Makefile.in: Add ipa-predicate.o and ipa-predicate.h
* Makefile.in: Add ipa-predicate.o and ipa-predicate.h * ipa-inline-analysis.c (NUM_CONDITIONS): turn into predicate::num_conditions (IS_NOT_CONSTANT): turn into predicate::is_not_constant. (CHANGED): turn into predicate::changed. (agg_position_info): Move to ipa-predicate.h (add_condition, predicate::add_clause, predicate::operator &=, predicate::or_with, predicate::evaluate, predicate::probability, dump_condition, dump_clause, predicate::dump, predicate::remap_after_duplication, predicate::remap_after_inlining, predicate::stream_in, predicate::stream_out): Move to ipa-predicate.c (evaluate_conditions_for_known_args): Update. (set_cond_stmt_execution_predicate): Update. * ipa-inline.h: Include ipa-predicate.h (condition, inline_param_summary, conditions, agg_position_info, predicate): Move to ipa-predicate.h * ipa-predicate.c: New file. * ipa-predicate.h: New file. From-SVN: r248241
This commit is contained in:
parent
00d6001385
commit
b679b55b5e
5 changed files with 829 additions and 746 deletions
|
@ -1347,6 +1347,7 @@ OBJS = \
|
|||
ipa-visibility.o \
|
||||
ipa-inline-analysis.o \
|
||||
ipa-inline-transform.o \
|
||||
ipa-predicate.o \
|
||||
ipa-profile.o \
|
||||
ipa-prop.o \
|
||||
ipa-pure-const.o \
|
||||
|
@ -2505,6 +2506,7 @@ GTFILES = $(CPP_ID_DATA_H) $(srcdir)/input.h $(srcdir)/coretypes.h \
|
|||
$(srcdir)/trans-mem.c \
|
||||
$(srcdir)/lto-streamer.h \
|
||||
$(srcdir)/target-globals.h \
|
||||
$(srcdir)/ipa-predicate.h \
|
||||
$(srcdir)/ipa-inline.h \
|
||||
$(srcdir)/vtable-verify.c \
|
||||
$(srcdir)/asan.c \
|
||||
|
|
|
@ -86,19 +86,6 @@ along with GCC; see the file COPYING3. If not see
|
|||
#include "cfgexpand.h"
|
||||
#include "gimplify.h"
|
||||
|
||||
/* Number of bits in integer, but we really want to be stable across different
|
||||
hosts. */
|
||||
#define NUM_CONDITIONS 32
|
||||
|
||||
/* Special condition code we use to represent test that operand is compile time
|
||||
constant. */
|
||||
#define IS_NOT_CONSTANT ERROR_MARK
|
||||
/* Special condition code we use to represent test that operand is not changed
|
||||
across invocation of the function. When operand IS_NOT_CONSTANT it is always
|
||||
CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
|
||||
of executions even when they are not compile time constants. */
|
||||
#define CHANGED IDENTIFIER_NODE
|
||||
|
||||
/* Holders of ipa cgraph hooks: */
|
||||
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
|
||||
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
|
||||
|
@ -117,396 +104,6 @@ vec<edge_growth_cache_entry> edge_growth_cache;
|
|||
/* Edge predicates goes here. */
|
||||
static object_allocator<predicate> edge_predicate_pool ("edge predicates");
|
||||
|
||||
/* Simple description of whether a memory load or a condition refers to a load
|
||||
from an aggregate and if so, how and where from in the aggregate.
|
||||
Individual fields have the same meaning like fields with the same name in
|
||||
struct condition. */
|
||||
|
||||
struct agg_position_info
|
||||
{
|
||||
HOST_WIDE_INT offset;
|
||||
bool agg_contents;
|
||||
bool by_ref;
|
||||
};
|
||||
|
||||
/* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL
|
||||
correspond to fields of condition structure. AGGPOS describes whether the
|
||||
used operand is loaded from an aggregate and where in the aggregate it is.
|
||||
It can be NULL, which means this not a load from an aggregate. */
|
||||
|
||||
static predicate
|
||||
add_condition (struct inline_summary *summary, int operand_num,
|
||||
HOST_WIDE_INT size, struct agg_position_info *aggpos,
|
||||
enum tree_code code, tree val)
|
||||
{
|
||||
int i;
|
||||
struct condition *c;
|
||||
struct condition new_cond;
|
||||
HOST_WIDE_INT offset;
|
||||
bool agg_contents, by_ref;
|
||||
|
||||
if (aggpos)
|
||||
{
|
||||
offset = aggpos->offset;
|
||||
agg_contents = aggpos->agg_contents;
|
||||
by_ref = aggpos->by_ref;
|
||||
}
|
||||
else
|
||||
{
|
||||
offset = 0;
|
||||
agg_contents = false;
|
||||
by_ref = false;
|
||||
}
|
||||
|
||||
gcc_checking_assert (operand_num >= 0);
|
||||
for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
|
||||
{
|
||||
if (c->operand_num == operand_num
|
||||
&& c->size == size
|
||||
&& c->code == code
|
||||
&& c->val == val
|
||||
&& c->agg_contents == agg_contents
|
||||
&& (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
|
||||
return predicate::predicate_testing_cond (i);
|
||||
}
|
||||
/* Too many conditions. Give up and return constant true. */
|
||||
if (i == NUM_CONDITIONS - predicate::first_dynamic_condition)
|
||||
return true;
|
||||
|
||||
new_cond.operand_num = operand_num;
|
||||
new_cond.code = code;
|
||||
new_cond.val = val;
|
||||
new_cond.agg_contents = agg_contents;
|
||||
new_cond.by_ref = by_ref;
|
||||
new_cond.offset = offset;
|
||||
new_cond.size = size;
|
||||
vec_safe_push (summary->conds, new_cond);
|
||||
|
||||
return predicate::predicate_testing_cond (i);
|
||||
}
|
||||
|
||||
|
||||
/* Add clause CLAUSE into the predicate P.
|
||||
When CONDITIONS is NULL do not perform checking whether NEW_CLAUSE
|
||||
is obviously true. This is useful only when NEW_CLAUSE is known to be
|
||||
sane. */
|
||||
|
||||
void
|
||||
predicate::add_clause (conditions conditions, clause_t new_clause)
|
||||
{
|
||||
int i;
|
||||
int i2;
|
||||
int insert_here = -1;
|
||||
int c1, c2;
|
||||
|
||||
/* True clause. */
|
||||
if (!new_clause)
|
||||
return;
|
||||
|
||||
/* False clause makes the whole predicate false. Kill the other variants. */
|
||||
if (new_clause == (1 << predicate::false_condition))
|
||||
{
|
||||
*this = false;
|
||||
return;
|
||||
}
|
||||
if (*this == false)
|
||||
return;
|
||||
|
||||
/* No one should be silly enough to add false into nontrivial clauses. */
|
||||
gcc_checking_assert (!(new_clause & (1 << predicate::false_condition)));
|
||||
|
||||
/* Look where to insert the new_clause. At the same time prune out
|
||||
new_clauses of P that are implied by the new new_clause and thus
|
||||
redundant. */
|
||||
for (i = 0, i2 = 0; i <= max_clauses; i++)
|
||||
{
|
||||
m_clause[i2] = m_clause[i];
|
||||
|
||||
if (!m_clause[i])
|
||||
break;
|
||||
|
||||
/* If m_clause[i] implies new_clause, there is nothing to add. */
|
||||
if ((m_clause[i] & new_clause) == m_clause[i])
|
||||
{
|
||||
/* We had nothing to add, none of clauses should've become
|
||||
redundant. */
|
||||
gcc_checking_assert (i == i2);
|
||||
return;
|
||||
}
|
||||
|
||||
if (m_clause[i] < new_clause && insert_here < 0)
|
||||
insert_here = i2;
|
||||
|
||||
/* If new_clause implies clause[i], then clause[i] becomes redundant.
