// Copyright 2014 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package runtime import ( "runtime/internal/atomic" "runtime/internal/sys" "unsafe" ) // Should be a built-in for unsafe.Pointer? //go:nosplit func add(p unsafe.Pointer, x uintptr) unsafe.Pointer { return unsafe.Pointer(uintptr(p) + x) } // getg returns the pointer to the current g. // The compiler rewrites calls to this function into instructions // that fetch the g directly (from TLS or from the dedicated register). func getg() *g // mcall switches from the g to the g0 stack and invokes fn(g), // where g is the goroutine that made the call. // mcall saves g's current PC/SP in g->sched so that it can be restored later. // It is up to fn to arrange for that later execution, typically by recording // g in a data structure, causing something to call ready(g) later. // mcall returns to the original goroutine g later, when g has been rescheduled. // fn must not return at all; typically it ends by calling schedule, to let the m // run other goroutines. // // mcall can only be called from g stacks (not g0, not gsignal). // // This must NOT be go:noescape: if fn is a stack-allocated closure, // fn puts g on a run queue, and g executes before fn returns, the // closure will be invalidated while it is still executing. func mcall(fn func(*g)) // systemstack runs fn on a system stack. // // It is common to use a func literal as the argument, in order // to share inputs and outputs with the code around the call // to system stack: // // ... set up y ... // systemstack(func() { // x = bigcall(y) // }) // ... use x ... // // For the gc toolchain this permits running a function that requires // additional stack space in a context where the stack can not be // split. For gccgo, however, stack splitting is not managed by the // Go runtime. In effect, all stacks are system stacks. So this gccgo // version just runs the function. func systemstack(fn func()) { fn() } func badsystemstack() { throw("systemstack called from unexpected goroutine") } // memclr clears n bytes starting at ptr. // in memclr_*.s //go:noescape func memclr(ptr unsafe.Pointer, n uintptr) //go:linkname reflect_memclr reflect.memclr func reflect_memclr(ptr unsafe.Pointer, n uintptr) { memclr(ptr, n) } // memmove copies n bytes from "from" to "to". //go:noescape func memmove(to, from unsafe.Pointer, n uintptr) //go:linkname reflect_memmove reflect.memmove func reflect_memmove(to, from unsafe.Pointer, n uintptr) { memmove(to, from, n) } //go:noescape //extern __builtin_memcmp func memcmp(a, b unsafe.Pointer, size uintptr) int32 // exported value for testing var hashLoad = loadFactor // in asm_*.s func fastrand1() uint32 // in asm_*.s //go:noescape func memequal(a, b unsafe.Pointer, size uintptr) bool // noescape hides a pointer from escape analysis. noescape is // the identity function but escape analysis doesn't think the // output depends on the input. noescape is inlined and currently // compiles down to a single xor instruction. // USE CAREFULLY! //go:nosplit func noescape(p unsafe.Pointer) unsafe.Pointer { x := uintptr(p) return unsafe.Pointer(x ^ 0) } func mincore(addr unsafe.Pointer, n uintptr, dst *byte) int32 //go:noescape func jmpdefer(fv *funcval, argp uintptr) func exit1(code int32) func asminit() func setg(gg *g) func breakpoint() // reflectcall calls fn with a copy of the n argument bytes pointed at by arg. // After fn returns, reflectcall copies n-retoffset result bytes // back into arg+retoffset before returning. If copying result bytes back, // the caller should pass the argument frame type as argtype, so that // call can execute appropriate write barriers during the copy. // Package reflect passes a frame type. In package runtime, there is only // one call that copies results back, in cgocallbackg1, and it does NOT pass a // frame type, meaning there are no write barriers invoked. See that call // site for justification. func reflectcall(argtype *_type, fn, arg unsafe.Pointer, argsize uint32, retoffset uint32) func procyield(cycles uint32) type neverCallThisFunction struct{} // goexit is the return stub at the top of every goroutine call stack. // Each goroutine stack is constructed as if goexit called the // goroutine's entry point function, so that when the entry point // function returns, it will return to goexit, which will call goexit1 // to perform the actual exit. // // This function must never be called directly. Call goexit1 instead. // gentraceback assumes that goexit terminates the stack. A direct // call on the stack will cause gentraceback to stop walking the stack // prematurely and if there are leftover stack barriers it may panic. func goexit(neverCallThisFunction) // publicationBarrier performs a store/store barrier (a "publication" // or "export" barrier). Some form of synchronization is required // between initializing an object and making that object accessible to // another processor. Without synchronization, the initialization // writes and the "publication" write may be reordered, allowing the // other processor to follow the pointer and observe an uninitialized // object. In general, higher-level synchronization should be used, // such as locking or an atomic pointer write. publicationBarrier is // for when those aren't an option, such as in the implementation of // the memory manager. // // There's no corresponding barrier for the read side because the read // side naturally has a data dependency order. All architectures that // Go supports or seems likely to ever support automatically enforce // data dependency ordering. func publicationBarrier() //go:noescape func setcallerpc(argp unsafe.Pointer, pc uintptr) // getcallerpc returns the program counter (PC) of its caller's caller. // getcallersp returns the stack pointer (SP) of its caller's caller. // For both, the argp must be a pointer to the caller's first function argument. // The implementation may or may not use argp, depending on // the architecture. // // For example: // // func f(arg1, arg2, arg3 int) { // pc := getcallerpc(unsafe.Pointer(&arg1)) // sp := getcallersp(unsafe.Pointer(&arg1)) // } // // These two lines find the PC and SP immediately following // the call to f (where f will return). // // The call to getcallerpc and getcallersp must be done in the // frame being asked about. It would not be correct for f to pass &arg1 // to another function g and let g call getcallerpc/getcallersp. // The call inside g might return information about g's caller or // information about f's caller or complete garbage. // // The result of getcallersp is correct at the time of the return, // but it may be invalidated by any subsequent call to a function // that might relocate the stack in order to grow or shrink it. // A general rule is that the result of getcallersp should be used // immediately and can only be passed to nosplit functions. //go:noescape func getcallerpc(argp unsafe.Pointer) uintptr //go:noescape func getcallersp(argp unsafe.Pointer) uintptr // argp used in Defer structs when there is no argp. const _NoArgs = ^uintptr(0) //go:linkname time_now time.now func time_now() (sec int64, nsec int32) // For gccgo, expose this for C callers. //go:linkname unixnanotime runtime.unixnanotime func unixnanotime() int64 { sec, nsec := time_now() return sec*1e9 + int64(nsec) } // round n up to a multiple of a. a must be a power of 2. func round(n, a uintptr) uintptr { return (n + a - 1) &^ (a - 1) } // checkASM returns whether assembly runtime checks have passed. func checkASM() bool { return true } // For gccgo this is in the C code. func osyield() // For gccgo this can be called directly. //extern syscall func syscall(trap uintptr, a1, a2, a3, a4, a5, a6 uintptr) uintptr // throw crashes the program. // For gccgo unless and until we port panic.go. func throw(string) // newobject allocates a new object. // For gccgo unless and until we port malloc.go. func newobject(*_type) unsafe.Pointer // newarray allocates a new array of objects. // For gccgo unless and until we port malloc.go. func newarray(*_type, int) unsafe.Pointer // funcPC returns the entry PC of the function f. // It assumes that f is a func value. Otherwise the behavior is undefined. // For gccgo here unless and until we port proc.go. // Note that this differs from the gc implementation; the gc implementation // adds sys.PtrSize to the address of the interface value, but GCC's // alias analysis decides that that can not be a reference to the second // field of the interface, and in some cases it drops the initialization // of the second field as a dead store. //go:nosplit func funcPC(f interface{}) uintptr { i := (*iface)(unsafe.Pointer(&f)) return **(**uintptr)(i.data) } // typedmemmove copies a typed value. // For gccgo for now. //go:nosplit func typedmemmove(typ *_type, dst, src unsafe.Pointer) { memmove(dst, src, typ.size) } // Temporary for gccgo until we port mbarrier.go. //go:linkname typedslicecopy runtime.typedslicecopy func typedslicecopy(typ *_type, dst, src slice) int { n := dst.len if n > src.len { n = src.len } if n == 0 { return 0 } memmove(dst.array, src.array, uintptr(n)*typ.size) return n } // Here for gccgo until we port malloc.go. const ( _64bit = 1 << (^uintptr(0) >> 63) / 2 _MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*32 _MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1) ) // Here for gccgo until we port malloc.go. //extern runtime_mallocgc func c_mallocgc(size uintptr, typ uintptr, flag uint32) unsafe.Pointer func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer { flag := uint32(0) if !needzero { flag = 1 << 3 } return c_mallocgc(size, uintptr(unsafe.Pointer(typ)), flag) } // Here for gccgo until we port mgc.go. var writeBarrier struct { enabled bool // compiler emits a check of this before calling write barrier needed bool // whether we need a write barrier for current GC phase cgo bool // whether we need a write barrier for a cgo check alignme uint64 // guarantee alignment so that compiler can use a 32 or 64-bit load } // Here for gccgo until we port atomic_pointer.go and mgc.go. //go:nosplit func casp(ptr *unsafe.Pointer, old, new unsafe.Pointer) bool { if !atomic.Casp1((*unsafe.Pointer)(noescape(unsafe.Pointer(ptr))), noescape(old), new) { return false } return true } // Here for gccgo until we port lock_*.go. func lock(l *mutex) func unlock(l *mutex) // Here for gccgo for netpoll and Solaris. func errno() int // Temporary for gccgo until we port proc.go. func entersyscall(int32) func