gcc/libquadmath/math/expq.c
Jakub Jelinek e081ced345 libquadmath: Fix up THREEp96 constant in expq
Here is a cherry-pick from glibc [BZ #32411] fix.

As mentioned by the reporter in a pull request against gcc-mirror,
the THREEp96 constant in e_expl.c is incorrect, it is actually 0x3.p+94f128
rather than 0x3.p+96f128.

The algorithm uses that to compute the t2 integer (tval2), by whose
delta it adjusts the x+xl pair and then in the result uses the precomputed
exp value for that entry.
Using 0x3.p+94f128 rather than 0x3.p+96f128 results in tval2 sometimes
being one smaller, sometimes one larger than the desired value, thus can mean
the x+xl pair after adjustment will be larger in absolute value than it
should be.

DesWursters created a test program for this
https://github.com/DesWurstes/comparefloats
and his results were
total: 1135000000 not_equal: 4322 earlier_score: 674 later_score: 3648
I've modified this so with
https://sourceware.org/bugzilla/show_bug.cgi?id=32411#c3
so that it actually tests pseudo-random _Float128 values with range
(-16384.,16384) with strong bias on values larger than 0.0002 in absolute
value (so that tval1/tval2 aren't zero most of the time) and that gave
total: 10000000000 not_equal: 29861 earlier_score: 4606 later_score: 25255
So, in both cases, in most cases the change doesn't result in any differences,
and in those rare cases where does, about 85% have smaller ulp than without
the patch.
Additionally I've tried
https://sourceware.org/bugzilla/show_bug.cgi?id=32411#c4
and in 2 billion iterations it didn't find any case where x+xl after the
adjustments without this change would be smaller in absolute value compared
to x+xl after the adjustments with this change.

