Initial revision
From-SVN: r102074
This commit is contained in:
parent
6f4434b39b
commit
f911ba985a
4557 changed files with 1000262 additions and 0 deletions
744
libjava/classpath/java/util/BitSet.java
Normal file
744
libjava/classpath/java/util/BitSet.java
Normal file
|
@ -0,0 +1,744 @@
|
|||
/* BitSet.java -- A vector of bits.
|
||||
Copyright (C) 1998, 1999, 2000, 2001, 2004, 2005 Free Software Foundation, Inc.
|
||||
|
||||
This file is part of GNU Classpath.
|
||||
|
||||
GNU Classpath is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 2, or (at your option)
|
||||
any later version.
|
||||
|
||||
GNU Classpath is distributed in the hope that it will be useful, but
|
||||
WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GNU Classpath; see the file COPYING. If not, write to the
|
||||
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||||
02110-1301 USA.
|
||||
|
||||
Linking this library statically or dynamically with other modules is
|
||||
making a combined work based on this library. Thus, the terms and
|
||||
conditions of the GNU General Public License cover the whole
|
||||
combination.
|
||||
|
||||
As a special exception, the copyright holders of this library give you
|
||||
permission to link this library with independent modules to produce an
|
||||
executable, regardless of the license terms of these independent
|
||||
modules, and to copy and distribute the resulting executable under
|
||||
terms of your choice, provided that you also meet, for each linked
|
||||
independent module, the terms and conditions of the license of that
|
||||
module. An independent module is a module which is not derived from
|
||||
or based on this library. If you modify this library, you may extend
|
||||
this exception to your version of the library, but you are not
|
||||
obligated to do so. If you do not wish to do so, delete this
|
||||
exception statement from your version. */
|
||||
|
||||
package java.util;
|
||||
import java.io.Serializable;
|
||||
|
||||
/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
|
||||
* hashCode algorithm taken from JDK 1.2 docs.
|
||||
*/
|
||||
|
||||
/**
|
||||
* This class can be thought of in two ways. You can see it as a
|
||||
* vector of bits or as a set of non-negative integers. The name
|
||||
* <code>BitSet</code> is a bit misleading.
|
||||
*
|
||||
* It is implemented by a bit vector, but its equally possible to see
|
||||
* it as set of non-negative integer; each integer in the set is
|
||||
* represented by a set bit at the corresponding index. The size of
|
||||
* this structure is determined by the highest integer in the set.
|
||||
*
|
||||
* You can union, intersect and build (symmetric) remainders, by
|
||||
* invoking the logical operations and, or, andNot, resp. xor.
|
||||
*
|
||||
* This implementation is NOT synchronized against concurrent access from
|
||||
* multiple threads. Specifically, if one thread is reading from a bitset
|
||||
* while another thread is simultaneously modifying it, the results are
|
||||
* undefined.
|
||||
*
|
||||
* @author Jochen Hoenicke
|
||||
* @author Tom Tromey (tromey@cygnus.com)
|
||||
* @author Eric Blake (ebb9@email.byu.edu)
|
||||
* @status updated to 1.4
|
||||
*/
|
||||
public class BitSet implements Cloneable, Serializable
|
||||
{
|
||||
/**
|
||||
* Compatible with JDK 1.0.
|
||||
*/
|
||||
private static final long serialVersionUID = 7997698588986878753L;
|
||||
|
||||
/**
|
||||
* A common mask.
|
||||
*/
|
||||
private static final int LONG_MASK = 0x3f;
|
||||
|
||||
/**
|
||||
* The actual bits.
|
||||
* @serial the i'th bit is in bits[i/64] at position i%64 (where position
|
||||
* 0 is the least significant).
|
||||
*/
|
||||
private long[] bits;
|
||||
|
||||
/**
|
||||
* Create a new empty bit set. All bits are initially false.
|
||||
*/
|
||||
public BitSet()
|
||||
{
|
||||
this(64);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a new empty bit set, with a given size. This
|
||||
* constructor reserves enough space to represent the integers
|
||||
* from <code>0</code> to <code>nbits-1</code>.
