tree-vect-loop.c (get_initial_def_for_induction): Inline into ...

2017-06-02  Richard Biener  <rguenther@suse.de>

	* tree-vect-loop.c (get_initial_def_for_induction): Inline into ...
	(vectorizable_induction): ... this.  Remove dead code.

From-SVN: r248819
This commit is contained in:
Richard Biener 2017-06-02 10:25:22 +00:00 committed by Richard Biener
parent b7e52782f6
commit e7754973ed
2 changed files with 299 additions and 358 deletions

View file

@ -1,3 +1,8 @@
2017-06-02 Richard Biener <rguenther@suse.de>
* tree-vect-loop.c (get_initial_def_for_induction): Inline into ...
(vectorizable_induction): ... this. Remove dead code.
2017-06-02 Eric Botcazou <ebotcazou@adacore.com>
* builtins. (expand_builtin_alloca): Remove second parameter and

View file

@ -3813,347 +3813,6 @@ vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
}
/* Function get_initial_def_for_induction
Input:
STMT - a stmt that performs an induction operation in the loop.
IV_PHI - the initial value of the induction variable
Output:
Return a vector variable, initialized with the first VF values of
the induction variable. E.g., for an iv with IV_PHI='X' and
evolution S, for a vector of 4 units, we want to return:
[X, X + S, X + 2*S, X + 3*S]. */
static tree
get_initial_def_for_induction (gimple *iv_phi)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
tree vectype;
int nunits;
edge pe = loop_preheader_edge (loop);
struct loop *iv_loop;
basic_block new_bb;
tree new_vec, vec_init, vec_step, t;
tree new_name;
gimple *new_stmt;
gphi *induction_phi;
tree induc_def, vec_def, vec_dest;
tree init_expr, step_expr;
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
int i;
int ncopies;
tree expr;
stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
bool nested_in_vect_loop = false;
gimple_seq stmts;
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple *exit_phi;
edge latch_e;
tree loop_arg;
gimple_stmt_iterator si;
basic_block bb = gimple_bb (iv_phi);
tree stepvectype;
tree resvectype;
/* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
if (nested_in_vect_loop_p (loop, iv_phi))
{
nested_in_vect_loop = true;
iv_loop = loop->inner;
}
else
iv_loop = loop;
gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
latch_e = loop_latch_edge (iv_loop);
loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
gcc_assert (step_expr != NULL_TREE);
pe = loop_preheader_edge (iv_loop);
init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
loop_preheader_edge (iv_loop));
vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
gcc_assert (vectype);
nunits = TYPE_VECTOR_SUBPARTS (vectype);
ncopies = vf / nunits;
gcc_assert (phi_info);
gcc_assert (ncopies >= 1);
/* Convert the step to the desired type. */
stmts = NULL;
step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
/* Find the first insertion point in the BB. */
si = gsi_after_labels (bb);
/* Create the vector that holds the initial_value of the induction. */
if (nested_in_vect_loop)
{
/* iv_loop is nested in the loop to be vectorized. init_expr had already
been created during vectorization of previous stmts. We obtain it
from the STMT_VINFO_VEC_STMT of the defining stmt. */
vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi);
/* If the initial value is not of proper type, convert it. */
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
{
new_stmt
= gimple_build_assign (vect_get_new_ssa_name (vectype,
vect_simple_var,
"vec_iv_"),
VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, vectype,
vec_init));
vec_init = gimple_assign_lhs (new_stmt);
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
new_stmt);
gcc_assert (!new_bb);
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo));
}
}
else
{
vec<constructor_elt, va_gc> *v;
/* iv_loop is the loop to be vectorized. Create:
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
stmts = NULL;
new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
vec_alloc (v, nunits);
bool constant_p = is_gimple_min_invariant (new_name);
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
for (i = 1; i < nunits; i++)
{
/* Create: new_name_i = new_name + step_expr */
new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
new_name, step_expr);
if (!is_gimple_min_invariant (new_name))
constant_p = false;
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
}
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
/* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
if (constant_p)
new_vec = build_vector_from_ctor (vectype, v);
