i < vn - 1; ++i)
|
||
#else
|
||
for (SItype i = vn - 1; i > 0; --i)
|
||
#endif
|
||
v2[i] = (v2[i] << s) | (v2[i - BITINT_INC] >> (n - s));
|
||
v2[vidx] = v2[vidx] << s;
|
||
/* And shift u2 left by the same amount. */
|
||
u2[BITINT_END (0, un)] = u2[BITINT_END (1, un - 1)] >> (n - s);
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
for (SItype i = 1; i < un; ++i)
|
||
#else
|
||
for (SItype i = un - 1; i > 0; --i)
|
||
#endif
|
||
u2[i] = (u2[i] << s) | (u2[i - BITINT_INC] >> (n - s));
|
||
u2[BITINT_END (un, 0)] = u2[BITINT_END (un, 0)] << s;
|
||
}
|
||
else
|
||
u2[BITINT_END (0, un)] = 0;
|
||
#ifdef UDIV_NEEDS_NORMALIZATION
|
||
/* Handle single limb divisor first. */
|
||
if (vn == 1)
|
||
{
|
||
UWtype vv = v2[0];
|
||
if (vv == 0)
|
||
vv = 1 / vv; /* Divide intentionally by zero. */
|
||
UWtype k = u2[BITINT_END (0, un)];
|
||
#if __LIBGCC_BITINT_ORDER__ == __ORDER_BIG_ENDIAN__
|
||
for (SItype i = 0; i <= un - 1; ++i)
|
||
#else
|
||
for (SItype i = un - 1; i >= 0; --i)
|
||
#endif
|
||
udiv_qrnnd (q2[i], k, k, u2[BITINT_END (i + 1, i)], vv);
|
||
if (r != NULL)
|
||
r[BITINT_END (rn - 1, 0)] = k >> s;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
UWtype vv1 = v2[BITINT_END (0, vn - 1)];
|
||
UWtype vv0 = v2[BITINT_END (1, vn - 2)];
|
||
/* Main loop. */
|
||
for (SItype j = un - vn; j >= 0; --j)
|
||
{
|
||
/* Compute estimate in qhat. */
|
||
UWtype uv1 = u2[BITINT_END (un - j - vn, j + vn)];
|
||
UWtype uv0 = u2[BITINT_END (un - j - vn + 1, j + vn - 1)];
|
||
UWtype qhat, rhat, hi, lo, c;
|
||
if (uv1 >= vv1)
|
||
{
|
||
/* udiv_qrnnd doesn't support quotients which don't
|
||
fit into UWtype, while Knuth's algorithm originally
|
||
uses a double-word by word to double-word division.
|
||
Fortunately, the algorithm guarantees that uv1 <= vv1,
|
||
because if uv1 > vv1, then even if v would have all
|
||
bits in all words below vv1 set, the previous iteration
|
||
would be supposed to use qhat larger by 1 and subtract
|
||
v. With uv1 == vv1 and uv0 >= vv1 the double-word
|
||
qhat in Knuth's algorithm would be 1 in the upper word
|
||
and 1 in the lower word, say for
|
||
uv1 0x8000000000000000ULL
|
||
uv0 0xffffffffffffffffULL
|
||
vv1 0x8000000000000000ULL
|
||
0x8000000000000000ffffffffffffffffuwb
|
||
/ 0x8000000000000000uwb == 0x10000000000000001uwb, and
|
||
exactly like that also for any other value
|
||
> 0x8000000000000000ULL in uv1 and vv1 and uv0 >= uv1.
|
||
So we need to subtract one or at most two vv1s from
|
||
uv1:uv0 (qhat because of that decreases by 1 or 2 and
|
||
is then representable in UWtype) and need to increase
|
||
rhat by vv1 once or twice because of that. Now, if
|
||
we need to subtract 2 vv1s, i.e. if
|
||
uv1 == vv1 && uv0 >= vv1, then rhat (which is uv0 - vv1)
|
||
+ vv1 computation can't overflow, because it is equal
|
||
to uv0 and therefore the original algorithm in that case
|
||
performs goto again, but the second vv1 addition must
|
||
overflow already because vv1 has msb set from the
|
||
canonicalization. */
|
||
uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0);
|
||
if (uv1 >= vv1)
|
||
{
|
||
uv1 -= __builtin_sub_overflow (uv0, vv1, &uv0);
|
||
udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
|
||
rhat += 2 * vv1;
|
||
}
|
||
else
|
||
{
|
||
udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
|
||
if (!__builtin_add_overflow (rhat, vv1, &rhat))
|
||
goto again;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
udiv_qrnnd (qhat, rhat, uv1, uv0, vv1);
|
||
again:
|
||
umul_ppmm (hi, lo, qhat, vv0);
|
||
if (hi > rhat
|
||
|| (hi == rhat
|
||
&& lo > u2[BITINT_END (un - j - vn + 2,
|
||
j + vn - 2)]))
|
||
{
|
||
--qhat;
|
||
if (!__builtin_add_overflow (rhat, vv1, &rhat))
|
||
goto again;
|
||
}
|
||
}
|
||
|
||
c = bitint_submul_1 (u2 + BITINT_END (un - j, j),
|
||
v2 + BITINT_END (vn - 1, 0), qhat, vn);
|
||
u2[BITINT_END (un - j - vn, j + vn)] -= c;
|
||
/* If we've subtracted too much, decrease qhat and
|
||
and add back. */
|
||
if ((Wtype) u2[BITINT_END (un - j - vn, j + vn)] < 0)
|
||
{
|
||
--qhat;
|
||
c = 0;
|
||
for (USItype i = 0; i < vn; ++i)
|
||
{
|
||
UWtype s = v2[BITINT_END (vn - 1 - i, i)];
|
||
UWtype d = u2[BITINT_END (un - i - j, i + j)];
|
||
UWtype c1 = __builtin_add_overflow (d, s, &d);
|
||
UWtype c2 = __builtin_add_overflow (d, c, &d);
|
||
c = c1 + c2;
|
||
u2[BITINT_END (un - i - j, i + j)] = d;
|
||
}
|
||
u2[BITINT_END (un - j - vn, j + vn)] += c;
|
||
}
|
||
q2[BITINT_END (un - vn - j, j)] = qhat;
|
||
}
|
||
if (r != NULL)
|
||
{
|
||
if (s)
|
||
{
|
||
const SItype n = sizeof (UWtype) * __CHAR_BIT__;
|
||
/* Unnormalize remainder. */
|
||
USItype i;
|
||
for (i = 0; i < vn && i < rn; ++i)
|
||
r[BITINT_END (rn - 1 - i, i)]
|
||
= ((u2[BITINT_END (un - i, i)] >> s)
|
||
| (u2[BITINT_END (un - i - 1, i + 1)] << (n - s)));
|
||
if (i < rn)
|
||
r[BITINT_END (rn - vn, vn - 1)]
|
||
= u2[BITINT_END (un - vn + 1, vn - 1)] >> s;