entersyscallblock(int32) func exitsyscall(int32) func gopark(func(*g, unsafe.Pointer) bool, unsafe.Pointer, string, byte, int) func goparkunlock(*mutex, string, byte, int) func goready(*g, int) // Temporary hack for gccgo until we port proc.go. //go:nosplit func acquireSudog() *sudog { mp := acquirem() pp := mp.p.ptr() if len(pp.sudogcache) == 0 { pp.sudogcache = append(pp.sudogcache, new(sudog)) } n := len(pp.sudogcache) s := pp.sudogcache[n-1] pp.sudogcache[n-1] = nil pp.sudogcache = pp.sudogcache[:n-1] if s.elem != nil { throw("acquireSudog: found s.elem != nil in cache") } releasem(mp) return s } // Temporary hack for gccgo until we port proc.go. //go:nosplit func releaseSudog(s *sudog) { if s.elem != nil { throw("runtime: sudog with non-nil elem") } if s.selectdone != nil { throw("runtime: sudog with non-nil selectdone") } if s.next != nil { throw("runtime: sudog with non-nil next") } if s.prev != nil { throw("runtime: sudog with non-nil prev") } if s.waitlink != nil { throw("runtime: sudog with non-nil waitlink") } if s.c != nil { throw("runtime: sudog with non-nil c") } gp := getg() if gp.param != nil { throw("runtime: releaseSudog with non-nil gp.param") } mp := acquirem() // avoid rescheduling to another P pp := mp.p.ptr() pp.sudogcache = append(pp.sudogcache, s) releasem(mp) } // Temporary hack for gccgo until we port the garbage collector. func typeBitsBulkBarrier(typ *_type, p, size uintptr) {} // Here for gccgo until we port msize.go. func roundupsize(uintptr) uintptr // Here for gccgo until we port mgc.go. func GC() // Here for gccgo until we port proc.go. var worldsema uint32 = 1 func stopTheWorldWithSema() func startTheWorldWithSema() // For gccgo to call from C code. //go:linkname acquireWorldsema runtime.acquireWorldsema func acquireWorldsema() { semacquire(&worldsema, false) } // For gccgo to call from C code. //go:linkname releaseWorldsema runtime.releaseWorldsema func releaseWorldsema() { semrelease(&worldsema) } // Here for gccgo until we port proc.go. func stopTheWorld(reason string) { semacquire(&worldsema, false) getg().m.preemptoff = reason getg().m.gcing = 1 systemstack(stopTheWorldWithSema) } // Here for gccgo until we port proc.go. func startTheWorld() { getg().m.gcing = 0 getg().m.locks++ systemstack(startTheWorldWithSema) // worldsema must be held over startTheWorldWithSema to ensure // gomaxprocs cannot change while worldsema is held. semrelease(&worldsema) getg().m.preemptoff = "" getg().m.locks-- } // For gccgo to call from C code, so that the C code and the Go code // can share the memstats variable for now. //go:linkname getMstats runtime.getMstats func getMstats() *mstats { return &memstats } // Temporary for gccgo until we port proc.go. func setcpuprofilerate_m(hz int32) // Temporary for gccgo until we port mem_GOOS.go. func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer // Temporary for gccgo until we port proc.go, so that the C signal // handler can call into cpuprof. //go:linkname cpuprofAdd runtime.cpuprofAdd func cpuprofAdd(stk []uintptr) { cpuprof.add(stk) } // For gccgo until we port proc.go. func Breakpoint() func LockOSThread() func UnlockOSThread() func allm() *m func allgs() []*g //go:nosplit func readgstatus(gp *g) uint32 { return atomic.Load(&gp.atomicstatus) } // Temporary for gccgo until we port malloc.go func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer // Temporary for gccgo until we port mheap.go func setprofilebucket(p unsafe.Pointer, b *bucket) // Currently in proc.c. func tracebackothers(*g) // Temporary for gccgo until we port mgc.go. func setgcpercent(int32) int32 //go:linkname setGCPercent runtime_debug.setGCPercent func setGCPercent(in int32) (out int32) { return setgcpercent(in) } // Temporary for gccgo until we port proc.go. func setmaxthreads(int) int //go:linkname setMaxThreads runtime_debug.setMaxThreads func setMaxThreads(in int) (out int) { return setmaxthreads(in) } // Temporary for gccgo until we port atomic_pointer.go. //go:nosplit func atomicstorep(ptr unsafe.Pointer, new unsafe.Pointer) { atomic.StorepNoWB(noescape(ptr), new) } // Temporary for gccgo until we port mbarrier.go func writebarrierptr(dst *uintptr, src uintptr) { *dst = src } // Temporary for gccgo until we port malloc.go var zerobase uintptr //go:linkname getZerobase runtime.getZerobase func getZerobase() *uintptr { return &zerobase } // Temporary for gccgo until we port proc.go. func needm() func dropm() func sigprof() func mcount() int32 func gcount() int32 // Signal trampoline, written in C. func sigtramp() // The sa_handler field is generally hidden in a union, so use C accessors. func getSigactionHandler(*_sigaction) uintptr func setSigactionHandler(*_sigaction, uintptr) // Retrieve fields from the siginfo_t and ucontext_t pointers passed // to a signal handler using C, as they are often hidden in a union. // Returns and, if available, PC where signal occurred. func getSiginfo(*_siginfo_t, unsafe.Pointer) (sigaddr uintptr, sigpc uintptr) // Implemented in C for gccgo. func dumpregs(*_siginfo_t, unsafe.Pointer) // Temporary for gccgo until we port panic.go. func startpanic() // Temporary for gccgo until we port proc.go. //go:linkname getsched runtime.getsched func getsched() *schedt { return &sched }