natString.cc (init): Handle case where DONT_COPY is true and OFFSET!=0.

* java/lang/natString.cc (init): Handle case where DONT_COPY is
	true and OFFSET!=0.
	* java/lang/String.java (String(char[],int,int,boolean): New
	constructor.
	* java/lang/Long.java: Imported new version from Classpath.
	* java/lang/Number.java: Likewise.
	* java/lang/Integer.java: Likewise.
	* java/lang/Long.java: Likewise.
	* java/lang/Float.java: Likewise.
	* java/lang/Boolean.java: Likewise.
	* java/lang/Double.java: Likewise.
	* java/lang/Void.java: Likewise.

From-SVN: r54595
This commit is contained in:
Tom Tromey 2002-06-13 18:16:26 +00:00 committed by Tom Tromey
parent a8fa30f301
commit 93f7aeea7a
10 changed files with 1874 additions and 1723 deletions

View file

@ -1,3 +1,18 @@
2002-06-13 Tom Tromey <tromey@redhat.com>
* java/lang/natString.cc (init): Handle case where DONT_COPY is
true and OFFSET!=0.
* java/lang/String.java (String(char[],int,int,boolean): New
constructor.
* java/lang/Long.java: Imported new version from Classpath.
* java/lang/Number.java: Likewise.
* java/lang/Integer.java: Likewise.
* java/lang/Long.java: Likewise.
* java/lang/Float.java: Likewise.
* java/lang/Boolean.java: Likewise.
* java/lang/Double.java: Likewise.
* java/lang/Void.java: Likewise.
2002-06-12 Tom Tromey <tromey@redhat.com>
* java/io/natFilePosix.cc (getCanonicalPath): Treat "" like ".".

View file

@ -1,5 +1,5 @@
/* Boolean.java -- object wrapper for boolean
Copyright (C) 1998, 2001 Free Software Foundation, Inc.
Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@ -41,148 +41,184 @@ package java.lang;
import java.io.Serializable;
/**
* Instances of class <code>Boolean</code> represent primitive
* Instances of class <code>Boolean</code> represent primitive
* <code>boolean</code> values.
*
* @author Paul Fisher
* @since JDK1.0
*/
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.0
* @status updated to 1.4
*/
public final class Boolean implements Serializable
{
static final long serialVersionUID = -3665804199014368530L;
/**
* This field is a <code>Boolean</code> object representing the
* primitive value <code>true</code>. This instance is returned
* by the static <code>valueOf()</code> methods if they return
* a <code>Boolean</code> representing <code>true</code>.
*/
public static final Boolean TRUE = new Boolean(true);
/**
* This field is a <code>Boolean</code> object representing the
* primitive value <code>false</code>. This instance is returned
* by the static <code>valueOf()</code> methods if they return
* a <code>Boolean</code> representing <code>false</code>.
*/
public static final Boolean FALSE = new Boolean(false);
/**
* Compatible with JDK 1.0.2+.
*/
private static final long serialVersionUID = -3665804199014368530L;
/**
* The primitive type <code>boolean</code> is represented by this
* <code>Class</code> object.
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('Z');
/**
* The immutable value of this Boolean.
*/
private final boolean value;
/**
* Create a <code>Boolean</code> object representing the value of the
* argument <code>value</code>. In general the use of the static
* method <code>valueof(boolean)</code> is more efficient since it will
* not create a new object.
*
* @param value the primitive value of this <code>Boolean</code>
*/
public Boolean(boolean value) {
this.value = value;
}
/**
* Creates a <code>Boolean</code> object representing the primitive
* <code>true</code> if and only if <code>s</code> matches
* the string "true" ignoring case, otherwise the object will represent
* the primitive <code>false</code>. In general the use of the static
* method <code>valueof(String)</code> is more efficient since it will
* not create a new object.
*
* @param s the <code>String</code> representation of <code>true</code>
* or false
*/
public Boolean(String s) {
value = "true".equalsIgnoreCase(s);
}
/**
* This field is a <code>Boolean</code> object representing the
* primitive value <code>true</code>. This instance is returned
* by the static <code>valueOf()</code> methods if they return
* a <code>Boolean</code> representing <code>true</code>.
*/
public static final Boolean TRUE = new Boolean(true);
/**
* Return the primitive <code>boolean</code> value of this
* <code>Boolean</code> object.
*/
public boolean booleanValue() {
return value;
}
/**
* This field is a <code>Boolean</code> object representing the
* primitive value <code>false</code>. This instance is returned
* by the static <code>valueOf()</code> methods if they return
* a <code>Boolean</code> representing <code>false</code>.
*/
public static final Boolean FALSE = new Boolean(false);
/**
* Returns the Boolean <code>TRUE</code> if the given boolean is
* <code>true</code>, otherwise it will return the Boolean
* <code>FALSE</code>.
*
* @since 1.4
*/
public static Boolean valueOf(boolean b) {
return b ? TRUE : FALSE;
}
/**
* The primitive type <code>boolean</code> is represented by this
* <code>Class</code> object.
*
* @since 1.1
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('Z');
/**
* Returns the Boolean <code>TRUE</code> if and only if the given
* String is equal, ignoring case, to the the String "true", otherwise
* it will return the Boolean <code>FALSE</code>.
*/
public static Boolean valueOf(String s) {
return "true".equalsIgnoreCase(s) ? TRUE : FALSE;
}
/**
* The immutable value of this Boolean.
* @serial the wrapped value
*/
private final boolean value;
/**
* Returns the integer <code>1231</code> if this object represents
* the primitive <code>true</code> and the integer <code>1237</code>
* otherwise.
*/
public int hashCode() {
return (value) ? 1231 : 1237;
}
/**
* Create a <code>Boolean</code> object representing the value of the
* argument <code>value</code>. In general the use of the static
* method <code>valueof(boolean)</code> is more efficient since it will
* not create a new object.
*
* @param value the primitive value of this <code>Boolean</code>
* @see #valueOf(boolean)
*/
public Boolean(boolean value)
{
this.value = value;
}
/**
* If the <code>obj</code> is an instance of <code>Boolean</code> and
* has the same primitive value as this object then <code>true</code>
* is returned. In all other cases, including if the <code>obj</code>
* is <code>null</code>, <code>false</code> is returned.
*
* @param obj possibly an instance of any <code>Class</code>
* @return <code>false</code> is <code>obj</code> is an instance of
* <code>Boolean</code> and has the same primitive value as this
* object.
*/
public boolean equals(Object obj) {
return (obj instanceof Boolean && value == ((Boolean)obj).value);
}
/**
* Creates a <code>Boolean</code> object representing the primitive
* <code>true</code> if and only if <code>s</code> matches
* the string "true" ignoring case, otherwise the object will represent
* the primitive <code>false</code>. In general the use of the static
* method <code>valueof(String)</code> is more efficient since it will
* not create a new object.
*
* @param s the <code>String</code> representation of <code>true</code>
* or false
*/
public Boolean(String s)
{
value = "true".equalsIgnoreCase(s);
}
/**
* If the value of the system property <code>name</code> matches
* "true" ignoring case then the function returns <code>true</code>.
*/
public static boolean getBoolean(String name) {
String val = System.getProperty(name);
return ("true".equalsIgnoreCase(val));
}
/**
* Returns "true" if the value of the give boolean is <code>true</code> and
* returns "false" if the value of the given boolean is <code>false</code>.
*
* @since 1.4
*/
public static String toString(boolean b)
{
return b ? "true" : "false";
}
/**
* Return the primitive <code>boolean</code> value of this
* <code>Boolean</code> object.
*
* @return true or false, depending on the value of this Boolean
*/
public boolean booleanValue()
{
return value;
}
/**
* Returns "true" if the value of this object is <code>true</code> and
* returns "false" if the value of this object is <code>false</code>.
*/
public String toString()
{
return (value) ? "true" : "false";
}
/**
* Returns the Boolean <code>TRUE</code> if the given boolean is
* <code>true</code>, otherwise it will return the Boolean
* <code>FALSE</code>.
*
* @param b the boolean to wrap
* @return the wrapper object
* @see #TRUE
* @see #FALSE
* @since 1.4
*/
public static Boolean valueOf(boolean b)
{
return b ? TRUE : FALSE;
}
/**
* Returns the Boolean <code>TRUE</code> if and only if the given
* String is equal, ignoring case, to the the String "true", otherwise
* it will return the Boolean <code>FALSE</code>.
*
* @param s the string to convert
* @return a wrapped boolean from the string
*/
public static Boolean valueOf(String s)
{
return "true".equalsIgnoreCase(s) ? TRUE : FALSE;
}
/**
* Returns "true" if the value of the give boolean is <code>true</code> and
* returns "false" if the value of the given boolean is <code>false</code>.
*
* @param b the boolean to convert
* @return the string representation of the boolean
* @since 1.4
*/
public static String toString(boolean b)
{
return b ? "true" : "false";
}
/**
* Returns "true" if the value of this object is <code>true</code> and
* returns "false" if the value of this object is <code>false</code>.
*
* @return the string representation of this
*/
public String toString()
{
return value ? "true" : "false";
}
/**
* Returns the integer <code>1231</code> if this object represents
* the primitive <code>true</code> and the integer <code>1237</code>
* otherwise.