|
||
}
|
||
else if (rn > vn)
|
||
__builtin_memcpy (&r[BITINT_END (rn - vn, 0)],
|
||
&u2[BITINT_END (un + 1 - vn, 0)],
|
||
vn * sizeof (UWtype));
|
||
else
|
||
__builtin_memcpy (&r[0], &u2[BITINT_END (un + 1 - rn, 0)],
|
||
rn * sizeof (UWtype));
|
||
}
|
||
}
|
||
}
|
||
if (q != NULL)
|
||
{
|
||
if ((uprec < 0) ^ (vprec < 0))
|
||
{
|
||
/* Negative quotient. */
|
||
USItype n;
|
||
if (un - vn + 1 > qn)
|
||
n = qn;
|
||
else
|
||
n = un - vn + 1;
|
||
bitint_negate (q + BITINT_END (qn - 1, 0),
|
||
q2 + BITINT_END (un - vn, 0), n);
|
||
if (qn > n)
|
||
__builtin_memset (q + BITINT_END (0, n), -1,
|
||
(qn - n) * sizeof (UWtype));
|
||
}
|
||
else
|
||
{
|
||
/* Positive quotient. */
|
||
if (qn2)
|
||
__builtin_memcpy (q, q2 + BITINT_END (un - vn + 1 - qn, 0),
|
||
qn * sizeof (UWtype));
|
||
else if (qn > un - vn + 1)
|
||
__builtin_memset (q + BITINT_END (0, un - vn + 1), 0,
|
||
(qn - (un - vn + 1)) * sizeof (UWtype));
|
||
}
|
||
}
|
||
if (r != NULL)
|
||
{
|
||
if (uprec < 0)
|
||
{
|
||
/* Negative remainder. */
|
||
bitint_negate (r + BITINT_END (rn - 1, 0),
|
||
r + BITINT_END (rn - 1, 0),
|
||
rn > vn ? vn : rn);
|
||
if (rn > vn)
|
||
__builtin_memset (r + BITINT_END (0, vn), -1,
|
||
(rn - vn) * sizeof (UWtype));
|
||
}
|
||
else
|
||
{
|
||
/* Positive remainder. */
|
||
if (rn > vn)
|
||
__builtin_memset (r + BITINT_END (0, vn), 0,
|
||
(rn - vn) * sizeof (UWtype));
|
||
}
|
||
}
|
||
}
|
||
#endif
|
||
#endif
|
||
|
||
#ifdef L_cmpdi2
|
||
cmp_return_type
|
||
__cmpdi2 (DWtype a, DWtype b)
|
||
{
|
||
return (a > b) - (a < b) + 1;
|
||
}
|
||
#endif
|
||
|
||
#ifdef L_ucmpdi2
|
||
cmp_return_type
|
||
__ucmpdi2 (UDWtype a, UDWtype b)
|
||
{
|
||
return (a > b) - (a < b) + 1;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixunstfdi) && LIBGCC2_HAS_TF_MODE
|
||
UDWtype
|
||
__fixunstfDI (TFtype a)
|
||
{
|
||
if (a < 0)
|
||
return 0;
|
||
|
||
/* Compute high word of result, as a flonum. */
|
||
const TFtype b = (a / Wtype_MAXp1_F);
|
||
/* Convert that to fixed (but not to DWtype!),
|
||
and shift it into the high word. */
|
||
UDWtype v = (UWtype) b;
|
||
v <<= W_TYPE_SIZE;
|
||
/* Remove high part from the TFtype, leaving the low part as flonum. */
|
||
a -= (TFtype)v;
|
||
/* Convert that to fixed (but not to DWtype!) and add it in.
|
||
Sometimes A comes out negative. This is significant, since
|
||
A has more bits than a long int does. */
|
||
if (a < 0)
|
||
v -= (UWtype) (- a);
|
||
else
|
||
v += (UWtype) a;
|
||
return v;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixtfdi) && LIBGCC2_HAS_TF_MODE
|
||
DWtype
|
||
__fixtfdi (TFtype a)
|
||
{
|
||
if (a < 0)
|
||
return - __fixunstfDI (-a);
|
||
return __fixunstfDI (a);
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixunsxfdi) && LIBGCC2_HAS_XF_MODE
|
||
UDWtype
|
||
__fixunsxfDI (XFtype a)
|
||
{
|
||
if (a < 0)
|
||
return 0;
|
||
|
||
/* Compute high word of result, as a flonum. */
|
||
const XFtype b = (a / Wtype_MAXp1_F);
|
||
/* Convert that to fixed (but not to DWtype!),
|
||
and shift it into the high word. */
|
||
UDWtype v = (UWtype) b;
|
||
v <<= W_TYPE_SIZE;
|
||
/* Remove high part from the XFtype, leaving the low part as flonum. */
|
||
a -= (XFtype)v;
|
||
/* Convert that to fixed (but not to DWtype!) and add it in.
|
||
Sometimes A comes out negative. This is significant, since
|
||
A has more bits than a long int does. */
|
||
if (a < 0)
|
||
v -= (UWtype) (- a);
|
||
else
|
||
v += (UWtype) a;
|
||
return v;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixxfdi) && LIBGCC2_HAS_XF_MODE
|
||
DWtype
|
||
__fixxfdi (XFtype a)
|
||
{
|
||
if (a < 0)
|
||
return - __fixunsxfDI (-a);
|
||
return __fixunsxfDI (a);
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixunsdfdi) && LIBGCC2_HAS_DF_MODE
|
||
UDWtype
|
||
__fixunsdfDI (DFtype a)
|
||
{
|
||
/* Get high part of result. The division here will just moves the radix
|
||
point and will not cause any rounding. Then the conversion to integral
|
||
type chops result as desired. */
|
||
const UWtype hi = a / Wtype_MAXp1_F;
|
||
|
||
/* Get low part of result. Convert `hi' to floating type and scale it back,
|
||
then subtract this from the number being converted. This leaves the low
|
||
part. Convert that to integral type. */
|
||
const UWtype lo = a - (DFtype) hi * Wtype_MAXp1_F;
|
||
|
||
/* Assemble result from the two parts. */
|
||
return ((UDWtype) hi << W_TYPE_SIZE) | lo;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixdfdi) && LIBGCC2_HAS_DF_MODE
|
||
DWtype
|
||
__fixdfdi (DFtype a)
|
||
{
|
||
if (a < 0)
|
||
return - __fixunsdfDI (-a);
|
||
return __fixunsdfDI (a);
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixunssfdi) && LIBGCC2_HAS_SF_MODE
|
||
UDWtype
|
||
__fixunssfDI (SFtype a)
|
||
{
|
||
#if LIBGCC2_HAS_DF_MODE
|
||
/* Convert the SFtype to a DFtype, because that is surely not going
|
||
