Use a single comparison for index-based alias checks

This patch rewrites the index-based alias checks to use conditions
of the form:

  (unsigned T) (a - b + bias) <= limit

E.g. before the patch:

  struct s { int x[100]; };

  void
  f1 (struct s *s1, int a, int b)
  {
    for (int i = 0; i < 32; ++i)
      s1->x[i + a] += s1->x[i + b];
  }

used:

        add     w3, w1, 3
        cmp     w3, w2
        add     w3, w2, 3
        ccmp    w1, w3, 0, ge
        ble     .L2

whereas after the patch it uses:

        sub     w3, w1, w2
        add     w3, w3, 3
        cmp     w3, 6
        bls     .L2

The patch also fixes the seg_len1 and seg_len2 negation for cases in
which seg_len is a "negative unsigned" value narrower than 64 bits,
like it is for 32-bit targets.  Previously we'd end up with values
like 0xffffffff000000001 instead of 1.

2019-11-16  Richard Sandiford  <richard.sandiford@arm.com>

gcc/
	* tree-data-ref.c (create_intersect_range_checks_index): Rewrite
	the index tests to have the form (unsigned T) (B - A + bias) <= limit.

gcc/testsuite/
	* gcc.dg/vect/vect-alias-check-18.c: New test.
	* gcc.dg/vect/vect-alias-check-19.c: Likewise.
	* gcc.dg/vect/vect-alias-check-20.c: Likewise.

From-SVN: r278354
This commit is contained in:
Richard Sandiford 2019-11-16 11:43:31 +00:00 committed by Richard Sandiford
parent b4d1b63573
commit f9d6338bd1
6 changed files with 293 additions and 49 deletions

View file

@ -1,3 +1,8 @@
2019-11-16 Richard Sandiford <richard.sandiford@arm.com>
* tree-data-ref.c (create_intersect_range_checks_index): Rewrite
the index tests to have the form (unsigned T) (B - A + bias) <= limit.
2019-11-16 Richard Sandiford <richard.sandiford@arm.com>
* tree-data-ref.c (create_intersect_range_checks_index)

View file

@ -1,3 +1,9 @@
2019-11-16 Richard Sandiford <richard.sandiford@arm.com>
* gcc.dg/vect/vect-alias-check-18.c: New test.
* gcc.dg/vect/vect-alias-check-19.c: Likewise.
* gcc.dg/vect/vect-alias-check-20.c: Likewise.
2019-11-16 Richard Sandiford <richard.sandiford@arm.com>
* gcc.dg/vect/vect-alias-check-1.c: Test for the type of alias check.

View file

@ -0,0 +1,64 @@
#define N 200
#define DIST 32
typedef signed char sc;
typedef unsigned char uc;
typedef signed short ss;
typedef unsigned short us;
typedef int si;
typedef unsigned int ui;
typedef signed long long sll;
typedef unsigned long long ull;
#define FOR_EACH_TYPE(M) \
M (sc) M (uc) \
M (ss) M (us) \
M (si) M (ui) \
M (sll) M (ull) \
M (float) M (double)
#define TEST_VALUE(I) ((I) * 11 / 2)
#define ADD_TEST(TYPE) \
TYPE a_##TYPE[N * 2]; \
void __attribute__((noinline, noclone)) \
test_##TYPE (int x, int y) \
{ \
for (int i = 0; i < N; ++i) \
a_##TYPE[x - i] += a_##TYPE[y - i]; \
}
#define DO_TEST(TYPE) \
for (int i = 0; i < DIST * 2; ++i) \
{ \
for (int j = 0; j < N + DIST * 2; ++j) \
a_##TYPE[j] = TEST_VALUE (j); \
test_##TYPE (i + N - 1, DIST + N - 1); \
for (int j = 0; j < N + DIST * 2; ++j) \
{ \
TYPE expected; \
if (j < i || j >= i + N) \
expected = TEST_VALUE (j); \
else if (i >= DIST) \
expected = ((TYPE) TEST_VALUE (j) \
+ (TYPE) TEST_VALUE (j + DIST - i)); \
else \
expected = ((TYPE) TEST_VALUE (j) \
+ a_##TYPE[j + DIST - i]); \
if (expected != a_##TYPE[j]) \
__builtin_abort (); \
} \
}
FOR_EACH_TYPE (ADD_TEST)
int
main (void)
{
FOR_EACH_TYPE (DO_TEST)
return 0;
}
/* { dg-final { scan-tree-dump {flags: *WAR\n} "vect" { target vect_int } } } */
/* { dg-final { scan-tree-dump "using an index-based overlap test" "vect" } } */
/* { dg-final { scan-tree-dump-not "using an address-based" "vect" } } */