2025-04-09  Jakub Jelinek  <jakub@redhat.com>

	* math/expq.c (C): Fix up THREEp96 constant.
2025-04-09 22:09:15 +02:00

248 lines
6.8 KiB
C

/* Quad-precision floating point e^x.
Copyright (C) 1999-2018 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jj@ultra.linux.cz>
Partly based on double-precision code
by Geoffrey Keating <geoffk@ozemail.com.au>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
/* The basic design here is from
Abraham Ziv, "Fast Evaluation of Elementary Mathematical Functions with
Correctly Rounded Last Bit", ACM Trans. Math. Soft., 17 (3), September 1991,
pp. 410-423.
We work with number pairs where the first number is the high part and
the second one is the low part. Arithmetic with the high part numbers must
be exact, without any roundoff errors.
The input value, X, is written as
X = n * ln(2)_0 + arg1[t1]_0 + arg2[t2]_0 + x
- n * ln(2)_1 + arg1[t1]_1 + arg2[t2]_1 + xl
where:
- n is an integer, 16384 >= n >= -16495;
- ln(2)_0 is the first 93 bits of ln(2), and |ln(2)_0-ln(2)-ln(2)_1| < 2^-205
- t1 is an integer, 89 >= t1 >= -89
- t2 is an integer, 65 >= t2 >= -65
- |arg1[t1]-t1/256.0| < 2^-53
- |arg2[t2]-t2/32768.0| < 2^-53
- x + xl is whatever is left, |x + xl| < 2^-16 + 2^-53
Then e^x is approximated as
e^x = 2^n_1 ( 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
+ 2^n_0 e^(arg1[t1]_0 + arg1[t1]_1) e^(arg2[t2]_0 + arg2[t2]_1)
* p (x + xl + n * ln(2)_1))
where:
- p(x) is a polynomial approximating e(x)-1
- e^(arg1[t1]_0 + arg1[t1]_1) is obtained from a table
- e^(arg2[t2]_0 + arg2[t2]_1) likewise
- n_1 + n_0 = n, so that |n_0| < -FLT128_MIN_EXP-1.
If it happens that n_1 == 0 (this is the usual case), that multiplication
is omitted.
*/
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "quadmath-imp.h"
#include "expq_table.h"
static const __float128 C[] = {
/* Smallest integer x for which e^x overflows. */
#define himark C[0]
11356.523406294143949491931077970765Q,
/* Largest integer x for which e^x underflows. */
#define lomark C[1]
-11433.4627433362978788372438434526231Q,
/* 3x2^96 */
#define THREEp96 C[2]
237684487542793012780631851008.0Q,
/* 3x2^103 */
#define THREEp103 C[3]
30423614405477505635920876929024.0Q,
/* 3x2^111 */
#define THREEp111 C[4]
7788445287802241442795744493830144.0Q,
/* 1/ln(2) */
#define M_1_LN2 C[5]
1.44269504088896340735992468100189204Q,
/* first 93 bits of ln(2) */
#define M_LN2_0 C[6]
0.693147180559945309417232121457981864Q,
/* ln2_0 - ln(2) */
#define M_LN2_1 C[7]
-1.94704509238074995158795957333327386E-31Q,
/* very small number */
#define TINY C[8]
1.0e-4900Q,
/* 2^16383 */
#define TWO16383 C[9]
5.94865747678615882542879663314003565E+4931Q,
/* 256 */
#define TWO8 C[10]
256,
/* 32768 */
#define TWO15 C[11]
32768,
/* Chebyshev polynom coefficients for (exp(x)-1)/x */
#define P1 C[12]
#define P2 C[13]
#define P3 C[14]
#define P4 C[15]
#define P5 C[16]
#define P6 C[17]
0.5Q,
1.66666666666666666666666666666666683E-01Q,
4.16666666666666666666654902320001674E-02Q,
8.33333333333333333333314659767198461E-03Q,
1.38888888889899438565058018857254025E-03Q,
1.98412698413981650382436541785404286E-04Q,
};
__float128
expq (__float128 x)
{
/* Check for usual case. */
if (__builtin_isless (x, himark) && __builtin_isgreater (x, lomark))
{
int tval1, tval2, unsafe, n_i;
__float128 x22, n, t, result, xl;
ieee854_float128 ex2_u, scale_u;
fenv_t oldenv;
feholdexcept (&oldenv);
#ifdef FE_TONEAREST
fesetround (FE_TONEAREST);
#endif
/* Calculate n. */
n = x * M_1_LN2 + THREEp111;
n -= THREEp111;
x = x - n * M_LN2_0;
xl = n * M_LN2_1;
/* Calculate t/256. */
t = x + THREEp103;
t -= THREEp103;
/* Compute tval1 = t. */
tval1 = (int) (t * TWO8);
x -= __expq_table[T_EXPL_ARG1+2*tval1];
xl -= __expq_table[T_EXPL_ARG1+2*tval1+1];
/* Calculate t/32768. */
t = x + THREEp96;
t -= THREEp96;
/* Compute tval2 = t. */
tval2 = (int) (t * TWO15);
x -= __expq_table[T_EXPL_ARG2+2*tval2];
xl -= __expq_table[T_EXPL_ARG2+2*tval2+1];
x = x + xl;
/* Compute ex2 = 2^n_0 e^(argtable[tval1]) e^(argtable[tval2]). */
ex2_u.value = __expq_table[T_EXPL_RES1 + tval1]
* __expq_table[T_EXPL_RES2 + tval2];
n_i = (int)n;
/* 'unsafe' is 1 iff n_1 != 0. */
unsafe = abs(n_i) >= 15000;
ex2_u.ieee.exponent += n_i >> unsafe;
/* Compute scale = 2^n_1. */
scale_u.value = 1;
scale_u.ieee.exponent += n_i - (n_i >> unsafe);
/* Approximate e^x2 - 1, using a seventh-degree polynomial,
with maximum error in [-2^-16-2^-53,2^-16+2^-53]
less than 4.8e-39. */
x22 = x + x*x*(P1+x*(P2+x*(P3+x*(P4+x*(P5+x*P6)))));
math_force_eval (x22);
/* Return result. */
fesetenv (&oldenv);
result = x22 * ex2_u.value + ex2_u.value;
/* Now we can test whether the result is ultimate or if we are unsure.
In the later case we should probably call a mpn based routine to give
the ultimate result.
Empirically, this routine is already ultimate in about 99.9986% of
cases, the test below for the round to nearest case will be false
in ~ 99.9963% of cases.
Without proc2 routine maximum error which has been seen is
0.5000262 ulp.
ieee854_float128 ex3_u;
#ifdef FE_TONEAREST
fesetround (FE_TONEAREST);
#endif
ex3_u.value = (result - ex2_u.value) - x22 * ex2_u.value;
ex2_u.value = result;
ex3_u.ieee.exponent += FLT128_MANT_DIG + 15 + IEEE854_FLOAT128_BIAS
- ex2_u.ieee.exponent;
n_i = abs (ex3_u.value);
n_i = (n_i + 1) / 2;
fesetenv (&oldenv);
#ifdef FE_TONEAREST
if (fegetround () == FE_TONEAREST)
n_i -= 0x4000;
#endif
if (!n_i) {
return __ieee754_expl_proc2 (origx);
}
*/
if (!unsafe)
return result;
else
{
result *= scale_u.value;
math_check_force_underflow_nonneg (result);
return result;
}
}
/* Exceptional cases: */
else if (__builtin_isless (x, himark))
{
if (isinfq (x))
/* e^-inf == 0, with no error. */
return 0;
else
/* Underflow */
return TINY * TINY;
}
else
/* Return x, if x is a NaN or Inf; or overflow, otherwise. */
return TWO16383*x;
}