
Provide a PHI analyzer framework to provive better initial values for PHI nodes which formk groups with initial values and single statements which modify the PHI values in some predicatable way. PR tree-optimization/107822 PR tree-optimization/107986 gcc/ * Makefile.in (OBJS): Add gimple-range-phi.o. * gimple-range-cache.h (ranger_cache::m_estimate): New phi_analyzer pointer member. * gimple-range-fold.cc (fold_using_range::range_of_phi): Use phi_analyzer if no loop info is available. * gimple-range-phi.cc: New file. * gimple-range-phi.h: New file. * tree-vrp.cc (execute_ranger_vrp): Utililze a phi_analyzer. gcc/testsuite/ * gcc.dg/pr107822.c: New. * gcc.dg/pr107986-1.c: New.
518 lines
14 KiB
C++
518 lines
14 KiB
C++
/* Gimple range phi analysis.
|
|
Copyright (C) 2023 Free Software Foundation, Inc.
|
|
Contributed by Andrew MacLeod <amacleod@redhat.com>.
|
|
|
|
This file is part of GCC.
|
|
|
|
GCC is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 3, or (at your option)
|
|
any later version.
|
|
|
|
GCC is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GCC; see the file COPYING3. If not see
|
|
<http://www.gnu.org/licenses/>. */
|
|
|
|
#include "config.h"
|
|
#include "system.h"
|
|
#include "coretypes.h"
|
|
#include "backend.h"
|
|
#include "insn-codes.h"
|
|
#include "tree.h"
|
|
#include "gimple.h"
|
|
#include "ssa.h"
|
|
#include "gimple-pretty-print.h"
|
|
#include "gimple-range.h"
|
|
#include "gimple-range-cache.h"
|
|
#include "value-range-storage.h"
|
|
#include "tree-cfg.h"
|
|
#include "target.h"
|
|
#include "attribs.h"
|
|
#include "gimple-iterator.h"
|
|
#include "gimple-walk.h"
|
|
#include "cfganal.h"
|
|
|
|
// There can be only one running at a time.
|
|
static phi_analyzer *phi_analysis_object = NULL;
|
|
|
|
// Initialize a PHI analyzer with range query Q.
|
|
|
|
void
|
|
phi_analysis_initialize (range_query &q)
|
|
{
|
|
gcc_checking_assert (!phi_analysis_object);
|
|
phi_analysis_object = new phi_analyzer (q);
|
|
}
|
|
|
|
// Terminate the current PHI analyzer. if F is non-null, dump the tables
|
|
|
|
void
|
|
phi_analysis_finalize ()
|
|
{
|
|
gcc_checking_assert (phi_analysis_object);
|
|
delete phi_analysis_object;
|
|
phi_analysis_object = NULL;
|
|
}
|
|
|
|
// Return TRUE is there is a PHI analyzer operating.
|
|
bool
|
|
phi_analysis_available_p ()
|
|
{
|
|
return phi_analysis_object != NULL;
|
|
}
|
|
|
|
// Return the phi analyzer object.
|
|
|
|
phi_analyzer &phi_analysis ()
|
|
{
|
|
gcc_checking_assert (phi_analysis_object);
|
|
return *phi_analysis_object;
|
|
}
|
|
|
|
// Initialize a phi_group from another group G.
|
|
|
|
phi_group::phi_group (const phi_group &g)
|
|
{
|
|
m_group = g.m_group;
|
|
m_initial_value = g.m_initial_value;
|
|
m_initial_edge = g.m_initial_edge;
|
|
m_modifier = g.m_modifier;
|
|
m_modifier_op = g.m_modifier_op;
|
|
m_vr = g.m_vr;
|
|
}
|
|
|
|
// Create a new phi_group with members BM, initialvalue INIT_VAL, modifier
|
|
// statement MOD, and resolve values using query Q.
|
|
// Calculate the range for the gropup if possible, otherwise set it to
|
|
// VARYING.
|
|
|
|
phi_group::phi_group (bitmap bm, tree init_val, edge e, gimple *mod,
|
|
range_query *q)
|
|
{
|
|
// we dont expect a modifer and no inital value, so trap to have a look.