|
||||
*
|
||||
* @param nbits the initial size of the bit set
|
||||
* @throws NegativeArraySizeException if nbits < 0
|
||||
*/
|
||||
public BitSet(int nbits)
|
||||
{
|
||||
if (nbits < 0)
|
||||
throw new NegativeArraySizeException();
|
||||
|
||||
int length = nbits >>> 6;
|
||||
if ((nbits & LONG_MASK) != 0)
|
||||
++length;
|
||||
bits = new long[length];
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs the logical AND operation on this bit set and the
|
||||
* given <code>set</code>. This means it builds the intersection
|
||||
* of the two sets. The result is stored into this bit set.
|
||||
*
|
||||
* @param bs the second bit set
|
||||
* @throws NullPointerException if bs is null
|
||||
*/
|
||||
public void and(BitSet bs)
|
||||
{
|
||||
int max = Math.min(bits.length, bs.bits.length);
|
||||
int i;
|
||||
for (i = 0; i < max; ++i)
|
||||
bits[i] &= bs.bits[i];
|
||||
while (i < bits.length)
|
||||
bits[i++] = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs the logical AND operation on this bit set and the
|
||||
* complement of the given <code>bs</code>. This means it
|
||||
* selects every element in the first set, that isn't in the
|
||||
* second set. The result is stored into this bit set and is
|
||||
* effectively the set difference of the two.
|
||||
*
|
||||
* @param bs the second bit set
|
||||
* @throws NullPointerException if bs is null
|
||||
* @since 1.2
|
||||
*/
|
||||
public void andNot(BitSet bs)
|
||||
{
|
||||
int i = Math.min(bits.length, bs.bits.length);
|
||||
while (--i >= 0)
|
||||
bits[i] &= ~bs.bits[i];
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the number of bits set to true.
|
||||
*
|
||||
* @return the number of true bits
|
||||
* @since 1.4
|
||||
*/
|
||||
public int cardinality()
|
||||
{
|
||||
int card = 0;
|
||||
for (int i = bits.length - 1; i >= 0; i--)
|
||||
{
|
||||
long a = bits[i];
|
||||
// Take care of common cases.
|
||||
if (a == 0)
|
||||
continue;
|
||||
if (a == -1)
|
||||
{
|
||||
card += 64;
|
||||
continue;
|
||||
}
|
||||
|
||||
// Successively collapse alternating bit groups into a sum.
|
||||
a = ((a >> 1) & 0x5555555555555555L) + (a & 0x5555555555555555L);
|
||||
a = ((a >> 2) & 0x3333333333333333L) + (a & 0x3333333333333333L);
|
||||
int b = (int) ((a >>> 32) + a);
|
||||
b = ((b >> 4) & 0x0f0f0f0f) + (b & 0x0f0f0f0f);
|
||||
b = ((b >> 8) & 0x00ff00ff) + (b & 0x00ff00ff);
|
||||
card += ((b >> 16) & 0x0000ffff) + (b & 0x0000ffff);
|
||||
}
|
||||
return card;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets all bits in the set to false.
|
||||
*
|
||||
* @since 1.4
|
||||
*/
|
||||
public void clear()
|
||||
{
|
||||
Arrays.fill(bits, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Removes the integer <code>pos</code> from this set. That is
|
||||
* the corresponding bit is cleared. If the index is not in the set,
|
||||
* this method does nothing.
|
||||
*
|
||||
* @param pos a non-negative integer
|
||||
* @throws IndexOutOfBoundsException if pos < 0
|
||||
*/
|
||||
public void clear(int pos)
|
||||
{
|
||||
int offset = pos >> 6;
|
||||
ensure(offset);
|
||||
// ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
|
||||
// so we'll just let that be our exception.
|
||||
bits[offset] &= ~(1L << pos);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the bits between from (inclusive) and to (exclusive) to false.
|
||||
*
|
||||
* @param from the start range (inclusive)
|
||||
* @param to the end range (exclusive)
|
||||
* @throws IndexOutOfBoundsException if from < 0 || to < 0 ||
|
||||
* from > to
|
||||
* @since 1.4
|
||||
*/
|
||||
public void clear(int from, int to)
|
||||
{
|
||||
if (from < 0 || from > to)
|
||||
throw new IndexOutOfBoundsException();
|
||||
if (from == to)
|
||||
return;
|
||||
int lo_offset = from >>> 6;
|
||||
int hi_offset = to >>> 6;
|
||||
ensure(hi_offset);
|
||||
if (lo_offset == hi_offset)
|
||||
{
|
||||
bits[hi_offset] &= ((1L << from) - 1) | (-1L << to);
|
||||
return;
|
||||
}
|
||||
|
||||
bits[lo_offset] &= (1L << from) - 1;
|
||||
bits[hi_offset] &= -1L << to;
|
||||
for (int i = lo_offset + 1; i < hi_offset; i++)
|
||||
bits[i] = 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a clone of this bit set, that is an instance of the same
|
||||
* class and contains the same elements. But it doesn't change when
|
||||
* this bit set changes.