to lose any bits. Some day someone else can write a faster version
|
||
that avoids converting to DFtype, and verify it really works right. */
|
||
const DFtype dfa = a;
|
||
|
||
/* Get high part of result. The division here will just moves the radix
|
||
point and will not cause any rounding. Then the conversion to integral
|
||
type chops result as desired. */
|
||
const UWtype hi = dfa / Wtype_MAXp1_F;
|
||
|
||
/* Get low part of result. Convert `hi' to floating type and scale it back,
|
||
then subtract this from the number being converted. This leaves the low
|
||
part. Convert that to integral type. */
|
||
const UWtype lo = dfa - (DFtype) hi * Wtype_MAXp1_F;
|
||
|
||
/* Assemble result from the two parts. */
|
||
return ((UDWtype) hi << W_TYPE_SIZE) | lo;
|
||
#elif FLT_MANT_DIG < W_TYPE_SIZE
|
||
if (a < 1)
|
||
return 0;
|
||
if (a < Wtype_MAXp1_F)
|
||
return (UWtype)a;
|
||
if (a < Wtype_MAXp1_F * Wtype_MAXp1_F)
|
||
{
|
||
/* Since we know that there are fewer significant bits in the SFmode
|
||
quantity than in a word, we know that we can convert out all the
|
||
significant bits in one step, and thus avoid losing bits. */
|
||
|
||
/* ??? This following loop essentially performs frexpf. If we could
|
||
use the real libm function, or poke at the actual bits of the fp
|
||
format, it would be significantly faster. */
|
||
|
||
UWtype shift = 0, counter;
|
||
SFtype msb;
|
||
|
||
a /= Wtype_MAXp1_F;
|
||
for (counter = W_TYPE_SIZE / 2; counter != 0; counter >>= 1)
|
||
{
|
||
SFtype counterf = (UWtype)1 << counter;
|
||
if (a >= counterf)
|
||
{
|
||
shift |= counter;
|
||
a /= counterf;
|
||
}
|
||
}
|
||
|
||
/* Rescale into the range of one word, extract the bits of that
|
||
one word, and shift the result into position. */
|
||
a *= Wtype_MAXp1_F;
|
||
counter = a;
|
||
return (DWtype)counter << shift;
|
||
}
|
||
return -1;
|
||
#else
|
||
# error
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixsfdi) && LIBGCC2_HAS_SF_MODE
|
||
DWtype
|
||
__fixsfdi (SFtype a)
|
||
{
|
||
if (a < 0)
|
||
return - __fixunssfDI (-a);
|
||
return __fixunssfDI (a);
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_floatdixf) && LIBGCC2_HAS_XF_MODE
|
||
XFtype
|
||
__floatdixf (DWtype u)
|
||
{
|
||
#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
|
||
# error
|
||
#endif
|
||
XFtype d = (Wtype) (u >> W_TYPE_SIZE);
|
||
d *= Wtype_MAXp1_F;
|
||
d += (UWtype)u;
|
||
return d;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_floatundixf) && LIBGCC2_HAS_XF_MODE
|
||
XFtype
|
||
__floatundixf (UDWtype u)
|
||
{
|
||
#if W_TYPE_SIZE > __LIBGCC_XF_MANT_DIG__
|
||
# error
|
||
#endif
|
||
XFtype d = (UWtype) (u >> W_TYPE_SIZE);
|
||
d *= Wtype_MAXp1_F;
|
||
d += (UWtype)u;
|
||
return d;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_floatditf) && LIBGCC2_HAS_TF_MODE
|
||
TFtype
|
||
__floatditf (DWtype u)
|
||
{
|
||
#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
|
||
# error
|
||
#endif
|
||
TFtype d = (Wtype) (u >> W_TYPE_SIZE);
|
||
d *= Wtype_MAXp1_F;
|
||
d += (UWtype)u;
|
||
return d;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_floatunditf) && LIBGCC2_HAS_TF_MODE
|
||
TFtype
|
||
__floatunditf (UDWtype u)
|
||
{
|
||
#if W_TYPE_SIZE > __LIBGCC_TF_MANT_DIG__
|
||
# error
|
||
#endif
|
||
TFtype d = (UWtype) (u >> W_TYPE_SIZE);
|
||
d *= Wtype_MAXp1_F;
|
||
d += (UWtype)u;
|
||
return d;
|
||
}
|
||
#endif
|
||
|
||
#if (defined(L_floatdisf) && LIBGCC2_HAS_SF_MODE) \
|
||
|| (defined(L_floatdidf) && LIBGCC2_HAS_DF_MODE)
|
||
#define DI_SIZE (W_TYPE_SIZE * 2)
|
||
#define F_MODE_OK(SIZE) \
|
||
(SIZE < DI_SIZE \
|
||
&& SIZE > (DI_SIZE - SIZE + FSSIZE) \
|
||
&& !AVOID_FP_TYPE_CONVERSION(SIZE))
|
||
#if defined(L_floatdisf)
|
||
#define FUNC __floatdisf
|
||
#define FSTYPE SFtype
|
||
#define FSSIZE __LIBGCC_SF_MANT_DIG__
|
||
#else
|
||
#define FUNC __floatdidf
|
||
#define FSTYPE DFtype
|
||
#define FSSIZE __LIBGCC_DF_MANT_DIG__
|
||
#endif
|
||
|
||
FSTYPE
|
||
FUNC (DWtype u)
|
||
{
|
||
#if FSSIZE >= W_TYPE_SIZE
|
||
/* When the word size is small, we never get any rounding error. */
|
||
FSTYPE f = (Wtype) (u >> W_TYPE_SIZE);
|
||
f *= Wtype_MAXp1_F;
|
||
f += (UWtype)u;
|
||
return f;
|
||
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
|
||
|| (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
|
||
|| (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
|
||
|
||
#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
|
||
# define FSIZE __LIBGCC_DF_MANT_DIG__
|
||
# define FTYPE DFtype
|
||
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
|
||
# define FSIZE __LIBGCC_XF_MANT_DIG__
|
||
# define FTYPE XFtype
|
||
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
|
||
# define FSIZE __LIBGCC_TF_MANT_DIG__
|
||
# define FTYPE TFtype
|
||
#else
|
||
# error
|
||
#endif
|
||
|
||
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
|
||
|
||
/* Protect against double-rounding error.