|
|
// perhaps they are dead cycles and we can just used UNDEFINED.
|
|
gcc_checking_assert (init_val);
|
|
|
|
m_modifier_op = is_modifier_p (mod, bm);
|
|
m_group = bm;
|
|
m_initial_value = init_val;
|
|
m_initial_edge = e;
|
|
m_modifier = mod;
|
|
if (q->range_on_edge (m_vr, m_initial_edge, m_initial_value))
|
|
{
|
|
// No modifier means the initial range is the full range.
|
|
// Otherwise try to calculate a range.
|
|
if (!m_modifier_op || calculate_using_modifier (q))
|
|
return;
|
|
}
|
|
// Couldn't calculate a range, set to varying.
|
|
m_vr.set_varying (TREE_TYPE (init_val));
|
|
}
|
|
|
|
// Return 0 if S is not a modifier statment for group members BM.
|
|
// If it could be a modifier, return which operand position (1 or 2)
|
|
// the phi member occurs in.
|
|
unsigned
|
|
phi_group::is_modifier_p (gimple *s, const bitmap bm)
|
|
{
|
|
if (!s)
|
|
return 0;
|
|
gimple_range_op_handler handler (s);
|
|
if (handler)
|
|
{
|
|
tree op1 = gimple_range_ssa_p (handler.operand1 ());
|
|
tree op2 = gimple_range_ssa_p (handler.operand2 ());
|
|
// Also disallow modifiers that have 2 ssa-names.
|
|
if (op1 && !op2 && bitmap_bit_p (bm, SSA_NAME_VERSION (op1)))
|
|
return 1;
|
|
else if (op2 && !op1 && bitmap_bit_p (bm, SSA_NAME_VERSION (op2)))
|
|
return 2;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Calulcate the range of the phi group using range_query Q.
|
|
|
|
bool
|
|
phi_group::calculate_using_modifier (range_query *q)
|
|
{
|
|
// Look at the modifier for any relation
|
|
relation_trio trio = fold_relations (m_modifier, q);
|
|
relation_kind k = VREL_VARYING;
|
|
if (m_modifier_op == 1)
|
|
k = trio.lhs_op1 ();
|
|
else if (m_modifier_op == 2)
|
|
k = trio.lhs_op2 ();
|
|
else
|
|
return false;
|
|
|
|
// If we can resolve the range using relations, use that range.
|
|
if (refine_using_relation (k, q))
|
|
return true;
|
|
|
|
// If the initial value is undefined, do not calculate a range.
|
|
if (m_vr.undefined_p ())
|
|
return false;
|
|
|
|
// Examine modifier and run X iterations to see if it convergences.
|
|
// The constructor initilaized m_vr to the initial value already.
|
|
int_range_max nv;
|
|
for (unsigned x = 0; x< 10; x++)
|
|
{
|
|
if (!fold_range (nv, m_modifier, m_vr, q))
|
|
return false;
|
|
// If they are equal, then we have convergence.
|
|
if (nv == m_vr)
|
|
return true;
|
|
// Update range and try again.
|
|
m_vr.union_ (nv);
|
|
}
|
|
// Never converged, so bail for now. we could examine the pattern
|
|
// from m_initial to m_vr as an extension Especially if we had a way
|
|
// to project the actual number of iterations (SCEV?)
|
|
//
|
|
// We can also try to identify "parallel" phis to get loop counts and
|
|
// determine the number of iterations of these parallel PHIs.
|
|
//
|
|
return false;
|
|
}
|
|
|
|
|
|
// IF the modifier statement has a relation K between the modifier and the
|
|
// PHI member in it, we can project a range based on that.
|
|
// Use range_query Q to resolve values.
|
|
// ie, a_2 = PHI <0, a_3> and a_3 = a_2 + 1
|
|
// if the relation a_3 > a_2 is present, the know the range is [0, +INF]
|
|
|
|
bool
|
|
phi_group::refine_using_relation (relation_kind k, range_query *q)
|
|
{
|
|
if (k == VREL_VARYING)
|
|
return false;
|
|
tree type = TREE_TYPE (m_initial_value);
|
|
// If the type wraps, then relations dont tell us much.
