Imported GNU Classpath 0.92

2006-08-14  Mark Wielaard  <mark@klomp.org>

       Imported GNU Classpath 0.92
       * HACKING: Add more importing hints. Update automake version
       requirement.

       * configure.ac (gconf-peer): New enable AC argument.
       Add --disable-gconf-peer and --enable-default-preferences-peer
       to classpath configure when gconf is disabled.
       * scripts/makemake.tcl: Set gnu/java/util/prefs/gconf and
       gnu/java/awt/dnd/peer/gtk to bc. Classify
       gnu/java/security/Configuration.java as generated source file.

       * gnu/java/lang/management/VMGarbageCollectorMXBeanImpl.java,
       gnu/java/lang/management/VMMemoryPoolMXBeanImpl.java,
       gnu/java/lang/management/VMClassLoadingMXBeanImpl.java,
       gnu/java/lang/management/VMRuntimeMXBeanImpl.java,
       gnu/java/lang/management/VMMemoryManagerMXBeanImpl.java,
       gnu/java/lang/management/VMThreadMXBeanImpl.java,
       gnu/java/lang/management/VMMemoryMXBeanImpl.java,
       gnu/java/lang/management/VMCompilationMXBeanImpl.java: New VM stub
       classes.
       * java/lang/management/VMManagementFactory.java: Likewise.
       * java/net/VMURLConnection.java: Likewise.
       * gnu/java/nio/VMChannel.java: Likewise.

       * java/lang/Thread.java (getState): Add stub implementation.
       * java/lang/Class.java (isEnum): Likewise.
       * java/lang/Class.h (isEnum): Likewise.

       * gnu/awt/xlib/XToolkit.java (getClasspathTextLayoutPeer): Removed.

       * javax/naming/spi/NamingManager.java: New override for StackWalker
       functionality.

       * configure, sources.am, Makefile.in, gcj/Makefile.in,
       include/Makefile.in, testsuite/Makefile.in: Regenerated.

From-SVN: r116139
This commit is contained in:
Mark Wielaard 2006-08-14 23:12:35 +00:00
parent abab460491
commit ac1ed908de
1294 changed files with 99479 additions and 35933 deletions