|
||
Represent any low-order bits, that might be truncated by a bit that
|
||
won't be lost. The bit can go in anywhere below the rounding position
|
||
of the FSTYPE. A fixed mask and bit position handles all usual
|
||
configurations. */
|
||
if (! (- ((DWtype) 1 << FSIZE) < u
|
||
&& u < ((DWtype) 1 << FSIZE)))
|
||
{
|
||
if ((UDWtype) u & (REP_BIT - 1))
|
||
{
|
||
u &= ~ (REP_BIT - 1);
|
||
u |= REP_BIT;
|
||
}
|
||
}
|
||
|
||
/* Do the calculation in a wider type so that we don't lose any of
|
||
the precision of the high word while multiplying it. */
|
||
FTYPE f = (Wtype) (u >> W_TYPE_SIZE);
|
||
f *= Wtype_MAXp1_F;
|
||
f += (UWtype)u;
|
||
return (FSTYPE) f;
|
||
#else
|
||
#if FSSIZE >= W_TYPE_SIZE - 2
|
||
# error
|
||
#endif
|
||
/* Finally, the word size is larger than the number of bits in the
|
||
required FSTYPE, and we've got no suitable wider type. The only
|
||
way to avoid double rounding is to special case the
|
||
extraction. */
|
||
|
||
/* If there are no high bits set, fall back to one conversion. */
|
||
if ((Wtype)u == u)
|
||
return (FSTYPE)(Wtype)u;
|
||
|
||
/* Otherwise, find the power of two. */
|
||
Wtype hi = u >> W_TYPE_SIZE;
|
||
if (hi < 0)
|
||
hi = -(UWtype) hi;
|
||
|
||
UWtype count, shift;
|
||
#if !defined (COUNT_LEADING_ZEROS_0) || COUNT_LEADING_ZEROS_0 != W_TYPE_SIZE
|
||
if (hi == 0)
|
||
count = W_TYPE_SIZE;
|
||
else
|
||
#endif
|
||
count_leading_zeros (count, hi);
|
||
|
||
/* No leading bits means u == minimum. */
|
||
if (count == 0)
|
||
return Wtype_MAXp1_F * (FSTYPE) (hi | ((UWtype) u != 0));
|
||
|
||
shift = 1 + W_TYPE_SIZE - count;
|
||
|
||
/* Shift down the most significant bits. */
|
||
hi = u >> shift;
|
||
|
||
/* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
|
||
if ((UWtype)u << (W_TYPE_SIZE - shift))
|
||
hi |= 1;
|
||
|
||
/* Convert the one word of data, and rescale. */
|
||
FSTYPE f = hi, e;
|
||
if (shift == W_TYPE_SIZE)
|
||
e = Wtype_MAXp1_F;
|
||
/* The following two cases could be merged if we knew that the target
|
||
supported a native unsigned->float conversion. More often, we only
|
||
have a signed conversion, and have to add extra fixup code. */
|
||
else if (shift == W_TYPE_SIZE - 1)
|
||
e = Wtype_MAXp1_F / 2;
|
||
else
|
||
e = (Wtype)1 << shift;
|
||
return f * e;
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
#if (defined(L_floatundisf) && LIBGCC2_HAS_SF_MODE) \
|
||
|| (defined(L_floatundidf) && LIBGCC2_HAS_DF_MODE)
|
||
#define DI_SIZE (W_TYPE_SIZE * 2)
|
||
#define F_MODE_OK(SIZE) \
|
||
(SIZE < DI_SIZE \
|
||
&& SIZE > (DI_SIZE - SIZE + FSSIZE) \
|
||
&& !AVOID_FP_TYPE_CONVERSION(SIZE))
|
||
#if defined(L_floatundisf)
|
||
#define FUNC __floatundisf
|
||
#define FSTYPE SFtype
|
||
#define FSSIZE __LIBGCC_SF_MANT_DIG__
|
||
#else
|
||
#define FUNC __floatundidf
|
||
#define FSTYPE DFtype
|
||
#define FSSIZE __LIBGCC_DF_MANT_DIG__
|
||
#endif
|
||
|
||
FSTYPE
|
||
FUNC (UDWtype u)
|
||
{
|
||
#if FSSIZE >= W_TYPE_SIZE
|
||
/* When the word size is small, we never get any rounding error. */
|
||
FSTYPE f = (UWtype) (u >> W_TYPE_SIZE);
|
||
f *= Wtype_MAXp1_F;
|
||
f += (UWtype)u;
|
||
return f;
|
||
#elif (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__)) \
|
||
|| (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__)) \
|
||
|| (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
|
||
|
||
#if (LIBGCC2_HAS_DF_MODE && F_MODE_OK (__LIBGCC_DF_MANT_DIG__))
|
||
# define FSIZE __LIBGCC_DF_MANT_DIG__
|
||
# define FTYPE DFtype
|
||
#elif (LIBGCC2_HAS_XF_MODE && F_MODE_OK (__LIBGCC_XF_MANT_DIG__))
|
||
# define FSIZE __LIBGCC_XF_MANT_DIG__
|
||
# define FTYPE XFtype
|
||
#elif (LIBGCC2_HAS_TF_MODE && F_MODE_OK (__LIBGCC_TF_MANT_DIG__))
|
||
# define FSIZE __LIBGCC_TF_MANT_DIG__
|
||
# define FTYPE TFtype
|
||
#else
|
||
# error
|
||
#endif
|
||
|
||
#define REP_BIT ((UDWtype) 1 << (DI_SIZE - FSIZE))
|
||
|
||
/* Protect against double-rounding error.
|
||
Represent any low-order bits, that might be truncated by a bit that
|
||
won't be lost. The bit can go in anywhere below the rounding position
|
||
of the FSTYPE. A fixed mask and bit position handles all usual
|
||
configurations. */
|
||
if (u >= ((UDWtype) 1 << FSIZE))
|
||
{
|
||
if ((UDWtype) u & (REP_BIT - 1))
|
||
{
|
||
u &= ~ (REP_BIT - 1);
|
||
u |= REP_BIT;
|
||
}
|
||
}
|
||
|
||
/* Do the calculation in a wider type so that we don't lose any of
|
||
the precision of the high word while multiplying it. */
|
||
FTYPE f = (UWtype) (u >> W_TYPE_SIZE);
|
||
f *= Wtype_MAXp1_F;
|
||
f += (UWtype)u;
|
||
return (FSTYPE) f;
|
||
#else
|
||
#if FSSIZE == W_TYPE_SIZE - 1
|
||
# error
|
||
#endif
|
||
/* Finally, the word size is larger than the number of bits in the
|
||
required FSTYPE, and we've got no suitable wider type. The only
|
||
way to avoid double rounding is to special case the
|
||
extraction. */
|
||
|
||