|
|
if (TYPE_OVERFLOW_WRAPS (type))
|
|
return false;
|
|
|
|
switch (k)
|
|
{
|
|
case VREL_LT:
|
|
case VREL_LE:
|
|
{
|
|
// Value always decreases.
|
|
int_range<2> lb;
|
|
int_range<2> ub;
|
|
if (!q->range_on_edge (ub, m_initial_edge, m_initial_value))
|
|
break;
|
|
if (ub.undefined_p ())
|
|
return false;
|
|
lb.set_varying (type);
|
|
m_vr.set (type, lb.lower_bound (), ub.upper_bound ());
|
|
return true;
|
|
}
|
|
|
|
case VREL_GT:
|
|
case VREL_GE:
|
|
{
|
|
// Value always increases.
|
|
int_range<2> lb;
|
|
int_range<2> ub;
|
|
if (!q->range_on_edge (lb, m_initial_edge, m_initial_value))
|
|
break;
|
|
if (lb.undefined_p ())
|
|
return false;
|
|
ub.set_varying (type);
|
|
m_vr.set (type, lb.lower_bound (), ub.upper_bound ());
|
|
return true;
|
|
}
|
|
|
|
// If its always equal, then its simply the initial value.
|
|
// which is what m_vr has already been set to.
|
|
case VREL_EQ:
|
|
return true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Dump the information for a phi group to file F.
|
|
|
|
void
|
|
phi_group::dump (FILE *f)
|
|
{
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
fprintf (f, "PHI GROUP <");
|
|
|
|
EXECUTE_IF_SET_IN_BITMAP (m_group, 0, i, bi)
|
|
{
|
|
print_generic_expr (f, ssa_name (i), TDF_SLIM);
|
|
fputc (' ',f);
|
|
}
|
|
|
|
fprintf (f, ">\n - Initial value : ");
|
|
if (m_initial_value)
|
|
{
|
|
if (TREE_CODE (m_initial_value) == SSA_NAME)
|
|
print_gimple_stmt (f, SSA_NAME_DEF_STMT (m_initial_value), 0, TDF_SLIM);
|
|
else
|
|
print_generic_expr (f, m_initial_value, TDF_SLIM);
|
|
fprintf (f, " on edge %d->%d", m_initial_edge->src->index,
|
|
m_initial_edge->dest->index);
|
|
}
|
|
else
|
|
fprintf (f, "NONE");
|
|
fprintf (f, "\n - Modifier : ");
|
|
if (m_modifier)
|
|
print_gimple_stmt (f, m_modifier, 0, TDF_SLIM);
|
|
else
|
|
fprintf (f, "NONE\n");
|
|
fprintf (f, " - Range : ");
|
|
m_vr.dump (f);
|
|
fputc ('\n', f);
|
|
}
|
|
|
|
// -------------------------------------------------------------------------
|
|
|
|
// Construct a phi analyzer which uses range_query G to pick up values.
|
|
|
|
phi_analyzer::phi_analyzer (range_query &g) : m_global (g)
|
|
{
|
|
m_work.create (0);
|
|
m_work.safe_grow (20);
|
|
|
|
m_tab.create (0);
|
|
// m_tab.safe_grow_cleared (num_ssa_names + 100);
|
|
bitmap_obstack_initialize (&m_bitmaps);
|
|
m_simple = BITMAP_ALLOC (&m_bitmaps);
|
|
m_current = BITMAP_ALLOC (&m_bitmaps);
|
|
}
|
|
|
|
// Destruct a PHI analyzer.
|
|
|
|
phi_analyzer::~phi_analyzer ()
|
|
{
|
|
bitmap_obstack_release (&m_bitmaps);
|
|
m_tab.release ();
|
|
m_work.release ();
|
|
}
|
|
|
|
// Return the group, if any, that NAME is part of. Do no analysis.