*
* @return the hash code
*/
public int hashCode()
{
return value ? 1231 : 1237;
}
/**
* If the <code>obj</code> is an instance of <code>Boolean</code> and
* has the same primitive value as this object then <code>true</code>
* is returned. In all other cases, including if the <code>obj</code>
* is <code>null</code>, <code>false</code> is returned.
*
* @param obj possibly an instance of any <code>Class</code>
* @return true if <code>obj</code> equals this
*/
public boolean equals(Object obj)
{
return obj instanceof Boolean && value == ((Boolean) obj).value;
}
/**
* If the value of the system property <code>name</code> matches
* "true" ignoring case then the function returns <code>true</code>.
*
* @param name the property name to look up
* @return true if the property resulted in "true"
* @throws SecurityException if accessing the system property is forbidden
* @see System#getProperty(String)
*/
public static boolean getBoolean(String name)
{
if (name == null || "".equals(name))
return false;
return "true".equalsIgnoreCase(System.getProperty(name));
}
}

View file

@ -1,4 +1,4 @@
/* Double.java -- object wrapper for double primitive
/* Double.java -- object wrapper for double
Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@ -40,12 +40,6 @@ package java.lang;
import gnu.classpath.Configuration;
/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
* "The Java Language Specification", ISBN 0-201-63451-1
* plus online API docs for JDK 1.2 beta from http://www.javasoft.com.
* Status: Believed complete and correct.
*/
/**
* Instances of class <code>Double</code> represent primitive
* <code>double</code> values.
@ -55,15 +49,16 @@ import gnu.classpath.Configuration;
*
* @author Paul Fisher
* @author Andrew Haley <aph@cygnus.com>
* @since JDK 1.0
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.0
* @status updated to 1.4
*/
public final class Double extends Number implements Comparable
{
/**
* The minimum positive value a <code>double</code> may represent
* is 5e-324.
* Compatible with JDK 1.0+.
*/
public static final double MIN_VALUE = 5e-324;
private static final long serialVersionUID = -9172774392245257468L;
/**
* The maximum positive value a <code>double</code> may represent
@ -72,43 +67,50 @@ public final class Double extends Number implements Comparable
public static final double MAX_VALUE = 1.7976931348623157e+308;
/**
* The value of a double representation -1.0/0.0, negative
* infinity.
* The minimum positive value a <code>double</code> may represent
* is 5e-324.
*/
public static final double NEGATIVE_INFINITY = -1.0d/0.0d;
public static final double MIN_VALUE = 5e-324;
/**
* The value of a double representation -1.0/0.0, negative
* infinity.
*/
public static final double NEGATIVE_INFINITY = -1.0 / 0.0;
/**
* The value of a double representing 1.0/0.0, positive infinity.
*/
public static final double POSITIVE_INFINITY = 1.0d/0.0d;
public static final double POSITIVE_INFINITY = 1.0 / 0.0;
/**
* All IEEE 754 values of NaN have the same value in Java.
*/
public static final double NaN = 0.0d/0.0d;
public static final double NaN = 0.0 / 0.0;
/**
* The primitive type <code>double</code> is represented by this
* <code>Class</code> object.
* @since 1.1
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('D');
/**
* The immutable value of this Double.
*
* @serial the wrapped double
*/
private final double value;
private static final long serialVersionUID = -9172774392245257468L;
/**
* Load native routines necessary for this class.
* Load native routines necessary for this class.
*/
static
{
if (Configuration.INIT_LOAD_LIBRARY)
{
System.loadLibrary ("javalang");
initIDs ();
System.loadLibrary("javalang");
initIDs();
}
}
@ -118,149 +120,134 @@ public final class Double extends Number implements Comparable
*
* @param value the <code>double</code> argument
*/
public Double (double value)
public Double(double value)
{
this.value = value;
}
/**
* Create a <code>Double</code> from the specified
* <code>String</code>.
*
* Create a <code>Double</code> from the specified <code>String</code>.
* This method calls <code>Double.parseDouble()</code>.
*
* @exception NumberFormatException when the <code>String</code> cannot
* be parsed into a <code>Float</code>.
* @param s the <code>String</code> to convert
* @see #parseDouble(java.lang.String)
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>double</code>
* @throws NullPointerException if <code>s</code> is null
* @see #parseDouble(String)
*/
public Double (String s) throws NumberFormatException
public Double(String s)
{
value = parseDouble (s);
value = parseDouble(s);
}
/**
* Convert the <code>double</code> value of this <code>Double</code>
* to a <code>String</code>. This method calls
* <code>Double.toString(double)</code> to do its dirty work.
* Convert the <code>double</code> to a <code>String</code>.
* Floating-point string representation is fairly complex: here is a
* rundown of the possible values. "<code>[-]</code>" indicates that a
* negative sign will be printed if the value (or exponent) is negative.
* "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
* "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
*
* @return the <code>String</code> representation of this <code>Double</code>.
* @see #toString(double)
*/
public String toString ()
{
return toString (value);
}
/**
* If the <code>Object</code> is not <code>null</code>, is an
* <code>instanceof</code> <code>Double</code>, and represents
* the same primitive <code>double</code> value return
* <code>true</code>. Otherwise <code>false</code> is returned.
* <p>
* Note that there are two differences between <code>==</code> and
* <code>equals()</code>. <code>0.0d == -0.0d</code> returns <code>true</code>
* but <code>new Double(0.0d).equals(new Double(-0.0d))</code> returns
* <code>false</code>. And <code>Double.NaN == Double.NaN</code> returns
* <code>false</code>, but
* <code>new Double(Double.NaN).equals(new Double(Double.NaN))</code> returns
* <code>true</code>.
* <table border=1>
* <tr><th>Value of Double</th><th>String Representation</th></tr>
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
* <td><code>[-]number.number</code></td></tr>
* <tr><td>Other numeric value</td>
* <td><code>[-]&lt;digit&gt;.&lt;number&gt;
* E[-]&lt;number&gt;</code></td></tr>
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
* </table>
*
* @param obj the object to compare to
* @return whether the objects are semantically equal.
*/
public boolean equals (Object obj)
{
if (!(obj instanceof Double))
return false;
double d = ((Double) obj).value;
// GCJ LOCAL: this implementation is probably faster than
// Classpath's, especially once we inline doubleToLongBits.
return doubleToLongBits (value) == doubleToLongBits (d);
// END GCJ LOCAL
}
/**
* The hashcode is the value of the expression: <br>
* <br>
* <code>(int)(v^(v>>>32))</code><br>
* <br>
* where v is defined by: <br>
* <code>long v = Double.doubleToLongBits(this.longValue());</code><br>
*/
public int hashCode ()
{
long v = doubleToLongBits (value);
return (int) (v ^ (v >>> 32));
}
/**
* Return the value of this <code>Double</code> when cast to an
* <code>int</code>.
*/
public int intValue ()
{
return (int) value;
}
/**
* Return the value of this <code>Double</code> when cast to a
* <code>long</code>.
*/
public long longValue ()
{
return (long) value;
}
/**
* Return the value of this <code>Double</code> when cast to a
* <code>float</code>.
*/
public float floatValue ()
{
return (float) value;
}
/**
* Return the primitive <code>double</code> value represented by this
* <code>Double</code>.
*/
public double doubleValue ()
{
return value;
}
/**
* Return the result of calling <code>new Double(java.lang.String)</code>.
* Yes, negative zero <em>is</em> a possible value. Note that there is
* <em>always</em> a <code>.</code> and at least one digit printed after
* it: even if the number is 3, it will be printed as <code>3.0</code>.
* After the ".", all digits will be printed except trailing zeros. The
* result is rounded to the shortest decimal number which will parse back
* to the same double.
*
* @param s the <code>String</code> to convert to a <code>Double</code>.
* @return a new <code>Double</code> representing the <code>String</code>'s
* numeric value.
* <p>To create other output formats, use {@link java.text.NumberFormat}.
*
* @exception NullPointerException thrown if <code>String</code> is
* <code>null</code>.
* @exception NumberFormatException thrown if <code>String</code> cannot
* be parsed as a <code>double</code>.
* @see #Double(java.lang.String)
* @see #parseDouble(java.lang.String)
* @XXX specify where we are not in accord with the spec.
*
* @param d the <code>double</code> to convert
* @return the <code>String</code> representing the <code>double</code>
*/
public static Double valueOf (String s) throws NumberFormatException
public static String toString(double d)
{
return new Double (s);
return toString(d, false);
}
/**
* Return <code>true</code> if the value of this <code>Double</code>
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
* @return whether this <code>Double</code> is <code>NaN</code>.
* Create a new <code>Double</code> object using the <code>String</code>.
*
* @param s the <code>String</code> to convert
* @return the new <code>Double</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>double</code>
* @throws NullPointerException if <code>s</code> is null.
* @see #parseDouble(String)
*/
public boolean isNaN ()
public static Double valueOf(String s)
{
return isNaN (value);
// XXX just call new Double(parseDouble(s));
if (s == null)
throw new NullPointerException();
return new Double(s);
}
/**
* Parse the specified <code>String</code> as a <code>double</code>. The
* extended BNF grammar is as follows:<br>
* <pre>
* <em>DecodableString</em>:
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
* [ <code>f</code> | <code>F</code> | <code>d</code>
* | <code>D</code>] )
* <em>FloatingPoint</em>:
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
* [ <em>Exponent</em> ] )
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
* <em>Exponent</em>:
* ( ( <code>e</code> | <code>E</code> )
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
* </pre>
*
* <p>NaN and infinity are special cases, to allow parsing of the output
* of toString. Otherwise, the result is determined by calculating
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
* to the nearest double. Remember that many numbers cannot be precisely
* represented in floating point. In case of overflow, infinity is used,
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
* this does not accept Unicode digits outside the ASCII range.