else
new_vec = build_constructor (vectype, v);
vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
}
/* Create the vector that holds the step of the induction. */
if (nested_in_vect_loop)
/* iv_loop is nested in the loop to be vectorized. Generate:
vec_step = [S, S, S, S] */
new_name = step_expr;
else
{
/* iv_loop is the loop to be vectorized. Generate:
vec_step = [VF*S, VF*S, VF*S, VF*S] */
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, vf);
expr = fold_convert (TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), vf);
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (TREE_CODE (step_expr) == SSA_NAME)
new_name = vect_init_vector (iv_phi, new_name,
TREE_TYPE (step_expr), NULL);
}
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
gcc_assert (stepvectype);
new_vec = build_vector_from_val (stepvectype, t);
vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
/* Create the following def-use cycle:
loop prolog:
vec_init = ...
vec_step = ...
loop:
vec_iv = PHI <vec_init, vec_loop>
...
STMT
...
vec_loop = vec_iv + vec_step; */
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
set_vinfo_for_stmt (induction_phi,
new_stmt_vec_info (induction_phi, loop_vinfo));
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR, induc_def, vec_step);
vec_def = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, vec_def);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
/* In case that vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
if (ncopies > 1)
{
stmt_vec_info prev_stmt_vinfo;
/* FORNOW. This restriction should be relaxed. */
gcc_assert (!nested_in_vect_loop);
/* Create the vector that holds the step of the induction. */
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, nunits);
expr = fold_convert (TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (TREE_CODE (step_expr) == SSA_NAME)
new_name = vect_init_vector (iv_phi, new_name,
TREE_TYPE (step_expr), NULL);
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
new_vec = build_vector_from_val (stepvectype, t);
vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
vec_def = induc_def;
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
for (i = 1; i < ncopies; i++)
{
/* vec_i = vec_prev + vec_step */
new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
vec_def, vec_step);
vec_def = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, vec_def);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
if (!useless_type_conversion_p (resvectype, vectype))
{
new_stmt
= gimple_build_assign
(vect_get_new_vect_var (resvectype, vect_simple_var,
"vec_iv_"),
VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, resvectype,
gimple_assign_lhs (new_stmt)));
gimple_assign_set_lhs (new_stmt,
make_ssa_name
(gimple_assign_lhs (new_stmt), new_stmt));
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
}
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo));
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
}
}
if (nested_in_vect_loop)
{
/* Find the loop-closed exit-phi of the induction, and record
the final vector of induction results: */
exit_phi = NULL;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
{
exit_phi = use_stmt;
break;
}
}
if (exit_phi)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
/* FORNOW. Currently not supporting the case that an inner-loop induction
is not used in the outer-loop (i.e. only outside the outer-loop). */
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"vector of inductions after inner-loop:");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
}
}
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"transform induction: created def-use cycle: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
SSA_NAME_DEF_STMT (vec_def), 0);
}
STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
if (!useless_type_conversion_p (resvectype, vectype))
{
new_stmt = gimple_build_assign (vect_get_new_vect_var (resvectype,
vect_simple_var,
"vec_iv_"),
VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, resvectype,
induc_def));
induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
gimple_assign_set_lhs (new_stmt, induc_def);
si = gsi_after_labels (bb);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo));
STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
= STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
}
return induc_def;
}
/* Function get_initial_def_for_reduction
@ -6431,14 +6090,52 @@ vectorizable_induction (gimple *phi,
gimple **vec_stmt)
{