|
|
|
|
phi_group *
|
|
phi_analyzer::group (tree name) const
|
|
{
|
|
gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
|
|
if (!is_a<gphi *> (SSA_NAME_DEF_STMT (name)))
|
|
return NULL;
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
if (v >= m_tab.length ())
|
|
return NULL;
|
|
return m_tab[v];
|
|
}
|
|
|
|
// Return the group NAME is associated with, if any. If name has not been
|
|
// procvessed yet, do the analysis to determine if it is part of a group
|
|
// and return that.
|
|
|
|
phi_group *
|
|
phi_analyzer::operator[] (tree name)
|
|
{
|
|
gcc_checking_assert (TREE_CODE (name) == SSA_NAME);
|
|
|
|
// Initial support for irange only.
|
|
if (!irange::supports_p (TREE_TYPE (name)))
|
|
return NULL;
|
|
if (!is_a<gphi *> (SSA_NAME_DEF_STMT (name)))
|
|
return NULL;
|
|
|
|
unsigned v = SSA_NAME_VERSION (name);
|
|
// Already been processed and not part of a group.
|
|
if (bitmap_bit_p (m_simple, v))
|
|
return NULL;
|
|
|
|
if (v >= m_tab.length () || !m_tab[v])
|
|
{
|
|
process_phi (as_a<gphi *> (SSA_NAME_DEF_STMT (name)));
|
|
if (bitmap_bit_p (m_simple, v))
|
|
return NULL;
|
|
// If m_simple bit isn't set, then process_phi allocated the table
|
|
// and should have a group.
|
|
gcc_checking_assert (v < m_tab.length ());
|
|
}
|
|
return m_tab[v];
|
|
}
|
|
|
|
// Process phi node PHI to see if it it part of a group.
|
|
|
|
void
|
|
phi_analyzer::process_phi (gphi *phi)
|
|
{
|
|
gcc_checking_assert (!group (gimple_phi_result (phi)));
|
|
bool cycle_p = true;
|
|
|
|
// Start with the LHS of the PHI in the worklist.
|
|
unsigned x;
|
|
m_work.truncate (0);
|
|
m_work.safe_push (gimple_phi_result (phi));
|
|
bitmap_clear (m_current);
|
|
|
|
// We can only have 2 externals: an initial value and a modifier.
|
|
// Any more than that and this fails to be a group.
|
|
unsigned m_num_extern = 0;
|
|
tree m_external[2];
|
|
edge m_ext_edge[2];
|
|
|
|
while (m_work.length () > 0)
|
|
{
|
|
tree phi_def = m_work.pop ();
|
|
gphi *phi_stmt = as_a<gphi *> (SSA_NAME_DEF_STMT (phi_def));
|
|
// if the phi is already in a cycle, its a complex situation, so revert
|
|
// to simple.
|
|
if (group (phi_def))
|
|
{
|
|
cycle_p = false;
|
|
continue;
|
|
}
|
|
bitmap_set_bit (m_current, SSA_NAME_VERSION (phi_def));
|
|
// Process the args.
|
|
for (x = 0; x < gimple_phi_num_args (phi_stmt); x++)
|
|
{
|
|
tree arg = gimple_phi_arg_def (phi_stmt, x);
|
|
if (arg == phi_def)
|
|
continue;
|
|
enum tree_code code = TREE_CODE (arg);
|
|
if (code == SSA_NAME)
|
|
{
|
|
unsigned v = SSA_NAME_VERSION (arg);
|
|
// Already a member of this potential group.
|
|
if (bitmap_bit_p (m_current, v))
|
|
continue;
|
|
// Part of a different group ends cycle possibility.
|
|
if (group (arg) || bitmap_bit_p (m_simple, v))
|
|
{
|
|
cycle_p = false;
|
|
break;
|
|
}
|
|
// Check if its a PHI to examine.
|
|
// *FIX* Will miss initial values that originate from a PHI.