*
* <p>If an unexpected character is found in the <code>String</code>, a
* <code>NumberFormatException</code> will be thrown. Leading and trailing
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
* internal to the actual number are not allowed.
*
* <p>To parse numbers according to another format, consider using
* {@link java.text.NumberFormat}.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
* @return the <code>double</code> value of <code>s</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>double</code>
* @throws NullPointerException if <code>s</code> is null
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
* @since 1.2
*/
public static native double parseDouble(String s);
/**
* Return <code>true</code> if the <code>double</code> has the same
* value as <code>NaN</code>, otherwise return <code>false</code>.
@ -268,7 +255,7 @@ public final class Double extends Number implements Comparable
* @param v the <code>double</code> to compare
* @return whether the argument is <code>NaN</code>.
*/
public static boolean isNaN (double v)
public static boolean isNaN(double v)
{
// This works since NaN != NaN is the only reflexive inequality
// comparison which returns true.
@ -276,77 +263,255 @@ public final class Double extends Number implements Comparable
}
/**
* Return <code>true</code> if the value of this <code>Double</code>
* is the same as <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Double</code> is (-/+) infinity.
*/
public boolean isInfinite ()
{
return isInfinite (value);
}
/**
* Return <code>true</code> if the <code>double</code> has a value
* equal to either <code>NEGATIVE_INFINITY</code> or
* Return <code>true</code> if the <code>double</code> has a value
* equal to either <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @param v the <code>double</code> to compare
* @return whether the argument is (-/+) infinity.
*/
public static boolean isInfinite (double v)
public static boolean isInfinite(double v)
{
return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY);
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
}
/**
* Returns 0 if the <code>double</code> value of the argument is
* equal to the value of this <code>Double</code>. Returns a number
* less than zero if the value of this <code>Double</code> is less
* than the <code>double</code> value of the argument, and returns a
* number greater than zero if the value of this <code>Double</code>
* is greater than the <code>double</code> value of the argument.
* <br>
* <code>Double.NaN</code> is greater than any number other than itself,
* even <code>Double.POSITIVE_INFINITY</code>.
* <br>
* <code>0.0d</code> is greater than <code>-0.0d</code>.
* Return <code>true</code> if the value of this <code>Double</code>
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
*
* @param d the Double to compare to.
* @return 0 if the <code>Double</code>s are the same, &lt; 0 if this
* <code>Double</code> is less than the <code>Double</code> in
* in question, or &gt; 0 if it is greater.
* @return whether this <code>Double</code> is <code>NaN</code>
*/
public boolean isNaN()
{
return isNaN(value);
}
/**
* Return <code>true</code> if the value of this <code>Double</code>
* is the same as <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Double</code> is (-/+) infinity
*/
public boolean isInfinite()
{
return isInfinite(value);
}
/**
* Convert the <code>double</code> value of this <code>Double</code>
* to a <code>String</code>. This method calls
* <code>Double.toString(double)</code> to do its dirty work.
*
* @return the <code>String</code> representation
* @see #toString(double)
*/
public String toString()
{
return toString(value);
}
/**
* Return the value of this <code>Double</code> as a <code>byte</code>.
*
* @return the byte value
* @since 1.1
*/
public byte byteValue()
{
return (byte) value;
}
/**
* Return the value of this <code>Double</code> as a <code>short</code>.
*
* @return the short value
* @since 1.1
*/
public short shortValue()
{
return (short) value;
}
/**
* Return the value of this <code>Double</code> as an <code>int</code>.
*
* @return the int value
*/
public int intValue()
{
return (int) value;
}
/**
* Return the value of this <code>Double</code> as a <code>long</code>.
*
* @return the long value
*/
public long longValue()
{
return (long) value;
}
/**
* Return the value of this <code>Double</code> as a <code>float</code>.
*
* @return the float value
*/
public float floatValue()
{
return (float) value;
}
/**
* Return the value of this <code>Double</code>.
*
* @return the double value
*/
public double doubleValue()
{
return value;
}
/**
* Return a hashcode representing this Object. <code>Double</code>'s hash
* code is calculated by:<br>
* <code>long v = Double.doubleToLongBits(doubleValue());<br>
* int hash = (int)(v^(v&gt;&gt;32))</code>.
*
* @return this Object's hash code
* @see #doubleToLongBits(double)
*/
public int hashCode()
{
long v = doubleToLongBits(value);
return (int) (v ^ (v >>> 32));
}
/**
* Returns <code>true</code> if <code>obj</code> is an instance of
* <code>Double</code> and represents the same double value. Unlike comparing
* two doubles with <code>==</code>, this treats two instances of
* <code>Double.NaN</code> as equal, but treats <code>0.0</code> and
* <code>-0.0</code> as unequal.
*
* <p>Note that <code>d1.equals(d2)<code> is identical to
* <code>doubleToLongBits(d1.doubleValue()) ==
* doubleToLongBits(d2.doubleValue())<code>.
*
* @param obj the object to compare
* @return whether the objects are semantically equal
*/
public boolean equals(Object obj)
{
if (! (obj instanceof Double))
return false;
double d = ((Double) obj).value;
// Avoid call to native method. However, some implementations, like gcj,
// are better off using floatToIntBits(value) == floatToIntBits(f).
// Check common case first, then check NaN and 0.
if (value == d)
return (value != 0) || (1 / value == 1 / d);
return isNaN(value) && isNaN(d);
}
/**
* Convert the double to the IEEE 754 floating-point "double format" bit
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
* (masked by 0x000fffffffffffffL) are the mantissa. This function
* collapses all versions of NaN to 0x7ff8000000000000L. The result of this
* function can be used as the argument to
* <code>Double.longBitsToDouble(long)</code> to obtain the original
* <code>double</code> value.
*
* @param value the <code>double</code> to convert
* @return the bits of the <code>double</code>
* @see #longBitsToDouble(long)
*/
public static native long doubleToLongBits(double value);
/**
* Convert the double to the IEEE 754 floating-point "double format" bit
* layout. Bit 63 (the most significant) is the sign bit, bits 62-52
* (masked by 0x7ff0000000000000L) represent the exponent, and bits 51-0
* (masked by 0x000fffffffffffffL) are the mantissa. This function
* leaves NaN alone, rather than collapsing to a canonical value. The
* result of this function can be used as the argument to
* <code>Double.longBitsToDouble(long)</code> to obtain the original
* <code>double</code> value.
*
* @param value the <code>double</code> to convert
* @return the bits of the <code>double</code>
* @see #longBitsToDouble(long)
*/
public static native long doubleToRawLongBits(double value);
/**
* Convert the argument in IEEE 754 floating-point "double format" bit
* layout to the corresponding float. Bit 63 (the most significant) is the
* sign bit, bits 62-52 (masked by 0x7ff0000000000000L) represent the
* exponent, and bits 51-0 (masked by 0x000fffffffffffffL) are the mantissa.
* This function leaves NaN alone, so that you can recover the bit pattern
* with <code>Double.doubleToRawLongBits(double)</code>.
*
* @param bits the bits to convert
* @return the <code>double</code> represented by the bits
* @see #doubleToLongBits(double)
* @see #doubleToRawLongBits(double)
*/
public static native double longBitsToDouble(long bits);
/**
* Compare two Doubles numerically by comparing their <code>double</code>
* values. The result is positive if the first is greater, negative if the
* second is greater, and 0 if the two are equal. However, this special
* cases NaN and signed zero as follows: NaN is considered greater than
* all other doubles, including <code>POSITIVE_INFINITY</code>, and positive
* zero is considered greater than negative zero.
*
* @param d the Double to compare
* @return the comparison
* @since 1.2
*/
public int compareTo (Double d)
public int compareTo(Double d)
{
return compare (value, d.value);
return compare(value, d.value);
}
/**
* Returns 0 if the first argument is equal to the second argument.
* Returns a number less than zero if the first argument is less than the
* second argument, and returns a number greater than zero if the first
* argument is greater than the second argument.
* <br>
* <code>Double.NaN</code> is greater than any number other than itself,
* even <code>Double.POSITIVE_INFINITY</code>.
* <br>
* <code>0.0d</code> is greater than <code>-0.0d</code>.
* Behaves like <code>compareTo(Double)</code> unless the Object
* is not an <code>Double</code>.
*
* @param x the first double to compare.
* @param y the second double to compare.
* @return 0 if the arguments are the same, &lt; 0 if the
* first argument is less than the second argument in
* in question, or &gt; 0 if it is greater.
* @param o the object to compare
* @return the comparison
* @throws ClassCastException if the argument is not a <code>Double</code>
* @see #compareTo(Double)
* @see Comparable
* @since 1.2
*/
public int compareTo(Object o)
{
return compare(value, ((Double) o).value);
}
/**
* Behaves like <code>new Double(x).compareTo(new Double(y))</code>; in
* other words this compares two doubles, special casing NaN and zero,
* without the overhead of objects.