|
||||
*
|
||||
* @return the clone of this object.
|
||||
*/
|
||||
public Object clone()
|
||||
{
|
||||
try
|
||||
{
|
||||
BitSet bs = (BitSet) super.clone();
|
||||
bs.bits = (long[]) bits.clone();
|
||||
return bs;
|
||||
}
|
||||
catch (CloneNotSupportedException e)
|
||||
{
|
||||
// Impossible to get here.
|
||||
return null;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true if the <code>obj</code> is a bit set that contains
|
||||
* exactly the same elements as this bit set, otherwise false.
|
||||
*
|
||||
* @param obj the object to compare to
|
||||
* @return true if obj equals this bit set
|
||||
*/
|
||||
public boolean equals(Object obj)
|
||||
{
|
||||
if (!(obj instanceof BitSet))
|
||||
return false;
|
||||
BitSet bs = (BitSet) obj;
|
||||
int max = Math.min(bits.length, bs.bits.length);
|
||||
int i;
|
||||
for (i = 0; i < max; ++i)
|
||||
if (bits[i] != bs.bits[i])
|
||||
return false;
|
||||
// If one is larger, check to make sure all extra bits are 0.
|
||||
for (int j = i; j < bits.length; ++j)
|
||||
if (bits[j] != 0)
|
||||
return false;
|
||||
for (int j = i; j < bs.bits.length; ++j)
|
||||
if (bs.bits[j] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the bit at the index to the opposite value.
|
||||
*
|
||||
* @param index the index of the bit
|
||||
* @throws IndexOutOfBoundsException if index is negative
|
||||
* @since 1.4
|
||||
*/
|
||||
public void flip(int index)
|
||||
{
|
||||
int offset = index >> 6;
|
||||
ensure(offset);
|
||||
// ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
|
||||
// so we'll just let that be our exception.
|
||||
bits[offset] ^= 1L << index;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets a range of bits to the opposite value.
|
||||
*
|
||||
* @param from the low index (inclusive)
|
||||
* @param to the high index (exclusive)
|
||||
* @throws IndexOutOfBoundsException if from > to || from < 0 ||
|
||||
* to < 0
|
||||
* @since 1.4
|
||||
*/
|
||||
public void flip(int from, int to)
|
||||
{
|
||||
if (from < 0 || from > to)
|
||||
throw new IndexOutOfBoundsException();
|
||||
if (from == to)
|
||||
return;
|
||||
int lo_offset = from >>> 6;
|
||||
int hi_offset = to >>> 6;
|
||||
ensure(hi_offset);
|
||||
if (lo_offset == hi_offset)
|
||||
{
|
||||
bits[hi_offset] ^= (-1L << from) & ((1L << to) - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
bits[lo_offset] ^= -1L << from;
|
||||
bits[hi_offset] ^= (1L << to) - 1;
|
||||
for (int i = lo_offset + 1; i < hi_offset; i++)
|
||||
bits[i] ^= -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true if the integer <code>bitIndex</code> is in this bit
|
||||
* set, otherwise false.
|
||||
*
|
||||
* @param pos a non-negative integer
|
||||
* @return the value of the bit at the specified position
|
||||
* @throws IndexOutOfBoundsException if the pos is negative
|
||||
*/
|
||||
public boolean get(int pos)
|
||||
{
|
||||
int offset = pos >> 6;
|
||||
if (offset >= bits.length)
|
||||
return false;
|
||||
// ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
|
||||
// so we'll just let that be our exception.
|
||||
return (bits[offset] & (1L << pos)) != 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a new <code>BitSet</code> composed of a range of bits from
|
||||
* this one.