View file

@ -0,0 +1,62 @@
#define N 200
#define DIST 32
typedef signed char sc;
typedef unsigned char uc;
typedef signed short ss;
typedef unsigned short us;
typedef int si;
typedef unsigned int ui;
typedef signed long long sll;
typedef unsigned long long ull;
#define FOR_EACH_TYPE(M) \
M (sc) M (uc) \
M (ss) M (us) \
M (si) M (ui) \
M (sll) M (ull) \
M (float) M (double)
#define ADD_TEST(TYPE) \
TYPE a_##TYPE[N * 2]; \
void __attribute__((noinline, noclone)) \
test_##TYPE (int x, int y) \
{ \
for (int i = 0; i < N; ++i) \
{ \
a_##TYPE[i + x] = i; \
a_##TYPE[i + y] = 42 - i * 2; \
} \
}
#define DO_TEST(TYPE) \
for (int i = 0; i < DIST * 2; ++i) \
{ \
__builtin_memset (a_##TYPE, 0, sizeof (a_##TYPE)); \
test_##TYPE (DIST, i); \
for (int j = 0; j < N + DIST * 2; ++j) \
{ \
TYPE expected = 0; \
if (i > DIST && j >= i && j < i + N) \
expected = 42 - (j - i) * 2; \
if (j >= DIST && j < DIST + N) \
expected = j - DIST; \
if (i <= DIST && j >= i && j < i + N) \
expected = 42 - (j - i) * 2; \
if (expected != a_##TYPE[j]) \
__builtin_abort (); \
} \
}
FOR_EACH_TYPE (ADD_TEST)
int
main (void)
{
FOR_EACH_TYPE (DO_TEST)
return 0;
}
/* { dg-final { scan-tree-dump {flags: *WAW\n} "vect" { target vect_int } } } */
/* { dg-final { scan-tree-dump "using an index-based overlap test" "vect" } } */
/* { dg-final { scan-tree-dump-not "using an address-based" "vect" } } */

View file

@ -0,0 +1,66 @@
#define N 200
#define DIST 32
typedef signed char sc;
typedef unsigned char uc;
typedef signed short ss;
typedef unsigned short us;
typedef int si;
typedef unsigned int ui;
typedef signed long long sll;
typedef unsigned long long ull;
#define FOR_EACH_TYPE(M) \
M (sc) M (uc) \
M (ss) M (us) \
M (si) M (ui) \
M (sll) M (ull) \
M (float) M (double)
#define TEST_VALUE(I) ((I) * 11 / 2)
#define ADD_TEST(TYPE) \
TYPE a_##TYPE[N * 2]; \
TYPE __attribute__((noinline, noclone)) \
test_##TYPE (int x, int y) \
{ \
TYPE res = 0; \
for (int i = 0; i < N; ++i) \
{ \
a_##TYPE[i + x] = i; \
res += a_##TYPE[i + y]; \
} \
return res; \
}
#define DO_TEST(TYPE) \
for (int i = 0; i < DIST * 2; ++i) \
{ \
for (int j = 0; j < N + DIST * 2; ++j) \
a_##TYPE[j] = TEST_VALUE (j); \
TYPE res = test_##TYPE (DIST, i); \
for (int j = 0; j < N; ++j) \
if (a_##TYPE[j + DIST] != (TYPE) j) \
__builtin_abort (); \
TYPE expected_res = 0; \
for (int j = i; j < i + N; ++j) \
if (i <= DIST && j >= DIST && j < DIST + N) \
expected_res += j - DIST; \
else \
expected_res += TEST_VALUE (j); \
if (expected_res != res) \
__builtin_abort (); \
}
FOR_EACH_TYPE (ADD_TEST)
int
main (void)
{
FOR_EACH_TYPE (DO_TEST)
return 0;
}
/* { dg-final { scan-tree-dump {flags: *RAW\n} "vect" { target vect_int } } } */
/* { dg-final { scan-tree-dump "using an index-based overlap test" "vect" } } */
/* { dg-final { scan-tree-dump-not "using an address-based" "vect" } } */

