Rework 128-bit complex multiply and divide.

This patch reworks how the complex multiply and divide built-in functions are
done.  Previously GCC created built-in declarations for doing long double complex
multiply and divide when long double is IEEE 128-bit.  However, it did not
support __ibm128 complex multiply and divide if long double is IEEE 128-bit.

This code does not create the built-in declaration with the changed name.
Instead, it uses the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change the name
before it is written out to the assembler file like it now does for all of the
other long double built-in functions.

2023-03-20   Michael Meissner  <meissner@linux.ibm.com>

gcc/

	PR target/109067
	* config/rs6000/rs6000.cc (create_complex_muldiv): Delete.
	(init_float128_ieee): Delete code to switch complex multiply and divide
	for long double.
	(complex_multiply_builtin_code): New helper function.
	(complex_divide_builtin_code): Likewise.
	(rs6000_mangle_decl_assembler_name): Add support for mangling the name
	of complex 128-bit multiply and divide built-in functions.

gcc/testsuite/

	PR target/109067
	* gcc.target/powerpc/divic3-1.c: New test.
	* gcc.target/powerpc/divic3-2.c: Likewise.
	* gcc.target/powerpc/mulic3-1.c: Likewise.
	* gcc.target/powerpc/mulic3-2.c: Likewise.
This commit is contained in:
Michael Meissner 2023-03-20 14:48:06 -04:00
parent 4410a08b80
commit c67f312d20
5 changed files with 156 additions and 47 deletions

View file

@ -11154,26 +11154,6 @@ init_float128_ibm (machine_mode mode)
}
}
/* Create a decl for either complex long double multiply or complex long double
divide when long double is IEEE 128-bit floating point. We can't use
__multc3 and __divtc3 because the original long double using IBM extended
double used those names. The complex multiply/divide functions are encoded
as builtin functions with a complex result and 4 scalar inputs. */
static void
create_complex_muldiv (const char *name, built_in_function fncode, tree fntype)
{
tree fndecl = add_builtin_function (name, fntype, fncode, BUILT_IN_NORMAL,
name, NULL_TREE);
set_builtin_decl (fncode, fndecl, true);
if (TARGET_DEBUG_BUILTIN)
fprintf (stderr, "create complex %s, fncode: %d\n", name, (int) fncode);
return;
}
/* Set up IEEE 128-bit floating point routines. Use different names if the
arguments can be passed in a vector register. The historical PowerPC
implementation of IEEE 128-bit floating point used _q_<op> for the names, so
@ -11185,32 +11165,6 @@ init_float128_ieee (machine_mode mode)
{
if (FLOAT128_VECTOR_P (mode))
{
static bool complex_muldiv_init_p = false;
/* Set up to call __mulkc3 and __divkc3 under -mabi=ieeelongdouble. If
we have clone or target attributes, this will be called a second
time. We want to create the built-in function only once. */
if (mode == TFmode && TARGET_IEEEQUAD && !complex_muldiv_init_p)
{
complex_muldiv_init_p = true;
built_in_function fncode_mul =
(built_in_function) (BUILT_IN_COMPLEX_MUL_MIN + TCmode
- MIN_MODE_COMPLEX_FLOAT);
built_in_function fncode_div =
(built_in_function) (BUILT_IN_COMPLEX_DIV_MIN + TCmode
- MIN_MODE_COMPLEX_FLOAT);
tree fntype = build_function_type_list (complex_long_double_type_node,
long_double_type_node,
long_double_type_node,
long_double_type_node,
long_double_type_node,
NULL_TREE);
create_complex_muldiv ("__mulkc3", fncode_mul, fntype);
create_complex_muldiv ("__divkc3", fncode_div, fntype);
}
set_optab_libfunc (add_optab, mode, "__addkf3");
set_optab_libfunc (sub_optab, mode, "__subkf3");
set_optab_libfunc (neg_optab, mode, "__negkf2");
@ -28228,6 +28182,27 @@ rs6000_starting_frame_offset (void)
return RS6000_STARTING_FRAME_OFFSET;
}
/* Internal function to return the built-in function id for the complex
multiply operation for a given mode. */
static inline built_in_function
complex_multiply_builtin_code (machine_mode mode)
{
gcc_assert (IN_RANGE (mode, MIN_MODE_COMPLEX_FLOAT, MAX_MODE_COMPLEX_FLOAT));
int func = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
return (built_in_function) func;
}
/* Internal function to return the built-in function id for the complex divide
operation for a given mode. */
static inline built_in_function
complex_divide_builtin_code (machine_mode mode)
{
gcc_assert (IN_RANGE (mode, MIN_MODE_COMPLEX_FLOAT, MAX_MODE_COMPLEX_FLOAT));
int func = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
return (built_in_function) func;
}
/* On 64-bit Linux and Freebsd systems, possibly switch the long double library
function names from <foo>l to <foo>f128 if the default long double type is
@ -28246,11 +28221,53 @@ rs6000_starting_frame_offset (void)
only do this transformation if the __float128 type is enabled. This
prevents us from doing the transformation on older 32-bit ports that might
have enabled using IEEE 128-bit floating point as the default long double
type. */
type.
We also use the TARGET_MANGLE_DECL_ASSEMBLER_NAME hook to change the
function names used for complex multiply and divide to the appropriate
names. */
static tree
rs6000_mangle_decl_assembler_name (tree decl, tree id)
{
/* Handle complex multiply/divide. For IEEE 128-bit, use __mulkc3 or
__divkc3 and for IBM 128-bit use __multc3 and __divtc3. */
if (TARGET_FLOAT128_TYPE
&& TREE_CODE (decl) == FUNCTION_DECL
&& DECL_IS_UNDECLARED_BUILTIN (decl)
&& DECL_BUILT_IN_CLASS (decl) == BUILT_IN_NORMAL)
{
built_in_function id = DECL_FUNCTION_CODE (decl);
const char *newname = NULL;
if (id == complex_multiply_builtin_code (KCmode))
newname = "__mulkc3";
else if (id == complex_multiply_builtin_code (ICmode))
newname = "__multc3";
else if (id == complex_multiply_builtin_code (TCmode))
newname = (TARGET_IEEEQUAD) ? "__mulkc3" : "__multc3";
else if (id == complex_divide_builtin_code (KCmode))
newname = "__divkc3";
else if (id == complex_divide_builtin_code (ICmode))
newname = "__divtc3";
else if (id == complex_divide_builtin_code (TCmode))
newname = (TARGET_IEEEQUAD) ? "__divkc3" : "__divtc3";
if (newname)
{
if (TARGET_DEBUG_BUILTIN)
fprintf (stderr, "Map complex mul/div => %s\n", newname);
return get_identifier (newname);
}
}
/* Map long double built-in functions if long double is IEEE 128-bit. */
if (TARGET_FLOAT128_TYPE && TARGET_IEEEQUAD && TARGET_LONG_DOUBLE_128
&& TREE_CODE (decl) == FUNCTION_DECL
&& DECL_IS_UNDECLARED_BUILTIN (decl)