|
||||
*
|
||||
* @param from the low index (inclusive)
|
||||
* @param to the high index (exclusive)
|
||||
* @throws IndexOutOfBoundsException if from > to || from < 0 ||
|
||||
* to < 0
|
||||
* @since 1.4
|
||||
*/
|
||||
public BitSet get(int from, int to)
|
||||
{
|
||||
if (from < 0 || from > to)
|
||||
throw new IndexOutOfBoundsException();
|
||||
BitSet bs = new BitSet(to - from);
|
||||
int lo_offset = from >>> 6;
|
||||
if (lo_offset >= bits.length)
|
||||
return bs;
|
||||
|
||||
int lo_bit = from & LONG_MASK;
|
||||
int hi_offset = to >>> 6;
|
||||
if (lo_bit == 0)
|
||||
{
|
||||
int len = Math.min(hi_offset - lo_offset + 1, bits.length - lo_offset);
|
||||
System.arraycopy(bits, lo_offset, bs.bits, 0, len);
|
||||
if (hi_offset < bits.length)
|
||||
bs.bits[hi_offset - lo_offset] &= (1L << to) - 1;
|
||||
return bs;
|
||||
}
|
||||
|
||||
int len = Math.min(hi_offset, bits.length - 1);
|
||||
int reverse = 64 - lo_bit;
|
||||
int i;
|
||||
for (i = 0; lo_offset < len; lo_offset++, i++)
|
||||
bs.bits[i] = ((bits[lo_offset] >>> lo_bit)
|
||||
| (bits[lo_offset + 1] << reverse));
|
||||
if ((to & LONG_MASK) > lo_bit)
|
||||
bs.bits[i++] = bits[lo_offset] >>> lo_bit;
|
||||
if (hi_offset < bits.length)
|
||||
bs.bits[i - 1] &= (1L << (to - from)) - 1;
|
||||
return bs;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a hash code value for this bit set. The hash code of
|
||||
* two bit sets containing the same integers is identical. The algorithm
|
||||
* used to compute it is as follows:
|
||||
*
|
||||
* Suppose the bits in the BitSet were to be stored in an array of
|
||||
* long integers called <code>bits</code>, in such a manner that
|
||||
* bit <code>k</code> is set in the BitSet (for non-negative values
|
||||
* of <code>k</code>) if and only if
|
||||
*
|
||||
* <code>((k/64) < bits.length)
|
||||
* && ((bits[k/64] & (1L << (bit % 64))) != 0)
|
||||
* </code>
|
||||
*
|
||||
* Then the following definition of the hashCode method
|
||||
* would be a correct implementation of the actual algorithm:
|
||||
*
|
||||
*
|
||||
<pre>public int hashCode()
|
||||
{
|
||||
long h = 1234;
|
||||
for (int i = bits.length-1; i >= 0; i--)
|
||||
{
|
||||
h ^= bits[i] * (i + 1);
|
||||
}
|
||||
|
||||
return (int)((h >> 32) ^ h);
|
||||
}</pre>
|
||||
*
|
||||
* Note that the hash code values changes, if the set is changed.
|
||||
*
|
||||
* @return the hash code value for this bit set.
|
||||
*/
|
||||
public int hashCode()
|
||||
{
|
||||
long h = 1234;
|
||||
for (int i = bits.length; i > 0; )
|
||||
h ^= i * bits[--i];
|
||||
return (int) ((h >> 32) ^ h);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true if the specified BitSet and this one share at least one
|
||||
* common true bit.
|
||||
*
|
||||
* @param set the set to check for intersection
|
||||
* @return true if the sets intersect
|
||||
* @throws NullPointerException if set is null
|
||||
* @since 1.4
|
||||
*/
|
||||
public boolean intersects(BitSet set)
|
||||
{
|
||||
int i = Math.min(bits.length, set.bits.length);
|
||||
while (--i >= 0)
|
||||
if ((bits[i] & set.bits[i]) != 0)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns true if this set contains no true bits.
|
||||
*
|
||||
* @return true if all bits are false
|
||||
* @since 1.4
|
||||
*/
|
||||
public boolean isEmpty()
|
||||
{
|
||||
for (int i = bits.length - 1; i >= 0; i--)
|
||||
if (bits[i] != 0)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the logical number of bits actually used by this bit
|
||||
* set. It returns the index of the highest set bit plus one.
|
||||
* Note that this method doesn't return the number of set bits.
|
||||
*
|
||||
* @return the index of the highest set bit plus one.
|
||||
*/
|
||||
public int length()
|
||||
{
|
||||
// Set i to highest index that contains a non-zero value.