/* If there are no high bits set, fall back to one conversion. */
|
||
if ((UWtype)u == u)
|
||
return (FSTYPE)(UWtype)u;
|
||
|
||
/* Otherwise, find the power of two. */
|
||
UWtype hi = u >> W_TYPE_SIZE;
|
||
|
||
UWtype count, shift;
|
||
count_leading_zeros (count, hi);
|
||
|
||
shift = W_TYPE_SIZE - count;
|
||
|
||
/* Shift down the most significant bits. */
|
||
hi = u >> shift;
|
||
|
||
/* If we lost any nonzero bits, set the lsb to ensure correct rounding. */
|
||
if ((UWtype)u << (W_TYPE_SIZE - shift))
|
||
hi |= 1;
|
||
|
||
/* Convert the one word of data, and rescale. */
|
||
FSTYPE f = hi, e;
|
||
if (shift == W_TYPE_SIZE)
|
||
e = Wtype_MAXp1_F;
|
||
/* The following two cases could be merged if we knew that the target
|
||
supported a native unsigned->float conversion. More often, we only
|
||
have a signed conversion, and have to add extra fixup code. */
|
||
else if (shift == W_TYPE_SIZE - 1)
|
||
e = Wtype_MAXp1_F / 2;
|
||
else
|
||
e = (Wtype)1 << shift;
|
||
return f * e;
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixunsxfsi) && LIBGCC2_HAS_XF_MODE
|
||
UWtype
|
||
__fixunsxfSI (XFtype a)
|
||
{
|
||
if (a >= - (DFtype) Wtype_MIN)
|
||
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
|
||
return (Wtype) a;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixunsdfsi) && LIBGCC2_HAS_DF_MODE
|
||
UWtype
|
||
__fixunsdfSI (DFtype a)
|
||
{
|
||
if (a >= - (DFtype) Wtype_MIN)
|
||
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
|
||
return (Wtype) a;
|
||
}
|
||
#endif
|
||
|
||
#if defined(L_fixunssfsi) && LIBGCC2_HAS_SF_MODE
|
||
UWtype
|
||
__fixunssfSI (SFtype a)
|
||
{
|
||
if (a >= - (SFtype) Wtype_MIN)
|
||
return (Wtype) (a + Wtype_MIN) - Wtype_MIN;
|
||
return (Wtype) a;
|
||
}
|
||
#endif
|
||
|
||
/* Integer power helper used from __builtin_powi for non-constant
|
||
exponents. */
|
||
|
||
#if (defined(L_powisf2) && LIBGCC2_HAS_SF_MODE) \
|
||
|| (defined(L_powidf2) && LIBGCC2_HAS_DF_MODE) \
|
||
|| (defined(L_powixf2) && LIBGCC2_HAS_XF_MODE) \
|
||
|| (defined(L_powitf2) && LIBGCC2_HAS_TF_MODE)
|
||
# if defined(L_powisf2)
|
||
# define TYPE SFtype
|
||
# define NAME __powisf2
|
||
# elif defined(L_powidf2)
|
||
# define TYPE DFtype
|
||
# define NAME __powidf2
|
||
# elif defined(L_powixf2)
|
||
# define TYPE XFtype
|
||
# define NAME __powixf2
|
||
# elif defined(L_powitf2)
|
||
# define TYPE TFtype
|
||
# define NAME __powitf2
|
||
# endif
|
||
|
||
#undef int
|
||
#undef unsigned
|
||
TYPE
|
||
NAME (TYPE x, int m)
|
||
{
|
||
unsigned int n = m < 0 ? -(unsigned int) m : (unsigned int) m;
|
||
TYPE y = n % 2 ? x : 1;
|
||
while (n >>= 1)
|
||
{
|
||
x = x * x;
|
||
if (n % 2)
|
||
y = y * x;
|
||
}
|
||
return m < 0 ? 1/y : y;
|
||
}
|
||
|
||
#endif
|
||
|
||
#if((defined(L_mulhc3) || defined(L_divhc3)) && LIBGCC2_HAS_HF_MODE) \
|
||
|| ((defined(L_mulsc3) || defined(L_divsc3)) && LIBGCC2_HAS_SF_MODE) \
|
||
|| ((defined(L_muldc3) || defined(L_divdc3)) && LIBGCC2_HAS_DF_MODE) \
|
||
|| ((defined(L_mulxc3) || defined(L_divxc3)) && LIBGCC2_HAS_XF_MODE) \
|
||
|| ((defined(L_multc3) || defined(L_divtc3)) && LIBGCC2_HAS_TF_MODE)
|
||
|
||
#undef float
|
||
#undef double
|
||
#undef long
|
||
|
||
#if defined(L_mulhc3) || defined(L_divhc3)
|
||
# define MTYPE HFtype
|
||
# define CTYPE HCtype
|
||
# define AMTYPE SFtype
|
||
# define MODE hc
|
||
# define CEXT __LIBGCC_HF_FUNC_EXT__
|
||
# define NOTRUNC (!__LIBGCC_HF_EXCESS_PRECISION__)
|
||
#elif defined(L_mulsc3) || defined(L_divsc3)
|
||
# define MTYPE SFtype
|
||
# define CTYPE SCtype
|
||
# define AMTYPE DFtype
|
||
# define MODE sc
|
||
# define CEXT __LIBGCC_SF_FUNC_EXT__
|
||
# define NOTRUNC (!__LIBGCC_SF_EXCESS_PRECISION__)
|
||
# define RBIG (__LIBGCC_SF_MAX__ / 2)
|
||
# define RMIN (__LIBGCC_SF_MIN__)
|
||
# define RMIN2 (__LIBGCC_SF_EPSILON__)
|
||
# define RMINSCAL (1 / __LIBGCC_SF_EPSILON__)
|
||
# define RMAX2 (RBIG * RMIN2)
|
||
#elif defined(L_muldc3) || defined(L_divdc3)
|
||
# define MTYPE DFtype
|
||
# define CTYPE DCtype
|
||
# define MODE dc
|
||
# define CEXT __LIBGCC_DF_FUNC_EXT__
|
||
# define NOTRUNC (!__LIBGCC_DF_EXCESS_PRECISION__)
|
||
# define RBIG (__LIBGCC_DF_MAX__ / 2)
|
||
# define RMIN (__LIBGCC_DF_MIN__)
|
||
# define RMIN2 (__LIBGCC_DF_EPSILON__)
|
||
# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
|
||
# define RMAX2 (RBIG * RMIN2)
|
||
#elif defined(L_mulxc3) || defined(L_divxc3)
|
||
# define MTYPE XFtype
|
||
# define CTYPE XCtype
|
||
# define MODE xc
|
||
# define CEXT __LIBGCC_XF_FUNC_EXT__
|
||
# define NOTRUNC (!__LIBGCC_XF_EXCESS_PRECISION__)
|
||
# define RBIG (__LIBGCC_XF_MAX__ / 2)
|
||
# define RMIN (__LIBGCC_XF_MIN__)
|
||
# define RMIN2 (__LIBGCC_XF_EPSILON__)
|
||
# define RMINSCAL (1 / __LIBGCC_XF_EPSILON__)
|
||
# define RMAX2 (RBIG * RMIN2)
|
||
#elif defined(L_multc3) || defined(L_divtc3)
|
||
# define MTYPE TFtype
|
||
# define CTYPE TCtype
|
||
# define MODE tc
|