*
* @param x the first double to compare
* @param y the second double to compare
* @return the comparison
* @since 1.4
*/
public static int compare (double x, double y)
public static int compare(double x, double y)
{
if (isNaN (x))
return isNaN (y) ? 0 : 1;
if (isNaN (y))
if (isNaN(x))
return isNaN(y) ? 0 : 1;
if (isNaN(y))
return -1;
// recall that 0.0 == -0.0, so we convert to infinites and try again
if (x == 0 && y == 0)
@ -358,171 +523,18 @@ public final class Double extends Number implements Comparable
}
/**
* Compares the specified <code>Object</code> to this <code>Double</code>
* if and only if the <code>Object</code> is an instanceof
* <code>Double</code>.
* Helper method to convert to string.
*
* @param o the Object to compare to.
* @return 0 if the <code>Double</code>s are the same, &lt; 0 if this
* <code>Double</code> is less than the <code>Double</code> in
* in question, or &gt; 0 if it is greater.
* @throws ClassCastException if the argument is not a <code>Double</code>
* @param d the double to convert
* @param isFloat true if the conversion is requested by Float (results in
* fewer digits)
*/
public int compareTo (Object o)
{
return compareTo ((Double) o);
}
// Package visible for use by Float.
static native String toString(double d, boolean isFloat);
/**
* Convert the <code>double</code> to a <code>String</code>.
* <P>
*
* Floating-point string representation is fairly complex: here is a
* rundown of the possible values. "<CODE>[-]</CODE>" indicates that a
* negative sign will be printed if the value (or exponent) is negative.
* "<CODE>&lt;number&gt;</CODE>" means a string of digits (0-9).
* "<CODE>&lt;digit&gt;</CODE>" means a single digit (0-9).
* <P>
*
* <TABLE BORDER=1>
* <TR><TH>Value of Float</TH><TH>String Representation</TH></TR>
* <TR>
* <TD>[+-] 0</TD>
* <TD>[<CODE>-</CODE>]<CODE>0.0</CODE></TD>
* </TR>
* <TR>
* <TD>Between [+-] 10<SUP>-3</SUP> and 10<SUP>7</SUP></TD>
* <TD><CODE>[-]number.number</CODE></TD>
* </TR>
* <TR>
* <TD>Other numeric value</TD>
* <TD><CODE>[-]&lt;digit&gt;.&lt;number&gt;E[-]&lt;number&gt;</CODE></TD>
* </TR>
* <TR>
* <TD>[+-] infinity</TD>
* <TD><CODE>[-]Infinity</CODE></TD>
* </TR>
* <TR>
* <TD>NaN</TD>
* <TD><CODE>NaN</CODE></TD>
* </TR>
* </TABLE>
*
* Yes, negative zero <EM>is</EM> a possible value. Note that there is
* <EM>always</EM> a <CODE>.</CODE> and at least one digit printed after
* it: even if the number is 3, it will be printed as <CODE>3.0</CODE>.
* After the ".", all digits will be printed except trailing zeros. No
* truncation or rounding is done by this function.
*
*
* @XXX specify where we are not in accord with the spec.
*
* @param d the <code>double</code> to convert
* @return the <code>String</code> representing the <code>double</code>.
*/
public static String toString (double d)
{
return toString (d, false);
}
static native String toString (double d, boolean isFloat);
/**
* Return the long bits of the specified <code>double</code>.
* The result of this function can be used as the argument to
* <code>Double.longBitsToDouble(long)</code> to obtain the
* original <code>double</code> value.
*
* @param value the <code>double</code> to convert
* @return the bits of the <code>double</code>.
*/
public static native long doubleToLongBits (double value);
/**
* Return the long bits of the specified <code>double</code>.
* The result of this function can be used as the argument to
* <code>Double.longBitsToDouble(long)</code> to obtain the
* original <code>double</code> value. This method differs from
* <code>doubleToLongBits</code> in that it does not collapse
* NaN values.
*
* @param value the <code>double</code> to convert
* @return the bits of the <code>double</code>.
*/
public static native long doubleToRawLongBits (double value);
/**
* Return the <code>double</code> represented by the long
* bits specified.
*
* @param bits the long bits representing a <code>double</code>
* @return the <code>double</code> represented by the bits.
*/
public static native double longBitsToDouble (long bits);
/**
* Parse the specified <code>String</code> as a <code>double</code>.
*
* The number is really read as <em>n * 10<sup>exponent</sup></em>. The
* first number is <em>n</em>, and if there is an "<code>E</code>"
* ("<code>e</code>" is also acceptable), then the integer after that is
* the exponent.
* <P>
* Here are the possible forms the number can take:
* <BR>
* <TABLE BORDER=1>
* <TR><TH>Form</TH><TH>Examples</TH></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;[.]</CODE></TD><TD>345., -10, 12</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;</CODE></TD><TD>40.2, 80.00, -12.30</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;[.]E[+-]&lt;number&gt;</CODE></TD><TD>80E12, -12e+7, 4.E-123</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;E[+-]&lt;number&gt;</CODE></TD><TD>6.02e-22, -40.2E+6, 12.3e9</TD></TR>
* </TABLE>
*
* "<code>[+-]</code>" means either a plus or minus sign may go there, or
* neither, in which case + is assumed.
* <BR>
* "<code>[.]</code>" means a dot may be placed here, but is optional.
* <BR>
* "<code>&lt;number&gt;</code>" means a string of digits (0-9), basically
* an integer. "<code>&lt;number&gt;.&lt;number&gt;</code>" is basically
* a real number, a floating-point value.
* <P>
*
* Remember that a <code>double</code> has a limited range. If the
* number you specify is greater than <code>Double.MAX_VALUE</code> or less
* than <code>-Double.MAX_VALUE</code>, it will be set at
* <code>Double.POSITIVE_INFINITY</code> or
* <code>Double.NEGATIVE_INFINITY</code>, respectively.
* <P>
* Note also that <code>double</code> does not have perfect precision. Many
* numbers cannot be precisely represented. The number you specify
* will be rounded to the nearest representable value.
* <code>Double.MIN_VALUE</code> is the margin of error for
* <code>double</code> values.
* <P>
* If an unexpected character is found in the <code>String</code>, a
* <code>NumberFormatException</code> will be thrown. Spaces are not
* allowed, and will cause the same exception.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
* @return the value of the <code>String</code> as a <code>double</code>.
* @exception NumberFormatException when the string cannot be parsed to a
* <code>double</code>.
* @exception NullPointerException when the string is null.
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
* @since 1.2
*/
public static native double parseDouble (String s)
throws NumberFormatException;
/**
* Initialize JNI cache. This method is called only by the
* Initialize JNI cache. This method is called only by the
* static initializer when using JNI.
*/
private static native void initIDs ();
private static native void initIDs();
}

View file

@ -1,4 +1,4 @@
/* java.lang.Float
/* Float.java -- object wrapper for float
Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@ -40,12 +40,6 @@ package java.lang;
import gnu.classpath.Configuration;
/* Written using "Java Class Libraries", 2nd edition, ISBN 0-201-31002-3
* "The Java Language Specification", ISBN 0-201-63451-1
* plus online API docs for JDK 1.2 beta from http://www.javasoft.com.
* Status: Believed complete and correct.
*/
/**
* Instances of class <code>Float</code> represent primitive
* <code>float</code> values.
@ -55,10 +49,17 @@ import gnu.classpath.Configuration;
*
* @author Paul Fisher
* @author Andrew Haley <aph@cygnus.com>
* @since JDK 1.0
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.0
* @status updated to 1.4
*/
public final class Float extends Number implements Comparable
{
/**
* Compatible with JDK 1.0+.
*/
private static final long serialVersionUID = -2671257302660747028L;
/**
* The maximum positive value a <code>double</code> may represent
* is 3.4028235e+38f.
@ -74,46 +75,50 @@ public final class Float extends Number implements Comparable
/**
* The value of a float representation -1.0/0.0, negative infinity.
*/
public static final float NEGATIVE_INFINITY = -1.0f/0.0f;
public static final float NEGATIVE_INFINITY = -1.0f / 0.0f;
/**
* The value of a float representation 1.0/0.0, positive infinity.
*/
public static final float POSITIVE_INFINITY = 1.0f/0.0f;
public static final float POSITIVE_INFINITY = 1.0f / 0.0f;
/**
* All IEEE 754 values of NaN have the same value in Java.
*/
public static final float NaN = 0.0f/0.0f;
public static final float NaN = 0.0f / 0.0f;
/**
* The primitive type <code>float</code> is represented by this
* The primitive type <code>float</code> is represented by this
* <code>Class</code> object.
* @since 1.1
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('F');
/**
* The immutable value of this Float.
*
* @serial the wrapped float
*/
private final float value;
private static final long serialVersionUID = -2671257302660747028L;
/**
* Load native routines necessary for this class.
*/
static
{
if (Configuration.INIT_LOAD_LIBRARY)
{
System.loadLibrary ("javalang");
System.loadLibrary("javalang");
}
}
/**
* Create a <code>float</code> from the primitive <code>Float</code>
* Create a <code>Float</code> from the primitive <code>float</code>
* specified.
*
* @param value the <code>Float</code> argument
* @param value the <code>float</code> argument
*/
public Float (float value)
public Float(float value)
{
this.value = value;
}
@ -124,257 +129,134 @@ public final class Float extends Number implements Comparable
*
* @param value the <code>double</code> argument
*/
public Float (double value)
public Float(double value)
{
this.value = (float)value;
this.value = (float) value;
}
/**
* Create a <code>Float</code> from the specified <code>String</code>.