View file

@ -1743,7 +1743,9 @@ prune_runtime_alias_test_list (vec<dr_with_seg_len_pair_t> *alias_pairs,
We can create expression based on index rather than address:
(i_0 + 4 < j_0 || j_0 + 4 < i_0)
(unsigned) (i_0 - j_0 + 3) <= 6
i.e. the indices are less than 4 apart.
Note evolution step of index needs to be considered in comparison. */
@ -1780,15 +1782,8 @@ create_intersect_range_checks_index (class loop *loop, tree *cond_expr,
if (neg_step)
{
abs_step = -abs_step;
seg_len1 = -seg_len1;
seg_len2 = -seg_len2;
}
else
{
/* Include the access size in the length, so that we only have one
tree addition below. */
seg_len1 += dr_a.access_size;
seg_len2 += dr_b.access_size;
seg_len1 = (-wi::to_poly_wide (dr_a.seg_len)).force_uhwi ();
seg_len2 = (-wi::to_poly_wide (dr_b.seg_len)).force_uhwi ();
}
/* Infer the number of iterations with which the memory segment is accessed
@ -1802,16 +1797,13 @@ create_intersect_range_checks_index (class loop *loop, tree *cond_expr,
|| !can_div_trunc_p (seg_len2 + abs_step - 1, abs_step, &niter_len2))
return false;
poly_uint64 niter_access1 = 0, niter_access2 = 0;
if (neg_step)
{
/* Divide each access size by the byte step, rounding up. */
if (!can_div_trunc_p (dr_a.access_size - abs_step - 1,
abs_step, &niter_access1)
|| !can_div_trunc_p (dr_b.access_size + abs_step - 1,
abs_step, &niter_access2))
return false;
}
/* Divide each access size by the byte step, rounding up. */
poly_uint64 niter_access1, niter_access2;
if (!can_div_trunc_p (dr_a.access_size + abs_step - 1,
abs_step, &niter_access1)
|| !can_div_trunc_p (dr_b.access_size + abs_step - 1,
abs_step, &niter_access2))
return false;
unsigned int i;
for (i = 0; i < DR_NUM_DIMENSIONS (dr_a.dr); i++)
@ -1851,38 +1843,87 @@ create_intersect_range_checks_index (class loop *loop, tree *cond_expr,
index of data reference. Like segment length, index length is
linear function of the number of iterations with index_step as
the coefficient, i.e, niter_len * idx_step. */
tree idx_len1 = fold_build2 (MULT_EXPR, TREE_TYPE (min1), idx_step,
build_int_cst (TREE_TYPE (min1),
niter_len1));
tree idx_len2 = fold_build2 (MULT_EXPR, TREE_TYPE (min2), idx_step,
build_int_cst (TREE_TYPE (min2),
niter_len2));
tree max1 = fold_build2 (PLUS_EXPR, TREE_TYPE (min1), min1, idx_len1);
tree max2 = fold_build2 (PLUS_EXPR, TREE_TYPE (min2), min2, idx_len2);
/* Adjust ranges for negative step. */
offset_int abs_idx_step = offset_int::from (wi::to_wide (idx_step),
SIGNED);
if (neg_step)
{
/* IDX_LEN1 and IDX_LEN2 are negative in this case. */
std::swap (min1, max1);
std::swap (min2, max2);
abs_idx_step = -abs_idx_step;
poly_offset_int idx_len1 = abs_idx_step * niter_len1;
poly_offset_int idx_len2 = abs_idx_step * niter_len2;
poly_offset_int idx_access1 = abs_idx_step * niter_access1;
poly_offset_int idx_access2 = abs_idx_step * niter_access2;
/* As with the lengths just calculated, we've measured the access
sizes in iterations, so multiply them by the index step. */