||
# define CEXT __LIBGCC_TF_FUNC_EXT__
|
||
# define NOTRUNC (!__LIBGCC_TF_EXCESS_PRECISION__)
|
||
# if __LIBGCC_TF_MANT_DIG__ == 106
|
||
# define RBIG (__LIBGCC_DF_MAX__ / 2)
|
||
# define RMIN (__LIBGCC_DF_MIN__)
|
||
# define RMIN2 (__LIBGCC_DF_EPSILON__)
|
||
# define RMINSCAL (1 / __LIBGCC_DF_EPSILON__)
|
||
# else
|
||
# define RBIG (__LIBGCC_TF_MAX__ / 2)
|
||
# define RMIN (__LIBGCC_TF_MIN__)
|
||
# define RMIN2 (__LIBGCC_TF_EPSILON__)
|
||
# define RMINSCAL (1 / __LIBGCC_TF_EPSILON__)
|
||
# endif
|
||
# define RMAX2 (RBIG * RMIN2)
|
||
#else
|
||
# error
|
||
#endif
|
||
|
||
#define CONCAT3(A,B,C) _CONCAT3(A,B,C)
|
||
#define _CONCAT3(A,B,C) A##B##C
|
||
|
||
#define CONCAT2(A,B) _CONCAT2(A,B)
|
||
#define _CONCAT2(A,B) A##B
|
||
|
||
#define isnan(x) __builtin_isnan (x)
|
||
#define isfinite(x) __builtin_isfinite (x)
|
||
#define isinf(x) __builtin_isinf (x)
|
||
|
||
#define INFINITY CONCAT2(__builtin_huge_val, CEXT) ()
|
||
#define I 1i
|
||
|
||
/* Helpers to make the following code slightly less gross. */
|
||
#define COPYSIGN CONCAT2(__builtin_copysign, CEXT)
|
||
#define FABS CONCAT2(__builtin_fabs, CEXT)
|
||
|
||
/* Verify that MTYPE matches up with CEXT. */
|
||
extern void *compile_type_assert[sizeof(INFINITY) == sizeof(MTYPE) ? 1 : -1];
|
||
|
||
/* Ensure that we've lost any extra precision. */
|
||
#if NOTRUNC
|
||
# define TRUNC(x)
|
||
#else
|
||
# define TRUNC(x) __asm__ ("" : "=m"(x) : "m"(x))
|
||
#endif
|
||
|
||
#if defined(L_mulhc3) || defined(L_mulsc3) || defined(L_muldc3) \
|
||
|| defined(L_mulxc3) || defined(L_multc3)
|
||
|
||
CTYPE
|
||
CONCAT3(__mul,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
|
||
{
|
||
MTYPE ac, bd, ad, bc, x, y;
|
||
CTYPE res;
|
||
|
||
ac = a * c;
|
||
bd = b * d;
|
||
ad = a * d;
|
||
bc = b * c;
|
||
|
||
TRUNC (ac);
|
||
TRUNC (bd);
|
||
TRUNC (ad);
|
||
TRUNC (bc);
|
||
|
||
x = ac - bd;
|
||
y = ad + bc;
|
||
|
||
if (isnan (x) && isnan (y))
|
||
{
|
||
/* Recover infinities that computed as NaN + iNaN. */
|
||
_Bool recalc = 0;
|
||
if (isinf (a) || isinf (b))
|
||
{
|
||
/* z is infinite. "Box" the infinity and change NaNs in
|
||
the other factor to 0. */
|
||
a = COPYSIGN (isinf (a) ? 1 : 0, a);
|
||
b = COPYSIGN (isinf (b) ? 1 : 0, b);
|
||
if (isnan (c)) c = COPYSIGN (0, c);
|
||
if (isnan (d)) d = COPYSIGN (0, d);
|
||
recalc = 1;
|
||
}
|
||
if (isinf (c) || isinf (d))
|
||
{
|
||
/* w is infinite. "Box" the infinity and change NaNs in
|
||
the other factor to 0. */
|
||
c = COPYSIGN (isinf (c) ? 1 : 0, c);
|
||
d = COPYSIGN (isinf (d) ? 1 : 0, d);
|
||
if (isnan (a)) a = COPYSIGN (0, a);
|
||
if (isnan (b)) b = COPYSIGN (0, b);
|
||
recalc = 1;
|
||
}
|
||
if (!recalc
|
||
&& (isinf (ac) || isinf (bd)
|
||
|| isinf (ad) || isinf (bc)))
|
||
{
|
||
/* Recover infinities from overflow by changing NaNs to 0. */
|
||
if (isnan (a)) a = COPYSIGN (0, a);
|
||
if (isnan (b)) b = COPYSIGN (0, b);
|
||
if (isnan (c)) c = COPYSIGN (0, c);
|
||
if (isnan (d)) d = COPYSIGN (0, d);
|
||
recalc = 1;
|
||
}
|
||
if (recalc)
|
||
{
|
||
x = INFINITY * (a * c - b * d);
|
||
y = INFINITY * (a * d + b * c);
|
||
}
|
||
}
|
||
|
||
__real__ res = x;
|
||
__imag__ res = y;
|
||
return res;
|
||
}
|
||
#endif /* complex multiply */
|
||
|
||
#if defined(L_divhc3) || defined(L_divsc3) || defined(L_divdc3) \
|
||
|| defined(L_divxc3) || defined(L_divtc3)
|
||
|
||
CTYPE
|
||
CONCAT3(__div,MODE,3) (MTYPE a, MTYPE b, MTYPE c, MTYPE d)
|
||
{
|
||
#if defined(L_divhc3) \
|
||
|| (defined(L_divsc3) && defined(__LIBGCC_HAVE_HWDBL__) )
|
||
|
||
/* Half precision is handled with float precision.
|
||
float is handled with double precision when double precision
|
||
hardware is available.
|
||
Due to the additional precision, the simple complex divide
|
||
method (without Smith's method) is sufficient to get accurate
|
||
answers and runs slightly faster than Smith's method. */
|
||
|
||
AMTYPE aa, bb, cc, dd;
|
||
AMTYPE denom;
|
||
MTYPE x, y;
|
||
CTYPE res;
|
||
aa = a;
|
||
bb = b;
|
||
cc = c;
|
||
dd = d;
|
||
|
||
denom = (cc * cc) + (dd * dd);
|
||
x = ((aa * cc) + (bb * dd)) / denom;
|
||
y = ((bb * cc) - (aa * dd)) / denom;
|
||
|
||
#else
|
||
MTYPE denom, ratio, x, y;
|
||
CTYPE res;
|
||
|
||
/* double, extended, long double have significant potential
|
||
underflow/overflow errors that can be greatly reduced with
|
||
a limited number of tests and adjustments. float is handled
|
||
the same way when no HW double is available.
|
||
*/
|
||
|
||
/* Scale by max(c,d) to reduce chances of denominator overflowing. */
|
||
if (FABS (c) < FABS (d))
|
||
{
|
||
/* Prevent underflow when denominator is near max representable. */
|
||
if (FABS (d) >= RBIG)
|
||
{
|
||
a = a / 2;
|
||
b = b / 2;
|
||
c = c / 2;
|
||
d = d / 2;
|
||
}
|
||
/* Avoid overflow/underflow issues when c and d are small.
|
||
Scaling up helps avoid some underflows.