stmt_vec_info stmt_info = vinfo_for_stmt (phi);
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
int nunits = TYPE_VECTOR_SUBPARTS (vectype);
int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
unsigned ncopies;
bool nested_in_vect_loop = false;
struct loop *iv_loop;
tree vec_def;
edge pe = loop_preheader_edge (loop);
basic_block new_bb;
tree new_vec, vec_init, vec_step, t;
tree new_name;
gimple *new_stmt;
gphi *induction_phi;
tree induc_def, vec_dest;
tree init_expr, step_expr;
int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
unsigned i;
tree expr;
gimple_seq stmts;
imm_use_iterator imm_iter;
use_operand_p use_p;
gimple *exit_phi;
edge latch_e;
tree loop_arg;
gimple_stmt_iterator si;
basic_block bb = gimple_bb (phi);
if (gimple_code (phi) != GIMPLE_PHI)
return false;
if (!STMT_VINFO_RELEVANT_P (stmt_info))
return false;
/* Make sure it was recognized as induction computation. */
if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
return false;
/* FORNOW: SLP not supported. */
if (STMT_SLP_TYPE (stmt_info))
return false;
tree vectype = STMT_VINFO_VECTYPE (stmt_info);
unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
ncopies = vf / nunits;
gcc_assert (ncopies >= 1);
/* FORNOW. These restrictions should be relaxed. */
if (nested_in_vect_loop_p (loop, phi))
{
@ -6456,6 +6153,10 @@ vectorizable_induction (gimple *phi,
return false;
}
/* FORNOW: outer loop induction with SLP not supported. */
if (STMT_SLP_TYPE (stmt_info))
return false;
exit_phi = NULL;
latch_e = loop_latch_edge (loop->inner);
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
@ -6484,19 +6185,13 @@ vectorizable_induction (gimple *phi,
return false;
}
}
nested_in_vect_loop = true;
iv_loop = loop->inner;
}
if (!STMT_VINFO_RELEVANT_P (stmt_info))
return false;
/* FORNOW: SLP not supported. */
if (STMT_SLP_TYPE (stmt_info))
return false;
gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
if (gimple_code (phi) != GIMPLE_PHI)
return false;
else
iv_loop = loop;
gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
if (!vec_stmt) /* transformation not required. */
{
@ -6510,11 +6205,252 @@ vectorizable_induction (gimple *phi,
/* Transform. */
/* Compute a vector variable, initialized with the first VF values of
the induction variable. E.g., for an iv with IV_PHI='X' and
evolution S, for a vector of 4 units, we want to compute:
[X, X + S, X + 2*S, X + 3*S]. */
if (dump_enabled_p ())
dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
vec_def = get_initial_def_for_induction (phi);
*vec_stmt = SSA_NAME_DEF_STMT (vec_def);
latch_e = loop_latch_edge (iv_loop);
loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
gcc_assert (step_expr != NULL_TREE);
pe = loop_preheader_edge (iv_loop);
init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
loop_preheader_edge (iv_loop));
/* Convert the step to the desired type. */
stmts = NULL;
step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
/* Find the first insertion point in the BB. */
si = gsi_after_labels (bb);
/* Create the vector that holds the initial_value of the induction. */
if (nested_in_vect_loop)
{
/* iv_loop is nested in the loop to be vectorized. init_expr had already
been created during vectorization of previous stmts. We obtain it
from the STMT_VINFO_VEC_STMT of the defining stmt. */
vec_init = vect_get_vec_def_for_operand (init_expr, phi);
/* If the initial value is not of proper type, convert it. */
if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
{
new_stmt
= gimple_build_assign (vect_get_new_ssa_name (vectype,
vect_simple_var,
"vec_iv_"),
VIEW_CONVERT_EXPR,
build1 (VIEW_CONVERT_EXPR, vectype,
vec_init));
vec_init = gimple_assign_lhs (new_stmt);
new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
new_stmt);
gcc_assert (!new_bb);
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo));
}
}
else
{
vec<constructor_elt, va_gc> *v;
/* iv_loop is the loop to be vectorized. Create:
vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
stmts = NULL;
new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
vec_alloc (v, nunits);
bool constant_p = is_gimple_min_invariant (new_name);
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
for (i = 1; i < nunits; i++)
{
/* Create: new_name_i = new_name + step_expr */
new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
new_name, step_expr);
if (!is_gimple_min_invariant (new_name))
constant_p = false;
CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
}
if (stmts)
{
new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