*
* This method calls <code>Float.parseFloat()</code>.
*
* @exception NumberFormatException when the <code>String</code> cannot
* be parsed into a <code>Float</code>.
* @param s the <code>String</code> to convert
* @see #parseFloat(java.lang.String)
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #parseFloat(String)
*/
public Float (String s) throws NumberFormatException
public Float(String s)
{
this.value = parseFloat (s);
}
/**
* Parse the specified <code>String</code> as a <code>float</code>.
*
* The number is really read as <em>n * 10<sup>exponent</sup></em>. The
* first number is <em>n</em>, and if there is an "<code>E</code>"
* ("<code>e</code>" is also acceptable), then the integer after that is
* the exponent.
* <P>
* Here are the possible forms the number can take:
* <BR>
* <TABLE BORDER=1>
* <TR><TH>Form</TH><TH>Examples</TH></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;[.]</CODE></TD><TD>345., -10, 12</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;</CODE></TD><TD>40.2, 80.00, -12.30</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;[.]E[+-]&lt;number&gt;</CODE></TD><TD>80E12, -12e+7, 4.E-123</TD></TR>
* <TR><TD><CODE>[+-]&lt;number&gt;.&lt;number&gt;E[+-]&lt;number&gt;</CODE></TD><TD>6.02e-22, -40.2E+6, 12.3e9</TD></TR>
* </TABLE>
*
* "<code>[+-]</code>" means either a plus or minus sign may go there, or
* neither, in which case + is assumed.
* <BR>
* "<code>[.]</code>" means a dot may be placed here, but is optional.
* <BR>
* "<code>&lt;number&gt;</code>" means a string of digits (0-9), basically
* an integer. "<code>&lt;number&gt;.&lt;number&gt;</code>" is basically
* a real number, a floating-point value.
* <P>
* Remember that a <code>float</code> has a limited range. If the
* number you specify is greater than <code>Float.MAX_VALUE</code> or less
* than <code>-Float.MAX_VALUE</code>, it will be set at
* <code>Float.POSITIVE_INFINITY</code> or
* <code>Float.NEGATIVE_INFINITY</code>, respectively.
* <P>
*
* Note also that <code>float</code> does not have perfect precision. Many
* numbers cannot be precisely represented. The number you specify
* will be rounded to the nearest representable value.
* <code>Float.MIN_VALUE</code> is the margin of error for <code>float</code>
* values.
* <P>
* If an unexpected character is found in the <code>String</code>, a
* <code>NumberFormatException</code> will be thrown. Spaces are not
* allowed and will cause this exception to be thrown.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
* @return the value of the <code>String</code> as a <code>float</code>.
* @exception NumberFormatException when the string cannot be parsed to a
* <code>float</code>.
* @since JDK 1.2
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
*/
public static float parseFloat (String s) throws NumberFormatException
{
// The spec says that parseFloat() should work like
// Double.valueOf(). This is equivalent, in our implementation,
// but more efficient.
return (float) Double.parseDouble (s);
}
/**
* Convert the <code>float</code> value of this <code>Float</code>
* to a <code>String</code>. This method calls
* <code>Float.toString(float)</code> to do its dirty work.
*
* @return the <code>String</code> representation of this <code>Float</code>.
* @see #toString(float)
*/
public String toString ()
{
return toString (value);
}
/**
* If the <code>Object</code> is not <code>null</code>, is an
* <code>instanceof</code> <code>Float</code>, and represents
* the same primitive <code>float</code> value return
* <code>true</code>. Otherwise <code>false</code> is returned.
* <p>
* Note that there are two differences between <code>==</code> and
* <code>equals()</code>. <code>0.0f == -0.0f</code> returns <code>true</code>
* but <code>new Float(0.0f).equals(new Float(-0.0f))</code> returns
* <code>false</code>. And <code>Float.NaN == Float.NaN</code> returns
* <code>false</code>, but
* <code>new Float(Float.NaN).equals(new Float(Float.NaN))</code> returns
* <code>true</code>.
*
* @param obj the object to compare to
* @return whether the objects are semantically equal.
*/
public boolean equals (Object obj)
{
if (!(obj instanceof Float))
return false;
float f = ((Float) obj).value;
// GCJ LOCAL: this implementation is probably faster than
// Classpath's, especially once we inline floatToIntBits.
return floatToIntBits (value) == floatToIntBits (f);
// END GCJ LOCAL
}
/**
* Return a hashcode representing this Object.
* <code>Float</code>'s hash code is calculated by calling the
* <code>floatToIntBits()</code> function.
* @return this Object's hash code.
* @see java.lang.Float.floatToIntBits(float)
*/
public int hashCode ()
{
return floatToIntBits (value);
}
/**
* Return the value of this <code>Double</code> when cast to an
* <code>int</code>.
*/
public int intValue ()
{
return (int) value;
}
/**
* Return the value of this <code>Double</code> when cast to a
* <code>long</code>.
*/
public long longValue ()
{
return (long) value;
}
/**
* Return the value of this <code>Double</code> when cast to a
* <code>float</code>.
*/
public float floatValue ()
{
return (float) value;
}
/**
* Return the primitive <code>double</code> value represented by this
* <code>Double</code>.
*/
public double doubleValue ()
{
return (double) value;
value = parseFloat(s);
}
/**
* Convert the <code>float</code> to a <code>String</code>.
* <P>
*
* Floating-point string representation is fairly complex: here is a
* rundown of the possible values. "<CODE>[-]</CODE>" indicates that a
* rundown of the possible values. "<code>[-]</code>" indicates that a
* negative sign will be printed if the value (or exponent) is negative.
* "<CODE>&lt;number&gt;</CODE>" means a string of digits (0-9).
* "<CODE>&lt;digit&gt;</CODE>" means a single digit (0-9).
* <P>
* "<code>&lt;number&gt;</code>" means a string of digits ('0' to '9').
* "<code>&lt;digit&gt;</code>" means a single digit ('0' to '9').<br>
*
* <TABLE BORDER=1>
* <TR><TH>Value of Float</TH><TH>String Representation</TH></TR>
* <TR>
* <TD>[+-] 0</TD>
* <TD>[<CODE>-</CODE>]<CODE>0.0</CODE></TD>
* </TR>
* <TR>
* <TD>Between [+-] 10<SUP>-3</SUP> and 10<SUP>7</SUP></TD>
* <TD><CODE>[-]number.number</CODE></TD>
* </TR>
* <TR>
* <TD>Other numeric value</TD>
* <TD><CODE>[-]&lt;digit&gt;.&lt;number&gt;E[-]&lt;number&gt;</CODE></TD>
* </TR>
* <TR>
* <TD>[+-] infinity</TD>
* <TD><CODE>[-]Infinity</CODE></TD>
* </TR>
* <TR>
* <TD>NaN</TD>
* <TD><CODE>NaN</CODE></TD>
* </TR>
* </TABLE>
* <table border=1>
* <tr><th>Value of Float</th><th>String Representation</th></tr>
* <tr><td>[+-] 0</td> <td><code>[-]0.0</code></td></tr>
* <tr><td>Between [+-] 10<sup>-3</sup> and 10<sup>7</sup>, exclusive</td>
* <td><code>[-]number.number</code></td></tr>
* <tr><td>Other numeric value</td>
* <td><code>[-]&lt;digit&gt;.&lt;number&gt;
* E[-]&lt;number&gt;</code></td></tr>
* <tr><td>[+-] infinity</td> <td><code>[-]Infinity</code></td></tr>
* <tr><td>NaN</td> <td><code>NaN</code></td></tr>
* </table>
*
* Yes, negative zero <EM>is</EM> a possible value. Note that there is
* <EM>always</EM> a <CODE>.</CODE> and at least one digit printed after
* it: even if the number is 3, it will be printed as <CODE>3.0</CODE>.
* After the ".", all digits will be printed except trailing zeros. No
* truncation or rounding is done by this function.
* Yes, negative zero <em>is</em> a possible value. Note that there is
* <em>always</em> a <code>.</code> and at least one digit printed after
* it: even if the number is 3, it will be printed as <code>3.0</code>.
* After the ".", all digits will be printed except trailing zeros. The
* result is rounded to the shortest decimal number which will parse back
* to the same float.
*
* <p>To create other output formats, use {@link java.text.NumberFormat}.
*
* @XXX specify where we are not in accord with the spec.
*
* @param f the <code>float</code> to convert
* @return the <code>String</code> representing the <code>float</code>.
* @return the <code>String</code> representing the <code>float</code>
*/
public static String toString (float f)
public static String toString(float f)
{
return Double.toString ((double) f, true);
return Double.toString(f, true);
}
/**
* Return the result of calling <code>new Float(java.lang.String)</code>.
* Creates a new <code>Float</code> object using the <code>String</code>.
*
* @param s the <code>String</code> to convert to a <code>Float</code>.
* @return a new <code>Float</code> representing the <code>String</code>'s
* numeric value.
*
* @exception NumberFormatException thrown if <code>String</code> cannot
* be parsed as a <code>double</code>.
* @see #Float(java.lang.String)
* @see #parseFloat(java.lang.String)
* @param s the <code>String</code> to convert
* @return the new <code>Float</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #parseFloat(String)
*/
public static Float valueOf (String s) throws NumberFormatException
public static Float valueOf(String s)
{
return new Float (s);
return new Float(parseFloat(s));
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
* @return whether this <code>Float</code> is <code>NaN</code>.
* Parse the specified <code>String</code> as a <code>float</code>. The
* extended BNF grammar is as follows:<br>
* <pre>
* <em>DecodableString</em>:
* ( [ <code>-</code> | <code>+</code> ] <code>NaN</code> )
* | ( [ <code>-</code> | <code>+</code> ] <code>Infinity</code> )
* | ( [ <code>-</code> | <code>+</code> ] <em>FloatingPoint</em>
* [ <code>f</code> | <code>F</code> | <code>d</code>
* | <code>D</code>] )
* <em>FloatingPoint</em>:
* ( { <em>Digit</em> }+ [ <code>.</code> { <em>Digit</em> } ]
* [ <em>Exponent</em> ] )
* | ( <code>.</code> { <em>Digit</em> }+ [ <em>Exponent</em> ] )
* <em>Exponent</em>:
* ( ( <code>e</code> | <code>E</code> )
* [ <code>-</code> | <code>+</code> ] { <em>Digit</em> }+ )
* <em>Digit</em>: <em><code>'0'</code> through <code>'9'</code></em>
* </pre>
*
* <p>NaN and infinity are special cases, to allow parsing of the output
* of toString. Otherwise, the result is determined by calculating
* <em>n * 10<sup>exponent</sup></em> to infinite precision, then rounding
* to the nearest float. Remember that many numbers cannot be precisely
* represented in floating point. In case of overflow, infinity is used,
* and in case of underflow, signed zero is used. Unlike Integer.parseInt,
* this does not accept Unicode digits outside the ASCII range.
*
* <p>If an unexpected character is found in the <code>String</code>, a
* <code>NumberFormatException</code> will be thrown. Leading and trailing
* 'whitespace' is ignored via <code>String.trim()</code>, but spaces
* internal to the actual number are not allowed.
*
* <p>To parse numbers according to another format, consider using
* {@link java.text.NumberFormat}.
*
* @XXX specify where/how we are not in accord with the spec.
*
* @param str the <code>String</code> to convert
* @return the <code>float</code> value of <code>s</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>float</code>
* @throws NullPointerException if <code>s</code> is null
* @see #MIN_VALUE
* @see #MAX_VALUE
* @see #POSITIVE_INFINITY
* @see #NEGATIVE_INFINITY
* @since 1.2
*/
public boolean isNaN ()
public static float parseFloat(String s)
{
return isNaN (value);
// XXX Rounding parseDouble() causes some errors greater than 1 ulp from
// the infinitely precise decimal.
return (float) Double.parseDouble(s);
}
/**
@ -382,9 +264,9 @@ public final class Float extends Number implements Comparable
* value as <code>NaN</code>, otherwise return <code>false</code>.
*
* @param v the <code>float</code> to compare
* @return whether the argument is <code>NaN</code>.
* @return whether the argument is <code>NaN</code>
*/
public static boolean isNaN (float v)
public static boolean isNaN(float v)
{
// This works since NaN != NaN is the only reflexive inequality
// comparison which returns true.
@ -392,111 +274,250 @@ public final class Float extends Number implements Comparable
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is (-/+) infinity.
*/
public boolean isInfinite ()
{
return isInfinite (value);
}
/**
* Return <code>true</code> if the <code>float</code> has a value
* equal to either <code>NEGATIVE_INFINITY</code> or
* Return <code>true</code> if the <code>float</code> has a value
* equal to either <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @param v the <code>float</code> to compare
* @return whether the argument is (-/+) infinity.
* @return whether the argument is (-/+) infinity
*/
public static boolean isInfinite (float v)
public static boolean isInfinite(float v)
{
return (v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY);
return v == POSITIVE_INFINITY || v == NEGATIVE_INFINITY;
}
/**
* Return the int bits of the specified <code>float</code>.
* The result of this function can be used as the argument to
* <code>Float.intBitsToFloat(long)</code> to obtain the
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NaN</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is <code>NaN</code>
*/
public boolean isNaN()
{
return isNaN(value);
}
/**
* Return <code>true</code> if the value of this <code>Float</code>
* is the same as <code>NEGATIVE_INFINITY</code> or
* <code>POSITIVE_INFINITY</code>, otherwise return <code>false</code>.
*
* @return whether this <code>Float</code> is (-/+) infinity
*/
public boolean isInfinite()
{
return isInfinite(value);
}
/**
* Convert the <code>float</code> value of this <code>Float</code>
* to a <code>String</code>. This method calls
* <code>Float.toString(float)</code> to do its dirty work.
*
* @return the <code>String</code> representation
* @see #toString(float)
*/
public String toString()
{
return toString(value);
}
/**
* Return the value of this <code>Float</code> as a <code>byte</code>.
*
* @return the byte value
* @since 1.1
*/
public byte byteValue()
{
return (byte) value;
}
/**
* Return the value of this <code>Float</code> as a <code>short</code>.
*
* @return the short value
* @since 1.1
*/
public short shortValue()
{
return (short) value;
}
/**
* Return the value of this <code>Integer</code> as an <code>int</code>.
*
* @return the int value
*/
public int intValue()
{
return (int) value;
}
/**
* Return the value of this <code>Integer</code> as a <code>long</code>.
*
* @return the long value
*/
public long longValue()
{
return (long) value;
}
/**
* Return the value of this <code>Float</code>.
*
* @return the float value
*/
public float floatValue()
{
return value;
}
/**
* Return the value of this <code>Float</code> as a <code>double</code>
*
* @return the double value
*/
public double doubleValue()
{
return value;
}
/**
* Return a hashcode representing this Object. <code>Float</code>'s hash
* code is calculated by calling <code>floatToIntBits(floatValue())</code>.
*
* @return this Object's hash code
* @see #floatToIntBits(float)
*/
public int hashCode()
{
return floatToIntBits(value);
}
/**
* Returns <code>true</code> if <code>obj</code> is an instance of
* <code>Float</code> and represents the same float value. Unlike comparing
* two floats with <code>==</code>, this treats two instances of
* <code>Float.NaN</code> as equal, but treats <code>0.0</code> and
* <code>-0.0</code> as unequal.
*
* <p>Note that <code>f1.equals(f2)<code> is identical to
* <code>floatToIntBits(f1.floatValue()) ==
* floatToIntBits(f2.floatValue())<code>.
*
* @param obj the object to compare
* @return whether the objects are semantically equal
*/
public boolean equals(Object obj)
{
if (! (obj instanceof Float))
return false;
float f = ((Float) obj).value;
// Avoid call to native method. However, some implementations, like gcj,
// are better off using floatToIntBits(value) == floatToIntBits(f).
// Check common case first, then check NaN and 0.
if (value == f)
return (value != 0) || (1 / value == 1 / f);
return isNaN(value) && isNaN(f);
}
/**
* Convert the float to the IEEE 754 floating-point "single format" bit
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
* (masked by 0x7f800000) represent the exponent, and bits 22-0
* (masked by 0x007fffff) are the mantissa. This function collapses all
* versions of NaN to 0x7fc00000. The result of this function can be used
* as the argument to <code>Float.intBitsToFloat(int)</code> to obtain the
* original <code>float</code> value.
*
* @param value the <code>float</code> to convert
* @return the bits of the <code>float</code>.
* @return the bits of the <code>float</code>
* @see #intBitsToFloat(int)
*/
public static native int floatToIntBits (float value);
public static native int floatToIntBits(float value);
/**
* Return the int bits of the specified <code>float</code>.
* The result of this function can be used as the argument to
* <code>Float.intBitsToFloat(long)</code> to obtain the
* original <code>float</code> value. The difference between
* this function and <code>floatToIntBits</code> is that this
* function does not collapse NaN values.
* Convert the float to the IEEE 754 floating-point "single format" bit
* layout. Bit 31 (the most significant) is the sign bit, bits 30-23
* (masked by 0x7f800000) represent the exponent, and bits 22-0
* (masked by 0x007fffff) are the mantissa. This function leaves NaN alone,
* rather than collapsing to a canonical value. The result of this function
* can be used as the argument to <code>Float.intBitsToFloat(int)</code> to
* obtain the original <code>float</code> value.
*
* @param value the <code>float</code> to convert
* @return the bits of the <code>float</code>.
* @return the bits of the <code>float</code>
* @see #intBitsToFloat(int)
*/
public static native int floatToRawIntBits (float value);
public static native int floatToRawIntBits(float value);
/**
* Return the <code>float</code> represented by the long
* bits specified.
* Convert the argument in IEEE 754 floating-point "single format" bit
* layout to the corresponding float. Bit 31 (the most significant) is the
* sign bit, bits 30-23 (masked by 0x7f800000) represent the exponent, and
* bits 22-0 (masked by 0x007fffff) are the mantissa. This function leaves
* NaN alone, so that you can recover the bit pattern with
* <code>Float.floatToRawIntBits(float)</code>.
*
* @param bits the long bits representing a <code>double</code>
* @return the <code>float</code> represented by the bits.
* @param bits the bits to convert
* @return the <code>float</code> represented by the bits
* @see #floatToIntBits(float)
* @see #floatToRawIntBits(float)
*/
public static native float intBitsToFloat (int bits);
public static native float intBitsToFloat(int bits);
/**
* Returns 0 if the <code>float</code> value of the argument is
* equal to the value of this <code>Float</code>. Returns a number
* less than zero if the value of this <code>Float</code> is less
* than the <code>Float</code> value of the argument, and returns a
* number greater than zero if the value of this <code>Float</code>
* is greater than the <code>float</code> value of the argument.