View file

@ -0,0 +1,21 @@
/* { dg-do compile } */
/* { dg-require-effective-target ppc_float128_sw } */
/* { dg-options "-O2 -mabi=ieeelongdouble -Wno-psabi" } */
/* When GCC is configured with an older library that does not support IEEE
128-bit, it issues a warning if you change the long double type. We use
-Wno-psabi to silence this warning. Since this is a code generation test,
it does not matter if the library has full IEEE 128-bit support. */
/* Check that complex divide generates the right call for __ibm128 when long
double is IEEE 128-bit floating point. */
typedef _Complex long double c_ibm128_t __attribute__((mode(__IC__)));
void
divide (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
{
*p = *q / *r;
}
/* { dg-final { scan-assembler {\mbl .*__divtc3\M} } } */

View file

@ -0,0 +1,25 @@
/* { dg-do compile } */
/* { dg-require-effective-target ppc_float128_sw } */
/* { dg-require-effective-target longdouble128 } */
/* { dg-options "-O2 -mabi=ibmlongdouble -Wno-psabi" } */
/* When GCC is configured with an older library that does not support IEEE
128-bit, it issues a warning if you change the long double type. We use
-Wno-psabi to silence this warning. Since this is a code generation test,
it does not matter if the library has full IEEE 128-bit support.
We also need to require that the default long double is 128-bits, otherwise
the TC/TF modes might not be available. */
/* Check that complex divide generates the right call for __ibm128 when long
double is IBM 128-bit floating point. */
typedef _Complex long double c_ibm128_t __attribute__((mode(__TC__)));
void
divide (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
{
*p = *q / *r;
}
/* { dg-final { scan-assembler {\mbl .*__divtc3\M} } } */

View file

@ -0,0 +1,21 @@
/* { dg-do compile } */
/* { dg-require-effective-target ppc_float128_sw } */
/* { dg-options "-O2 -mabi=ieeelongdouble -Wno-psabi" } */
/* When GCC is configured with an older library that does not support IEEE
128-bit, it issues a warning if you change the long double type. We use
-Wno-psabi to silence this warning. Since this is a code generation test,
it does not matter if the library has full IEEE 128-bit support. */
/* Check that complex multiply generates the right call for __ibm128 when long
double is IEEE 128-bit floating point. */
typedef _Complex long double c_ibm128_t __attribute__((mode(__IC__)));
void
multiply (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
{
*p = *q * *r;
}
/* { dg-final { scan-assembler {\mbl .*__multc3\M} } } */

View file

@ -0,0 +1,25 @@
/* { dg-do compile } */
/* { dg-require-effective-target ppc_float128_sw } */
/* { dg-require-effective-target longdouble128 } */
/* { dg-options "-O2 -mabi=ibmlongdouble -Wno-psabi" } */
/* When GCC is configured with an older library that does not support IEEE
128-bit, it issues a warning if you change the long double type. We use
-Wno-psabi to silence this warning. Since this is a code generation test,
it does not matter if the library has full IEEE 128-bit support.
We also need to require that the default long double is 128-bits, otherwise
the TC/TF modes might not be available. */
/* Check that complex multiply generates the right call for __ibm128 when long
double is IBM 128-bit floating point. */
typedef _Complex long double c_ibm128_t __attribute__((mode(__TC__)));
void
multiply (c_ibm128_t *p, c_ibm128_t *q, c_ibm128_t *r)
{
*p = *q * *r;
}
/* { dg-final { scan-assembler {\mbl .*__multc3\M} } } */