View file

@ -38,8 +38,10 @@ exception statement from your version. */
package gnu.java.security.util;
import java.io.PrintWriter;
import gnu.java.security.Configuration;
import java.io.UnsupportedEncodingException;
import java.util.logging.Logger;
/**
* Most of this implementation is from Robert Harder's public domain Base64
@ -47,25 +49,7 @@ import java.io.UnsupportedEncodingException;
*/
public class Base64
{
// Debugging methods and variables
// -------------------------------------------------------------------------
private static final String NAME = "Base64";
private static final boolean DEBUG = true;
private static final int debuglevel = 9;
private static final PrintWriter err = new PrintWriter(System.out, true);
private static void debug(String s)
{
err.println(">>> " + NAME + ": " + s);
}
// Constants and variables
// -------------------------------------------------------------------------
private static final Logger log = Logger.getLogger(Base64.class.getName());
/** Maximum line length (76) of Base64 output. */
private static final int MAX_LINE_LENGTH = 76;
@ -81,79 +65,58 @@ public class Base64
private static final byte EQUALS_SIGN_ENC = -1; // equals sign in encoding
/** The 64 valid Base64 values. */
private static final byte[] ALPHABET = { (byte) 'A', (byte) 'B', (byte) 'C',
(byte) 'D', (byte) 'E', (byte) 'F',
(byte) 'G', (byte) 'H', (byte) 'I',
(byte) 'J', (byte) 'K', (byte) 'L',
(byte) 'M', (byte) 'N', (byte) 'O',
(byte) 'P', (byte) 'Q', (byte) 'R',
(byte) 'S', (byte) 'T', (byte) 'U',
(byte) 'V', (byte) 'W', (byte) 'X',
(byte) 'Y', (byte) 'Z', (byte) 'a',
(byte) 'b', (byte) 'c', (byte) 'd',
(byte) 'e', (byte) 'f', (byte) 'g',
(byte) 'h', (byte) 'i', (byte) 'j',
(byte) 'k', (byte) 'l', (byte) 'm',
(byte) 'n', (byte) 'o', (byte) 'p',
(byte) 'q', (byte) 'r', (byte) 's',
(byte) 't', (byte) 'u', (byte) 'v',
(byte) 'w', (byte) 'x', (byte) 'y',
(byte) 'z', (byte) '0', (byte) '1',
(byte) '2', (byte) '3', (byte) '4',
(byte) '5', (byte) '6', (byte) '7',
(byte) '8', (byte) '9', (byte) '+',
(byte) '/' };
private static final byte[] ALPHABET = {
(byte) 'A', (byte) 'B', (byte) 'C', (byte) 'D', (byte) 'E', (byte) 'F',
(byte) 'G', (byte) 'H', (byte) 'I', (byte) 'J', (byte) 'K', (byte) 'L',
(byte) 'M', (byte) 'N', (byte) 'O', (byte) 'P', (byte) 'Q', (byte) 'R',
(byte) 'S', (byte) 'T', (byte) 'U', (byte) 'V', (byte) 'W', (byte) 'X',
(byte) 'Y', (byte) 'Z', (byte) 'a', (byte) 'b', (byte) 'c', (byte) 'd',
(byte) 'e', (byte) 'f', (byte) 'g', (byte) 'h', (byte) 'i', (byte) 'j',
(byte) 'k', (byte) 'l', (byte) 'm', (byte) 'n', (byte) 'o', (byte) 'p',
(byte) 'q', (byte) 'r', (byte) 's', (byte) 't', (byte) 'u', (byte) 'v',
(byte) 'w', (byte) 'x', (byte) 'y', (byte) 'z', (byte) '0', (byte) '1',
(byte) '2', (byte) '3', (byte) '4', (byte) '5', (byte) '6', (byte) '7',
(byte) '8', (byte) '9', (byte) '+', (byte) '/'
};
/**
* Translates a Base64 value to either its 6-bit reconstruction value or a
* negative number indicating some other meaning.
*/
private static final byte[] DECODABET = { -9, -9, -9, -9, -9, -9, -9, -9, -9, // Decimal 0 - 8
-5, -5, // Whitespace: Tab and Linefeed
-9, -9, // Decimal 11 - 12
-5, // Whitespace: Carriage Return
-9, -9, -9, -9, -9, -9, -9, -9, -9,
-9, -9, -9, -9, // Decimal 14 - 26
-9, -9, -9, -9, -9, // Decimal 27 - 31
-5, // Whitespace: Space
-9, -9, -9, -9, -9, -9, -9, -9, -9,
-9, // Decimal 33 - 42
62, // Plus sign at decimal 43
-9, -9, -9, // Decimal 44 - 46
63, // Slash at decimal 47
52, 53, 54, 55, 56, 57, 58, 59, 60,
61, // Numbers zero through nine
-9, -9, -9, // Decimal 58 - 60
-1, // Equals sign at decimal 61
-9, -9, -9, // Decimal 62 - 64
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, // Letters 'A' through 'N'
14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, // Letters 'O' through 'Z'
-9, -9, -9, -9, -9, -9, // Decimal 91 - 96
26, 27, 28, 29, 30, 31, 32, 33, 34,
35, 36, 37, 38, // Letters 'a' through 'm'
39, 40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 50, 51, // Letters 'n' through 'z'
-9, -9, -9, -9 // Decimal 123 - 126
private static final byte[] DECODABET = {
-9, -9, -9, -9, -9, -9, -9, -9, -9, // Decimal 0 - 8
-5, -5, // Whitespace: Tab and Linefeed
-9, -9, // Decimal 11 - 12
-5, // Whitespace: Carriage Return
-9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, -9, // Decimal 14 - 26
-9, -9, -9, -9, -9, // Decimal 27 - 31
-5, // Whitespace: Space
-9, -9, -9, -9, -9, -9, -9, -9, -9, -9, // Decimal 33 - 42
62, // Plus sign at decimal 43
-9, -9, -9, // Decimal 44 - 46
63, // Slash at decimal 47
52, 53, 54, 55, 56, 57, 58, 59, 60, 61, // Numbers zero through nine
-9, -9, -9, // Decimal 58 - 60
-1, // Equals sign at decimal 61
-9, -9, -9, // Decimal 62 - 64
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, // Letters 'A' through 'N'
14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // Letters 'O' through 'Z'
-9, -9, -9, -9, -9, -9, // Decimal 91 - 96
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, // Letters 'a' through 'm'
39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, // Letters 'n' through 'z'
-9, -9, -9, -9 // Decimal 123 - 126
};
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial private ctor to enfore Singleton pattern. */
private Base64()
{
super();
}
// Class methods
// -------------------------------------------------------------------------
/**
* Encodes a byte array into Base64 notation. Equivalent to calling
* <code>encode(source, 0, source.length)</code>.
*
*
* @param src the data to convert.
*/
public static final String encode(final byte[] src)
@ -163,7 +126,7 @@ public class Base64
/**
* Encodes a byte array into Base64 notation.
*
*
* @param src the data to convert.
* @param off offset in array where conversion should begin.
* @param len length of data to convert.
@ -176,7 +139,7 @@ public class Base64
final byte[] outBuff = new byte[len43 // Main 4:3
+ ((len % 3) > 0 ? 4 : 0) // Account for padding
+ (breakLines ? (len43 / MAX_LINE_LENGTH)
: 0)]; // New lines
: 0)]; // New lines
int d = 0;
int e = 0;
final int len2 = len - 2;
@ -192,13 +155,11 @@ public class Base64
lineLength = 0;
}
}
if (d < len)
{ // padding needed
if (d < len) // padding needed
{
encode3to4(src, d + off, len - d, outBuff, e);
e += 4;
}
return new String(outBuff, 0, e);
}
@ -255,31 +216,26 @@ public class Base64
} // end if: quartet built
} // end if: equals sign or better
}
else
{
throw new IllegalArgumentException("Illegal BASE-64 character at #"
+ i + ": " + src[i]
+ "(decimal)");
}
throw new IllegalArgumentException("Illegal BASE-64 character at #"
+ i + ": " + src[i] + "(decimal)");
}
final byte[] result = new byte[outBuffPosn];
System.arraycopy(outBuff, 0, result, 0, outBuffPosn);
return result;
}
/**
* <p>Encodes up to three bytes of the array <code>src</code> and writes
* the resulting four Base64 bytes to <code>dest</code>. The source and
* Encodes up to three bytes of the array <code>src</code> and writes the
* resulting four Base64 bytes to <code>dest</code>. The source and
* destination arrays can be manipulated anywhere along their length by
* specifying <code>sOffset</code> and <code>dOffset</code>.</p>
*
* <p>This method does not check to make sure the arrays are large enough to
* specifying <code>sOffset</code> and <code>dOffset</code>.
* <p>
* This method does not check to make sure the arrays are large enough to
* accomodate <code>sOffset + 3</code> for the <code>src</code> array or
* <code>dOffset + 4</code> for the <code>dest</code> array. The actual
* number of significant bytes in the input array is given by
* <code>numBytes</code>.</p>
*
* <code>numBytes</code>.
*
* @param src the array to convert.
* @param sOffset the index where conversion begins.
* @param numBytes the number of significant bytes in your array.
@ -302,25 +258,25 @@ public class Base64
// significant bytes passed in the array.
// We have to shift left 24 in order to flush out the 1's that appear
// when Java treats a value as negative that is cast from a byte to an int.
final int inBuff = (numBytes > 0 ? ((src[sOffset] << 24) >>> 8) : 0)
final int inBuff = (numBytes > 0 ? ((src[sOffset] << 24) >>> 8) : 0)
| (numBytes > 1 ? ((src[sOffset + 1] << 24) >>> 16) : 0)
| (numBytes > 2 ? ((src[sOffset + 2] << 24) >>> 24) : 0);
switch (numBytes)
{
case 3:
dest[dOffset] = ALPHABET[(inBuff >>> 18)];
dest[dOffset ] = ALPHABET[(inBuff >>> 18)];
dest[dOffset + 1] = ALPHABET[(inBuff >>> 12) & 0x3F];
dest[dOffset + 2] = ALPHABET[(inBuff >>> 6) & 0x3F];
dest[dOffset + 3] = ALPHABET[(inBuff) & 0x3F];
dest[dOffset + 2] = ALPHABET[(inBuff >>> 6) & 0x3F];
dest[dOffset + 3] = ALPHABET[(inBuff) & 0x3F];
break;
case 2:
dest[dOffset] = ALPHABET[(inBuff >>> 18)];
dest[dOffset ] = ALPHABET[(inBuff >>> 18)];
dest[dOffset + 1] = ALPHABET[(inBuff >>> 12) & 0x3F];
dest[dOffset + 2] = ALPHABET[(inBuff >>> 6) & 0x3F];
dest[dOffset + 2] = ALPHABET[(inBuff >>> 6) & 0x3F];
dest[dOffset + 3] = EQUALS_SIGN;
break;
case 1:
dest[dOffset] = ALPHABET[(inBuff >>> 18)];
dest[dOffset ] = ALPHABET[(inBuff >>> 18)];
dest[dOffset + 1] = ALPHABET[(inBuff >>> 12) & 0x3F];
dest[dOffset + 2] = EQUALS_SIGN;
dest[dOffset + 3] = EQUALS_SIGN;
@ -330,19 +286,18 @@ public class Base64
}
/**
* <p>Decodes four bytes from array <code>src</code> and writes the
* resulting bytes (up to three of them) to <code>dest</code>.</p>
*
* <p>The source and destination arrays can be manipulated anywhere along
* their length by specifying <code>sOffset</code> and <code>dOffset</code>.
* </p>
*
* <p>This method does not check to make sure your arrays are large enough
* to accomodate <code>sOffset + 4</code> for the <code>src</code> array or
* Decodes four bytes from array <code>src</code> and writes the resulting
* bytes (up to three of them) to <code>dest</code>.
* <p>
* The source and destination arrays can be manipulated anywhere along their
* length by specifying <code>sOffset</code> and <code>dOffset</code>.
* <p>
* This method does not check to make sure your arrays are large enough to
* accomodate <code>sOffset + 4</code> for the <code>src</code> array or
* <code>dOffset + 3</code> for the <code>dest</code> array. This method
* returns the actual number of bytes that were converted from the Base64
* encoding.</p>
*
* encoding.
*
* @param src the array to convert.
* @param sOffset the index where conversion begins.
* @param dest the array to hold the conversion.
@ -352,43 +307,41 @@ public class Base64
private static final int decode4to3(final byte[] src, final int sOffset,
final byte[] dest, final int dOffset)
{
if (src[sOffset + 2] == EQUALS_SIGN)
{ // Example: Dk==
final int outBuff = ((DECODABET[src[sOffset]] & 0xFF) << 18)
| ((DECODABET[src[sOffset + 1]] & 0xFF) << 12);
dest[dOffset] = (byte) (outBuff >>> 16);
if (src[sOffset + 2] == EQUALS_SIGN) // Example: Dk==
{
final int outBuff = ((DECODABET[src[sOffset ]] & 0xFF) << 18)
| ((DECODABET[src[sOffset + 1]] & 0xFF) << 12);
dest[dOffset] = (byte)(outBuff >>> 16);
return 1;
}
if (src[sOffset + 3] == EQUALS_SIGN)
{ // Example: DkL=
final int outBuff = ((DECODABET[src[sOffset]] & 0xFF) << 18)
| ((DECODABET[src[sOffset + 1]] & 0xFF) << 12)
| ((DECODABET[src[sOffset + 2]] & 0xFF) << 6);
dest[dOffset] = (byte) (outBuff >>> 16);
dest[dOffset + 1] = (byte) (outBuff >>> 8);
if (src[sOffset + 3] == EQUALS_SIGN) // Example: DkL=
{
final int outBuff = ((DECODABET[src[sOffset ]] & 0xFF) << 18)
| ((DECODABET[src[sOffset + 1]] & 0xFF) << 12)
| ((DECODABET[src[sOffset + 2]] & 0xFF) << 6);
dest[dOffset ] = (byte)(outBuff >>> 16);
dest[dOffset + 1] = (byte)(outBuff >>> 8);
return 2;
}
try
{ // Example: DkLE
final int outBuff = ((DECODABET[src[sOffset]] & 0xFF) << 18)
| ((DECODABET[src[sOffset + 1]] & 0xFF) << 12)
| ((DECODABET[src[sOffset + 2]] & 0xFF) << 6)
| ((DECODABET[src[sOffset + 3]] & 0xFF));
dest[dOffset] = (byte) (outBuff >> 16);
dest[dOffset + 1] = (byte) (outBuff >> 8);
try // Example: DkLE
{
final int outBuff = ((DECODABET[src[sOffset ]] & 0xFF) << 18)
| ((DECODABET[src[sOffset + 1]] & 0xFF) << 12)
| ((DECODABET[src[sOffset + 2]] & 0xFF) << 6)
| ((DECODABET[src[sOffset + 3]] & 0xFF));
dest[dOffset ] = (byte)(outBuff >> 16);
dest[dOffset + 1] = (byte)(outBuff >> 8);
dest[dOffset + 2] = (byte) outBuff;
return 3;
}
catch (Exception x)
{
if (DEBUG && debuglevel > 8)
if (Configuration.DEBUG)
{
debug("" + src[sOffset] + ": " + (DECODABET[src[sOffset]]));
debug("" + src[sOffset + 1] + ": " + (DECODABET[src[sOffset + 1]]));
debug("" + src[sOffset + 2] + ": " + (DECODABET[src[sOffset + 2]]));
debug("" + src[sOffset + 3] + ": " + (DECODABET[src[sOffset + 3]]));
log.fine("" + src[sOffset ] + ": " + (DECODABET[src[sOffset ]]));
log.fine("" + src[sOffset + 1] + ": " + (DECODABET[src[sOffset + 1]]));
log.fine("" + src[sOffset + 2] + ": " + (DECODABET[src[sOffset + 2]]));
log.fine("" + src[sOffset + 3] + ": " + (DECODABET[src[sOffset + 3]]));
}
return -1;
}

