ada: Streamline implementation of simple nonbinary modular operations
They are implemented by the nonbinary_modular_operation routine, which is complex and, in particular, creates signed types and types with a partial precision each time a subtraction or a multiplication resp. is generated. Both are unnecessary and a simple approach even generates better code for the subtraction on architectures with conditional moves. gcc/ada/ * gcc-interface/utils2.cc (nonbinary_modular_operation): Rewrite. Do not create signed types for subtraction, do not create types with partial precision, call fold_convert instead of convert throughout.
This commit is contained in:
parent
9fbf129bad
commit
ea793db568
1 changed files with 28 additions and 63 deletions
|
@ -535,85 +535,50 @@ compare_fat_pointers (location_t loc, tree result_type, tree p1, tree p2)
|
|||
}
|
||||
|
||||
/* Compute the result of applying OP_CODE to LHS and RHS, where both are of
|
||||
type TYPE. We know that TYPE is a modular type with a nonbinary
|
||||
modulus. */
|
||||
TYPE. We know that TYPE is a modular type with a nonbinary modulus. */
|
||||
|
||||
static tree
|
||||
nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
|
||||
tree rhs)
|
||||
{
|
||||
tree modulus = TYPE_MODULUS (type);
|
||||
unsigned int needed_precision = tree_floor_log2 (modulus) + 1;
|
||||
unsigned int precision;
|
||||
bool unsignedp = true;
|
||||
tree op_type = type;
|
||||
tree result;
|
||||
unsigned precision = tree_floor_log2 (modulus) + 1;
|
||||
tree op_type, result;
|
||||
|
||||
/* If this is an addition of a constant, convert it to a subtraction
|
||||
of a constant since we can do that faster. */
|
||||
if (op_code == PLUS_EXPR && TREE_CODE (rhs) == INTEGER_CST)
|
||||
{
|
||||
rhs = fold_build2 (MINUS_EXPR, type, modulus, rhs);
|
||||
op_code = MINUS_EXPR;
|
||||
}
|
||||
|
||||
/* For the logical operations, we only need PRECISION bits. For
|
||||
addition and subtraction, we need one more and for multiplication we
|
||||
need twice as many. But we never want to make a size smaller than
|
||||
our size. */
|
||||
/* For the logical operations, we only need PRECISION bits. For addition and
|
||||
subtraction, we need one more, and for multiplication twice as many. */
|
||||
if (op_code == PLUS_EXPR || op_code == MINUS_EXPR)
|
||||
needed_precision += 1;
|
||||
precision += 1;
|
||||
else if (op_code == MULT_EXPR)
|
||||
needed_precision *= 2;
|
||||
precision *= 2;
|
||||
|
||||
precision = MAX (needed_precision, TYPE_PRECISION (op_type));
|
||||
|
||||
/* Unsigned will do for everything but subtraction. */
|
||||
if (op_code == MINUS_EXPR)
|
||||
unsignedp = false;
|
||||
|
||||
/* If our type is the wrong signedness or isn't wide enough, make a new
|
||||
type and convert both our operands to it. */
|
||||
if (TYPE_PRECISION (op_type) < precision
|
||||
|| TYPE_UNSIGNED (op_type) != unsignedp)
|
||||
/* If the type is not wide enough, make a new type of the needed precision
|
||||
and convert modulus and operands to it. Use a type with full precision
|
||||
for its mode since operations are ultimately performed in the mode. */
|
||||
if (TYPE_PRECISION (type) < precision)
|
||||
{
|
||||
/* Copy the type so we ensure it can be modified to make it modular. */
|
||||
op_type = copy_type (gnat_type_for_size (precision, unsignedp));
|
||||
modulus = convert (op_type, modulus);
|
||||
SET_TYPE_MODULUS (op_type, modulus);
|
||||
TYPE_MODULAR_P (op_type) = 1;
|
||||
lhs = convert (op_type, lhs);
|
||||
rhs = convert (op_type, rhs);
|
||||
const scalar_int_mode m = smallest_int_mode_for_size (precision);
|
||||
op_type = gnat_type_for_mode (m, 1);
|
||||
modulus = fold_convert (op_type, modulus);
|
||||
lhs = fold_convert (op_type, lhs);
|
||||
rhs = fold_convert (op_type, rhs);
|
||||
}
|
||||
else
|
||||
op_type = type;
|
||||
|
||||
/* Do the operation, then we'll fix it up. */
|
||||
result = fold_build2 (op_code, op_type, lhs, rhs);
|
||||
|
||||
/* For multiplication, we have no choice but to do a full modulus
|
||||
operation. However, we want to do this in the narrowest
|
||||
possible size. */
|
||||
if (op_code == MULT_EXPR)
|
||||
{
|
||||
/* Copy the type so we ensure it can be modified to make it modular. */
|
||||
tree div_type = copy_type (gnat_type_for_size (needed_precision, 1));
|
||||
modulus = convert (div_type, modulus);
|
||||
SET_TYPE_MODULUS (div_type, modulus);
|
||||
TYPE_MODULAR_P (div_type) = 1;
|
||||
result = convert (op_type,
|
||||
fold_build2 (TRUNC_MOD_EXPR, div_type,
|
||||
convert (div_type, result), modulus));
|
||||
}
|
||||
/* Unconditionally add the modulus to the result for a subtraction, this gets
|
||||
rid of all its peculiarities by cancelling out the addition of the binary
|
||||
modulus in the case where the subtraction wraps around in OP_TYPE, and may
|
||||
even generate better code on architectures with conditional moves. */
|
||||
if (op_code == MINUS_EXPR)
|
||||
result = fold_build2 (PLUS_EXPR, op_type, result, modulus);
|
||||
|
||||
/* For subtraction, add the modulus back if we are negative. */
|
||||
else if (op_code == MINUS_EXPR)
|
||||
{
|
||||
result = gnat_protect_expr (result);
|
||||
result = fold_build3 (COND_EXPR, op_type,
|
||||
fold_build2 (LT_EXPR, boolean_type_node, result,
|
||||
build_int_cst (op_type, 0)),
|
||||
fold_build2 (PLUS_EXPR, op_type, result, modulus),
|
||||
result);
|
||||
}
|
||||
/* For a multiplication, we have no choice but to use a modulo operation. */
|
||||
if (op_code == MULT_EXPR)
|
||||
result = fold_build2 (TRUNC_MOD_EXPR, op_type, result, modulus);
|
||||
|
||||
/* For the other operations, subtract the modulus if we are >= it. */
|
||||
else
|
||||
|
@ -627,7 +592,7 @@ nonbinary_modular_operation (enum tree_code op_code, tree type, tree lhs,
|
|||
result);
|
||||
}
|
||||
|
||||
return convert (type, result);
|
||||
return fold_convert (type, result);
|
||||
}
|
||||
|
||||
/* This page contains routines that implement the Ada semantics with regard
|
||||
|
|
Loading…
Add table
Reference in a new issue