|
||||
int i;
|
||||
for (i = bits.length - 1; i >= 0 && bits[i] == 0; --i)
|
||||
;
|
||||
|
||||
// if i < 0 all bits are cleared.
|
||||
if (i < 0)
|
||||
return 0;
|
||||
|
||||
// Now determine the exact length.
|
||||
long b = bits[i];
|
||||
int len = (i + 1) * 64;
|
||||
// b >= 0 checks if the highest bit is zero.
|
||||
while (b >= 0)
|
||||
{
|
||||
--len;
|
||||
b <<= 1;
|
||||
}
|
||||
|
||||
return len;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the index of the next false bit, from the specified bit
|
||||
* (inclusive).
|
||||
*
|
||||
* @param from the start location
|
||||
* @return the first false bit
|
||||
* @throws IndexOutOfBoundsException if from is negative
|
||||
* @since 1.4
|
||||
*/
|
||||
public int nextClearBit(int from)
|
||||
{
|
||||
int offset = from >> 6;
|
||||
long mask = 1L << from;
|
||||
while (offset < bits.length)
|
||||
{
|
||||
// ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
|
||||
// so we'll just let that be our exception.
|
||||
long h = bits[offset];
|
||||
do
|
||||
{
|
||||
if ((h & mask) == 0)
|
||||
return from;
|
||||
mask <<= 1;
|
||||
from++;
|
||||
}
|
||||
while (mask != 0);
|
||||
mask = 1;
|
||||
offset++;
|
||||
}
|
||||
return from;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the index of the next true bit, from the specified bit
|
||||
* (inclusive). If there is none, -1 is returned. You can iterate over
|
||||
* all true bits with this loop:<br>
|
||||
*
|
||||
<pre>for (int i = bs.nextSetBit(0); i >= 0; i = bs.nextSetBit(i + 1))
|
||||
{
|
||||
// operate on i here
|
||||
}</pre>
|
||||
*
|
||||
* @param from the start location
|
||||
* @return the first true bit, or -1
|
||||
* @throws IndexOutOfBoundsException if from is negative
|
||||
* @since 1.4
|
||||
*/
|
||||
public int nextSetBit(int from)
|
||||
{
|
||||
int offset = from >> 6;
|
||||
long mask = 1L << from;
|
||||
while (offset < bits.length)
|
||||
{
|
||||
// ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
|
||||
// so we'll just let that be our exception.
|
||||
long h = bits[offset];
|
||||
do
|
||||
{
|
||||
if ((h & mask) != 0)
|
||||
return from;
|
||||
mask <<= 1;
|
||||
from++;
|
||||
}
|
||||
while (mask != 0);
|
||||
mask = 1;
|
||||
offset++;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs the logical OR operation on this bit set and the
|
||||
* given <code>set</code>. This means it builds the union
|
||||
* of the two sets. The result is stored into this bit set, which
|
||||
* grows as necessary.
|
||||
*
|
||||
* @param bs the second bit set
|
||||
* @throws NullPointerException if bs is null
|
||||
*/
|
||||
public void or(BitSet bs)
|
||||
{
|
||||
ensure(bs.bits.length - 1);
|
||||
for (int i = bs.bits.length - 1; i >= 0; i--)
|
||||
bits[i] |= bs.bits[i];
|
||||
}
|
||||
|
||||
/**
|
||||
* Add the integer <code>bitIndex</code> to this set. That is
|
||||
* the corresponding bit is set to true. If the index was already in
|
||||
* the set, this method does nothing. The size of this structure
|
||||
* is automatically increased as necessary.
|
||||
*
|
||||
* @param pos a non-negative integer.
|
||||
* @throws IndexOutOfBoundsException if pos is negative
|
||||
*/
|
||||
public void set(int pos)
|
||||
{
|
||||
int offset = pos >> 6;
|
||||
ensure(offset);
|
||||
// ArrayIndexOutOfBoundsException subclasses IndexOutOfBoundsException,
|
||||
// so we'll just let that be our exception.
|
||||
bits[offset] |= 1L << pos;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the bit at the given index to the specified value. The size of
|
||||
* this structure is automatically increased as necessary.
|
||||
*
|
||||
* @param index the position to set
|
||||
* @param value the value to set it to
|
||||
* @throws IndexOutOfBoundsException if index is negative
|
||||
* @since 1.4
|
||||
*/
|
||||
public void set(int index, boolean value)
|
||||
{
|
||||
if (value)
|
||||
set(index);
|
||||
else
|
||||
clear(index);
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the bits between from (inclusive) and to (exclusive) to true.