View file

@ -0,0 +1,109 @@
/* ByteArray.java -- wrapper around a byte array, with nice toString output.
Copyright (C) 2005 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package gnu.java.security.util;
import java.io.PrintWriter;
import java.io.StringWriter;
public final class ByteArray
{
private final byte[] value;
public ByteArray (final byte[] value)
{
this.value = value;
}
public byte[] getValue ()
{
return value;
}
public String toString ()
{
StringWriter str = new StringWriter ();
PrintWriter out = new PrintWriter (str);
int i = 0;
int len = value.length;
while (i < len)
{
out.print (formatInt (i, 16, 8));
out.print (" ");
int l = Math.min (16, len - i);
String s = toHexString (value, i, l, ' ');
out.print (s);
for (int j = 56 - (56 - s.length ()); j < 56; j++)
out.print (" ");
for (int j = 0; j < l; j++)
{
byte b = value[i+j];
if ((b & 0xFF) < 0x20 || (b & 0xFF) > 0x7E)
out.print (".");
else
out.print ((char) (b & 0xFF));
}
out.println ();
i += 16;
}
return str.toString ();
}
public static String toHexString (byte[] buf, int off, int len, char sep)
{
StringBuffer str = new StringBuffer();
for (int i = 0; i < len; i++)
{
str.append (Character.forDigit (buf[i+off] >>> 4 & 0x0F, 16));
str.append (Character.forDigit (buf[i+off] & 0x0F, 16));
if (i < len - 1)
str.append(sep);
}
return str.toString();
}
public static String formatInt (int value, int radix, int len)
{
String s = Integer.toString (value, radix);
StringBuffer buf = new StringBuffer ();
for (int j = 0; j < len - s.length(); j++)
buf.append ("0");
buf.append (s);
return buf.toString();
}
}

View file

@ -46,26 +46,23 @@ import javax.security.auth.Destroyable;
/**
* The base class for objects with sensitive data that are automatically
* destroyed after a timeout elapses. On creation, an object that extends
* this class will automatically be added to a {@link Timer} object that,
* once a timeout elapses, will automatically call the {@link
* Destroyable#destroy()} method.
*
* <p>Concrete subclasses must implement the {@link doDestroy()} method
* instead of {@link Destroyable#destroy()}; the behavior of that method
* should match exactly the behavior desired of <code>destroy()</code>.
*
* <p>Note that if a {@link DestroyFailedException} occurs when the timeout
* destroyed after a timeout elapses. On creation, an object that extends this
* class will automatically be added to a {@link Timer} object that, once a
* timeout elapses, will automatically call the {@link Destroyable#destroy()}
* method.
* <p>
* Concrete subclasses must implement the {@link #doDestroy()} method instead of
* {@link Destroyable#destroy()}; the behavior of that method should match
* exactly the behavior desired of <code>destroy()</code>.
* <p>
* Note that if a {@link DestroyFailedException} occurs when the timeout
* expires, it will not be reported.
*
*
* @see Destroyable
*/
public abstract class ExpirableObject implements Destroyable
public abstract class ExpirableObject
implements Destroyable
{
// Constants and fields.
// -------------------------------------------------------------------------
/**
* The default timeout, used in the default constructor.
*/
@ -82,9 +79,6 @@ public abstract class ExpirableObject implements Destroyable
*/
private final Destroyer destroyer;
// Constructors.
// -------------------------------------------------------------------------
/**
* Create a new expirable object that will expire after one hour.
*/
@ -94,12 +88,11 @@ public abstract class ExpirableObject implements Destroyable
}
/**
* Create a new expirable object that will expire after the specified
* timeout.
*
* Create a new expirable object that will expire after the specified timeout.
*
* @param delay The delay before expiration.
* @throws IllegalArgumentException If <i>delay</i> is negative, or if
* <code>delay + System.currentTimeMillis()</code> is negative.
* <code>delay + System.currentTimeMillis()</code> is negative.
*/
protected ExpirableObject(final long delay)
{
@ -107,14 +100,11 @@ public abstract class ExpirableObject implements Destroyable
EXPIRER.schedule(destroyer, delay);
}
// Instance methods.
// -------------------------------------------------------------------------
/**
* Destroys this object. This method calls {@link doDestroy}, then, if
* no exception is thrown, cancels the task that would destroy this object
* when the timeout is reached.
*
* Destroys this object. This method calls {@link #doDestroy}, then, if no
* exception is thrown, cancels the task that would destroy this object when
* the timeout is reached.
*
* @throws DestroyFailedException If this operation fails.
*/
public final void destroy() throws DestroyFailedException
@ -126,42 +116,30 @@ public abstract class ExpirableObject implements Destroyable
/**
* Subclasses must implement this method instead of the {@link
* Destroyable#destroy()} method.
*
*
* @throws DestroyFailedException If this operation fails.
*/
protected abstract void doDestroy() throws DestroyFailedException;
// Inner classes.
// -------------------------------------------------------------------------
/**
* The task that destroys the target when the timeout elapses.
*/
private final class Destroyer extends TimerTask
private final class Destroyer
extends TimerTask
{
// Fields.
// -----------------------------------------------------------------------
private final ExpirableObject target;
// Constructor.
// -----------------------------------------------------------------------
Destroyer(final ExpirableObject target)
{
super();
this.target = target;
}
// Instance methods.
// -----------------------------------------------------------------------
public void run()
{
try
{
if (!target.isDestroyed())
if (! target.isDestroyed())
target.doDestroy();
}
catch (DestroyFailedException dfe)

View file

@ -0,0 +1,109 @@
/* IntegerUtil.java -- JDK 5 Integer methods with 1.4 API
Copyright (C) 2006 Free Software Foundation, Inc.
This file is part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301 USA.
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package gnu.java.security.util;
import java.util.LinkedHashMap;
import java.util.Map;
/**
* Utility class which offers Integer related methods found in RI's version 5
* but written with RI's 1.4 API.
*/
public abstract class IntegerUtil
{
/** Maximum size of our cache of constructed Integers. */
private static final int CACHE_SIZE = 100;
/** LRU (Least Recently Used) cache, of the last accessed 100 Integers. */
private static final Map cache = new LinkedHashMap(CACHE_SIZE + 1, 0.75F, true)
{
public boolean removeEldestEntry(Map.Entry entry)
{
return size() > CACHE_SIZE;
}
};
/** Trivial private constructor to enforce Singleton usage. */
private IntegerUtil()
{
super();
}
/**
* Similar to {@link Integer#valueOf(String)} except it caches the result in
* a local LRU cache of 100 elements, organized by access order.
* <p>
* This method MUST be used in the gnu.java.security and gnu.javax.crypto
* packages to ensure they would work with a version 1.4 only of the Java
* class library API.
*
* @param aString a string representation of an integer.
* @return the {@link Integer} object representing the designated string.
*/
public static final Integer valueOf(String aString)
{
Integer result;
synchronized (cache)
{
result = (Integer) cache.get(aString);
if (result == null)
{
result = Integer.valueOf(aString);
cache.put(aString, result);
}
}
return result;
}
/**
* Simulates the <code>valueOf(int)</code> method found in {@link Integer} of
* the RI's version 1.5 using a local LRU cache of 100 elements, organized by
* access order.
* <p>
* This method MUST be used in the gnu.java.security and gnu.javax.crypto
* packages to ensure they would work with a version 1.4 only of the Java
* class library API.
*
* @param anInt a decimal integer.
* @return the {@link Integer} object representing the designated primitive.
*/
public static final Integer valueOf(int anInt)
{
return valueOf(Integer.toString(anInt, 10));
}
}