|
||
No new overflow possible since c&d < RMIN2. */
|
||
if (FABS (d) < RMIN2)
|
||
{
|
||
a = a * RMINSCAL;
|
||
b = b * RMINSCAL;
|
||
c = c * RMINSCAL;
|
||
d = d * RMINSCAL;
|
||
}
|
||
else
|
||
{
|
||
if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (d) < RMAX2))
|
||
|| ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
|
||
&& (FABS (d) < RMAX2)))
|
||
{
|
||
a = a * RMINSCAL;
|
||
b = b * RMINSCAL;
|
||
c = c * RMINSCAL;
|
||
d = d * RMINSCAL;
|
||
}
|
||
}
|
||
ratio = c / d;
|
||
denom = (c * ratio) + d;
|
||
/* Choose alternate order of computation if ratio is subnormal. */
|
||
if (FABS (ratio) > RMIN)
|
||
{
|
||
x = ((a * ratio) + b) / denom;
|
||
y = ((b * ratio) - a) / denom;
|
||
}
|
||
else
|
||
{
|
||
x = ((c * (a / d)) + b) / denom;
|
||
y = ((c * (b / d)) - a) / denom;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* Prevent underflow when denominator is near max representable. */
|
||
if (FABS (c) >= RBIG)
|
||
{
|
||
a = a / 2;
|
||
b = b / 2;
|
||
c = c / 2;
|
||
d = d / 2;
|
||
}
|
||
/* Avoid overflow/underflow issues when both c and d are small.
|
||
Scaling up helps avoid some underflows.
|
||
No new overflow possible since both c&d are less than RMIN2. */
|
||
if (FABS (c) < RMIN2)
|
||
{
|
||
a = a * RMINSCAL;
|
||
b = b * RMINSCAL;
|
||
c = c * RMINSCAL;
|
||
d = d * RMINSCAL;
|
||
}
|
||
else
|
||
{
|
||
if (((FABS (a) < RMIN) && (FABS (b) < RMAX2) && (FABS (c) < RMAX2))
|
||
|| ((FABS (b) < RMIN) && (FABS (a) < RMAX2)
|
||
&& (FABS (c) < RMAX2)))
|
||
{
|
||
a = a * RMINSCAL;
|
||
b = b * RMINSCAL;
|
||
c = c * RMINSCAL;
|
||
d = d * RMINSCAL;
|
||
}
|
||
}
|
||
ratio = d / c;
|
||
denom = (d * ratio) + c;
|
||
/* Choose alternate order of computation if ratio is subnormal. */
|
||
if (FABS (ratio) > RMIN)
|
||
{
|
||
x = ((b * ratio) + a) / denom;
|
||
y = (b - (a * ratio)) / denom;
|
||
}
|
||
else
|
||
{
|
||
x = (a + (d * (b / c))) / denom;
|
||
y = (b - (d * (a / c))) / denom;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
/* Recover infinities and zeros that computed as NaN+iNaN; the only
|
||
cases are nonzero/zero, infinite/finite, and finite/infinite. */
|
||
if (isnan (x) && isnan (y))
|
||
{
|
||
if (c == 0.0 && d == 0.0 && (!isnan (a) || !isnan (b)))
|
||
{
|
||
x = COPYSIGN (INFINITY, c) * a;
|
||
y = COPYSIGN (INFINITY, c) * b;
|
||
}
|
||
else if ((isinf (a) || isinf (b)) && isfinite (c) && isfinite (d))
|
||
{
|
||
a = COPYSIGN (isinf (a) ? 1 : 0, a);
|
||
b = COPYSIGN (isinf (b) ? 1 : 0, b);
|
||
x = INFINITY * (a * c + b * d);
|
||
y = INFINITY * (b * c - a * d);
|
||
}
|
||
else if ((isinf (c) || isinf (d)) && isfinite (a) && isfinite (b))
|
||
{
|
||
c = COPYSIGN (isinf (c) ? 1 : 0, c);
|
||
d = COPYSIGN (isinf (d) ? 1 : 0, d);
|
||
x = 0.0 * (a * c + b * d);
|
||
y = 0.0 * (b * c - a * d);
|
||
}
|
||
}
|
||
|
||
__real__ res = x;
|
||
__imag__ res = y;
|
||
return res;
|
||
}
|
||
#endif /* complex divide */
|
||
|
||
#endif /* all complex float routines */
|
||
|
||
/* From here on down, the routines use normal data types. */
|
||
|
||
#define SItype bogus_type
|
||
#define USItype bogus_type
|
||
#define DItype bogus_type
|
||
#define UDItype bogus_type
|
||
#define SFtype bogus_type
|
||
#define DFtype bogus_type
|
||
#undef Wtype
|
||
#undef UWtype
|
||
#undef HWtype
|
||
#undef UHWtype
|
||
#undef DWtype
|
||
#undef UDWtype
|
||
|
||
#undef char
|
||
#undef short
|
||
#undef int
|
||
#undef long
|
||
#undef unsigned
|
||
#undef float
|
||
#undef double
|
||
|
||
#ifdef L__gcc_bcmp
|
||
|
||
/* Like bcmp except the sign is meaningful.
|
||
Result is negative if S1 is less than S2,
|
||
positive if S1 is greater, 0 if S1 and S2 are equal. */
|
||
|
||
int
|
||
__gcc_bcmp (const unsigned char *s1, const unsigned char *s2, size_t size)
|
||
{
|
||
while (size > 0)
|
||
{
|
||
const unsigned char c1 = *s1++, c2 = *s2++;
|
||
if (c1 != c2)
|
||
return c1 - c2;
|
||
size--;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
#endif
|
||
|
||
/* __eprintf used to be used by GCC's private version of <assert.h>.