|
||||
Otherwise the clause[i] has to stay. */
|
||||
if ((m_clause[i] & new_clause) != new_clause)
|
||||
i2++;
|
||||
}
|
||||
|
||||
/* Look for clauses that are obviously true. I.e.
|
||||
op0 == 5 || op0 != 5. */
|
||||
if (conditions)
|
||||
for (c1 = predicate::first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
|
||||
{
|
||||
condition *cc1;
|
||||
if (!(new_clause & (1 << c1)))
|
||||
continue;
|
||||
cc1 = &(*conditions)[c1 - predicate::first_dynamic_condition];
|
||||
/* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
|
||||
and thus there is no point for looking for them. */
|
||||
if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
|
||||
continue;
|
||||
for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
|
||||
if (new_clause & (1 << c2))
|
||||
{
|
||||
condition *cc1 =
|
||||
&(*conditions)[c1 - predicate::first_dynamic_condition];
|
||||
condition *cc2 =
|
||||
&(*conditions)[c2 - predicate::first_dynamic_condition];
|
||||
if (cc1->operand_num == cc2->operand_num
|
||||
&& cc1->val == cc2->val
|
||||
&& cc2->code != IS_NOT_CONSTANT
|
||||
&& cc2->code != CHANGED
|
||||
&& cc1->code == invert_tree_comparison (cc2->code,
|
||||
HONOR_NANS (cc1->val)))
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* We run out of variants. Be conservative in positive direction. */
|
||||
if (i2 == max_clauses)
|
||||
return;
|
||||
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
|
||||
m_clause[i2 + 1] = 0;
|
||||
if (insert_here >= 0)
|
||||
for (; i2 > insert_here; i2--)
|
||||
m_clause[i2] = m_clause[i2 - 1];
|
||||
else
|
||||
insert_here = i2;
|
||||
m_clause[insert_here] = new_clause;
|
||||
}
|
||||
|
||||
|
||||
/* Do THIS &= P. */
|
||||
|
||||
predicate &
|
||||
predicate::operator &= (const predicate &p)
|
||||
{
|
||||
/* Avoid busy work. */
|
||||
if (p == false || *this == true)
|
||||
{
|
||||
*this = p;
|
||||
return *this;
|
||||
}
|
||||
if (*this == false || p == true || this == &p)
|
||||
return *this;
|
||||
|
||||
int i;
|
||||
|
||||
/* See how far predicates match. */
|
||||
for (i = 0; m_clause[i] && m_clause[i] == p.m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
}
|
||||
|
||||
/* Combine the predicates rest. */
|
||||
for (; p.m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
add_clause (NULL, p.m_clause[i]);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Return THIS | P2. */
|
||||
|
||||
predicate
|
||||
predicate::or_with (conditions conditions,
|
||||
const predicate &p) const
|
||||
{
|
||||
/* Avoid busy work. */
|
||||
if (p == false || *this == true || *this == p)
|
||||
return *this;
|
||||
if (*this == false || p == true)
|
||||
return p;
|
||||
|
||||
/* OK, combine the predicates. */
|
||||
predicate out = true;
|
||||
|
||||
for (int i = 0; m_clause[i]; i++)
|
||||
for (int j = 0; p.m_clause[j]; j++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses && j < max_clauses);
|
||||
out.add_clause (conditions, m_clause[i] | p.m_clause[j]);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
|
||||
if predicate P is known to be false. */
|
||||
|
||||
bool
|
||||
predicate::evaluate (clause_t possible_truths) const
|
||||
{
|
||||
int i;
|
||||
|
||||
/* True remains true. */
|
||||
if (*this == true)
|
||||
return true;
|
||||
|
||||
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
|
||||
|
||||
/* See if we can find clause we can disprove. */
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
if (!(m_clause[i] & possible_truths))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
|
||||
instruction will be recomputed per invocation of the inlined call. */
|
||||
|
||||
int
|
||||
predicate::probability (conditions conds,
|
||||
clause_t possible_truths,
|
||||
vec<inline_param_summary> inline_param_summary) const
|
||||
{
|
||||
int i;
|
||||
int combined_prob = REG_BR_PROB_BASE;
|
||||
|
||||
/* True remains true. */
|
||||
if (*this == true)
|
||||
return REG_BR_PROB_BASE;
|
||||
|
||||
if (*this == false)
|
||||
return 0;
|
||||
|
||||
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
|
||||
|
||||
/* See if we can find clause we can disprove. */
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
if (!(m_clause[i] & possible_truths))
|
||||
return 0;
|
||||
else
|
||||
{
|
||||
int this_prob = 0;
|
||||
int i2;
|
||||
if (!inline_param_summary.exists ())
|
||||
return REG_BR_PROB_BASE;
|
||||
for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
|
||||
if ((m_clause[i] & possible_truths) & (1 << i2))
|
||||
{
|
||||
if (i2 >= predicate::first_dynamic_condition)
|
||||
{
|
||||
condition *c =
|
||||
&(*conds)[i2 - predicate::first_dynamic_condition];
|
||||
if (c->code == CHANGED
|
||||
&& (c->operand_num <
|
||||
(int) inline_param_summary.length ()))
|
||||
{
|
||||
int iprob =
|
||||
inline_param_summary[c->operand_num].change_prob;
|
||||
this_prob = MAX (this_prob, iprob);
|
||||
}
|
||||
else
|
||||
this_prob = REG_BR_PROB_BASE;
|
||||
}
|
||||
else
|
||||
this_prob = REG_BR_PROB_BASE;
|
||||
}
|
||||
combined_prob = MIN (this_prob, combined_prob);
|
||||
if (!combined_prob)
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return combined_prob;
|
||||
}
|
||||
|
||||
|
||||
/* Dump conditional COND. */
|
||||
|
||||
static void
|
||||
dump_condition (FILE *f, conditions conditions, int cond)
|
||||
{
|
||||
condition *c;
|
||||
if (cond == predicate::false_condition)
|
||||
fprintf (f, "false");
|
||||
else if (cond == predicate::not_inlined_condition)
|
||||
fprintf (f, "not inlined");
|
||||
else
|
||||
{
|
||||
c = &(*conditions)[cond - predicate::first_dynamic_condition];
|
||||
fprintf (f, "op%i", c->operand_num);
|
||||
if (c->agg_contents)
|
||||
fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
|
||||
c->by_ref ? "ref " : "", c->offset);
|
||||
if (c->code == IS_NOT_CONSTANT)
|
||||
{
|
||||
fprintf (f, " not constant");
|
||||
return;
|
||||
}
|
||||
if (c->code == CHANGED)
|
||||
{
|
||||
fprintf (f, " changed");
|
||||
return;
|
||||
}
|
||||
fprintf (f, " %s ", op_symbol_code (c->code));
|
||||
print_generic_expr (f, c->val);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Dump clause CLAUSE. */
|
||||
|
||||
static void
|
||||
dump_clause (FILE *f, conditions conds, clause_t clause)
|
||||
{
|
||||
int i;
|
||||
bool found = false;
|
||||
fprintf (f, "(");
|
||||
if (!clause)
|
||||
fprintf (f, "true");
|
||||
for (i = 0; i < NUM_CONDITIONS; i++)
|
||||
if (clause & (1 << i))
|
||||
{
|
||||
if (found)
|
||||
fprintf (f, " || ");
|
||||
found = true;
|
||||
dump_condition (f, conds, i);
|
||||
}
|
||||
fprintf (f, ")");
|
||||
}
|
||||
|
||||
|
||||
/* Dump THIS to F. CONDS a vector of conditions used when evauating
|
||||
predicats. When NL is true new line is output at the end of dump. */
|
||||
|
||||
void
|
||||
predicate::dump (FILE *f, conditions conds, bool nl) const
|
||||
{
|
||||
int i;
|
||||
if (*this == true)
|
||||
dump_clause (f, conds, 0);
|
||||
else
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
if (i)
|
||||
fprintf (f, " && ");
|
||||
dump_clause (f, conds, m_clause[i]);
|
||||
}
|
||||
if (nl)
|
||||
fprintf (f, "\n");
|
||||
}
|
||||
|
||||
|
||||
/* Dump inline hints. */
|
||||
void
|
||||
|
@ -770,7 +367,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
|
|||
{
|
||||
struct ipa_agg_jump_function *agg;
|
||||
|
||||
if (c->code == CHANGED
|
||||
if (c->code == predicate::changed
|
||||
&& !c->by_ref
|
||||
&& (known_vals[c->operand_num] == error_mark_node))
|
||||
continue;
|
||||
|
@ -787,7 +384,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
|
|||
else
|
||||
{
|
||||
val = known_vals[c->operand_num];
|
||||
if (val == error_mark_node && c->code != CHANGED)
|
||||
if (val == error_mark_node && c->code != predicate::changed)
|
||||
val = NULL_TREE;
|
||||
}
|
||||
|
||||
|
@ -797,7 +394,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
|
|||
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
|
||||
continue;
|
||||
}
|
||||
if (c->code == CHANGED)
|
||||
if (c->code == predicate::changed)
|
||||
{
|
||||
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
|
||||
continue;
|
||||
|
@ -809,7 +406,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
|
|||
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
|
||||
continue;
|
||||
}
|
||||
if (c->code == IS_NOT_CONSTANT)
|
||||
if (c->code == predicate::is_not_constant)
|
||||
{
|
||||
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
|
||||
continue;
|
||||
|
@ -1025,23 +622,6 @@ inline_summary_t::remove (cgraph_node *node, inline_summary *info)
|
|||
reset_inline_summary (node, info);
|
||||
}
|
||||
|
||||
/* Remap predicate THIS of former function to be predicate of duplicated function.
|
||||
POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
|
||||
INFO is inline summary of the duplicated node. */
|
||||
|
||||
predicate
|
||||
predicate::remap_after_duplication (clause_t possible_truths)
|
||||
{
|
||||
int j;
|
||||
predicate out = true;
|
||||
for (j = 0; m_clause[j]; j++)
|
||||
if (!(possible_truths & m_clause[j]))
|
||||
return false;
|
||||
else
|
||||
out.add_clause (NULL, possible_truths & m_clause[j]);
|
||||
return out;
|
||||
}
|
||||
|
||||
/* Same as remap_predicate_after_duplication but handle hint predicate *P.
|
||||
Additionally care about allocating new memory slot for updated predicate
|
||||
and set it to NULL when it becomes true or false (and thus uninteresting).
|
||||
|
@ -1778,7 +1358,7 @@ set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
|
|||
FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
|
||||
{
|
||||
predicate p = add_condition (summary, index, size, &aggpos,
|
||||
IS_NOT_CONSTANT, NULL_TREE);
|
||||
predicate::is_not_constant, NULL_TREE);
|
||||
e->aux = edge_predicate_pool.allocate ();
|
||||
*(predicate *) e->aux = p;
|
||||
}
|
||||
|
@ -1945,7 +1525,8 @@ will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
|
|||
|
||||
parm = unmodified_parm (NULL, expr, &size);
|
||||
if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
|
||||
return add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
|
||||
return add_condition (summary, index, size, NULL, predicate::changed,
|
||||
NULL_TREE);
|
||||
if (is_gimple_min_invariant (expr))
|
||||
return false;
|
||||
if (TREE_CODE (expr) == SSA_NAME)
|
||||
|
@ -2058,7 +1639,8 @@ will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
|
|||
|
||||
if (is_load)
|
||||
op_non_const =
|
||||
add_condition (summary, base_index, size, &aggpos, CHANGED, NULL);
|
||||
add_condition (summary, base_index, size, &aggpos, predicate::changed,
|
||||
NULL);
|
||||
else
|
||||
op_non_const = false;
|
||||
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
|
||||
|
@ -2070,7 +1652,8 @@ will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
|
|||
if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
|
||||
{
|
||||
if (index != base_index)
|
||||
p = add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
|
||||
p = add_condition (summary, index, size, NULL, predicate::changed,
|
||||
NULL_TREE);
|
||||
else
|
||||
continue;
|
||||
}
|
||||
|
@ -3357,101 +2940,6 @@ estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
|
|||
ret_nonspec_time, hints, vNULL);
|
||||
}
|
||||
|
||||
/* Translate all conditions from callee representation into caller
|
||||
representation and symbolically evaluate predicate THIS into new predicate.
|
||||
|
||||
INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
|
||||
is summary of function predicate P is from. OPERAND_MAP is array giving
|
||||
callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
|
||||
callee conditions that may be true in caller context. TOPLEV_PREDICATE is
|
||||
predicate under which callee is executed. OFFSET_MAP is an array of of
|
||||
offsets that need to be added to conditions, negative offset means that
|
||||
conditions relying on values passed by reference have to be discarded
|
||||
because they might not be preserved (and should be considered offset zero
|
||||
for other purposes). */
|
||||
|
||||
predicate
|
||||
predicate::remap_after_inlining (struct inline_summary *info,
|
||||
struct inline_summary *callee_info,
|
||||
vec<int> operand_map,
|
||||
vec<int> offset_map,
|
||||
clause_t possible_truths,
|
||||
const predicate &toplev_predicate)
|
||||
{
|
||||
int i;
|
||||
predicate out = true;
|
||||
|
||||
/* True predicate is easy. */
|
||||
if (*this == true)
|
||||
return toplev_predicate;
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
clause_t clause = m_clause[i];
|
||||
int cond;
|
||||
predicate clause_predicate = false;
|
||||
|
||||
gcc_assert (i < max_clauses);
|
||||
|
||||
for (cond = 0; cond < NUM_CONDITIONS; cond++)
|
||||
/* Do we have condition we can't disprove? */
|
||||
if (clause & possible_truths & (1 << cond))
|
||||
{
|
||||
predicate cond_predicate;
|
||||
/* Work out if the condition can translate to predicate in the
|
||||
inlined function. */
|
||||
if (cond >= predicate::first_dynamic_condition)
|
||||
{
|
||||
struct condition *c;
|
||||
|
||||
c = &(*callee_info->conds)[cond
|
||||
-
|
||||
predicate::first_dynamic_condition];
|
||||
/* See if we can remap condition operand to caller's operand.
|
||||
Otherwise give up. */
|
||||
if (!operand_map.exists ()
|
||||
|| (int) operand_map.length () <= c->operand_num
|
||||
|| operand_map[c->operand_num] == -1
|
||||
/* TODO: For non-aggregate conditions, adding an offset is
|
||||
basically an arithmetic jump function processing which
|
||||
we should support in future. */
|
||||
|| ((!c->agg_contents || !c->by_ref)
|
||||
&& offset_map[c->operand_num] > 0)
|
||||
|| (c->agg_contents && c->by_ref
|
||||
&& offset_map[c->operand_num] < 0))
|
||||
cond_predicate = true;
|
||||
else
|
||||
{
|
||||
struct agg_position_info ap;
|
||||
HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
|
||||
if (offset_delta < 0)
|
||||
{
|
||||
gcc_checking_assert (!c->agg_contents || !c->by_ref);
|
||||
offset_delta = 0;
|
||||
}
|
||||
gcc_assert (!c->agg_contents
|
||||
|| c->by_ref || offset_delta == 0);
|
||||
ap.offset = c->offset + offset_delta;
|
||||
ap.agg_contents = c->agg_contents;
|
||||
ap.by_ref = c->by_ref;
|
||||
cond_predicate = add_condition (info,
|
||||
operand_map[c->operand_num],
|
||||
c->size, &ap, c->code,
|
||||
c->val);
|
||||
}
|
||||
}
|
||||
/* Fixed conditions remains same, construct single
|
||||
condition predicate. */
|
||||
else
|
||||
cond_predicate = predicate::predicate_testing_cond (cond);
|
||||
clause_predicate = clause_predicate.or_with (info->conds,
|
||||
cond_predicate);
|
||||
}
|
||||
out &= clause_predicate;
|
||||
}
|
||||
out &= toplev_predicate;
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
/* Update summary information of inline clones after inlining.
|
||||
Compute peak stack usage. */
|
||||
|
@ -4175,27 +3663,6 @@ inline_generate_summary (void)
|
|||
}
|
||||
|
||||
|
||||
/* Read predicate from IB. */
|
||||
|
||||
void
|
||||
predicate::stream_in (struct lto_input_block *ib)
|
||||
{
|
||||
clause_t clause;
|
||||
int k = 0;
|
||||
|
||||
do
|
||||
{
|
||||
gcc_assert (k <= max_clauses);
|
||||
clause = m_clause[k++] = streamer_read_uhwi (ib);
|
||||
}
|
||||
while (clause);
|
||||
|
||||
/* Zero-initialize the remaining clauses in OUT. */
|
||||
while (k <= max_clauses)
|
||||
m_clause[k++] = 0;
|
||||
}
|
||||
|
||||
|
||||
/* Write inline summary for edge E to OB. */
|
||||
|
||||
static void
|
||||
|
@ -4356,21 +3823,6 @@ inline_read_summary (void)
|
|||
}
|
||||
|
||||
|
||||
/* Write predicate P to OB. */
|
||||
|
||||
void
|
||||
predicate::stream_out (struct output_block *ob)
|
||||
{
|
||||
int j;
|
||||
for (j = 0; m_clause[j]; j++)
|
||||
{
|
||||
gcc_assert (j < max_clauses);
|
||||
streamer_write_uhwi (ob, m_clause[j]);
|
||||
}
|
||||
streamer_write_uhwi (ob, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Write inline summary for edge E to OB. */
|
||||
|
||||
static void
|
||||
|
|
198
gcc/ipa-inline.h
198
gcc/ipa-inline.h
|
@ -22,33 +22,9 @@ along with GCC; see the file COPYING3. If not see
|
|||
#define GCC_IPA_INLINE_H
|
||||
|
||||
#include "sreal.h"
|
||||
#include "ipa-predicate.h"
|
||||
|
||||
|
||||
/* Representation of inline parameters that do depend on context function is
|
||||
inlined into (i.e. known constant values of function parameters.
|
||||
|
||||
Conditions that are interesting for function body are collected into CONDS
|
||||
vector. They are of simple for function_param OP VAL, where VAL is
|
||||
IPA invariant. The conditions are then referred by predicates. */
|
||||
|
||||
struct GTY(()) condition
|
||||
{
|
||||
/* If agg_contents is set, this is the offset from which the used data was
|
||||
loaded. */
|
||||
HOST_WIDE_INT offset;
|
||||
/* Size of the access reading the data (or the PARM_DECL SSA_NAME). */
|
||||
HOST_WIDE_INT size;
|
||||
tree val;
|
||||
int operand_num;
|
||||
ENUM_BITFIELD(tree_code) code : 16;
|
||||
/* Set if the used data were loaded from an aggregate parameter or from
|
||||
data received by reference. */
|
||||
unsigned agg_contents : 1;
|
||||
/* If agg_contents is set, this differentiates between loads from data
|
||||
passed by reference and by value. */
|
||||
unsigned by_ref : 1;
|
||||
};
|
||||
|
||||
/* Inline hints are reasons why inline heuristics should preffer inlining given
|
||||
function. They are represtented as bitmap of the following values. */
|
||||
enum inline_hints_vals {
|
||||
|
@ -78,171 +54,19 @@ enum inline_hints_vals {
|
|||
/* We know that the callee is hot by profile. */
|
||||
INLINE_HINT_known_hot = 256
|
||||
};
|
||||
|
||||
typedef int inline_hints;
|
||||
|
||||
/* Information kept about parameter of call site. */
|
||||
struct inline_param_summary
|
||||
/* Simple description of whether a memory load or a condition refers to a load
|
||||
from an aggregate and if so, how and where from in the aggregate.
|
||||
Individual fields have the same meaning like fields with the same name in
|
||||
struct condition. */
|
||||
|
||||
struct agg_position_info
|
||||
{
|
||||
/* REG_BR_PROB_BASE based probability that parameter will change in between
|
||||
two invocation of the calls.
|
||||
I.e. loop invariant parameters
|
||||
REG_BR_PROB_BASE/estimated_iterations and regular
|
||||
parameters REG_BR_PROB_BASE.
|
||||
|
||||
Value 0 is reserved for compile time invariants. */
|
||||
int change_prob;
|
||||
};
|
||||
|
||||
typedef vec<condition, va_gc> *conditions;
|
||||
|
||||
/* Predicates are used to repesent function parameters (such as runtime)
|
||||
which depend on a context function is called in.
|
||||
|
||||
Predicates are logical formulas in conjunctive-disjunctive form consisting
|
||||
of clauses which are bitmaps specifying a set of condition that must
|
||||
be true for a clause to be satisfied. Physically they are represented as
|
||||
array of clauses terminated by 0.
|
||||
|
||||
In order to make predicate (possibly) true, all of its clauses must
|
||||
be (possibly) true. To make clause (possibly) true, one of conditions
|
||||
it mentions must be (possibly) true.
|
||||
|
||||
There are fixed bounds on number of clauses and conditions and all the
|
||||
manipulation functions are conservative in positive direction. I.e. we
|
||||
may lose precision by thinking that predicate may be true even when it
|
||||
is not. */
|
||||
|
||||
typedef uint32_t clause_t;
|
||||
class predicate
|
||||
{
|
||||
public:
|
||||
enum predicate_conditions
|
||||
{
|
||||
false_condition = 0,
|
||||
not_inlined_condition = 1,
|
||||
first_dynamic_condition = 2
|
||||
};
|
||||
|
||||
/* Initialize predicate either to true of false depending on P. */
|
||||
inline predicate (bool p = true)
|
||||
{
|
||||
if (p)
|
||||
/* True predicate. */
|
||||
m_clause[0] = 0;
|
||||
else
|
||||
/* False predicate. */
|
||||
set_to_cond (false_condition);
|
||||
}
|
||||
|
||||
/* Sanity check that we do not mix pointers to predicates with predicates. */
|
||||
inline predicate (predicate *)
|
||||
{
|
||||
gcc_unreachable ();
|
||||
}
|
||||
|
||||
/* Return predicate testing condition I. */
|
||||
static inline predicate predicate_testing_cond (int i)
|
||||
{
|
||||
class predicate p;
|
||||
p.set_to_cond (i + first_dynamic_condition);
|
||||
return p;
|
||||
}
|
||||
|
||||
/* Return predicate testing that function was not inlined. */
|
||||
static predicate not_inlined (void)
|
||||
{
|
||||
class predicate p;
|
||||
p.set_to_cond (not_inlined_condition);
|
||||
return p;
|
||||
}
|
||||
|
||||
/* Compute logical and of predicates. */
|
||||
predicate & operator &= (const predicate &);
|
||||
inline predicate operator &(const predicate &p)
|
||||
{
|
||||
predicate ret = *this;
|
||||
ret &= p;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Compute logical or of predicates. This is not operator because
|
||||
extra parameter CONDITIONS is needed */
|
||||
predicate or_with (conditions, const predicate &) const;
|
||||
|
||||
/* Return true if predicates are known to be equal. */
|
||||
inline bool operator==(const predicate &p2) const
|
||||
{
|
||||
int i;
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
gcc_checking_assert (m_clause[i] > m_clause[i + 1]);
|
||||
gcc_checking_assert (!p2.m_clause[i]
|
||||
|| p2.m_clause[i] > p2.m_clause[i + 1]);
|
||||
if (m_clause[i] != p2.m_clause[i])
|
||||
return false;
|
||||
}
|
||||
return !p2.m_clause[i];
|
||||
}
|
||||
|
||||
/* Return true if predicates are known to be true or false depending
|
||||
on COND. */
|
||||
inline bool operator==(const bool cond) const
|
||||
{
|
||||
if (cond)
|
||||
return !m_clause[0];
|
||||
if (m_clause[0] == (1 << false_condition))
|
||||
{
|
||||
gcc_checking_assert (!m_clause[1]
|
||||
&& m_clause[0] == 1
|
||||
<< false_condition);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
inline bool operator!=(const predicate &p2) const
|
||||
{
|
||||
return !(*this == p2);
|
||||
}
|
||||
|
||||
inline bool operator!=(const bool cond) const
|
||||
{
|
||||
return !(*this == cond);
|
||||
}
|
||||
|
||||
/* Evaluate if predicate is known to be false given the clause of possible
|
||||
truths. */
|
||||
bool evaluate (clause_t) const;
|
||||
|
||||
/* Estimate probability that predicate will be true in a given context. */
|
||||
int probability (conditions, clause_t, vec<inline_param_summary>) const;
|
||||
|
||||
/* Dump predicate to F. Output newline if nl. */
|
||||
void dump (FILE *f, conditions, bool nl=true) const;
|
||||
|
||||
/* Return predicate equal to THIS after duplication. */
|
||||
predicate remap_after_duplication (clause_t);
|
||||
|
||||
/* Return predicate equal to THIS after inlining. */
|
||||
predicate remap_after_inlining (struct inline_summary *,
|
||||
struct inline_summary *,
|
||||
vec<int>, vec<int>, clause_t, const predicate &);
|
||||
|
||||
void stream_in (struct lto_input_block *);
|
||||
void stream_out (struct output_block *);
|
||||
private:
|
||||
static const int max_clauses = 8;
|
||||
clause_t m_clause[max_clauses + 1];
|
||||
|
||||
/* Initialize predicate to one testing single condition number COND. */
|
||||
inline void set_to_cond (int cond)
|
||||
{
|
||||
m_clause[0] = 1 << cond;
|
||||
m_clause[1] = 0;
|
||||
}
|
||||
|
||||
void add_clause (conditions conditions, clause_t);
|
||||
HOST_WIDE_INT offset;
|
||||
bool agg_contents;
|
||||
bool by_ref;
|
||||
};
|
||||
|
||||
/* Represnetation of function body size and time depending on the inline
|
||||
|
|
573
gcc/ipa-predicate.c
Normal file
573
gcc/ipa-predicate.c
Normal file
|
@ -0,0 +1,573 @@
|
|||
/* IPA predicates.
|
||||
Copyright (C) 2003-2017 Free Software Foundation, Inc.
|
||||
Contributed by Jan Hubicka
|
||||
|
||||
This file is part of GCC.
|
||||
|
||||
GCC is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License as published by the Free
|
||||
Software Foundation; either version 3, or (at your option) any later
|
||||
version.
|
||||
|
||||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GCC; see the file COPYING3. If not see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
#include "config.h"
|
||||
#include "system.h"
|
||||
#include "coretypes.h"
|
||||
#include "backend.h"
|
||||
#include "tree.h"
|
||||
#include "cgraph.h"
|
||||
#include "tree-vrp.h"
|
||||
#include "symbol-summary.h"
|
||||
#include "alloc-pool.h"
|
||||
#include "ipa-prop.h"
|
||||
#include "ipa-inline.h"
|
||||
#include "real.h"
|
||||
#include "fold-const.h"
|
||||
#include "tree-pretty-print.h"
|
||||
#include "gimple.h"
|
||||
#include "data-streamer.h"
|
||||
|
||||
|
||||
/* Add clause CLAUSE into the predicate P.
|
||||
When CONDITIONS is NULL do not perform checking whether NEW_CLAUSE
|
||||
is obviously true. This is useful only when NEW_CLAUSE is known to be
|
||||
sane. */
|
||||
|
||||
void
|
||||
predicate::add_clause (conditions conditions, clause_t new_clause)
|
||||
{
|
||||
int i;
|
||||
int i2;
|
||||
int insert_here = -1;
|
||||
int c1, c2;
|
||||
|
||||
/* True clause. */
|
||||
if (!new_clause)
|
||||
return;
|
||||
|
||||
/* False clause makes the whole predicate false. Kill the other variants. */
|
||||
if (new_clause == (1 << predicate::false_condition))
|
||||
{
|
||||
*this = false;
|
||||
return;
|
||||
}
|
||||
if (*this == false)
|
||||
return;
|
||||
|
||||
/* No one should be silly enough to add false into nontrivial clauses. */
|
||||
gcc_checking_assert (!(new_clause & (1 << predicate::false_condition)));
|
||||
|
||||
/* Look where to insert the new_clause. At the same time prune out
|
||||
new_clauses of P that are implied by the new new_clause and thus
|
||||
redundant. */
|
||||
for (i = 0, i2 = 0; i <= max_clauses; i++)
|
||||
{
|
||||
m_clause[i2] = m_clause[i];
|
||||
|
||||
if (!m_clause[i])
|
||||
break;
|
||||
|
||||
/* If m_clause[i] implies new_clause, there is nothing to add. */
|
||||
if ((m_clause[i] & new_clause) == m_clause[i])
|
||||
{
|
||||
/* We had nothing to add, none of clauses should've become
|
||||
redundant. */
|
||||
gcc_checking_assert (i == i2);
|
||||
return;
|
||||
}
|
||||
|
||||
if (m_clause[i] < new_clause && insert_here < 0)
|
||||
insert_here = i2;
|
||||
|
||||
/* If new_clause implies clause[i], then clause[i] becomes redundant.
|
||||
Otherwise the clause[i] has to stay. */
|
||||
if ((m_clause[i] & new_clause) != new_clause)
|
||||
i2++;
|
||||
}
|
||||
|
||||
/* Look for clauses that are obviously true. I.e.
|
||||
op0 == 5 || op0 != 5. */
|
||||
if (conditions)
|
||||
for (c1 = predicate::first_dynamic_condition;
|
||||
c1 < num_conditions; c1++)
|
||||
{
|
||||
condition *cc1;
|
||||
if (!(new_clause & (1 << c1)))
|
||||
continue;
|
||||
cc1 = &(*conditions)[c1 - predicate::first_dynamic_condition];
|
||||
/* We have no way to represent !changed and !is_not_constant
|
||||
and thus there is no point for looking for them. */
|
||||
if (cc1->code == changed || cc1->code == is_not_constant)
|
||||
continue;
|
||||
for (c2 = c1 + 1; c2 < num_conditions; c2++)
|
||||
if (new_clause & (1 << c2))
|
||||
{
|
||||
condition *cc1 =
|
||||
&(*conditions)[c1 - predicate::first_dynamic_condition];
|
||||
condition *cc2 =
|
||||
&(*conditions)[c2 - predicate::first_dynamic_condition];
|
||||
if (cc1->operand_num == cc2->operand_num
|
||||
&& cc1->val == cc2->val
|
||||
&& cc2->code != is_not_constant
|
||||
&& cc2->code != predicate::changed
|
||||
&& cc1->code == invert_tree_comparison (cc2->code,
|
||||
HONOR_NANS (cc1->val)))
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* We run out of variants. Be conservative in positive direction. */
|
||||
if (i2 == max_clauses)
|
||||
return;
|
||||
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
|
||||
m_clause[i2 + 1] = 0;
|
||||
if (insert_here >= 0)
|
||||
for (; i2 > insert_here; i2--)
|
||||
m_clause[i2] = m_clause[i2 - 1];
|
||||
else
|
||||
insert_here = i2;
|
||||
m_clause[insert_here] = new_clause;
|
||||
}
|
||||
|
||||
|
||||
/* Do THIS &= P. */
|
||||
|
||||
predicate &
|
||||
predicate::operator &= (const predicate &p)
|
||||
{
|
||||
/* Avoid busy work. */
|
||||
if (p == false || *this == true)
|
||||
{
|
||||
*this = p;
|
||||
return *this;
|
||||
}
|
||||
if (*this == false || p == true || this == &p)
|
||||
return *this;
|
||||
|
||||
int i;
|
||||
|
||||
/* See how far predicates match. */
|
||||
for (i = 0; m_clause[i] && m_clause[i] == p.m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
}
|
||||
|
||||
/* Combine the predicates rest. */
|
||||
for (; p.m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
add_clause (NULL, p.m_clause[i]);
|
||||
}
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Return THIS | P2. */
|
||||
|
||||
predicate
|
||||
predicate::or_with (conditions conditions,
|
||||
const predicate &p) const
|
||||
{
|
||||
/* Avoid busy work. */
|
||||
if (p == false || *this == true || *this == p)
|
||||
return *this;
|
||||
if (*this == false || p == true)
|
||||
return p;
|
||||
|
||||
/* OK, combine the predicates. */
|
||||
predicate out = true;
|
||||
|
||||
for (int i = 0; m_clause[i]; i++)
|
||||
for (int j = 0; p.m_clause[j]; j++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses && j < max_clauses);
|
||||
out.add_clause (conditions, m_clause[i] | p.m_clause[j]);
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
|
||||
if predicate P is known to be false. */
|
||||
|
||||
bool
|
||||
predicate::evaluate (clause_t possible_truths) const
|
||||
{
|
||||
int i;
|
||||
|
||||
/* True remains true. */
|
||||
if (*this == true)
|
||||
return true;
|
||||
|
||||
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
|
||||
|
||||
/* See if we can find clause we can disprove. */
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
if (!(m_clause[i] & possible_truths))
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
|
||||
instruction will be recomputed per invocation of the inlined call. */
|
||||
|
||||
int
|
||||
predicate::probability (conditions conds,
|
||||
clause_t possible_truths,
|
||||
vec<inline_param_summary> inline_param_summary) const
|
||||
{
|
||||
int i;
|
||||
int combined_prob = REG_BR_PROB_BASE;
|
||||
|
||||
/* True remains true. */
|
||||
if (*this == true)
|
||||
return REG_BR_PROB_BASE;
|
||||
|
||||
if (*this == false)
|
||||
return 0;
|
||||
|
||||
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
|
||||
|
||||
/* See if we can find clause we can disprove. */
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
if (!(m_clause[i] & possible_truths))
|
||||
return 0;
|
||||
else
|
||||
{
|
||||
int this_prob = 0;
|
||||
int i2;
|
||||
if (!inline_param_summary.exists ())
|
||||
return REG_BR_PROB_BASE;
|
||||
for (i2 = 0; i2 < num_conditions; i2++)
|
||||
if ((m_clause[i] & possible_truths) & (1 << i2))
|
||||
{
|
||||
if (i2 >= predicate::first_dynamic_condition)
|
||||
{
|
||||
condition *c =
|
||||
&(*conds)[i2 - predicate::first_dynamic_condition];
|
||||
if (c->code == predicate::changed
|
||||
&& (c->operand_num <
|
||||
(int) inline_param_summary.length ()))
|
||||
{
|
||||
int iprob =
|
||||
inline_param_summary[c->operand_num].change_prob;
|
||||
this_prob = MAX (this_prob, iprob);
|
||||
}
|
||||
else
|
||||
this_prob = REG_BR_PROB_BASE;
|
||||
}
|
||||
else
|
||||
this_prob = REG_BR_PROB_BASE;
|
||||
}
|
||||
combined_prob = MIN (this_prob, combined_prob);
|
||||
if (!combined_prob)
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
return combined_prob;
|
||||
}
|
||||
|
||||
|
||||
/* Dump conditional COND. */
|
||||
|
||||
void
|
||||
dump_condition (FILE *f, conditions conditions, int cond)
|
||||
{
|
||||
condition *c;
|
||||
if (cond == predicate::false_condition)
|
||||
fprintf (f, "false");
|
||||
else if (cond == predicate::not_inlined_condition)
|
||||
fprintf (f, "not inlined");
|
||||
else
|
||||
{
|
||||
c = &(*conditions)[cond - predicate::first_dynamic_condition];
|
||||
fprintf (f, "op%i", c->operand_num);
|
||||
if (c->agg_contents)
|
||||
fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
|
||||
c->by_ref ? "ref " : "", c->offset);
|
||||
if (c->code == predicate::is_not_constant)
|
||||
{
|
||||
fprintf (f, " not constant");
|
||||
return;
|
||||
}
|
||||
if (c->code == predicate::changed)
|
||||
{
|
||||
fprintf (f, " changed");
|
||||
return;
|
||||
}
|
||||
fprintf (f, " %s ", op_symbol_code (c->code));
|
||||
print_generic_expr (f, c->val);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/* Dump clause CLAUSE. */
|
||||
|
||||
static void
|
||||
dump_clause (FILE *f, conditions conds, clause_t clause)
|
||||
{
|
||||
int i;
|
||||
bool found = false;
|
||||
fprintf (f, "(");
|
||||
if (!clause)
|
||||
fprintf (f, "true");
|
||||
for (i = 0; i < predicate::num_conditions; i++)
|
||||
if (clause & (1 << i))
|
||||
{
|
||||
if (found)
|
||||
fprintf (f, " || ");
|
||||
found = true;
|
||||
dump_condition (f, conds, i);
|
||||
}
|
||||
fprintf (f, ")");
|
||||
}
|
||||
|
||||
|
||||
/* Dump THIS to F. CONDS a vector of conditions used when evauating
|
||||
predicats. When NL is true new line is output at the end of dump. */
|
||||
|
||||
void
|
||||
predicate::dump (FILE *f, conditions conds, bool nl) const
|
||||
{
|
||||
int i;
|
||||
if (*this == true)
|
||||
dump_clause (f, conds, 0);
|
||||
else
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
if (i)
|
||||
fprintf (f, " && ");
|
||||
dump_clause (f, conds, m_clause[i]);
|
||||
}
|
||||
if (nl)
|
||||
fprintf (f, "\n");
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
predicate::debug (conditions conds) const
|
||||
{
|
||||
dump (stderr, conds);
|
||||
}
|
||||
|
||||
|
||||
/* Remap predicate THIS of former function to be predicate of duplicated function.
|
||||
POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
|
||||
INFO is inline summary of the duplicated node. */
|
||||
|
||||
predicate
|
||||
predicate::remap_after_duplication (clause_t possible_truths)
|
||||
{
|
||||
int j;
|
||||
predicate out = true;
|
||||
for (j = 0; m_clause[j]; j++)
|
||||
if (!(possible_truths & m_clause[j]))
|
||||
return false;
|
||||
else
|
||||
out.add_clause (NULL, possible_truths & m_clause[j]);
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
/* Translate all conditions from callee representation into caller
|
||||
representation and symbolically evaluate predicate THIS into new predicate.
|
||||
|
||||
INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
|
||||
is summary of function predicate P is from. OPERAND_MAP is array giving
|
||||
callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
|
||||
callee conditions that may be true in caller context. TOPLEV_PREDICATE is
|
||||
predicate under which callee is executed. OFFSET_MAP is an array of of
|
||||
offsets that need to be added to conditions, negative offset means that
|
||||
conditions relying on values passed by reference have to be discarded
|
||||
because they might not be preserved (and should be considered offset zero
|
||||
for other purposes). */
|
||||
|
||||
predicate
|
||||
predicate::remap_after_inlining (struct inline_summary *info,
|
||||
struct inline_summary *callee_info,
|
||||
vec<int> operand_map,
|
||||
vec<int> offset_map,
|
||||
clause_t possible_truths,
|
||||
const predicate &toplev_predicate)
|
||||
{
|
||||
int i;
|
||||
predicate out = true;
|
||||
|
||||
/* True predicate is easy. */
|
||||
if (*this == true)
|
||||
return toplev_predicate;
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
clause_t clause = m_clause[i];
|
||||
int cond;
|
||||
predicate clause_predicate = false;
|
||||
|
||||
gcc_assert (i < max_clauses);
|
||||
|
||||
for (cond = 0; cond < num_conditions; cond++)
|
||||
/* Do we have condition we can't disprove? */
|
||||
if (clause & possible_truths & (1 << cond))
|
||||
{
|
||||
predicate cond_predicate;
|
||||
/* Work out if the condition can translate to predicate in the
|
||||
inlined function. */
|
||||
if (cond >= predicate::first_dynamic_condition)
|
||||
{
|
||||
struct condition *c;
|
||||
|
||||
c = &(*callee_info->conds)[cond
|
||||
-
|
||||
predicate::first_dynamic_condition];
|
||||
/* See if we can remap condition operand to caller's operand.
|
||||
Otherwise give up. */
|
||||
if (!operand_map.exists ()
|
||||
|| (int) operand_map.length () <= c->operand_num
|
||||
|| operand_map[c->operand_num] == -1
|
||||
/* TODO: For non-aggregate conditions, adding an offset is
|
||||
basically an arithmetic jump function processing which
|
||||
we should support in future. */
|
||||
|| ((!c->agg_contents || !c->by_ref)
|
||||
&& offset_map[c->operand_num] > 0)
|
||||
|| (c->agg_contents && c->by_ref
|
||||
&& offset_map[c->operand_num] < 0))
|
||||
cond_predicate = true;
|
||||
else
|
||||
{
|
||||
struct agg_position_info ap;
|
||||
HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
|
||||
if (offset_delta < 0)
|
||||
{
|
||||
gcc_checking_assert (!c->agg_contents || !c->by_ref);
|
||||
offset_delta = 0;
|
||||
}
|
||||
gcc_assert (!c->agg_contents
|
||||
|| c->by_ref || offset_delta == 0);
|
||||
ap.offset = c->offset + offset_delta;
|
||||
ap.agg_contents = c->agg_contents;
|
||||
ap.by_ref = c->by_ref;
|
||||
cond_predicate = add_condition (info,
|
||||
operand_map[c->operand_num],
|
||||
c->size, &ap, c->code,
|
||||
c->val);
|
||||
}
|
||||
}
|
||||
/* Fixed conditions remains same, construct single
|
||||
condition predicate. */
|
||||
else
|
||||
cond_predicate = predicate::predicate_testing_cond (cond);
|
||||
clause_predicate = clause_predicate.or_with (info->conds,
|
||||
cond_predicate);
|
||||
}
|
||||
out &= clause_predicate;
|
||||
}
|
||||
out &= toplev_predicate;
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
/* Read predicate from IB. */
|
||||
|
||||
void
|
||||
predicate::stream_in (struct lto_input_block *ib)
|
||||
{
|
||||
clause_t clause;
|
||||
int k = 0;
|
||||
|
||||
do
|
||||
{
|
||||
gcc_assert (k <= max_clauses);
|
||||
clause = m_clause[k++] = streamer_read_uhwi (ib);
|
||||
}
|
||||
while (clause);
|
||||
|
||||
/* Zero-initialize the remaining clauses in OUT. */
|
||||
while (k <= max_clauses)
|
||||
m_clause[k++] = 0;
|
||||
}
|
||||
|
||||
|
||||
/* Write predicate P to OB. */
|
||||
|
||||
void
|
||||
predicate::stream_out (struct output_block *ob)
|
||||
{
|
||||
int j;
|
||||
for (j = 0; m_clause[j]; j++)
|
||||
{
|
||||
gcc_assert (j < max_clauses);
|
||||
streamer_write_uhwi (ob, m_clause[j]);
|
||||
}
|
||||
streamer_write_uhwi (ob, 0);
|
||||
}
|
||||
|
||||
|
||||
/* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL
|
||||
correspond to fields of condition structure. AGGPOS describes whether the
|
||||
used operand is loaded from an aggregate and where in the aggregate it is.
|
||||
It can be NULL, which means this not a load from an aggregate. */
|
||||
|
||||
predicate
|
||||
add_condition (struct inline_summary *summary, int operand_num,
|
||||
HOST_WIDE_INT size, struct agg_position_info *aggpos,
|
||||
enum tree_code code, tree val)
|
||||
{
|
||||
int i;
|
||||
struct condition *c;
|
||||
struct condition new_cond;
|
||||
HOST_WIDE_INT offset;
|
||||
bool agg_contents, by_ref;
|
||||
|
||||
if (aggpos)
|
||||
{
|
||||
offset = aggpos->offset;
|
||||
agg_contents = aggpos->agg_contents;
|
||||
by_ref = aggpos->by_ref;
|
||||
}
|
||||
else
|
||||
{
|
||||
offset = 0;
|
||||
agg_contents = false;
|
||||
by_ref = false;
|
||||
}
|
||||
|
||||
gcc_checking_assert (operand_num >= 0);
|
||||
for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
|
||||
{
|
||||
if (c->operand_num == operand_num
|
||||
&& c->size == size
|
||||
&& c->code == code
|
||||
&& c->val == val
|
||||
&& c->agg_contents == agg_contents
|
||||
&& (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
|
||||
return predicate::predicate_testing_cond (i);
|
||||
}
|
||||
/* Too many conditions. Give up and return constant true. */
|
||||
if (i == predicate::num_conditions - predicate::first_dynamic_condition)
|
||||
return true;
|
||||
|
||||
new_cond.operand_num = operand_num;
|
||||
new_cond.code = code;
|
||||
new_cond.val = val;
|
||||
new_cond.agg_contents = agg_contents;
|
||||
new_cond.by_ref = by_ref;
|
||||
new_cond.offset = offset;
|
||||
new_cond.size = size;
|
||||
vec_safe_push (summary->conds, new_cond);
|
||||
|
||||
return predicate::predicate_testing_cond (i);
|
||||
}
|
232
gcc/ipa-predicate.h
Normal file
232
gcc/ipa-predicate.h
Normal file
|
@ -0,0 +1,232 @@
|
|||
/* IPA predicates.
|
||||
Copyright (C) 2003-2017 Free Software Foundation, Inc.
|
||||
Contributed by Jan Hubicka
|
||||
|
||||
This file is part of GCC.
|
||||
|
||||
GCC is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License as published by the Free
|
||||
Software Foundation; either version 3, or (at your option) any later
|
||||
version.
|
||||
|
||||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GCC; see the file COPYING3. If not see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
/* Representation of inline parameters that do depend on context function is
|
||||
inlined into (i.e. known constant values of function parameters.
|
||||
|
||||
Conditions that are interesting for function body are collected into CONDS
|
||||
vector. They are of simple for function_param OP VAL, where VAL is
|
||||
IPA invariant. The conditions are then referred by predicates. */
|
||||
|
||||
struct GTY(()) condition
|
||||
{
|
||||
/* If agg_contents is set, this is the offset from which the used data was
|
||||
loaded. */
|
||||
HOST_WIDE_INT offset;
|
||||
/* Size of the access reading the data (or the PARM_DECL SSA_NAME). */
|
||||
HOST_WIDE_INT size;
|
||||
tree val;
|
||||
int operand_num;
|
||||
ENUM_BITFIELD(tree_code) code : 16;
|
||||
/* Set if the used data were loaded from an aggregate parameter or from
|
||||
data received by reference. */
|
||||
unsigned agg_contents : 1;
|
||||
/* If agg_contents is set, this differentiates between loads from data
|
||||
passed by reference and by value. */
|
||||
unsigned by_ref : 1;
|
||||
};
|
||||
|
||||
/* Information kept about parameter of call site. */
|
||||
struct inline_param_summary
|
||||
{
|
||||
/* REG_BR_PROB_BASE based probability that parameter will change in between
|
||||
two invocation of the calls.
|
||||
I.e. loop invariant parameters
|
||||
REG_BR_PROB_BASE/estimated_iterations and regular
|
||||
parameters REG_BR_PROB_BASE.
|
||||
|
||||
Value 0 is reserved for compile time invariants. */
|
||||
int change_prob;
|
||||
};
|
||||
|
||||
typedef vec<condition, va_gc> *conditions;
|
||||
|
||||
/* Predicates are used to repesent function parameters (such as runtime)
|
||||
which depend on a context function is called in.
|
||||
|
||||
Predicates are logical formulas in conjunctive-disjunctive form consisting
|
||||
of clauses which are bitmaps specifying a set of condition that must
|
||||
be true for a clause to be satisfied. Physically they are represented as
|
||||
array of clauses terminated by 0.
|
||||
|
||||
In order to make predicate (possibly) true, all of its clauses must
|
||||
be (possibly) true. To make clause (possibly) true, one of conditions
|
||||
it mentions must be (possibly) true.
|
||||
|
||||
There are fixed bounds on number of clauses and conditions and all the
|
||||
manipulation functions are conservative in positive direction. I.e. we
|
||||
may lose precision by thinking that predicate may be true even when it
|
||||
is not. */
|
||||
|
||||
typedef uint32_t clause_t;
|
||||
class predicate
|
||||
{
|
||||
public:
|
||||
enum predicate_conditions
|
||||
{
|
||||
false_condition = 0,
|
||||
not_inlined_condition = 1,
|
||||
first_dynamic_condition = 2
|
||||
};
|
||||
|
||||
/* Maximal number of conditions predicate can reffer to. This is limited
|
||||
by using clause_t to be 32bit. */
|
||||
static const int num_conditions = 32;
|
||||
|
||||
/* Special condition code we use to represent test that operand is compile
|
||||
time constant. */
|
||||
static const tree_code is_not_constant = ERROR_MARK;
|
||||
|
||||
/* Special condition code we use to represent test that operand is not changed
|
||||
across invocation of the function. When operand IS_NOT_CONSTANT it is
|
||||
always CHANGED, however i.e. loop invariants can be NOT_CHANGED given
|
||||
percentage of executions even when they are not compile time constants. */
|
||||
static const tree_code changed = IDENTIFIER_NODE;
|
||||
|
||||
|
||||
|
||||
/* Initialize predicate either to true of false depending on P. */
|
||||
inline predicate (bool p = true)
|
||||
{
|
||||
if (p)
|
||||
/* True predicate. */
|
||||
m_clause[0] = 0;
|
||||
else
|
||||
/* False predicate. */
|
||||
set_to_cond (false_condition);
|
||||
}
|
||||
|
||||
/* Sanity check that we do not mix pointers to predicates with predicates. */
|
||||
inline predicate (predicate *)
|
||||
{
|
||||
gcc_unreachable ();
|
||||
}
|
||||
|
||||
/* Return predicate testing condition I. */
|
||||
static inline predicate predicate_testing_cond (int i)
|
||||
{
|
||||
class predicate p;
|
||||
p.set_to_cond (i + first_dynamic_condition);
|
||||
return p;
|
||||
}
|
||||
|
||||
/* Return predicate testing that function was not inlined. */
|
||||
static predicate not_inlined (void)
|
||||
{
|
||||
class predicate p;
|
||||
p.set_to_cond (not_inlined_condition);
|
||||
return p;
|
||||
}
|
||||
|
||||
/* Compute logical and of predicates. */
|
||||
predicate & operator &= (const predicate &);
|
||||
inline predicate operator &(const predicate &p)
|
||||
{
|
||||
predicate ret = *this;
|
||||
ret &= p;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Compute logical or of predicates. This is not operator because
|
||||
extra parameter CONDITIONS is needed */
|
||||
predicate or_with (conditions, const predicate &) const;
|
||||
|
||||
/* Return true if predicates are known to be equal. */
|
||||
inline bool operator==(const predicate &p2) const
|
||||
{
|
||||
int i;
|
||||
for (i = 0; m_clause[i]; i++)
|
||||
{
|
||||
gcc_checking_assert (i < max_clauses);
|
||||
gcc_checking_assert (m_clause[i] > m_clause[i + 1]);
|
||||
gcc_checking_assert (!p2.m_clause[i]
|
||||
|| p2.m_clause[i] > p2.m_clause[i + 1]);
|
||||
if (m_clause[i] != p2.m_clause[i])
|
||||
return false;
|
||||
}
|
||||
return !p2.m_clause[i];
|
||||
}
|
||||
|
||||
/* Return true if predicates are known to be true or false depending
|
||||
on COND. */
|
||||
inline bool operator==(const bool cond) const
|
||||
{
|
||||
if (cond)
|
||||
return !m_clause[0];
|
||||
if (m_clause[0] == (1 << false_condition))
|
||||
{
|
||||
gcc_checking_assert (!m_clause[1]
|
||||
&& m_clause[0] == 1
|
||||
<< false_condition);
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
inline bool operator!=(const predicate &p2) const
|
||||
{
|
||||
return !(*this == p2);
|
||||
}
|
||||
|
||||
inline bool operator!=(const bool cond) const
|
||||
{
|
||||
return !(*this == cond);
|
||||
}
|
||||
|
||||
/* Evaluate if predicate is known to be false given the clause of possible
|
||||
truths. */
|
||||
bool evaluate (clause_t) const;
|
||||
|
||||
/* Estimate probability that predicate will be true in a given context. */
|
||||
int probability (conditions, clause_t, vec<inline_param_summary>) const;
|
||||
|
||||
/* Dump predicate to F. Output newline if nl. */
|
||||
void dump (FILE *f, conditions, bool nl=true) const;
|
||||
void DEBUG_FUNCTION debug (conditions) const;
|
||||
|
||||
/* Return predicate equal to THIS after duplication. */
|
||||
predicate remap_after_duplication (clause_t);
|
||||
|
||||
/* Return predicate equal to THIS after inlining. */
|
||||
predicate remap_after_inlining (struct inline_summary *,
|
||||
struct inline_summary *,
|
||||
vec<int>, vec<int>, clause_t, const predicate &);
|
||||
|
||||
void stream_in (struct lto_input_block *);
|
||||
void stream_out (struct output_block *);
|
||||
|
||||
private:
|
||||
static const int max_clauses = 8;
|
||||
clause_t m_clause[max_clauses + 1];
|
||||
|
||||
/* Initialize predicate to one testing single condition number COND. */
|
||||
inline void set_to_cond (int cond)
|
||||
{
|
||||
m_clause[0] = 1 << cond;
|
||||
m_clause[1] = 0;
|
||||
}
|
||||
|
||||
void add_clause (conditions conditions, clause_t);
|
||||
};
|
||||
|
||||
void dump_condition (FILE *f, conditions conditions, int cond);
|
||||
predicate add_condition (struct inline_summary *summary, int operand_num,
|
||||
HOST_WIDE_INT size, struct agg_position_info *aggpos,
|
||||
enum tree_code code, tree val);
|
Loading…
Add table
Reference in a new issue