tree idx_access1
= fold_build2 (MULT_EXPR, TREE_TYPE (min1), idx_step,
build_int_cst (TREE_TYPE (min1), niter_access1));
tree idx_access2
= fold_build2 (MULT_EXPR, TREE_TYPE (min2), idx_step,
build_int_cst (TREE_TYPE (min2), niter_access2));
gcc_assert (known_ge (idx_len1, 0)
&& known_ge (idx_len2, 0)
&& known_ge (idx_access1, 0)
&& known_ge (idx_access2, 0));
/* MINUS_EXPR because the above values are negative. */
max1 = fold_build2 (MINUS_EXPR, TREE_TYPE (max1), max1, idx_access1);
max2 = fold_build2 (MINUS_EXPR, TREE_TYPE (max2), max2, idx_access2);
}
tree part_cond_expr
= fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
fold_build2 (LE_EXPR, boolean_type_node, max1, min2),
fold_build2 (LE_EXPR, boolean_type_node, max2, min1));
/* Each access has the following pattern, with lengths measured
in units of INDEX:
<-- idx_len -->
<--- A: -ve step --->
+-----+-------+-----+-------+-----+
| n-1 | ..... | 0 | ..... | n-1 |
+-----+-------+-----+-------+-----+
<--- B: +ve step --->
<-- idx_len -->
|
min
where "n" is the number of scalar iterations covered by the segment
and where each access spans idx_access units.
A is the range of bytes accessed when the step is negative,
B is the range when the step is positive.
When checking for general overlap, we need to test whether
the range:
[min1 + low_offset1, min2 + high_offset1 + idx_access1 - 1]
overlaps:
[min2 + low_offset2, min2 + high_offset2 + idx_access2 - 1]
where:
low_offsetN = +ve step ? 0 : -idx_lenN;
high_offsetN = +ve step ? idx_lenN : 0;
This is equivalent to testing whether:
min1 + low_offset1 <= min2 + high_offset2 + idx_access2 - 1
&& min2 + low_offset2 <= min1 + high_offset1 + idx_access1 - 1
Converting this into a single test, there is an overlap if:
0 <= min2 - min1 + bias <= limit
where bias = high_offset2 + idx_access2 - 1 - low_offset1
limit = (high_offset1 - low_offset1 + idx_access1 - 1)
+ (high_offset2 - low_offset2 + idx_access2 - 1)
i.e. limit = idx_len1 + idx_access1 - 1 + idx_len2 + idx_access2 - 1
Combining the tests requires limit to be computable in an unsigned
form of the index type; if it isn't, we fall back to the usual
pointer-based checks. */
poly_offset_int limit = (idx_len1 + idx_access1 - 1
+ idx_len2 + idx_access2 - 1);
tree utype = unsigned_type_for (TREE_TYPE (min1));
if (!wi::fits_to_tree_p (limit, utype))
return false;
poly_offset_int low_offset1 = neg_step ? -idx_len1 : 0;
poly_offset_int high_offset2 = neg_step ? 0 : idx_len2;
poly_offset_int bias = high_offset2 + idx_access2 - 1 - low_offset1;
tree subject = fold_build2 (MINUS_EXPR, utype,
fold_convert (utype, min2),
fold_convert (utype, min1));
subject = fold_build2 (PLUS_EXPR, utype, subject,
wide_int_to_tree (utype, bias));
tree part_cond_expr = fold_build2 (GT_EXPR, boolean_type_node, subject,
wide_int_to_tree (utype, limit));
if (*cond_expr)
*cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
*cond_expr, part_cond_expr);