|
||
We no longer provide that header, but this routine remains in libgcc.a
|
||
for binary backward compatibility. Note that it is not included in
|
||
the shared version of libgcc. */
|
||
#ifdef L_eprintf
|
||
#ifndef inhibit_libc
|
||
|
||
#undef NULL /* Avoid errors if stdio.h and our stddef.h mismatch. */
|
||
#include <stdio.h>
|
||
|
||
void
|
||
__eprintf (const char *string, const char *expression,
|
||
unsigned int line, const char *filename)
|
||
{
|
||
fprintf (stderr, string, expression, line, filename);
|
||
fflush (stderr);
|
||
abort ();
|
||
}
|
||
|
||
#endif
|
||
#endif
|
||
|
||
|
||
#ifdef L_clear_cache
|
||
/* Clear part of an instruction cache. */
|
||
|
||
void
|
||
__clear_cache (void *beg __attribute__((__unused__)),
|
||
void *end __attribute__((__unused__)))
|
||
{
|
||
#ifdef CLEAR_INSN_CACHE
|
||
/* Cast the void* pointers to char* as some implementations
|
||
of the macro assume the pointers can be subtracted from
|
||
one another. */
|
||
CLEAR_INSN_CACHE ((char *) beg, (char *) end);
|
||
#endif /* CLEAR_INSN_CACHE */
|
||
}
|
||
|
||
#endif /* L_clear_cache */
|
||
|
||
#ifdef L_trampoline
|
||
|
||
/* Jump to a trampoline, loading the static chain address. */
|
||
|
||
#if defined(WINNT) && ! defined(__CYGWIN__)
|
||
#define WIN32_LEAN_AND_MEAN
|
||
#include <windows.h>
|
||
int getpagesize (void);
|
||
int mprotect (char *,int, int);
|
||
|
||
int
|
||
getpagesize (void)
|
||
{
|
||
#ifdef _ALPHA_
|
||
return 8192;
|
||
#else
|
||
return 4096;
|
||
#endif
|
||
}
|
||
|
||
int
|
||
mprotect (char *addr, int len, int prot)
|
||
{
|
||
DWORD np, op;
|
||
|
||
if (prot == 7)
|
||
np = 0x40;
|
||
else if (prot == 5)
|
||
np = 0x20;
|
||
else if (prot == 4)
|
||
np = 0x10;
|
||
else if (prot == 3)
|
||
np = 0x04;
|
||
else if (prot == 1)
|
||
np = 0x02;
|
||
else if (prot == 0)
|
||
np = 0x01;
|
||
else
|
||
return -1;
|
||
|
||
if (VirtualProtect (addr, len, np, &op))
|
||
return 0;
|
||
else
|
||
return -1;
|
||
}
|
||
|
||
#endif /* WINNT && ! __CYGWIN__ */
|
||
|
||
#ifdef TRANSFER_FROM_TRAMPOLINE
|
||
TRANSFER_FROM_TRAMPOLINE
|
||
#endif
|
||
#endif /* L_trampoline */
|
||
|
||
#ifndef __CYGWIN__
|
||
#ifdef L__main
|
||
|
||
#include "gbl-ctors.h"
|
||
|
||
/* Some systems use __main in a way incompatible with its use in gcc, in these
|
||
cases use the macros NAME__MAIN to give a quoted symbol and SYMBOL__MAIN to
|
||
give the same symbol without quotes for an alternative entry point. You
|
||
must define both, or neither. */
|
||
#ifndef NAME__MAIN
|
||
#define NAME__MAIN "__main"
|
||
#define SYMBOL__MAIN __main
|
||
#endif
|
||
|
||
#if defined (__LIBGCC_INIT_SECTION_ASM_OP__) \
|
||
|| defined (__LIBGCC_INIT_ARRAY_SECTION_ASM_OP__)
|
||
#undef HAS_INIT_SECTION
|
||
#define HAS_INIT_SECTION
|
||
#endif
|
||
|
||
#if !defined (HAS_INIT_SECTION) || !defined (OBJECT_FORMAT_ELF)
|
||
|
||
/* Some ELF crosses use crtstuff.c to provide __CTOR_LIST__, but use this
|
||
code to run constructors. In that case, we need to handle EH here, too.
|
||
But MINGW32 is special because it handles CRTSTUFF and EH on its own. */
|
||
|
||
#ifdef __MINGW32__
|
||
#undef __LIBGCC_EH_FRAME_SECTION_NAME__
|
||
#endif
|
||
|
||
#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
|
||
#include "unwind-dw2-fde.h"
|
||
extern unsigned char __EH_FRAME_BEGIN__[];
|
||
#endif
|
||
|
||
/* Run all the global destructors on exit from the program. */
|
||
|
||
void
|
||
__do_global_dtors (void)
|
||
{
|
||
#ifdef DO_GLOBAL_DTORS_BODY
|
||
DO_GLOBAL_DTORS_BODY;
|
||
#else
|
||
static func_ptr *p = __DTOR_LIST__ + 1;
|
||
while (*p)
|
||
{
|
||
p++;
|
||
(*(p-1)) ();
|
||
}
|
||
#endif
|
||
#if defined (__LIBGCC_EH_FRAME_SECTION_NAME__) && !defined (HAS_INIT_SECTION)
|
||
{
|
||
static int completed = 0;
|
||
if (! completed)
|
||
{
|
||
completed = 1;
|
||
__deregister_frame_info (__EH_FRAME_BEGIN__);
|
||
}
|
||
}
|
||
#endif
|
||
}
|
||
#endif
|
||
|
||
#ifndef HAS_INIT_SECTION
|
||
/* Run all the global constructors on entry to the program. */
|
||
|
||
void
|
||
__do_global_ctors (void)
|
||
{
|
||
#ifdef __LIBGCC_EH_FRAME_SECTION_NAME__
|
||
{
|
||
static struct object object;
|
||
__register_frame_info (__EH_FRAME_BEGIN__, &object);
|
||
}
|
||
#endif
|
||
DO_GLOBAL_CTORS_BODY;
|
||
atexit (__do_global_dtors);
|
||
}
|
||
#endif /* no HAS_INIT_SECTION */
|
||
|
||
#if !defined (HAS_INIT_SECTION) || defined (INVOKE__main)
|
||
/* Subroutine called automatically by `main'.
|
||
Compiling a global function named `main'
|
||
produces an automatic call to this function at the beginning.
|
||
|
||
For many systems, this routine calls __do_global_ctors.
|
||
For systems which support a .init section we use the .init section
|
||
to run __do_global_ctors, so we need not do anything here. */
|
||
|
||
extern void SYMBOL__MAIN (void);
|
||
void
|
||
SYMBOL__MAIN (void)
|
||
{
|
||
/* Support recursive calls to `main': run initializers just once. */
|
||
static int initialized;
|
||
if (! initialized)
|
||
{
|
||
initialized = 1;
|
||
__do_global_ctors ();
|
||
}
|
||
}
|
||
#endif /* no HAS_INIT_SECTION or INVOKE__main */
|
||
|
||
#endif /* L__main */
|
||
#endif /* __CYGWIN__ */
|
||
|
||
#ifdef L_ctors
|
||
|
||
#include "gbl-ctors.h"
|
||
|
||
/* Provide default definitions for the lists of constructors and
|
||
destructors, so that we don't get linker errors. These symbols are
|
||
intentionally bss symbols, so that gld and/or collect will provide
|
||
the right values. */
|
||
|
||
/* We declare the lists here with two elements each,
|
||
so that they are valid empty lists if no other definition is loaded.
|
||
|
||
If we are using the old "set" extensions to have the gnu linker
|
||
collect ctors and dtors, then we __CTOR_LIST__ and __DTOR_LIST__
|
||
must be in the bss/common section.
|
||
|
||
Long term no port should use those extensions. But many still do. */
|
||
#if !defined(__LIBGCC_INIT_SECTION_ASM_OP__)
|
||
#if defined (TARGET_ASM_CONSTRUCTOR) || defined (USE_COLLECT2)
|
||
func_ptr __CTOR_LIST__[2] = {0, 0};
|
||
func_ptr __DTOR_LIST__[2] = {0, 0};
|
||
#else
|
||
func_ptr __CTOR_LIST__[2];
|
||
func_ptr __DTOR_LIST__[2];
|
||
#endif
|
||
#endif /* no __LIBGCC_INIT_SECTION_ASM_OP__ */
|
||
#endif /* L_ctors */
|
||
#endif /* LIBGCC2_UNITS_PER_WORD <= MIN_UNITS_PER_WORD */
|