* <br>
* <code>Float.NaN</code> is greater than any number other than itself,
* even <code>Float.POSITIVE_INFINITY</code>.
* <br>
* <code>0.0</code> is greater than <code>-0.0</code>.
*
* @param f the Float to compare to.
* @return 0 if the <code>Float</code>s are the same, &lt; 0 if this
* <code>Float</code> is less than the <code>Float</code> in
* in question, or &gt; 0 if it is greater.
* Compare two Floats numerically by comparing their <code>float</code>
* values. The result is positive if the first is greater, negative if the
* second is greater, and 0 if the two are equal. However, this special
* cases NaN and signed zero as follows: NaN is considered greater than
* all other floats, including <code>POSITIVE_INFINITY</code>, and positive
* zero is considered greater than negative zero.
*
* @param f the Float to compare
* @return the comparison
* @since 1.2
*/
public int compareTo (Float f)
public int compareTo(Float f)
{
return compare (value, f.value);
return compare(value, f.value);
}
/**
* Returns 0 if the first argument is equal to the second argument.
* Returns a number less than zero if the first argument is less than the
* second argument, and returns a number greater than zero if the first
* argument is greater than the second argument.
* <br>
* <code>Float.NaN</code> is greater than any number other than itself,
* even <code>Float.POSITIVE_INFINITY</code>.
* <br>
* <code>0.0</code> is greater than <code>-0.0</code>.
* Behaves like <code>compareTo(Float)</code> unless the Object
* is not an <code>Float</code>.
*
* @param x the first float to compare.
* @param y the second float to compare.
* @return 0 if the arguments are the same, &lt; 0 if the
* first argument is less than the second argument in
* in question, or &gt; 0 if it is greater.
* @param o the object to compare
* @return the comparison
* @throws ClassCastException if the argument is not a <code>Float</code>
* @see #compareTo(Float)
* @see Comparable
* @since 1.2
*/
public int compareTo(Object o)
{
return compare(value, ((Float) o).value);
}
/**
* Behaves like <code>new Float(x).compareTo(new Float(y))</code>; in
* other words this compares two floats, special casing NaN and zero,
* without the overhead of objects.
*
* @param x the first float to compare
* @param y the second float to compare
* @return the comparison
* @since 1.4
*/
public static int compare (float x, float y)
public static int compare(float x, float y)
{
if (isNaN (x))
return isNaN (y) ? 0 : 1;
if (isNaN (y))
if (isNaN(x))
return isNaN(y) ? 0 : 1;
if (isNaN(y))
return -1;
// recall that 0.0 == -0.0, so we convert to infinities and try again
if (x == 0 && y == 0)
@ -506,23 +527,4 @@ public final class Float extends Number implements Comparable
return x > y ? 1 : -1;
}
/**
* Compares the specified <code>Object</code> to this <code>Float</code>
* if and only if the <code>Object</code> is an instanceof
* <code>Float</code>.
* Otherwise it throws a <code>ClassCastException</code>
*
* @param o the Object to compare to.
* @return 0 if the <code>Float</code>s are the same, &lt; 0 if this
* <code>Float</code> is less than the <code>Float</code> in
* in question, or &gt; 0 if it is greater.
* @throws ClassCastException if the argument is not a <code>Float</code>
*
* @since 1.2
*/
public int compareTo (Object o)
{
return compareTo ((Float) o);
}
}

View file

@ -1,5 +1,5 @@
/* java.lang.Integer
Copyright (C) 1998, 1999, 2001 Free Software Foundation, Inc.
/* Integer.java -- object wrapper for int
Copyright (C) 1998, 1999, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@ -48,36 +48,45 @@ package java.lang;
* @author Paul Fisher
* @author John Keiser
* @author Warren Levy
* @since JDK 1.0
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.0
* @status updated to 1.4
*/
public final class Integer extends Number implements Comparable
{
// compatible with JDK 1.0.2+
/**
* Compatible with JDK 1.0.2+.
*/
private static final long serialVersionUID = 1360826667806852920L;
/**
* The minimum value an <code>int</code> can represent is -2147483648.
* The minimum value an <code>int</code> can represent is -2147483648 (or
* -2<sup>31</sup>).
*/
public static final int MIN_VALUE = 0x80000000;
/**
* The maximum value an <code>int</code> can represent is 2147483647.
* The maximum value an <code>int</code> can represent is 2147483647 (or
* 2<sup>31</sup> - 1).
*/
public static final int MAX_VALUE = 0x7fffffff;
/**
* The primitive type <code>int</code> is represented by this
* The primitive type <code>int</code> is represented by this
* <code>Class</code> object.
* @since 1.1
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass ('I');
public static final Class TYPE = VMClassLoader.getPrimitiveClass('I');
/**
* The immutable value of this Integer.
*
* @serial the wrapped int
*/
private final int value;
/**
* Create an <code>Integer</code> object representing the value of the
* Create an <code>Integer</code> object representing the value of the
* <code>int</code> argument.
*
* @param value the value to use
@ -88,193 +97,29 @@ public final class Integer extends Number implements Comparable
}
/**
* Create an <code>Integer</code> object representing the value of the
* Create an <code>Integer</code> object representing the value of the
* argument after conversion to an <code>int</code>.
*
* @param s the string to convert.
* @param s the string to convert
* @throws NumberFormatException if the String does not contain an int
* @see #valueOf(String)
*/
public Integer(String s) throws NumberFormatException
public Integer(String s)
{
value = parseInt(s, 10);
}
/**
* Return a hashcode representing this Object.
*
* <code>Integer</code>'s hash code is calculated by simply returning its
* value.
*
* @return this Object's hash code.
*/
public int hashCode()
{
return value;
}
/**
* If the <code>Object</code> is not <code>null</code>, is an
* <code>instanceof</code> <code>Integer</code>, and represents
* the same primitive <code>int</code> value return
* <code>true</code>. Otherwise <code>false</code> is returned.
*/
public boolean equals(Object obj)
{
return obj instanceof Integer && value == ((Integer)obj).value;
}
/**
* Get the specified system property as an <code>Integer</code>.
*
* The <code>decode()</code> method will be used to interpret the value of
* the property.
* @param nm the name of the system property
* @return the system property as an <code>Integer</code>, or
* <code>null</code> if the property is not found or cannot be
* decoded as an <code>Integer</code>.
* @see java.lang.System#getProperty(java.lang.String)
* @see #decode(int)
*/
public static Integer getInteger(String nm)
{
return getInteger(nm, null);
}
/**
* Get the specified system property as an <code>Integer</code>, or use a
* default <code>int</code> value if the property is not found or is not
* decodable.
*
* The <code>decode()</code> method will be used to interpret the value of
* the property.
*
* @param nm the name of the system property
* @param val the default value to use if the property is not found or not
* a number.
* @return the system property as an <code>Integer</code>, or the default
* value if the property is not found or cannot be decoded as an
* <code>Integer</code>.
* @see java.lang.System#getProperty(java.lang.String)
* @see #decode(int)
* @see #getInteger(java.lang.String,java.lang.Integer)
*/
public static Integer getInteger(String nm, int val)
{
Integer result = getInteger(nm, null);
return (result == null) ? new Integer(val) : result;
}
/**
* Get the specified system property as an <code>Integer</code>, or use a
* default <code>Integer</code> value if the property is not found or is
* not decodable.
*
* The <code>decode()</code> method will be used to interpret the value of
* the property.
*
* @param nm the name of the system property
* @param val the default value to use if the property is not found or not
* a number.
* @return the system property as an <code>Integer</code>, or the default
* value if the property is not found or cannot be decoded as an
* <code>Integer</code>.
* @see java.lang.System#getProperty(java.lang.String)
* @see #decode(int)
* @see #getInteger(java.lang.String,int)
*/
public static Integer getInteger(String nm, Integer def)
{
String val = System.getProperty(nm);
if (val == null) return def;
try
{
return decode(val);
}
catch (NumberFormatException e)
{
return def;
}
}
private static String toUnsignedString(int num, int exp)
{
// Use an array large enough for a binary number.
int radix = 1 << exp;
int mask = radix - 1;
char[] buffer = new char[32];
int i = 32;
do
{
buffer[--i] = Character.forDigit(num & mask, radix);
num = num >>> exp;
}
while (num != 0);
return String.valueOf(buffer, i, 32-i);
}
/**
* Converts the <code>int</code> to a <code>String</code> assuming it is
* unsigned in base 16.
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument.
*/
public static String toHexString(int i)
{
return toUnsignedString(i, 4);
}
/**
* Converts the <code>int</code> to a <code>String</code> assuming it is
* unsigned in base 8.
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument.
*/
public static String toOctalString(int i)
{
return toUnsignedString(i, 3);
}
/**
* Converts the <code>int</code> to a <code>String</code> assuming it is
* unsigned in base 2.
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument.
*/
public static String toBinaryString(int i)
{
return toUnsignedString(i, 1);
}
/**
* Converts the <code>int</code> to a <code>String</code> and assumes
* a radix of 10.
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument.
*/
public static String toString(int i)
{
// This is tricky: in libgcj, String.valueOf(int) is a fast native
// implementation. In Classpath it just calls back to
// Integer.toString(int,int).
return String.valueOf (i);
}
/**
* Converts the <code>Integer</code> value to a <code>String</code> and
* assumes a radix of 10.