|
|
gimple *arg_stmt = SSA_NAME_DEF_STMT (arg);
|
|
if (arg_stmt && is_a<gphi *> (arg_stmt))
|
|
{
|
|
m_work.safe_push (arg);
|
|
continue;
|
|
}
|
|
}
|
|
// Other non-ssa names that arent constants are not understood
|
|
// and terminate analysis.
|
|
else if (code != INTEGER_CST && code != REAL_CST)
|
|
{
|
|
cycle_p = false;
|
|
continue;
|
|
}
|
|
// More than 2 outside names/CONST is too complicated.
|
|
if (m_num_extern >= 2)
|
|
{
|
|
cycle_p = false;
|
|
break;
|
|
}
|
|
|
|
m_external[m_num_extern] = arg;
|
|
m_ext_edge[m_num_extern++] = gimple_phi_arg_edge (phi_stmt, x);
|
|
}
|
|
}
|
|
|
|
// If there are no names in the group, we're done.
|
|
if (bitmap_empty_p (m_current))
|
|
return;
|
|
|
|
phi_group *g = NULL;
|
|
if (cycle_p)
|
|
{
|
|
bool valid = true;
|
|
gimple *mod = NULL;
|
|
signed init_idx = -1;
|
|
// At this point all the PHIs have been added to the bitmap.
|
|
// the external list needs to be checked for initial values and modifiers.
|
|
for (x = 0; x < m_num_extern; x++)
|
|
{
|
|
tree name = m_external[x];
|
|
if (TREE_CODE (name) == SSA_NAME
|
|
&& phi_group::is_modifier_p (SSA_NAME_DEF_STMT (name), m_current))
|
|
{
|
|
// Can't have multiple modifiers.
|
|
if (mod)
|
|
valid = false;
|
|
mod = SSA_NAME_DEF_STMT (name);
|
|
continue;
|
|
}
|
|
// Can't have 2 initializers either.
|
|
if (init_idx != -1)
|
|
valid = false;
|
|
init_idx = x;
|
|
}
|
|
if (valid)
|
|
{
|
|
// Try to create a group based on m_current. If a result comes back
|
|
// with a range that isn't varying, create the group.
|
|
phi_group cyc (m_current, m_external[init_idx],
|
|
m_ext_edge[init_idx], mod, &m_global);
|
|
if (!cyc.range ().varying_p ())
|
|
g = new phi_group (cyc);
|
|
}
|
|
}
|
|
// If this dpoesn;t form a group, all members are instead simple phis.
|
|
if (!g)
|
|
{
|
|
bitmap_ior_into (m_simple, m_current);
|
|
return;
|
|
}
|
|
|
|
if (num_ssa_names >= m_tab.length ())
|
|
m_tab.safe_grow_cleared (num_ssa_names + 100);
|
|
|
|
// Now set all entries in the group to this record.
|
|
unsigned i;
|
|
bitmap_iterator bi;
|
|
EXECUTE_IF_SET_IN_BITMAP (m_current, 0, i, bi)
|
|
{
|
|
// Can't be in more than one group.
|
|
gcc_checking_assert (m_tab[i] == NULL);
|
|
m_tab[i] = g;
|
|
}
|
|
// Allocate a new bitmap for the next time as the original one is now part
|
|
// of the new phi group.
|
|
m_current = BITMAP_ALLOC (&m_bitmaps);
|
|
}
|
|
|
|
void
|
|
phi_analyzer::dump (FILE *f)
|
|
{
|
|
bool header = false;
|
|
bitmap_clear (m_current);
|
|
for (unsigned x = 0; x < m_tab.length (); x++)
|
|
{
|
|
if (bitmap_bit_p (m_simple, x))
|
|
continue;
|
|
if (bitmap_bit_p (m_current, x))
|
|
continue;
|
|
if (m_tab[x] == NULL)
|
|
continue;
|
|
phi_group *g = m_tab[x];
|
|
bitmap_ior_into (m_current, g->group ());
|
|
if (!header)
|
|
{
|
|
header = true;
|
|
fprintf (dump_file, "\nPHI GROUPS:\n");
|
|
}
|
|
g->dump (f);
|
|
}
|
|
}
|