gcc_assert (!new_bb);
}
/* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
if (constant_p)
new_vec = build_vector_from_ctor (vectype, v);
else
new_vec = build_constructor (vectype, v);
vec_init = vect_init_vector (phi, new_vec, vectype, NULL);
}
/* Create the vector that holds the step of the induction. */
if (nested_in_vect_loop)
/* iv_loop is nested in the loop to be vectorized. Generate:
vec_step = [S, S, S, S] */
new_name = step_expr;
else
{
/* iv_loop is the loop to be vectorized. Generate:
vec_step = [VF*S, VF*S, VF*S, VF*S] */
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, vf);
expr = fold_convert (TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), vf);
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (TREE_CODE (step_expr) == SSA_NAME)
new_name = vect_init_vector (phi, new_name,
TREE_TYPE (step_expr), NULL);
}
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
new_vec = build_vector_from_val (vectype, t);
vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
/* Create the following def-use cycle:
loop prolog:
vec_init = ...
vec_step = ...
loop:
vec_iv = PHI <vec_init, vec_loop>
...
STMT
...
vec_loop = vec_iv + vec_step; */
/* Create the induction-phi that defines the induction-operand. */
vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
induction_phi = create_phi_node (vec_dest, iv_loop->header);
set_vinfo_for_stmt (induction_phi,
new_stmt_vec_info (induction_phi, loop_vinfo));
induc_def = PHI_RESULT (induction_phi);
/* Create the iv update inside the loop */
vec_def = make_ssa_name (vec_dest);
new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo));
/* Set the arguments of the phi node: */
add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
UNKNOWN_LOCATION);
STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
/* In case that vectorization factor (VF) is bigger than the number
of elements that we can fit in a vectype (nunits), we have to generate
more than one vector stmt - i.e - we need to "unroll" the
vector stmt by a factor VF/nunits. For more details see documentation
in vectorizable_operation. */
if (ncopies > 1)
{
stmt_vec_info prev_stmt_vinfo;
/* FORNOW. This restriction should be relaxed. */
gcc_assert (!nested_in_vect_loop);
/* Create the vector that holds the step of the induction. */
if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
{
expr = build_int_cst (integer_type_node, nunits);
expr = fold_convert (TREE_TYPE (step_expr), expr);
}
else
expr = build_int_cst (TREE_TYPE (step_expr), nunits);
new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
expr, step_expr);
if (TREE_CODE (step_expr) == SSA_NAME)
new_name = vect_init_vector (phi, new_name,
TREE_TYPE (step_expr), NULL);
t = unshare_expr (new_name);
gcc_assert (CONSTANT_CLASS_P (new_name)
|| TREE_CODE (new_name) == SSA_NAME);
new_vec = build_vector_from_val (vectype, t);
vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
vec_def = induc_def;
prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
for (i = 1; i < ncopies; i++)
{
/* vec_i = vec_prev + vec_step */
new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
vec_def, vec_step);
vec_def = make_ssa_name (vec_dest, new_stmt);
gimple_assign_set_lhs (new_stmt, vec_def);
gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
set_vinfo_for_stmt (new_stmt,
new_stmt_vec_info (new_stmt, loop_vinfo));
STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
}
}
if (nested_in_vect_loop)
{
/* Find the loop-closed exit-phi of the induction, and record
the final vector of induction results: */
exit_phi = NULL;
FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
{
gimple *use_stmt = USE_STMT (use_p);
if (is_gimple_debug (use_stmt))
continue;
if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
{
exit_phi = use_stmt;
break;
}
}
if (exit_phi)
{
stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
/* FORNOW. Currently not supporting the case that an inner-loop induction
is not used in the outer-loop (i.e. only outside the outer-loop). */
gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
&& !STMT_VINFO_LIVE_P (stmt_vinfo));
STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"vector of inductions after inner-loop:");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
}
}
}
if (dump_enabled_p ())
{
dump_printf_loc (MSG_NOTE, vect_location,
"transform induction: created def-use cycle: ");
dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
SSA_NAME_DEF_STMT (vec_def), 0);
}
return true;
}