View file

@ -45,27 +45,20 @@ import gnu.java.security.prng.LimitReachedException;
import gnu.java.security.prng.MDGenerator;
/**
* A useful hash-based (SHA) pseudo-random number generator used
* throughout this library.
* A useful hash-based (SHA) pseudo-random number generator used throughout this
* library.
*
* @see MDGenerator
*/
public class PRNG
{
// Constans and fields
// --------------------------------------------------------------------------
/** The underlying {@link IRandom}. */
private IRandom delegate;
// Constructor(s)
// --------------------------------------------------------------------------
/**
* Private constructor to enforce using the Factory method.
*
* @param delegate
* the undelying {@link IRandom} object used.
* @param delegate the undelying {@link IRandom} object used.
*/
private PRNG(IRandom delegate)
{
@ -74,9 +67,6 @@ public class PRNG
this.delegate = delegate;
}
// Class methods
// --------------------------------------------------------------------------
public static final PRNG getInstance()
{
IRandom delegate = new MDGenerator();
@ -86,10 +76,10 @@ public class PRNG
// initialise it with a seed
long t = System.currentTimeMillis();
byte[] seed = new byte[] {
(byte) (t >>> 56), (byte) (t >>> 48),
(byte) (t >>> 40), (byte) (t >>> 32),
(byte) (t >>> 24), (byte) (t >>> 16),
(byte) (t >>> 8), (byte) t};
(byte)(t >>> 56), (byte)(t >>> 48),
(byte)(t >>> 40), (byte)(t >>> 32),
(byte)(t >>> 24), (byte)(t >>> 16),
(byte)(t >>> 8), (byte) t };
map.put(MDGenerator.SEEED, seed);
delegate.init(map); // default is to use SHA-1 hash
}
@ -97,19 +87,14 @@ public class PRNG
{
throw new ExceptionInInitializerError(x);
}
return new PRNG(delegate);
}
// Instance methods
// --------------------------------------------------------------------------
/**
* Completely fills the designated <code>buffer</code> with random data
* generated by the underlying delegate.
*
* @param buffer
* the place holder of random bytes generated by the underlying
* @param buffer the place holder of random bytes generated by the underlying
* delegate. On output, the contents of <code>buffer</code> are
* replaced with pseudo-random data, iff the <code>buffer</code>
* size is not zero.

View file

@ -1,417 +0,0 @@
/* Prime2.java --
Copyright (C) 2001, 2002, 2003, 2006 Free Software Foundation, Inc.
This file is a part of GNU Classpath.
GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or (at
your option) any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Classpath; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301
USA
Linking this library statically or dynamically with other modules is
making a combined work based on this library. Thus, the terms and
conditions of the GNU General Public License cover the whole
combination.
As a special exception, the copyright holders of this library give you
permission to link this library with independent modules to produce an
executable, regardless of the license terms of these independent
modules, and to copy and distribute the resulting executable under
terms of your choice, provided that you also meet, for each linked
independent module, the terms and conditions of the license of that
module. An independent module is a module which is not derived from
or based on this library. If you modify this library, you may extend
this exception to your version of the library, but you are not
obligated to do so. If you do not wish to do so, delete this
exception statement from your version. */
package gnu.java.security.util;
import java.io.PrintWriter;
import java.lang.ref.WeakReference;
import java.math.BigInteger;
import java.util.Map;
import java.util.WeakHashMap;
/**
* <p>A collection of prime number related utilities used in this library.</p>
*/
public class Prime2
{
// Debugging methods and variables
// -------------------------------------------------------------------------
private static final String NAME = "prime";
private static final boolean DEBUG = false;
private static final int debuglevel = 5;
private static final PrintWriter err = new PrintWriter(System.out, true);
private static void debug(String s)
{
err.println(">>> " + NAME + ": " + s);
}
// Constants and variables
// -------------------------------------------------------------------------
private static final int DEFAULT_CERTAINTY = 20; // XXX is this a good value?
private static final BigInteger ZERO = BigInteger.ZERO;
private static final BigInteger ONE = BigInteger.ONE;
private static final BigInteger TWO = BigInteger.valueOf(2L);
/**
* The first SMALL_PRIME primes: Algorithm P, section 1.3.2, The Art of
* Computer Programming, Donald E. Knuth.
*/
private static final int SMALL_PRIME_COUNT = 1000;
private static final BigInteger[] SMALL_PRIME = new BigInteger[SMALL_PRIME_COUNT];
static
{
long time = -System.currentTimeMillis();
SMALL_PRIME[0] = TWO;
int N = 3;
int J = 0;
int prime;
P2: while (true)
{
SMALL_PRIME[++J] = BigInteger.valueOf(N);
if (J >= 999)
{
break P2;
}
P4: while (true)
{
N += 2;
P6: for (int K = 1; true; K++)
{
prime = SMALL_PRIME[K].intValue();
if ((N % prime) == 0)
{
continue P4;
}
else if ((N / prime) <= prime)
{
continue P2;
}
}
}
}
time += System.currentTimeMillis();
if (DEBUG && debuglevel > 8)
{
StringBuffer sb;
for (int i = 0; i < (SMALL_PRIME_COUNT / 10); i++)
{
sb = new StringBuffer();
for (int j = 0; j < 10; j++)
{
sb.append(String.valueOf(SMALL_PRIME[i * 10 + j])).append(" ");
}
debug(sb.toString());
}
}
if (DEBUG && debuglevel > 4)
{
debug("Generating first " + String.valueOf(SMALL_PRIME_COUNT)
+ " primes took: " + String.valueOf(time) + " ms.");
}
}
private static final Map knownPrimes = new WeakHashMap();
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial constructor to enforce Singleton pattern. */
private Prime2()
{
super();
}
// Class methods
// -------------------------------------------------------------------------
/**
* <p>Trial division for the first 1000 small primes.</p>
*
* <p>Returns <code>true</code> if at least one small prime, among the first
* 1000 ones, was found to divide the designated number. Retuens <code>false</code>
* otherwise.</p>
*
* @param w the number to test.
* @return <code>true</code> if at least one small prime was found to divide
* the designated number.
*/
public static boolean hasSmallPrimeDivisor(BigInteger w)
{
BigInteger prime;
for (int i = 0; i < SMALL_PRIME_COUNT; i++)
{
prime = SMALL_PRIME[i];
if (w.mod(prime).equals(ZERO))
{
if (DEBUG && debuglevel > 4)
{
debug(prime.toString(16) + " | " + w.toString(16) + "...");
}
return true;
}
}
if (DEBUG && debuglevel > 4)
{
debug(w.toString(16) + " has no small prime divisors...");
}
return false;
}
/**
* <p>Java port of Colin Plumb primality test (Euler Criterion)
* implementation for a base of 2 --from bnlib-1.1 release, function
* primeTest() in prime.c. this is his comments.</p>
*
* <p>"Now, check that bn is prime. If it passes to the base 2, it's prime
* beyond all reasonable doubt, and everything else is just gravy, but it
* gives people warm fuzzies to do it.</p>
*
* <p>This starts with verifying Euler's criterion for a base of 2. This is
* the fastest pseudoprimality test that I know of, saving a modular squaring
* over a Fermat test, as well as being stronger. 7/8 of the time, it's as
* strong as a strong pseudoprimality test, too. (The exception being when
* <code>bn == 1 mod 8</code> and <code>2</code> is a quartic residue, i.e.
* <code>bn</code> is of the form <code>a^2 + (8*b)^2</code>.) The precise
* series of tricks used here is not documented anywhere, so here's an
* explanation. Euler's criterion states that if <code>p</code> is prime
* then <code>a^((p-1)/2)</code> is congruent to <code>Jacobi(a,p)</code>,
* modulo <code>p</code>. <code>Jacobi(a, p)</code> is a function which is
* <code>+1</code> if a is a square modulo <code>p</code>, and <code>-1</code>
* if it is not. For <code>a = 2</code>, this is particularly simple. It's
* <code>+1</code> if <code>p == +/-1 (mod 8)</code>, and <code>-1</code> if
* <code>m == +/-3 (mod 8)</code>. If <code>p == 3 (mod 4)</code>, then all
* a strong test does is compute <code>2^((p-1)/2)</code>. and see if it's
* <code>+1</code> or <code>-1</code>. (Euler's criterion says <i>which</i>
* it should be.) If <code>p == 5 (mod 8)</code>, then <code>2^((p-1)/2)</code>
* is <code>-1</code>, so the initial step in a strong test, looking at
* <code>2^((p-1)/4)</code>, is wasted --you're not going to find a
* <code>+/-1</code> before then if it <b>is</b> prime, and it shouldn't
* have either of those values if it isn't. So don't bother.</p>
*
* <p>The remaining case is <code>p == 1 (mod 8)</code>. In this case, we
* expect <code>2^((p-1)/2) == 1 (mod p)</code>, so we expect that the
* square root of this, <code>2^((p-1)/4)</code>, will be <code>+/-1 (mod p)
* </code>. Evaluating this saves us a modular squaring 1/4 of the time. If
* it's <code>-1</code>, a strong pseudoprimality test would call <code>p</code>
* prime as well. Only if the result is <code>+1</code>, indicating that
* <code>2</code> is not only a quadratic residue, but a quartic one as well,
* does a strong pseudoprimality test verify more things than this test does.
* Good enough.</p>
*
* <p>We could back that down another step, looking at <code>2^((p-1)/8)</code>
* if there was a cheap way to determine if <code>2</code> were expected to
* be a quartic residue or not. Dirichlet proved that <code>2</code> is a
* quadratic residue iff <code>p</code> is of the form <code>a^2 + (8*b^2)</code>.
* All primes <code>== 1 (mod 4)</code> can be expressed as <code>a^2 +
* (2*b)^2</code>, but I see no cheap way to evaluate this condition."</p>
*
* @param bn the number to test.
* @return <code>true</code> iff the designated number passes Euler criterion
* as implemented by Colin Plumb in his <i>bnlib</i> version 1.1.
*/
public static boolean passEulerCriterion(final BigInteger bn)
{
BigInteger bn_minus_one = bn.subtract(ONE);
BigInteger e = bn_minus_one;
// l is the 3 least-significant bits of e
int l = e.and(BigInteger.valueOf(7L)).intValue();
int j = 1; // Where to start in prime array for strong prime tests
BigInteger a;
int k;
if (l != 0)
{
e = e.shiftRight(1);
a = TWO.modPow(e, bn);
if (l == 6) // bn == 7 mod 8, expect +1
{
if (a.bitLength() != 1)
{
debugBI("Fails Euler criterion #1", bn);
return false; // Not prime
}
k = 1;
}
else // bn == 3 or 5 mod 8, expect -1 == bn-1
{
a = a.add(ONE);
if (a.compareTo(bn) != 0)
{
debugBI("Fails Euler criterion #2", bn);
return false; // Not prime
}
k = 1;
if ((l & 4) != 0) // bn == 5 mod 8, make odd for strong tests
{
e = e.shiftRight(1);
k = 2;
}
}
}
else // bn == 1 mod 8, expect 2^((bn-1)/4) == +/-1 mod bn
{
e = e.shiftRight(2);
a = TWO.modPow(e, bn);
if (a.bitLength() == 1)
j = 0; // Re-do strong prime test to base 2
else
{
a = a.add(ONE);
if (a.compareTo(bn) != 0)
{
debugBI("Fails Euler criterion #3", bn);
return false; // Not prime
}
}
// bnMakeOdd(n) = d * 2^s. Replaces n with d and returns s.
k = e.getLowestSetBit();
e = e.shiftRight(k);
k += 2;
}
// It's prime! Now go on to confirmation tests
// Now, e = (bn-1)/2^k is odd. k >= 1, and has a given value with
// probability 2^-k, so its expected value is 2. j = 1 in the usual case
// when the previous test was as good as a strong prime test, but 1/8 of
// the time, j = 0 because the strong prime test to the base 2 needs to
// be re-done.
for (int i = j; i < 7; i++) // try only the first 7 primes
{
a = SMALL_PRIME[i];
a = a.modPow(e, bn);
if (a.bitLength() == 1)
continue; // Passed this test
l = k;
while (true)
{
// a = a.add(ONE);
// if (a.compareTo(w) == 0) { // Was result bn-1?
if (a.compareTo(bn_minus_one) == 0) // Was result bn-1?
break; // Prime
if (--l == 0) // Reached end, not -1? luck?
{
debugBI("Fails Euler criterion #4", bn);
return false; // Failed, not prime
}
// This portion is executed, on average, once
// a = a.subtract(ONE); // Put a back where it was
a = a.modPow(TWO, bn);
if (a.bitLength() == 1)
{
debugBI("Fails Euler criterion #5", bn);
return false; // Failed, not prime
}
}
// It worked (to the base primes[i])
}
debugBI("Passes Euler criterion", bn);
return true;
}
public static boolean isProbablePrime(BigInteger w)
{
return isProbablePrime(w, DEFAULT_CERTAINTY);
}
/**
* Wrapper around {@link BigInteger#isProbablePrime(int)} with few pre-checks.
*
* @param w the integer to test.
* @param certainty the certainty with which to compute the test.
*/
public static boolean isProbablePrime(BigInteger w, int certainty)
{
// Nonnumbers are not prime.
if (w == null)
return false;
// eliminate trivial cases when w == 0 or 1
if (w.equals(ZERO) || w.equals(ONE))
return false;
// Test if w is a known small prime.
for (int i = 0; i < SMALL_PRIME_COUNT; i++)
if (w.equals(SMALL_PRIME[i]))
{
if (DEBUG && debuglevel > 4)
debug(w.toString(16) + " is a small prime");
return true;
}
// Check if it's already a known prime
WeakReference obj = (WeakReference) knownPrimes.get(w);
if (obj != null && w.equals(obj.get()))
{
if (DEBUG && debuglevel > 4)
debug("found in known primes");
return true;
}
// trial division with first 1000 primes
if (hasSmallPrimeDivisor(w))
{
if (DEBUG && debuglevel > 4)
debug(w.toString(16) + " has a small prime divisor. Rejected...");
return false;
}
// Euler's criterion.
// if (passEulerCriterion(w)) {
// if (DEBUG && debuglevel > 4) {
// debug(w.toString(16)+" passes Euler's criterion...");
// }
// } else {
// if (DEBUG && debuglevel > 4) {
// debug(w.toString(16)+" fails Euler's criterion. Rejected...");
// }
// return false;
// }
//
// if (DEBUG && debuglevel > 4)
// {
// debug(w.toString(16) + " is probable prime. Accepted...");
// }
boolean result = w.isProbablePrime(certainty);
if (result && certainty > 0) // store it in the known primes weak hash-map
knownPrimes.put(w, new WeakReference(w));
return result;
}
// helper methods -----------------------------------------------------------
private static final void debugBI(String msg, BigInteger bn)
{
if (DEBUG && debuglevel > 4)
debug("*** " + msg + ": 0x" + bn.toString(16));
}
}

View file

@ -44,24 +44,18 @@ import java.util.LinkedList;
/**
* A monotonic sequence of integers in the finite field 2<sup>32</sup>.
*/
public final class Sequence extends AbstractList
public final class Sequence
extends AbstractList
{
// Field.
// ------------------------------------------------------------------------
private final Integer[] sequence;
// Constructor.
// ------------------------------------------------------------------------
/**
* Create a sequence of integers from 0 to <i>end</i>, with an increment
* of 1. If <i>end</i> is less than 0, then the sequence will wrap around
* through all positive integers then negative integers until the end
* value is reached. Naturally, this will result in an enormous object,
* so don't do this.
*
* Create a sequence of integers from 0 to <i>end</i>, with an increment of
* 1. If <i>end</i> is less than 0, then the sequence will wrap around
* through all positive integers then negative integers until the end value is
* reached. Naturally, this will result in an enormous object, so don't do
* this.
*
* @param end The ending value.
*/
public Sequence(int end)
@ -71,10 +65,10 @@ public final class Sequence extends AbstractList
/**
* Create a sequence of integers from <i>start</i> to <i>end</i>, with an
* increment of 1. If <i>end</i> is less than <i>start</i>, then the sequence
* will wrap around until the end value is reached. Naturally, this will
* result in an enormous object, so don't do this.
*
* increment of 1. If <i>end</i> is less than <i>start</i>, then the
* sequence will wrap around until the end value is reached. Naturally, this
* will result in an enormous object, so don't do this.
*
* @param start The starting value.
* @param end The ending value.
*/
@ -88,13 +82,13 @@ public final class Sequence extends AbstractList
* increment of <i>span</i>. If <i>end</i> is less than <i>start</i>, then
* the sequence will wrap around until the end value is reached. Naturally,
* this will result in an enormous object, so don't do this.
*
* <p><i>span</i> can be negative, resulting in a decresing sequence.
*
* <p>If <i>span</i> is 0, then the sequence will contain {<i>start</i>,
* <p>
* <i>span</i> can be negative, resulting in a decresing sequence.
* <p>
* If <i>span</i> is 0, then the sequence will contain {<i>start</i>,
* <i>end</i>} if <i>start</i> != <i>end</i>, or just the singleton
* <i>start</i> if <i>start</i> == <i>end</i>.
*
*
* @param start The starting value.
* @param end The ending value.
* @param span The increment value.
@ -104,36 +98,26 @@ public final class Sequence extends AbstractList
if (span == 0)
{
if (start != end)
{
sequence = new Integer[] { new Integer(start), new Integer(end) };
}
sequence = new Integer[] { Integer.valueOf(start),
Integer.valueOf(end) };
else
{
sequence = new Integer[] { new Integer(start) };
}
sequence = new Integer[] { Integer.valueOf(start) };
}
else
{
LinkedList l = new LinkedList();
for (int i = start; i != end; i += span)
{
l.add(new Integer(i));
}
l.add(new Integer(end));
l.add(Integer.valueOf(i));
l.add(Integer.valueOf(end));
sequence = (Integer[]) l.toArray(new Integer[l.size()]);
}
}
// Instance methods.
// ------------------------------------------------------------------------
public Object get(int index)
{
if (index < 0 || index >= size())
{
throw new IndexOutOfBoundsException("index=" + index + ", size="
+ size());
}
throw new IndexOutOfBoundsException("index=" + index + ", size=" + size());
return sequence[index];
}

View file

@ -43,25 +43,19 @@ import java.util.Collection;
import java.util.Iterator;
/**
* A simple way to create immutable n-tuples. This class can be created with
* up to four elements specified via one of the constructors, or with a
* collection of arbitrary size.
* A simple way to create immutable n-tuples. This class can be created with up
* to four elements specified via one of the constructors, or with a collection
* of arbitrary size.
*/
public final class SimpleList extends AbstractList
public final class SimpleList
extends AbstractList
{
// Fields.
// ------------------------------------------------------------------------
private final Object[] elements;
// Constructors.
// ------------------------------------------------------------------------
/**
* Create a singleton list.
*
* @param e1 The first element.
*
* @param element The first element.
*/
public SimpleList(final Object element)
{
@ -71,7 +65,7 @@ public final class SimpleList extends AbstractList
/**
* Create an ordered pair (2-tuple).
*
*
* @param e1 The first element.
* @param e2 The second element.
*/
@ -84,7 +78,7 @@ public final class SimpleList extends AbstractList
/**
* Create a 3-tuple.
*
*
* @param e1 The first element.
* @param e2 The second element.
* @param e3 The third element.
@ -99,7 +93,7 @@ public final class SimpleList extends AbstractList
/**
* Create a 4-tuple.
*
*
* @param e1 The first element.
* @param e2 The second element.
* @param e3 The third element.
@ -124,10 +118,10 @@ public final class SimpleList extends AbstractList
}
/**
* Create an n-tuple of arbitrary size. Even if the supplied collection has
* no natural order, the created n-tuple will have the order that the
* elements are returned by the collection's iterator.
*
* Create an n-tuple of arbitrary size. Even if the supplied collection has no
* natural order, the created n-tuple will have the order that the elements
* are returned by the collection's iterator.
*
* @param c The collection.
*/
public SimpleList(Collection c)
@ -135,14 +129,9 @@ public final class SimpleList extends AbstractList
elements = new Object[c.size()];
int i = 0;
for (Iterator it = c.iterator(); it.hasNext() && i < elements.length;)
{
elements[i++] = it.next();
}
elements[i++] = it.next();
}
// Instance methods.
// ------------------------------------------------------------------------
public int size()
{
if (elements == null)
@ -153,14 +142,9 @@ public final class SimpleList extends AbstractList
public Object get(int index)
{
if (elements == null)
{
throw new IndexOutOfBoundsException("list is empty");
}
throw new IndexOutOfBoundsException("list is empty");
if (index < 0 || index >= elements.length)
{
throw new IndexOutOfBoundsException("index=" + index + ", size="
+ size());
}
throw new IndexOutOfBoundsException("index=" + index + ", size=" + size());
return elements[index];
}

View file

@ -41,47 +41,37 @@ package gnu.java.security.util;
import java.math.BigInteger;
/**
* <p>A collection of utility methods used throughout this project.</p>
* A collection of utility methods used throughout this project.
*/
public class Util
{
// Constants and variables
// -------------------------------------------------------------------------
// Hex charset
private static final char[] HEX_DIGITS = "0123456789ABCDEF".toCharArray();
// Base-64 charset
private static final String BASE64_CHARS = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./";
private static final String BASE64_CHARS =
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz./";
private static final char[] BASE64_CHARSET = BASE64_CHARS.toCharArray();
// Constructor(s)
// -------------------------------------------------------------------------
/** Trivial constructor to enforce Singleton pattern. */
private Util()
{
super();
}
// Class methods
// -------------------------------------------------------------------------
/**
* <p>Returns a string of hexadecimal digits from a byte array. Each byte is
* converted to 2 hex symbols; zero(es) included.</p>
*
* <p>This method calls the method with same name and three arguments as:</p>
*
* Returns a string of hexadecimal digits from a byte array. Each byte is
* converted to 2 hex symbols; zero(es) included.
* <p>
* This method calls the method with same name and three arguments as:
* <pre>
* toString(ba, 0, ba.length);
* toString(ba, 0, ba.length);
* </pre>
*
*
* @param ba the byte array to convert.
* @return a string of hexadecimal characters (two for each byte)
* representing the designated input byte array.
* @return a string of hexadecimal characters (two for each byte) representing
* the designated input byte array.
*/
public static String toString(byte[] ba)
{
@ -89,17 +79,17 @@ public class Util
}
/**
* <p>Returns a string of hexadecimal digits from a byte array, starting at
* <code>offset</code> and consisting of <code>length</code> bytes. Each byte
* is converted to 2 hex symbols; zero(es) included.</p>
*
* Returns a string of hexadecimal digits from a byte array, starting at
* <code>offset</code> and consisting of <code>length</code> bytes. Each
* byte is converted to 2 hex symbols; zero(es) included.
*
* @param ba the byte array to convert.
* @param offset the index from which to start considering the bytes to
* convert.
* convert.
* @param length the count of bytes, starting from the designated offset to
* convert.
* @return a string of hexadecimal characters (two for each byte)
* representing the designated input byte sub-array.
* convert.
* @return a string of hexadecimal characters (two for each byte) representing
* the designated input byte sub-array.
*/
public static final String toString(byte[] ba, int offset, int length)
{
@ -108,26 +98,24 @@ public class Util
{
k = ba[offset + i++];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[k & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
/**
* <p>Returns a string of hexadecimal digits from a byte array. Each byte is
* converted to 2 hex symbols; zero(es) included. The argument is
* treated as a large little-endian integer and is returned as a
* large big-endian integer.</p>
*
* <p>This method calls the method with same name and three arguments as:</p>
*
* Returns a string of hexadecimal digits from a byte array. Each byte is
* converted to 2 hex symbols; zero(es) included. The argument is treated as a
* large little-endian integer and is returned as a large big-endian integer.
* <p>
* This method calls the method with same name and three arguments as:
* <pre>
* toReversedString(ba, 0, ba.length);
* toReversedString(ba, 0, ba.length);
* </pre>
*
*
* @param ba the byte array to convert.
* @return a string of hexadecimal characters (two for each byte)
* representing the designated input byte array.
* @return a string of hexadecimal characters (two for each byte) representing
* the designated input byte array.
*/
public static String toReversedString(byte[] ba)
{
@ -135,20 +123,20 @@ public class Util
}
/**
* <p>Returns a string of hexadecimal digits from a byte array, starting at
* <code>offset</code> and consisting of <code>length</code> bytes. Each byte
* is converted to 2 hex symbols; zero(es) included.</p>
*
* <p>The byte array is treated as a large little-endian integer, and
* is returned as a large big-endian integer.</p>
*
* Returns a string of hexadecimal digits from a byte array, starting at
* <code>offset</code> and consisting of <code>length</code> bytes. Each
* byte is converted to 2 hex symbols; zero(es) included.
* <p>
* The byte array is treated as a large little-endian integer, and is returned
* as a large big-endian integer.
*
* @param ba the byte array to convert.
* @param offset the index from which to start considering the bytes to
* convert.
* convert.
* @param length the count of bytes, starting from the designated offset to
* convert.
* @return a string of hexadecimal characters (two for each byte)
* representing the designated input byte sub-array.
* convert.
* @return a string of hexadecimal characters (two for each byte) representing
* the designated input byte sub-array.
*/
public static final String toReversedString(byte[] ba, int offset, int length)
{
@ -157,14 +145,16 @@ public class Util
{
k = ba[offset + i--];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[k & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
/**
* <p>Returns a byte array from a string of hexadecimal digits.</p>
*
* <p>
* Returns a byte array from a string of hexadecimal digits.
* </p>
*
* @param s a string of hexadecimal ASCII characters
* @return the decoded byte array from the input hexadecimal string.
*/
@ -174,22 +164,20 @@ public class Util
byte[] result = new byte[((limit + 1) / 2)];
int i = 0, j = 0;
if ((limit % 2) == 1)
{
result[j++] = (byte) fromDigit(s.charAt(i++));
}
result[j++] = (byte) fromDigit(s.charAt(i++));
while (i < limit)
{
result[j] = (byte) (fromDigit(s.charAt(i++)) << 4);
result[j ] = (byte) (fromDigit(s.charAt(i++)) << 4);
result[j++] |= (byte) fromDigit(s.charAt(i++));
}
return result;
}
/**
* <p>Returns a byte array from a string of hexadecimal digits, interpreting
* them as a large big-endian integer and returning it as a large
* little-endian integer.</p>
*
* Returns a byte array from a string of hexadecimal digits, interpreting them
* as a large big-endian integer and returning it as a large little-endian
* integer.
*
* @param s a string of hexadecimal ASCII characters
* @return the decoded byte array from the input hexadecimal string.
*/
@ -199,45 +187,37 @@ public class Util
byte[] result = new byte[((limit + 1) / 2)];
int i = 0;
if ((limit % 2) == 1)
{
result[i++] = (byte) fromDigit(s.charAt(--limit));
}
result[i++] = (byte) fromDigit(s.charAt(--limit));
while (limit > 0)
{
result[i] = (byte) fromDigit(s.charAt(--limit));
result[i ] = (byte) fromDigit(s.charAt(--limit));
result[i++] |= (byte) (fromDigit(s.charAt(--limit)) << 4);
}
return result;
}
/**
* <p>Returns a number from <code>0</code> to <code>15</code> corresponding
* to the designated hexadecimal digit.</p>
*
* Returns a number from <code>0</code> to <code>15</code> corresponding
* to the designated hexadecimal digit.
*
* @param c a hexadecimal ASCII symbol.
*/
public static int fromDigit(char c)
{
if (c >= '0' && c <= '9')
{
return c - '0';
}
return c - '0';
else if (c >= 'A' && c <= 'F')
{
return c - 'A' + 10;
}
return c - 'A' + 10;
else if (c >= 'a' && c <= 'f')
{
return c - 'a' + 10;
}
return c - 'a' + 10;
else
throw new IllegalArgumentException("Invalid hexadecimal digit: " + c);
}
/**
* <p>Returns a string of 8 hexadecimal digits (most significant digit first)
* corresponding to the unsigned integer <code>n</code>.</p>
*
* Returns a string of 8 hexadecimal digits (most significant digit first)
* corresponding to the unsigned integer <code>n</code>.
*
* @param n the unsigned integer to convert.
* @return a hexadecimal string 8-character long.
*/
@ -253,8 +233,8 @@ public class Util
}
/**
* <p>Returns a string of hexadecimal digits from an integer array. Each int
* is converted to 4 hex symbols.</p>
* Returns a string of hexadecimal digits from an integer array. Each int is
* converted to 4 hex symbols.
*/
public static String toString(int[] ia)
{
@ -268,17 +248,17 @@ public class Util
buf[j++] = HEX_DIGITS[(k >>> 20) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 16) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 12) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 8) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[k & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 8) & 0x0F];
buf[j++] = HEX_DIGITS[(k >>> 4) & 0x0F];
buf[j++] = HEX_DIGITS[ k & 0x0F];
}
return new String(buf);
}
/**
* <p>Returns a string of 16 hexadecimal digits (most significant digit first)
* corresponding to the unsigned long <code>n</code>.</p>
*
* Returns a string of 16 hexadecimal digits (most significant digit first)
* corresponding to the unsigned long <code>n</code>.
*
* @param n the unsigned long to convert.
* @return a hexadecimal string 16-character long.
*/
@ -287,18 +267,18 @@ public class Util
char[] b = new char[16];
for (int i = 15; i >= 0; i--)
{
b[i] = HEX_DIGITS[(int) (n & 0x0FL)];
b[i] = HEX_DIGITS[(int)(n & 0x0FL)];
n >>>= 4;
}
return new String(b);
}
/**
* <p>Similar to the <code>toString()</code> method except that the Unicode
* Similar to the <code>toString()</code> method except that the Unicode
* escape character is inserted before every pair of bytes. Useful to
* externalise byte arrays that will be constructed later from such strings;
* eg. s-box values.</p>
*
* eg. s-box values.
*
* @throws ArrayIndexOutOfBoundsException if the length is odd.
*/
public static String toUnicodeString(byte[] ba)
@ -307,11 +287,11 @@ public class Util
}
/**
* <p>Similar to the <code>toString()</code> method except that the Unicode
* Similar to the <code>toString()</code> method except that the Unicode
* escape character is inserted before every pair of bytes. Useful to
* externalise byte arrays that will be constructed later from such strings;
* eg. s-box values.</p>
*
* eg. s-box values.
*
* @throws ArrayIndexOutOfBoundsException if the length is odd.
*/
public static final String toUnicodeString(byte[] ba, int offset, int length)
@ -324,31 +304,27 @@ public class Util
while (i < length)
{
sb.append("\\u");
k = ba[offset + i++];
sb.append(HEX_DIGITS[(k >>> 4) & 0x0F]);
sb.append(HEX_DIGITS[k & 0x0F]);
sb.append(HEX_DIGITS[ k & 0x0F]);
k = ba[offset + i++];
sb.append(HEX_DIGITS[(k >>> 4) & 0x0F]);
sb.append(HEX_DIGITS[k & 0x0F]);
sb.append(HEX_DIGITS[ k & 0x0F]);
if ((++j % 8) == 0)
{
sb.append("\"+").append('\n').append("\"");
}
sb.append("\"+").append('\n').append("\"");
}
sb.append("\"").append('\n');
return sb.toString();
}
/**
* <p>Similar to the <code>toString()</code> method except that the Unicode
* Similar to the <code>toString()</code> method except that the Unicode
* escape character is inserted before every pair of bytes. Useful to
* externalise integer arrays that will be constructed later from such
* strings; eg. s-box values.</p>
*
* @throws ArrayIndexOutOfBoundsException if the length is not a multiple of 4.
* strings; eg. s-box values.
*
* @throws ArrayIndexOutOfBoundsException if the length is not a multiple of
* 4.
*/
public static String toUnicodeString(int[] ia)
{
@ -367,14 +343,11 @@ public class Util
sb.append(HEX_DIGITS[(k >>> 16) & 0x0F]);
sb.append("\\u");
sb.append(HEX_DIGITS[(k >>> 12) & 0x0F]);
sb.append(HEX_DIGITS[(k >>> 8) & 0x0F]);
sb.append(HEX_DIGITS[(k >>> 4) & 0x0F]);
sb.append(HEX_DIGITS[k & 0x0F]);
sb.append(HEX_DIGITS[(k >>> 8) & 0x0F]);
sb.append(HEX_DIGITS[(k >>> 4) & 0x0F]);
sb.append(HEX_DIGITS[ k & 0x0F]);
if ((++j % 4) == 0)
{
sb.append("\"+").append('\n').append("\"");
}
sb.append("\"+").append('\n').append("\"");
}
sb.append("\"").append('\n');
return sb.toString();
@ -388,20 +361,20 @@ public class Util
for (int i = 0; i < limit; i++)
{
c = s.charAt(i >>> 1);
result[i] = (byte) (((i & 1) == 0) ? c >>> 8 : c);
result[i] = (byte)(((i & 1) == 0) ? c >>> 8 : c);
}
return result;
}
/**
* <p>Dumps a byte array as a string, in a format that is easy to read for
* Dumps a byte array as a string, in a format that is easy to read for
* debugging. The string <code>m</code> is prepended to the start of each
* line.</p>
*
* <p>If <code>offset</code> and <code>length</code> are omitted, the whole
* line.
* <p>
* If <code>offset</code> and <code>length</code> are omitted, the whole
* array is used. If <code>m</code> is omitted, nothing is prepended to each
* line.</p>
*
* line.
*
* @param data the byte array to be dumped.
* @param offset the offset within <i>data</i> to start from.
* @param length the number of bytes to dump.
@ -411,23 +384,17 @@ public class Util
public static String dumpString(byte[] data, int offset, int length, String m)
{
if (data == null)
{
return m + "null\n";
}
return m + "null\n";
StringBuffer sb = new StringBuffer(length * 3);
if (length > 32)
{
sb.append(m).append("Hexadecimal dump of ").append(length).append(
" bytes...\n");
}
sb.append(m).append("Hexadecimal dump of ")
.append(length).append(" bytes...\n");
// each line will list 32 bytes in 4 groups of 8 each
int end = offset + length;
String s;
int l = Integer.toString(length).length();
if (l < 4)
{
l = 4;
}
l = 4;
for (; offset < end; offset += 32)
{
if (length > 32)
@ -437,16 +404,10 @@ public class Util
}
int i = 0;
for (; i < 32 && offset + i + 7 < end; i += 8)
{
sb.append(toString(data, offset + i, 8)).append(' ');
}
sb.append(toString(data, offset + i, 8)).append(' ');
if (i < 32)
{
for (; i < 32 && offset + i < end; i++)
{
sb.append(byteToString(data[offset + i]));
}
}
for (; i < 32 && offset + i < end; i++)
sb.append(byteToString(data[offset + i]));
sb.append('\n');
}
return sb.toString();
@ -468,9 +429,9 @@ public class Util
}
/**
* <p>Returns a string of 2 hexadecimal digits (most significant digit first)
* corresponding to the lowest 8 bits of <code>n</code>.</p>
*
* Returns a string of 2 hexadecimal digits (most significant digit first)
* corresponding to the lowest 8 bits of <code>n</code>.
*
* @param n the byte value to convert.
* @return a string of 2 hex characters representing the input.
*/
@ -481,15 +442,15 @@ public class Util
}
/**
* <p>Converts a designated byte array to a Base-64 representation, with the
* Converts a designated byte array to a Base-64 representation, with the
* exceptions that (a) leading 0-byte(s) are ignored, and (b) the character
* '.' (dot) shall be used instead of "+' (plus).</p>
*
* <p>Used by SASL password file manipulation primitives.</p>
*
* '.' (dot) shall be used instead of "+' (plus).
* <p>
* Used by SASL password file manipulation primitives.
*
* @param buffer an arbitrary sequence of bytes to represent in Base-64.
* @return unpadded (without the '=' character(s)) Base-64 representation of
* the input.
* the input.
*/
public static final String toBase64(byte[] buffer)
{
@ -535,9 +496,7 @@ public class Util
notleading = true;
}
if (pos >= len)
{
break;
}
break;
else
{
try
@ -555,44 +514,38 @@ public class Util
while (true);
if (notleading)
{
return sb.toString();
}
return sb.toString();
return "0";
}
/**
* <p>The inverse function of the above.</p>
*
* <p>Converts a string representing the encoding of some bytes in Base-64
* to their original form.</p>
*
* The inverse function of the above.
* <p>
* Converts a string representing the encoding of some bytes in Base-64 to
* their original form.
*
* @param str the Base-64 encoded representation of some byte(s).
* @return the bytes represented by the <code>str</code>.
* @throws NumberFormatException if <code>str</code> is <code>null</code>, or
* <code>str</code> contains an illegal Base-64 character.
* @throws NumberFormatException if <code>str</code> is <code>null</code>,
* or <code>str</code> contains an illegal Base-64 character.
* @see #toBase64(byte[])
*/
public static final byte[] fromBase64(String str)
{
int len = str.length();
if (len == 0)
{
throw new NumberFormatException("Empty string");
}
throw new NumberFormatException("Empty string");
byte[] a = new byte[len + 1];
int i, j;
for (i = 0; i < len; i++)
{
try
{
a[i] = (byte) BASE64_CHARS.indexOf(str.charAt(i));
}
catch (ArrayIndexOutOfBoundsException x)
{
throw new NumberFormatException("Illegal character at #" + i);
}
}
try
{
a[i] = (byte) BASE64_CHARS.indexOf(str.charAt(i));
}
catch (ArrayIndexOutOfBoundsException x)
{
throw new NumberFormatException("Illegal character at #" + i);
}
i = len - 1;
j = len;
try
@ -601,42 +554,31 @@ public class Util
{
a[j] = a[i];
if (--i < 0)
{
break;
}
break;
a[j] |= (a[i] & 0x03) << 6;
j--;
a[j] = (byte) ((a[i] & 0x3C) >>> 2);
a[j] = (byte)((a[i] & 0x3C) >>> 2);
if (--i < 0)
{
break;
}
break;
a[j] |= (a[i] & 0x0F) << 4;
j--;
a[j] = (byte) ((a[i] & 0x30) >>> 4);
a[j] = (byte)((a[i] & 0x30) >>> 4);
if (--i < 0)
{
break;
}
break;
a[j] |= (a[i] << 2);
j--;
a[j] = 0;
if (--i < 0)
{
break;
}
break;
}
}
catch (Exception ignored)
{
}
try
{ // ignore leading 0-bytes
while (a[j] == 0)
{
j++;
}
j++;
}
catch (Exception x)
{
@ -650,36 +592,31 @@ public class Util
// BigInteger utilities ----------------------------------------------------
/**
* <p>Treats the input as the MSB representation of a number, and discards
* Treats the input as the MSB representation of a number, and discards
* leading zero elements. For efficiency, the input is simply returned if no
* leading zeroes are found.</p>
*
* leading zeroes are found.
*
* @param n the {@link BigInteger} to trim.
* @return the byte array representation of the designated {@link BigInteger}
* with no leading 0-bytes.
* with no leading 0-bytes.
*/
public static final byte[] trim(BigInteger n)
{
byte[] in = n.toByteArray();
if (in.length == 0 || in[0] != 0)
{
return in;
}
return in;
int len = in.length;
int i = 1;
while (in[i] == 0 && i < len)
{
++i;
}
++i;
byte[] result = new byte[len - i];
System.arraycopy(in, i, result, 0, len - i);
return result;
}
/**
* <p>Returns a hexadecimal dump of the trimmed bytes of a {@link BigInteger}.
* </p>
*
* Returns a hexadecimal dump of the trimmed bytes of a {@link BigInteger}.
*
* @param x the {@link BigInteger} to display.
* @return the string representation of the designated {@link BigInteger}.
*/