|
||||
*
|
||||
* @param from the start range (inclusive)
|
||||
* @param to the end range (exclusive)
|
||||
* @throws IndexOutOfBoundsException if from < 0 || from > to ||
|
||||
* to < 0
|
||||
* @since 1.4
|
||||
*/
|
||||
public void set(int from, int to)
|
||||
{
|
||||
if (from < 0 || from > to)
|
||||
throw new IndexOutOfBoundsException();
|
||||
if (from == to)
|
||||
return;
|
||||
int lo_offset = from >>> 6;
|
||||
int hi_offset = to >>> 6;
|
||||
ensure(hi_offset);
|
||||
if (lo_offset == hi_offset)
|
||||
{
|
||||
bits[hi_offset] |= (-1L << from) & ((1L << to) - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
bits[lo_offset] |= -1L << from;
|
||||
bits[hi_offset] |= (1L << to) - 1;
|
||||
for (int i = lo_offset + 1; i < hi_offset; i++)
|
||||
bits[i] = -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* Sets the bits between from (inclusive) and to (exclusive) to the
|
||||
* specified value.
|
||||
*
|
||||
* @param from the start range (inclusive)
|
||||
* @param to the end range (exclusive)
|
||||
* @param value the value to set it to
|
||||
* @throws IndexOutOfBoundsException if from < 0 || from > to ||
|
||||
* to < 0
|
||||
* @since 1.4
|
||||
*/
|
||||
public void set(int from, int to, boolean value)
|
||||
{
|
||||
if (value)
|
||||
set(from, to);
|
||||
else
|
||||
clear(from, to);
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the number of bits actually used by this bit set. Note
|
||||
* that this method doesn't return the number of set bits, and that
|
||||
* future requests for larger bits will make this automatically grow.
|
||||
*
|
||||
* @return the number of bits currently used.
|
||||
*/
|
||||
public int size()
|
||||
{
|
||||
return bits.length * 64;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns the string representation of this bit set. This
|
||||
* consists of a comma separated list of the integers in this set
|
||||
* surrounded by curly braces. There is a space after each comma.
|
||||
* A sample string is thus "{1, 3, 53}".
|
||||
* @return the string representation.
|
||||
*/
|
||||
public String toString()
|
||||
{
|
||||
StringBuffer r = new StringBuffer("{");
|
||||
boolean first = true;
|
||||
for (int i = 0; i < bits.length; ++i)
|
||||
{
|
||||
long bit = 1;
|
||||
long word = bits[i];
|
||||
if (word == 0)
|
||||
continue;
|
||||
for (int j = 0; j < 64; ++j)
|
||||
{
|
||||
if ((word & bit) != 0)
|
||||
{
|
||||
if (! first)
|
||||
r.append(", ");
|
||||
r.append(64 * i + j);
|
||||
first = false;
|
||||
}
|
||||
bit <<= 1;
|
||||
}
|
||||
}
|
||||
return r.append("}").toString();
|
||||
}
|
||||
|
||||
/**
|
||||
* Performs the logical XOR operation on this bit set and the
|
||||
* given <code>set</code>. This means it builds the symmetric
|
||||
* remainder of the two sets (the elements that are in one set,
|
||||
* but not in the other). The result is stored into this bit set,
|
||||
* which grows as necessary.
|
||||
*
|
||||
* @param bs the second bit set
|
||||
* @throws NullPointerException if bs is null
|
||||
*/
|
||||
public void xor(BitSet bs)
|
||||
{
|
||||
ensure(bs.bits.length - 1);
|
||||
for (int i = bs.bits.length - 1; i >= 0; i--)
|
||||
bits[i] ^= bs.bits[i];
|
||||
}
|
||||
|
||||
/**
|
||||
* Make sure the vector is big enough.
|
||||
*
|
||||
* @param lastElt the size needed for the bits array
|
||||
*/
|
||||
private void ensure(int lastElt)
|
||||
{
|
||||
if (lastElt >= bits.length)
|
||||
{
|
||||
long[] nd = new long[lastElt + 1];
|
||||
System.arraycopy(bits, 0, nd, 0, bits.length);
|
||||
bits = nd;
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue