Makefile.in: Add ipa-predicate.o and ipa-predicate.h

* Makefile.in: Add ipa-predicate.o and ipa-predicate.h
	* ipa-inline-analysis.c (NUM_CONDITIONS): turn into
	predicate::num_conditions
	(IS_NOT_CONSTANT): turn into predicate::is_not_constant.
	(CHANGED): turn into predicate::changed.
	(agg_position_info): Move to ipa-predicate.h
	(add_condition, predicate::add_clause, predicate::operator &=,
	predicate::or_with, predicate::evaluate, predicate::probability,
	dump_condition, dump_clause, predicate::dump,
	predicate::remap_after_duplication, predicate::remap_after_inlining,
	predicate::stream_in, predicate::stream_out): Move to ipa-predicate.c
	(evaluate_conditions_for_known_args): Update.
	(set_cond_stmt_execution_predicate): Update.
	* ipa-inline.h: Include ipa-predicate.h
	(condition, inline_param_summary, conditions, agg_position_info,
	predicate): Move to ipa-predicate.h
	* ipa-predicate.c: New file.
	* ipa-predicate.h: New file.

From-SVN: r248241
This commit is contained in:
Jan Hubicka 2017-05-18 16:14:10 +00:00
parent 00d6001385
commit b679b55b5e
5 changed files with 829 additions and 746 deletions

View file

@ -1347,6 +1347,7 @@ OBJS = \
ipa-visibility.o \
ipa-inline-analysis.o \
ipa-inline-transform.o \
ipa-predicate.o \
ipa-profile.o \
ipa-prop.o \
ipa-pure-const.o \
@ -2505,6 +2506,7 @@ GTFILES = $(CPP_ID_DATA_H) $(srcdir)/input.h $(srcdir)/coretypes.h \
$(srcdir)/trans-mem.c \
$(srcdir)/lto-streamer.h \
$(srcdir)/target-globals.h \
$(srcdir)/ipa-predicate.h \
$(srcdir)/ipa-inline.h \
$(srcdir)/vtable-verify.c \
$(srcdir)/asan.c \

View file

@ -86,19 +86,6 @@ along with GCC; see the file COPYING3. If not see
#include "cfgexpand.h"
#include "gimplify.h"
/* Number of bits in integer, but we really want to be stable across different
hosts. */
#define NUM_CONDITIONS 32
/* Special condition code we use to represent test that operand is compile time
constant. */
#define IS_NOT_CONSTANT ERROR_MARK
/* Special condition code we use to represent test that operand is not changed
across invocation of the function. When operand IS_NOT_CONSTANT it is always
CHANGED, however i.e. loop invariants can be NOT_CHANGED given percentage
of executions even when they are not compile time constants. */
#define CHANGED IDENTIFIER_NODE
/* Holders of ipa cgraph hooks: */
static struct cgraph_2edge_hook_list *edge_duplication_hook_holder;
static struct cgraph_edge_hook_list *edge_removal_hook_holder;
@ -117,396 +104,6 @@ vec<edge_growth_cache_entry> edge_growth_cache;
/* Edge predicates goes here. */
static object_allocator<predicate> edge_predicate_pool ("edge predicates");
/* Simple description of whether a memory load or a condition refers to a load
from an aggregate and if so, how and where from in the aggregate.
Individual fields have the same meaning like fields with the same name in
struct condition. */
struct agg_position_info
{
HOST_WIDE_INT offset;
bool agg_contents;
bool by_ref;
};
/* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL
correspond to fields of condition structure. AGGPOS describes whether the
used operand is loaded from an aggregate and where in the aggregate it is.
It can be NULL, which means this not a load from an aggregate. */
static predicate
add_condition (struct inline_summary *summary, int operand_num,
HOST_WIDE_INT size, struct agg_position_info *aggpos,
enum tree_code code, tree val)
{
int i;
struct condition *c;
struct condition new_cond;
HOST_WIDE_INT offset;
bool agg_contents, by_ref;
if (aggpos)
{
offset = aggpos->offset;
agg_contents = aggpos->agg_contents;
by_ref = aggpos->by_ref;
}
else
{
offset = 0;
agg_contents = false;
by_ref = false;
}
gcc_checking_assert (operand_num >= 0);
for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
{
if (c->operand_num == operand_num
&& c->size == size
&& c->code == code
&& c->val == val
&& c->agg_contents == agg_contents
&& (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
return predicate::predicate_testing_cond (i);
}
/* Too many conditions. Give up and return constant true. */
if (i == NUM_CONDITIONS - predicate::first_dynamic_condition)
return true;
new_cond.operand_num = operand_num;
new_cond.code = code;
new_cond.val = val;
new_cond.agg_contents = agg_contents;
new_cond.by_ref = by_ref;
new_cond.offset = offset;
new_cond.size = size;
vec_safe_push (summary->conds, new_cond);
return predicate::predicate_testing_cond (i);
}
/* Add clause CLAUSE into the predicate P.
When CONDITIONS is NULL do not perform checking whether NEW_CLAUSE
is obviously true. This is useful only when NEW_CLAUSE is known to be
sane. */
void
predicate::add_clause (conditions conditions, clause_t new_clause)
{
int i;
int i2;
int insert_here = -1;
int c1, c2;
/* True clause. */
if (!new_clause)
return;
/* False clause makes the whole predicate false. Kill the other variants. */
if (new_clause == (1 << predicate::false_condition))
{
*this = false;
return;
}
if (*this == false)
return;
/* No one should be silly enough to add false into nontrivial clauses. */
gcc_checking_assert (!(new_clause & (1 << predicate::false_condition)));
/* Look where to insert the new_clause. At the same time prune out
new_clauses of P that are implied by the new new_clause and thus
redundant. */
for (i = 0, i2 = 0; i <= max_clauses; i++)
{
m_clause[i2] = m_clause[i];
if (!m_clause[i])
break;
/* If m_clause[i] implies new_clause, there is nothing to add. */
if ((m_clause[i] & new_clause) == m_clause[i])
{
/* We had nothing to add, none of clauses should've become
redundant. */
gcc_checking_assert (i == i2);
return;
}
if (m_clause[i] < new_clause && insert_here < 0)
insert_here = i2;
/* If new_clause implies clause[i], then clause[i] becomes redundant.
Otherwise the clause[i] has to stay. */
if ((m_clause[i] & new_clause) != new_clause)
i2++;
}
/* Look for clauses that are obviously true. I.e.
op0 == 5 || op0 != 5. */
if (conditions)
for (c1 = predicate::first_dynamic_condition; c1 < NUM_CONDITIONS; c1++)
{
condition *cc1;
if (!(new_clause & (1 << c1)))
continue;
cc1 = &(*conditions)[c1 - predicate::first_dynamic_condition];
/* We have no way to represent !CHANGED and !IS_NOT_CONSTANT
and thus there is no point for looking for them. */
if (cc1->code == CHANGED || cc1->code == IS_NOT_CONSTANT)
continue;
for (c2 = c1 + 1; c2 < NUM_CONDITIONS; c2++)
if (new_clause & (1 << c2))
{
condition *cc1 =
&(*conditions)[c1 - predicate::first_dynamic_condition];
condition *cc2 =
&(*conditions)[c2 - predicate::first_dynamic_condition];
if (cc1->operand_num == cc2->operand_num
&& cc1->val == cc2->val
&& cc2->code != IS_NOT_CONSTANT
&& cc2->code != CHANGED
&& cc1->code == invert_tree_comparison (cc2->code,
HONOR_NANS (cc1->val)))
return;
}
}
/* We run out of variants. Be conservative in positive direction. */
if (i2 == max_clauses)
return;
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
m_clause[i2 + 1] = 0;
if (insert_here >= 0)
for (; i2 > insert_here; i2--)
m_clause[i2] = m_clause[i2 - 1];
else
insert_here = i2;
m_clause[insert_here] = new_clause;
}
/* Do THIS &= P. */
predicate &
predicate::operator &= (const predicate &p)
{
/* Avoid busy work. */
if (p == false || *this == true)
{
*this = p;
return *this;
}
if (*this == false || p == true || this == &p)
return *this;
int i;
/* See how far predicates match. */
for (i = 0; m_clause[i] && m_clause[i] == p.m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
}
/* Combine the predicates rest. */
for (; p.m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
add_clause (NULL, p.m_clause[i]);
}
return *this;
}
/* Return THIS | P2. */
predicate
predicate::or_with (conditions conditions,
const predicate &p) const
{
/* Avoid busy work. */
if (p == false || *this == true || *this == p)
return *this;
if (*this == false || p == true)
return p;
/* OK, combine the predicates. */
predicate out = true;
for (int i = 0; m_clause[i]; i++)
for (int j = 0; p.m_clause[j]; j++)
{
gcc_checking_assert (i < max_clauses && j < max_clauses);
out.add_clause (conditions, m_clause[i] | p.m_clause[j]);
}
return out;
}
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
if predicate P is known to be false. */
bool
predicate::evaluate (clause_t possible_truths) const
{
int i;
/* True remains true. */
if (*this == true)
return true;
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
/* See if we can find clause we can disprove. */
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
if (!(m_clause[i] & possible_truths))
return false;
}
return true;
}
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
instruction will be recomputed per invocation of the inlined call. */
int
predicate::probability (conditions conds,
clause_t possible_truths,
vec<inline_param_summary> inline_param_summary) const
{
int i;
int combined_prob = REG_BR_PROB_BASE;
/* True remains true. */
if (*this == true)
return REG_BR_PROB_BASE;
if (*this == false)
return 0;
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
/* See if we can find clause we can disprove. */
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
if (!(m_clause[i] & possible_truths))
return 0;
else
{
int this_prob = 0;
int i2;
if (!inline_param_summary.exists ())
return REG_BR_PROB_BASE;
for (i2 = 0; i2 < NUM_CONDITIONS; i2++)
if ((m_clause[i] & possible_truths) & (1 << i2))
{
if (i2 >= predicate::first_dynamic_condition)
{
condition *c =
&(*conds)[i2 - predicate::first_dynamic_condition];
if (c->code == CHANGED
&& (c->operand_num <
(int) inline_param_summary.length ()))
{
int iprob =
inline_param_summary[c->operand_num].change_prob;
this_prob = MAX (this_prob, iprob);
}
else
this_prob = REG_BR_PROB_BASE;
}
else
this_prob = REG_BR_PROB_BASE;
}
combined_prob = MIN (this_prob, combined_prob);
if (!combined_prob)
return 0;
}
}
return combined_prob;
}
/* Dump conditional COND. */
static void
dump_condition (FILE *f, conditions conditions, int cond)
{
condition *c;
if (cond == predicate::false_condition)
fprintf (f, "false");
else if (cond == predicate::not_inlined_condition)
fprintf (f, "not inlined");
else
{
c = &(*conditions)[cond - predicate::first_dynamic_condition];
fprintf (f, "op%i", c->operand_num);
if (c->agg_contents)
fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
c->by_ref ? "ref " : "", c->offset);
if (c->code == IS_NOT_CONSTANT)
{
fprintf (f, " not constant");
return;
}
if (c->code == CHANGED)
{
fprintf (f, " changed");
return;
}
fprintf (f, " %s ", op_symbol_code (c->code));
print_generic_expr (f, c->val);
}
}
/* Dump clause CLAUSE. */
static void
dump_clause (FILE *f, conditions conds, clause_t clause)
{
int i;
bool found = false;
fprintf (f, "(");
if (!clause)
fprintf (f, "true");
for (i = 0; i < NUM_CONDITIONS; i++)
if (clause & (1 << i))
{
if (found)
fprintf (f, " || ");
found = true;
dump_condition (f, conds, i);
}
fprintf (f, ")");
}
/* Dump THIS to F. CONDS a vector of conditions used when evauating
predicats. When NL is true new line is output at the end of dump. */
void
predicate::dump (FILE *f, conditions conds, bool nl) const
{
int i;
if (*this == true)
dump_clause (f, conds, 0);
else
for (i = 0; m_clause[i]; i++)
{
if (i)
fprintf (f, " && ");
dump_clause (f, conds, m_clause[i]);
}
if (nl)
fprintf (f, "\n");
}
/* Dump inline hints. */
void
@ -770,7 +367,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
{
struct ipa_agg_jump_function *agg;
if (c->code == CHANGED
if (c->code == predicate::changed
&& !c->by_ref
&& (known_vals[c->operand_num] == error_mark_node))
continue;
@ -787,7 +384,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
else
{
val = known_vals[c->operand_num];
if (val == error_mark_node && c->code != CHANGED)
if (val == error_mark_node && c->code != predicate::changed)
val = NULL_TREE;
}
@ -797,7 +394,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
}
if (c->code == CHANGED)
if (c->code == predicate::changed)
{
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
@ -809,7 +406,7 @@ evaluate_conditions_for_known_args (struct cgraph_node *node,
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
}
if (c->code == IS_NOT_CONSTANT)
if (c->code == predicate::is_not_constant)
{
nonspec_clause |= 1 << (i + predicate::first_dynamic_condition);
continue;
@ -1025,23 +622,6 @@ inline_summary_t::remove (cgraph_node *node, inline_summary *info)
reset_inline_summary (node, info);
}
/* Remap predicate THIS of former function to be predicate of duplicated function.
POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
INFO is inline summary of the duplicated node. */
predicate
predicate::remap_after_duplication (clause_t possible_truths)
{
int j;
predicate out = true;
for (j = 0; m_clause[j]; j++)
if (!(possible_truths & m_clause[j]))
return false;
else
out.add_clause (NULL, possible_truths & m_clause[j]);
return out;
}
/* Same as remap_predicate_after_duplication but handle hint predicate *P.
Additionally care about allocating new memory slot for updated predicate
and set it to NULL when it becomes true or false (and thus uninteresting).
@ -1778,7 +1358,7 @@ set_cond_stmt_execution_predicate (struct ipa_func_body_info *fbi,
FOR_EACH_EDGE (e, ei, bb->succs) if (e->flags & EDGE_FALSE_VALUE)
{
predicate p = add_condition (summary, index, size, &aggpos,
IS_NOT_CONSTANT, NULL_TREE);
predicate::is_not_constant, NULL_TREE);
e->aux = edge_predicate_pool.allocate ();
*(predicate *) e->aux = p;
}
@ -1945,7 +1525,8 @@ will_be_nonconstant_expr_predicate (struct ipa_node_params *info,
parm = unmodified_parm (NULL, expr, &size);
if (parm && (index = ipa_get_param_decl_index (info, parm)) >= 0)
return add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
return add_condition (summary, index, size, NULL, predicate::changed,
NULL_TREE);
if (is_gimple_min_invariant (expr))
return false;
if (TREE_CODE (expr) == SSA_NAME)
@ -2058,7 +1639,8 @@ will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
if (is_load)
op_non_const =
add_condition (summary, base_index, size, &aggpos, CHANGED, NULL);
add_condition (summary, base_index, size, &aggpos, predicate::changed,
NULL);
else
op_non_const = false;
FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
@ -2070,7 +1652,8 @@ will_be_nonconstant_predicate (struct ipa_func_body_info *fbi,
if (parm && (index = ipa_get_param_decl_index (fbi->info, parm)) >= 0)
{
if (index != base_index)
p = add_condition (summary, index, size, NULL, CHANGED, NULL_TREE);
p = add_condition (summary, index, size, NULL, predicate::changed,
NULL_TREE);
else
continue;
}
@ -3357,101 +2940,6 @@ estimate_ipcp_clone_size_and_time (struct cgraph_node *node,
ret_nonspec_time, hints, vNULL);
}
/* Translate all conditions from callee representation into caller
representation and symbolically evaluate predicate THIS into new predicate.
INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
is summary of function predicate P is from. OPERAND_MAP is array giving
callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
callee conditions that may be true in caller context. TOPLEV_PREDICATE is
predicate under which callee is executed. OFFSET_MAP is an array of of
offsets that need to be added to conditions, negative offset means that
conditions relying on values passed by reference have to be discarded
because they might not be preserved (and should be considered offset zero
for other purposes). */
predicate
predicate::remap_after_inlining (struct inline_summary *info,
struct inline_summary *callee_info,
vec<int> operand_map,
vec<int> offset_map,
clause_t possible_truths,
const predicate &toplev_predicate)
{
int i;
predicate out = true;
/* True predicate is easy. */
if (*this == true)
return toplev_predicate;
for (i = 0; m_clause[i]; i++)
{
clause_t clause = m_clause[i];
int cond;
predicate clause_predicate = false;
gcc_assert (i < max_clauses);
for (cond = 0; cond < NUM_CONDITIONS; cond++)
/* Do we have condition we can't disprove? */
if (clause & possible_truths & (1 << cond))
{
predicate cond_predicate;
/* Work out if the condition can translate to predicate in the
inlined function. */
if (cond >= predicate::first_dynamic_condition)
{
struct condition *c;
c = &(*callee_info->conds)[cond
-
predicate::first_dynamic_condition];
/* See if we can remap condition operand to caller's operand.
Otherwise give up. */
if (!operand_map.exists ()
|| (int) operand_map.length () <= c->operand_num
|| operand_map[c->operand_num] == -1
/* TODO: For non-aggregate conditions, adding an offset is
basically an arithmetic jump function processing which
we should support in future. */
|| ((!c->agg_contents || !c->by_ref)
&& offset_map[c->operand_num] > 0)
|| (c->agg_contents && c->by_ref
&& offset_map[c->operand_num] < 0))
cond_predicate = true;
else
{
struct agg_position_info ap;
HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
if (offset_delta < 0)
{
gcc_checking_assert (!c->agg_contents || !c->by_ref);
offset_delta = 0;
}
gcc_assert (!c->agg_contents
|| c->by_ref || offset_delta == 0);
ap.offset = c->offset + offset_delta;
ap.agg_contents = c->agg_contents;
ap.by_ref = c->by_ref;
cond_predicate = add_condition (info,
operand_map[c->operand_num],
c->size, &ap, c->code,
c->val);
}
}
/* Fixed conditions remains same, construct single
condition predicate. */
else
cond_predicate = predicate::predicate_testing_cond (cond);
clause_predicate = clause_predicate.or_with (info->conds,
cond_predicate);
}
out &= clause_predicate;
}
out &= toplev_predicate;
return out;
}
/* Update summary information of inline clones after inlining.
Compute peak stack usage. */
@ -4175,27 +3663,6 @@ inline_generate_summary (void)
}
/* Read predicate from IB. */
void
predicate::stream_in (struct lto_input_block *ib)
{
clause_t clause;
int k = 0;
do
{
gcc_assert (k <= max_clauses);
clause = m_clause[k++] = streamer_read_uhwi (ib);
}
while (clause);
/* Zero-initialize the remaining clauses in OUT. */
while (k <= max_clauses)
m_clause[k++] = 0;
}
/* Write inline summary for edge E to OB. */
static void
@ -4356,21 +3823,6 @@ inline_read_summary (void)
}
/* Write predicate P to OB. */
void
predicate::stream_out (struct output_block *ob)
{
int j;
for (j = 0; m_clause[j]; j++)
{
gcc_assert (j < max_clauses);
streamer_write_uhwi (ob, m_clause[j]);
}
streamer_write_uhwi (ob, 0);
}
/* Write inline summary for edge E to OB. */
static void

View file

@ -22,33 +22,9 @@ along with GCC; see the file COPYING3. If not see
#define GCC_IPA_INLINE_H
#include "sreal.h"
#include "ipa-predicate.h"
/* Representation of inline parameters that do depend on context function is
inlined into (i.e. known constant values of function parameters.
Conditions that are interesting for function body are collected into CONDS
vector. They are of simple for function_param OP VAL, where VAL is
IPA invariant. The conditions are then referred by predicates. */
struct GTY(()) condition
{
/* If agg_contents is set, this is the offset from which the used data was
loaded. */
HOST_WIDE_INT offset;
/* Size of the access reading the data (or the PARM_DECL SSA_NAME). */
HOST_WIDE_INT size;
tree val;
int operand_num;
ENUM_BITFIELD(tree_code) code : 16;
/* Set if the used data were loaded from an aggregate parameter or from
data received by reference. */
unsigned agg_contents : 1;
/* If agg_contents is set, this differentiates between loads from data
passed by reference and by value. */
unsigned by_ref : 1;
};
/* Inline hints are reasons why inline heuristics should preffer inlining given
function. They are represtented as bitmap of the following values. */
enum inline_hints_vals {
@ -78,171 +54,19 @@ enum inline_hints_vals {
/* We know that the callee is hot by profile. */
INLINE_HINT_known_hot = 256
};
typedef int inline_hints;
/* Information kept about parameter of call site. */
struct inline_param_summary
/* Simple description of whether a memory load or a condition refers to a load
from an aggregate and if so, how and where from in the aggregate.
Individual fields have the same meaning like fields with the same name in
struct condition. */
struct agg_position_info
{
/* REG_BR_PROB_BASE based probability that parameter will change in between
two invocation of the calls.
I.e. loop invariant parameters
REG_BR_PROB_BASE/estimated_iterations and regular
parameters REG_BR_PROB_BASE.
Value 0 is reserved for compile time invariants. */
int change_prob;
};
typedef vec<condition, va_gc> *conditions;
/* Predicates are used to repesent function parameters (such as runtime)
which depend on a context function is called in.
Predicates are logical formulas in conjunctive-disjunctive form consisting
of clauses which are bitmaps specifying a set of condition that must
be true for a clause to be satisfied. Physically they are represented as
array of clauses terminated by 0.
In order to make predicate (possibly) true, all of its clauses must
be (possibly) true. To make clause (possibly) true, one of conditions
it mentions must be (possibly) true.
There are fixed bounds on number of clauses and conditions and all the
manipulation functions are conservative in positive direction. I.e. we
may lose precision by thinking that predicate may be true even when it
is not. */
typedef uint32_t clause_t;
class predicate
{
public:
enum predicate_conditions
{
false_condition = 0,
not_inlined_condition = 1,
first_dynamic_condition = 2
};
/* Initialize predicate either to true of false depending on P. */
inline predicate (bool p = true)
{
if (p)
/* True predicate. */
m_clause[0] = 0;
else
/* False predicate. */
set_to_cond (false_condition);
}
/* Sanity check that we do not mix pointers to predicates with predicates. */
inline predicate (predicate *)
{
gcc_unreachable ();
}
/* Return predicate testing condition I. */
static inline predicate predicate_testing_cond (int i)
{
class predicate p;
p.set_to_cond (i + first_dynamic_condition);
return p;
}
/* Return predicate testing that function was not inlined. */
static predicate not_inlined (void)
{
class predicate p;
p.set_to_cond (not_inlined_condition);
return p;
}
/* Compute logical and of predicates. */
predicate & operator &= (const predicate &);
inline predicate operator &(const predicate &p)
{
predicate ret = *this;
ret &= p;
return ret;
}
/* Compute logical or of predicates. This is not operator because
extra parameter CONDITIONS is needed */
predicate or_with (conditions, const predicate &) const;
/* Return true if predicates are known to be equal. */
inline bool operator==(const predicate &p2) const
{
int i;
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
gcc_checking_assert (m_clause[i] > m_clause[i + 1]);
gcc_checking_assert (!p2.m_clause[i]
|| p2.m_clause[i] > p2.m_clause[i + 1]);
if (m_clause[i] != p2.m_clause[i])
return false;
}
return !p2.m_clause[i];
}
/* Return true if predicates are known to be true or false depending
on COND. */
inline bool operator==(const bool cond) const
{
if (cond)
return !m_clause[0];
if (m_clause[0] == (1 << false_condition))
{
gcc_checking_assert (!m_clause[1]
&& m_clause[0] == 1
<< false_condition);
return true;
}
return false;
}
inline bool operator!=(const predicate &p2) const
{
return !(*this == p2);
}
inline bool operator!=(const bool cond) const
{
return !(*this == cond);
}
/* Evaluate if predicate is known to be false given the clause of possible
truths. */
bool evaluate (clause_t) const;
/* Estimate probability that predicate will be true in a given context. */
int probability (conditions, clause_t, vec<inline_param_summary>) const;
/* Dump predicate to F. Output newline if nl. */
void dump (FILE *f, conditions, bool nl=true) const;
/* Return predicate equal to THIS after duplication. */
predicate remap_after_duplication (clause_t);
/* Return predicate equal to THIS after inlining. */
predicate remap_after_inlining (struct inline_summary *,
struct inline_summary *,
vec<int>, vec<int>, clause_t, const predicate &);
void stream_in (struct lto_input_block *);
void stream_out (struct output_block *);
private:
static const int max_clauses = 8;
clause_t m_clause[max_clauses + 1];
/* Initialize predicate to one testing single condition number COND. */
inline void set_to_cond (int cond)
{
m_clause[0] = 1 << cond;
m_clause[1] = 0;
}
void add_clause (conditions conditions, clause_t);
HOST_WIDE_INT offset;
bool agg_contents;
bool by_ref;
};
/* Represnetation of function body size and time depending on the inline

573
gcc/ipa-predicate.c Normal file
View file

@ -0,0 +1,573 @@
/* IPA predicates.
Copyright (C) 2003-2017 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "backend.h"
#include "tree.h"
#include "cgraph.h"
#include "tree-vrp.h"
#include "symbol-summary.h"
#include "alloc-pool.h"
#include "ipa-prop.h"
#include "ipa-inline.h"
#include "real.h"
#include "fold-const.h"
#include "tree-pretty-print.h"
#include "gimple.h"
#include "data-streamer.h"
/* Add clause CLAUSE into the predicate P.
When CONDITIONS is NULL do not perform checking whether NEW_CLAUSE
is obviously true. This is useful only when NEW_CLAUSE is known to be
sane. */
void
predicate::add_clause (conditions conditions, clause_t new_clause)
{
int i;
int i2;
int insert_here = -1;
int c1, c2;
/* True clause. */
if (!new_clause)
return;
/* False clause makes the whole predicate false. Kill the other variants. */
if (new_clause == (1 << predicate::false_condition))
{
*this = false;
return;
}
if (*this == false)
return;
/* No one should be silly enough to add false into nontrivial clauses. */
gcc_checking_assert (!(new_clause & (1 << predicate::false_condition)));
/* Look where to insert the new_clause. At the same time prune out
new_clauses of P that are implied by the new new_clause and thus
redundant. */
for (i = 0, i2 = 0; i <= max_clauses; i++)
{
m_clause[i2] = m_clause[i];
if (!m_clause[i])
break;
/* If m_clause[i] implies new_clause, there is nothing to add. */
if ((m_clause[i] & new_clause) == m_clause[i])
{
/* We had nothing to add, none of clauses should've become
redundant. */
gcc_checking_assert (i == i2);
return;
}
if (m_clause[i] < new_clause && insert_here < 0)
insert_here = i2;
/* If new_clause implies clause[i], then clause[i] becomes redundant.
Otherwise the clause[i] has to stay. */
if ((m_clause[i] & new_clause) != new_clause)
i2++;
}
/* Look for clauses that are obviously true. I.e.
op0 == 5 || op0 != 5. */
if (conditions)
for (c1 = predicate::first_dynamic_condition;
c1 < num_conditions; c1++)
{
condition *cc1;
if (!(new_clause & (1 << c1)))
continue;
cc1 = &(*conditions)[c1 - predicate::first_dynamic_condition];
/* We have no way to represent !changed and !is_not_constant
and thus there is no point for looking for them. */
if (cc1->code == changed || cc1->code == is_not_constant)
continue;
for (c2 = c1 + 1; c2 < num_conditions; c2++)
if (new_clause & (1 << c2))
{
condition *cc1 =
&(*conditions)[c1 - predicate::first_dynamic_condition];
condition *cc2 =
&(*conditions)[c2 - predicate::first_dynamic_condition];
if (cc1->operand_num == cc2->operand_num
&& cc1->val == cc2->val
&& cc2->code != is_not_constant
&& cc2->code != predicate::changed
&& cc1->code == invert_tree_comparison (cc2->code,
HONOR_NANS (cc1->val)))
return;
}
}
/* We run out of variants. Be conservative in positive direction. */
if (i2 == max_clauses)
return;
/* Keep clauses in decreasing order. This makes equivalence testing easy. */
m_clause[i2 + 1] = 0;
if (insert_here >= 0)
for (; i2 > insert_here; i2--)
m_clause[i2] = m_clause[i2 - 1];
else
insert_here = i2;
m_clause[insert_here] = new_clause;
}
/* Do THIS &= P. */
predicate &
predicate::operator &= (const predicate &p)
{
/* Avoid busy work. */
if (p == false || *this == true)
{
*this = p;
return *this;
}
if (*this == false || p == true || this == &p)
return *this;
int i;
/* See how far predicates match. */
for (i = 0; m_clause[i] && m_clause[i] == p.m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
}
/* Combine the predicates rest. */
for (; p.m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
add_clause (NULL, p.m_clause[i]);
}
return *this;
}
/* Return THIS | P2. */
predicate
predicate::or_with (conditions conditions,
const predicate &p) const
{
/* Avoid busy work. */
if (p == false || *this == true || *this == p)
return *this;
if (*this == false || p == true)
return p;
/* OK, combine the predicates. */
predicate out = true;
for (int i = 0; m_clause[i]; i++)
for (int j = 0; p.m_clause[j]; j++)
{
gcc_checking_assert (i < max_clauses && j < max_clauses);
out.add_clause (conditions, m_clause[i] | p.m_clause[j]);
}
return out;
}
/* Having partial truth assignment in POSSIBLE_TRUTHS, return false
if predicate P is known to be false. */
bool
predicate::evaluate (clause_t possible_truths) const
{
int i;
/* True remains true. */
if (*this == true)
return true;
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
/* See if we can find clause we can disprove. */
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
if (!(m_clause[i] & possible_truths))
return false;
}
return true;
}
/* Return the probability in range 0...REG_BR_PROB_BASE that the predicated
instruction will be recomputed per invocation of the inlined call. */
int
predicate::probability (conditions conds,
clause_t possible_truths,
vec<inline_param_summary> inline_param_summary) const
{
int i;
int combined_prob = REG_BR_PROB_BASE;
/* True remains true. */
if (*this == true)
return REG_BR_PROB_BASE;
if (*this == false)
return 0;
gcc_assert (!(possible_truths & (1 << predicate::false_condition)));
/* See if we can find clause we can disprove. */
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
if (!(m_clause[i] & possible_truths))
return 0;
else
{
int this_prob = 0;
int i2;
if (!inline_param_summary.exists ())
return REG_BR_PROB_BASE;
for (i2 = 0; i2 < num_conditions; i2++)
if ((m_clause[i] & possible_truths) & (1 << i2))
{
if (i2 >= predicate::first_dynamic_condition)
{
condition *c =
&(*conds)[i2 - predicate::first_dynamic_condition];
if (c->code == predicate::changed
&& (c->operand_num <
(int) inline_param_summary.length ()))
{
int iprob =
inline_param_summary[c->operand_num].change_prob;
this_prob = MAX (this_prob, iprob);
}
else
this_prob = REG_BR_PROB_BASE;
}
else
this_prob = REG_BR_PROB_BASE;
}
combined_prob = MIN (this_prob, combined_prob);
if (!combined_prob)
return 0;
}
}
return combined_prob;
}
/* Dump conditional COND. */
void
dump_condition (FILE *f, conditions conditions, int cond)
{
condition *c;
if (cond == predicate::false_condition)
fprintf (f, "false");
else if (cond == predicate::not_inlined_condition)
fprintf (f, "not inlined");
else
{
c = &(*conditions)[cond - predicate::first_dynamic_condition];
fprintf (f, "op%i", c->operand_num);
if (c->agg_contents)
fprintf (f, "[%soffset: " HOST_WIDE_INT_PRINT_DEC "]",
c->by_ref ? "ref " : "", c->offset);
if (c->code == predicate::is_not_constant)
{
fprintf (f, " not constant");
return;
}
if (c->code == predicate::changed)
{
fprintf (f, " changed");
return;
}
fprintf (f, " %s ", op_symbol_code (c->code));
print_generic_expr (f, c->val);
}
}
/* Dump clause CLAUSE. */
static void
dump_clause (FILE *f, conditions conds, clause_t clause)
{
int i;
bool found = false;
fprintf (f, "(");
if (!clause)
fprintf (f, "true");
for (i = 0; i < predicate::num_conditions; i++)
if (clause & (1 << i))
{
if (found)
fprintf (f, " || ");
found = true;
dump_condition (f, conds, i);
}
fprintf (f, ")");
}
/* Dump THIS to F. CONDS a vector of conditions used when evauating
predicats. When NL is true new line is output at the end of dump. */
void
predicate::dump (FILE *f, conditions conds, bool nl) const
{
int i;
if (*this == true)
dump_clause (f, conds, 0);
else
for (i = 0; m_clause[i]; i++)
{
if (i)
fprintf (f, " && ");
dump_clause (f, conds, m_clause[i]);
}
if (nl)
fprintf (f, "\n");
}
void
predicate::debug (conditions conds) const
{
dump (stderr, conds);
}
/* Remap predicate THIS of former function to be predicate of duplicated function.
POSSIBLE_TRUTHS is clause of possible truths in the duplicated node,
INFO is inline summary of the duplicated node. */
predicate
predicate::remap_after_duplication (clause_t possible_truths)
{
int j;
predicate out = true;
for (j = 0; m_clause[j]; j++)
if (!(possible_truths & m_clause[j]))
return false;
else
out.add_clause (NULL, possible_truths & m_clause[j]);
return out;
}
/* Translate all conditions from callee representation into caller
representation and symbolically evaluate predicate THIS into new predicate.
INFO is inline_summary of function we are adding predicate into, CALLEE_INFO
is summary of function predicate P is from. OPERAND_MAP is array giving
callee formal IDs the caller formal IDs. POSSSIBLE_TRUTHS is clausule of all
callee conditions that may be true in caller context. TOPLEV_PREDICATE is
predicate under which callee is executed. OFFSET_MAP is an array of of
offsets that need to be added to conditions, negative offset means that
conditions relying on values passed by reference have to be discarded
because they might not be preserved (and should be considered offset zero
for other purposes). */
predicate
predicate::remap_after_inlining (struct inline_summary *info,
struct inline_summary *callee_info,
vec<int> operand_map,
vec<int> offset_map,
clause_t possible_truths,
const predicate &toplev_predicate)
{
int i;
predicate out = true;
/* True predicate is easy. */
if (*this == true)
return toplev_predicate;
for (i = 0; m_clause[i]; i++)
{
clause_t clause = m_clause[i];
int cond;
predicate clause_predicate = false;
gcc_assert (i < max_clauses);
for (cond = 0; cond < num_conditions; cond++)
/* Do we have condition we can't disprove? */
if (clause & possible_truths & (1 << cond))
{
predicate cond_predicate;
/* Work out if the condition can translate to predicate in the
inlined function. */
if (cond >= predicate::first_dynamic_condition)
{
struct condition *c;
c = &(*callee_info->conds)[cond
-
predicate::first_dynamic_condition];
/* See if we can remap condition operand to caller's operand.
Otherwise give up. */
if (!operand_map.exists ()
|| (int) operand_map.length () <= c->operand_num
|| operand_map[c->operand_num] == -1
/* TODO: For non-aggregate conditions, adding an offset is
basically an arithmetic jump function processing which
we should support in future. */
|| ((!c->agg_contents || !c->by_ref)
&& offset_map[c->operand_num] > 0)
|| (c->agg_contents && c->by_ref
&& offset_map[c->operand_num] < 0))
cond_predicate = true;
else
{
struct agg_position_info ap;
HOST_WIDE_INT offset_delta = offset_map[c->operand_num];
if (offset_delta < 0)
{
gcc_checking_assert (!c->agg_contents || !c->by_ref);
offset_delta = 0;
}
gcc_assert (!c->agg_contents
|| c->by_ref || offset_delta == 0);
ap.offset = c->offset + offset_delta;
ap.agg_contents = c->agg_contents;
ap.by_ref = c->by_ref;
cond_predicate = add_condition (info,
operand_map[c->operand_num],
c->size, &ap, c->code,
c->val);
}
}
/* Fixed conditions remains same, construct single
condition predicate. */
else
cond_predicate = predicate::predicate_testing_cond (cond);
clause_predicate = clause_predicate.or_with (info->conds,
cond_predicate);
}
out &= clause_predicate;
}
out &= toplev_predicate;
return out;
}
/* Read predicate from IB. */
void
predicate::stream_in (struct lto_input_block *ib)
{
clause_t clause;
int k = 0;
do
{
gcc_assert (k <= max_clauses);
clause = m_clause[k++] = streamer_read_uhwi (ib);
}
while (clause);
/* Zero-initialize the remaining clauses in OUT. */
while (k <= max_clauses)
m_clause[k++] = 0;
}
/* Write predicate P to OB. */
void
predicate::stream_out (struct output_block *ob)
{
int j;
for (j = 0; m_clause[j]; j++)
{
gcc_assert (j < max_clauses);
streamer_write_uhwi (ob, m_clause[j]);
}
streamer_write_uhwi (ob, 0);
}
/* Add condition to condition list SUMMARY. OPERAND_NUM, SIZE, CODE and VAL
correspond to fields of condition structure. AGGPOS describes whether the
used operand is loaded from an aggregate and where in the aggregate it is.
It can be NULL, which means this not a load from an aggregate. */
predicate
add_condition (struct inline_summary *summary, int operand_num,
HOST_WIDE_INT size, struct agg_position_info *aggpos,
enum tree_code code, tree val)
{
int i;
struct condition *c;
struct condition new_cond;
HOST_WIDE_INT offset;
bool agg_contents, by_ref;
if (aggpos)
{
offset = aggpos->offset;
agg_contents = aggpos->agg_contents;
by_ref = aggpos->by_ref;
}
else
{
offset = 0;
agg_contents = false;
by_ref = false;
}
gcc_checking_assert (operand_num >= 0);
for (i = 0; vec_safe_iterate (summary->conds, i, &c); i++)
{
if (c->operand_num == operand_num
&& c->size == size
&& c->code == code
&& c->val == val
&& c->agg_contents == agg_contents
&& (!agg_contents || (c->offset == offset && c->by_ref == by_ref)))
return predicate::predicate_testing_cond (i);
}
/* Too many conditions. Give up and return constant true. */
if (i == predicate::num_conditions - predicate::first_dynamic_condition)
return true;
new_cond.operand_num = operand_num;
new_cond.code = code;
new_cond.val = val;
new_cond.agg_contents = agg_contents;
new_cond.by_ref = by_ref;
new_cond.offset = offset;
new_cond.size = size;
vec_safe_push (summary->conds, new_cond);
return predicate::predicate_testing_cond (i);
}

232
gcc/ipa-predicate.h Normal file
View file

@ -0,0 +1,232 @@
/* IPA predicates.
Copyright (C) 2003-2017 Free Software Foundation, Inc.
Contributed by Jan Hubicka
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING3. If not see
<http://www.gnu.org/licenses/>. */
/* Representation of inline parameters that do depend on context function is
inlined into (i.e. known constant values of function parameters.
Conditions that are interesting for function body are collected into CONDS
vector. They are of simple for function_param OP VAL, where VAL is
IPA invariant. The conditions are then referred by predicates. */
struct GTY(()) condition
{
/* If agg_contents is set, this is the offset from which the used data was
loaded. */
HOST_WIDE_INT offset;
/* Size of the access reading the data (or the PARM_DECL SSA_NAME). */
HOST_WIDE_INT size;
tree val;
int operand_num;
ENUM_BITFIELD(tree_code) code : 16;
/* Set if the used data were loaded from an aggregate parameter or from
data received by reference. */
unsigned agg_contents : 1;
/* If agg_contents is set, this differentiates between loads from data
passed by reference and by value. */
unsigned by_ref : 1;
};
/* Information kept about parameter of call site. */
struct inline_param_summary
{
/* REG_BR_PROB_BASE based probability that parameter will change in between
two invocation of the calls.
I.e. loop invariant parameters
REG_BR_PROB_BASE/estimated_iterations and regular
parameters REG_BR_PROB_BASE.
Value 0 is reserved for compile time invariants. */
int change_prob;
};
typedef vec<condition, va_gc> *conditions;
/* Predicates are used to repesent function parameters (such as runtime)
which depend on a context function is called in.
Predicates are logical formulas in conjunctive-disjunctive form consisting
of clauses which are bitmaps specifying a set of condition that must
be true for a clause to be satisfied. Physically they are represented as
array of clauses terminated by 0.
In order to make predicate (possibly) true, all of its clauses must
be (possibly) true. To make clause (possibly) true, one of conditions
it mentions must be (possibly) true.
There are fixed bounds on number of clauses and conditions and all the
manipulation functions are conservative in positive direction. I.e. we
may lose precision by thinking that predicate may be true even when it
is not. */
typedef uint32_t clause_t;
class predicate
{
public:
enum predicate_conditions
{
false_condition = 0,
not_inlined_condition = 1,
first_dynamic_condition = 2
};
/* Maximal number of conditions predicate can reffer to. This is limited
by using clause_t to be 32bit. */
static const int num_conditions = 32;
/* Special condition code we use to represent test that operand is compile
time constant. */
static const tree_code is_not_constant = ERROR_MARK;
/* Special condition code we use to represent test that operand is not changed
across invocation of the function. When operand IS_NOT_CONSTANT it is
always CHANGED, however i.e. loop invariants can be NOT_CHANGED given
percentage of executions even when they are not compile time constants. */
static const tree_code changed = IDENTIFIER_NODE;
/* Initialize predicate either to true of false depending on P. */
inline predicate (bool p = true)
{
if (p)
/* True predicate. */
m_clause[0] = 0;
else
/* False predicate. */
set_to_cond (false_condition);
}
/* Sanity check that we do not mix pointers to predicates with predicates. */
inline predicate (predicate *)
{
gcc_unreachable ();
}
/* Return predicate testing condition I. */
static inline predicate predicate_testing_cond (int i)
{
class predicate p;
p.set_to_cond (i + first_dynamic_condition);
return p;
}
/* Return predicate testing that function was not inlined. */
static predicate not_inlined (void)
{
class predicate p;
p.set_to_cond (not_inlined_condition);
return p;
}
/* Compute logical and of predicates. */
predicate & operator &= (const predicate &);
inline predicate operator &(const predicate &p)
{
predicate ret = *this;
ret &= p;
return ret;
}
/* Compute logical or of predicates. This is not operator because
extra parameter CONDITIONS is needed */
predicate or_with (conditions, const predicate &) const;
/* Return true if predicates are known to be equal. */
inline bool operator==(const predicate &p2) const
{
int i;
for (i = 0; m_clause[i]; i++)
{
gcc_checking_assert (i < max_clauses);
gcc_checking_assert (m_clause[i] > m_clause[i + 1]);
gcc_checking_assert (!p2.m_clause[i]
|| p2.m_clause[i] > p2.m_clause[i + 1]);
if (m_clause[i] != p2.m_clause[i])
return false;
}
return !p2.m_clause[i];
}
/* Return true if predicates are known to be true or false depending
on COND. */
inline bool operator==(const bool cond) const
{
if (cond)
return !m_clause[0];
if (m_clause[0] == (1 << false_condition))
{
gcc_checking_assert (!m_clause[1]
&& m_clause[0] == 1
<< false_condition);
return true;
}
return false;
}
inline bool operator!=(const predicate &p2) const
{
return !(*this == p2);
}
inline bool operator!=(const bool cond) const
{
return !(*this == cond);
}
/* Evaluate if predicate is known to be false given the clause of possible
truths. */
bool evaluate (clause_t) const;
/* Estimate probability that predicate will be true in a given context. */
int probability (conditions, clause_t, vec<inline_param_summary>) const;
/* Dump predicate to F. Output newline if nl. */
void dump (FILE *f, conditions, bool nl=true) const;
void DEBUG_FUNCTION debug (conditions) const;
/* Return predicate equal to THIS after duplication. */
predicate remap_after_duplication (clause_t);
/* Return predicate equal to THIS after inlining. */
predicate remap_after_inlining (struct inline_summary *,
struct inline_summary *,
vec<int>, vec<int>, clause_t, const predicate &);
void stream_in (struct lto_input_block *);
void stream_out (struct output_block *);
private:
static const int max_clauses = 8;
clause_t m_clause[max_clauses + 1];
/* Initialize predicate to one testing single condition number COND. */
inline void set_to_cond (int cond)
{
m_clause[0] = 1 << cond;
m_clause[1] = 0;
}
void add_clause (conditions conditions, clause_t);
};
void dump_condition (FILE *f, conditions conditions, int cond);
predicate add_condition (struct inline_summary *summary, int operand_num,
HOST_WIDE_INT size, struct agg_position_info *aggpos,
enum tree_code code, tree val);