* @return the <code>String</code> representation of this <code>Integer</code>.
*/
public String toString()
{
return toString (value);
value = parseInt(s, 10, false);
}
/**
* Converts the <code>int</code> to a <code>String</code> using
* the specified radix (base).
* @param i the <code>int</code> to convert to <code>String</code>.
* @param radix the radix (base) to use in the conversion.
* @return the <code>String</code> representation of the argument.
* the specified radix (base). If the radix exceeds
* <code>Character.MIN_RADIX</code> or <code>Character.MAX_RADIX</code>, 10
* is used instead. If the result is negative, the leading character is
* '-' ('\\u002D'). The remaining characters come from
* <code>Character.forDigit(digit, radix)</code> ('0'-'9','a'-'z').
*
* @param num the <code>int</code> to convert to <code>String</code>
* @param radix the radix (base) to use in the conversion
* @return the <code>String</code> representation of the argument
*/
public static String toString(int num, int radix)
{
@ -285,25 +130,23 @@ public final class Integer extends Number implements Comparable
// Use an array large enough for a binary number.
char[] buffer = new char[33];
int i = 33;
boolean isNeg;
boolean isNeg = false;
if (num < 0)
{
isNeg = true;
num = -(num);
num = -num;
// When the value is MIN_VALUE, it overflows when made positive
if (num < 0)
{
buffer[--i] = Character.forDigit(-(num + radix) % radix, radix);
num = -(num / radix);
}
{
buffer[--i] = digits[(int) (-(num + radix) % radix)];
num = -(num / radix);
}
}
else
isNeg = false;
do
{
buffer[--i] = Character.forDigit(num % radix, radix);
buffer[--i] = digits[num % radix];
num /= radix;
}
while (num > 0);
@ -311,38 +154,81 @@ public final class Integer extends Number implements Comparable
if (isNeg)
buffer[--i] = '-';
return String.valueOf(buffer, i, 33-i);
// Package constructor avoids an array copy.
return new String(buffer, i, 33 - i, true);
}
/**
* Creates a new <code>Integer</code> object using the <code>String</code>,
* assuming a radix of 10.
* @param s the <code>String</code> to convert.
* @return the new <code>Integer</code>.
* @see #Integer(java.lang.String)
* @see #parseInt(java.lang.String)
* @exception NumberFormatException thrown if the <code>String</code>
* cannot be parsed as an <code>int</code>.
* Converts the <code>int</code> to a <code>String</code> assuming it is
* unsigned in base 16.
*
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument
*/
public static Integer valueOf(String s) throws NumberFormatException
public static String toHexString(int i)
{
return new Integer(parseInt(s));
return toUnsignedString(i, 4);
}
/**
* Creates a new <code>Integer</code> object using the <code>String</code>
* and specified radix (base).
* @param s the <code>String</code> to convert.
* @param radix the radix (base) to convert with.
* @return the new <code>Integer</code>.
* @see #parseInt(java.lang.String,int)
* @exception NumberFormatException thrown if the <code>String</code>
* cannot be parsed as an <code>int</code>.
* Converts the <code>int</code> to a <code>String</code> assuming it is
* unsigned in base 8.
*
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument
*/
public static Integer valueOf(String s, int radix)
throws NumberFormatException
public static String toOctalString(int i)
{
return new Integer(parseInt(s, radix));
return toUnsignedString(i, 3);
}
/**
* Converts the <code>int</code> to a <code>String</code> assuming it is
* unsigned in base 2.
*
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument
*/
public static String toBinaryString(int i)
{
return toUnsignedString(i, 1);
}
/**
* Converts the <code>int</code> to a <code>String</code> and assumes
* a radix of 10.
*
* @param i the <code>int</code> to convert to <code>String</code>
* @return the <code>String</code> representation of the argument
* @see #toString(int, int)
*/
public static String toString(int i)
{
// This is tricky: in libgcj, String.valueOf(int) is a fast native
// implementation. In Classpath it just calls back to
// Integer.toString(int, int).
return String.valueOf(i);
}
/**
* Converts the specified <code>String</code> into an <code>int</code>
* using the specified radix (base). The string must not be <code>null</code>
* or empty. It may begin with an optional '-', which will negate the answer,
* provided that there are also valid digits. Each digit is parsed as if by
* <code>Character.digit(d, radix)</code>, and must be in the range
* <code>0</code> to <code>radix - 1</code>. Finally, the result must be
* within <code>MIN_VALUE</code> to <code>MAX_VALUE</code>, inclusive.
* Unlike Double.parseDouble, you may not have a leading '+'.
*
* @param s the <code>String</code> to convert
* @param radix the radix (base) to use in the conversion
* @return the <code>String</code> argument converted to </code>int</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as an
* <code>int</code>
*/
public static int parseInt(String str, int radix)
{
return parseInt(str, radix, false);
}
/**
@ -350,58 +236,353 @@ public final class Integer extends Number implements Comparable
* This function assumes a radix of 10.
*
* @param s the <code>String</code> to convert
* @return the <code>int</code> value of the <code>String</code>
* argument.
* @exception NumberFormatException thrown if the <code>String</code>
* cannot be parsed as an <code>int</code>.
* @return the <code>int</code> value of <code>s</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as an
* <code>int</code>
* @see #parseInt(String, int)
*/
public static int parseInt(String s) throws NumberFormatException
public static int parseInt(String s)
{
return parseInt(s, 10);
return parseInt(s, 10, false);
}
/**
* Converts the specified <code>String</code> into an <code>int</code>
* using the specified radix (base).
* Creates a new <code>Integer</code> object using the <code>String</code>
* and specified radix (base).
*
* @param s the <code>String</code> to convert
* @param radix the radix (base) to use in the conversion
* @return the <code>String</code> argument converted to </code>int</code>.
* @exception NumberFormatException thrown if the <code>String</code>
* cannot be parsed as a <code>int</code>.
* @param radix the radix (base) to convert with
* @return the new <code>Integer</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as an
* <code>int</code>
* @see #parseInt(String, int)
*/
public static int parseInt(String str, int radix)
throws NumberFormatException
public static Integer valueOf(String s, int radix)
{
final int len;
if (str == null)
throw new NumberFormatException ();
if ((len = str.length()) == 0 ||
radix < Character.MIN_RADIX || radix > Character.MAX_RADIX)
throw new NumberFormatException();
boolean isNeg = false;
int index = 0;
if (str.charAt(index) == '-')
if (len > 1)
{
isNeg = true;
index++;
}
else
throw new NumberFormatException();
return parseInt(str, index, len, isNeg, radix);
return new Integer(parseInt(s, radix, false));
}
private static int parseInt(String str, int index, int len, boolean isNeg,
int radix)
throws NumberFormatException
/**
* Creates a new <code>Integer</code> object using the <code>String</code>,
* assuming a radix of 10.
*
* @param s the <code>String</code> to convert
* @return the new <code>Integer</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as an
* <code>int</code>
* @see #Integer(String)
* @see #parseInt(String)
*/
public static Integer valueOf(String s)
{
int val = 0;
int digval;
return new Integer(parseInt(s, 10, false));
}
/**
* Return the value of this <code>Integer</code> as a <code>byte</code>.
*
* @return the byte value
*/
public byte byteValue()
{
return (byte) value;
}
/**
* Return the value of this <code>Integer</code> as a <code>short</code>.
*
* @return the short value
*/
public short shortValue()
{
return (short) value;
}
/**
* Return the value of this <code>Integer</code>.
* @return the int value
*/
public int intValue()
{
return value;
}
/**
* Return the value of this <code>Integer</code> as a <code>long</code>.
*
* @return the long value
*/
public long longValue()
{
return value;
}
/**
* Return the value of this <code>Integer</code> as a <code>float</code>.
*
* @return the float value
*/
public float floatValue()
{
return value;
}
/**
* Return the value of this <code>Integer</code> as a <code>double</code>.
*
* @return the double value
*/
public double doubleValue()
{
return value;
}
/**
* Converts the <code>Integer</code> value to a <code>String</code> and
* assumes a radix of 10.
*
* @return the <code>String</code> representation
*/
public String toString()
{
return String.valueOf(value);
}
/**
* Return a hashcode representing this Object. <code>Integer</code>'s hash
* code is simply its value.
*
* @return this Object's hash code
*/
public int hashCode()
{
return value;
}
/**
* Returns <code>true</code> if <code>obj</code> is an instance of
* <code>Integer</code> and represents the same int value.
*
* @param obj the object to compare
* @return whether these Objects are semantically equal
*/
public boolean equals(Object obj)
{
return obj instanceof Integer && value == ((Integer) obj).value;
}
/**
* Get the specified system property as an <code>Integer</code>. The
* <code>decode()</code> method will be used to interpret the value of
* the property.
*
* @param nm the name of the system property
* @return the system property as an <code>Integer</code>, or null if the
* property is not found or cannot be decoded
* @throws SecurityException if accessing the system property is forbidden
* @see System#getProperty(String)
* @see #decode(String)
*/
public static Integer getInteger(String nm)
{
return getInteger(nm, null);
}
/**
* Get the specified system property as an <code>Integer</code>, or use a
* default <code>int</code> value if the property is not found or is not
* decodable. The <code>decode()</code> method will be used to interpret
* the value of the property.
*
* @param nm the name of the system property
* @param val the default value
* @return the value of the system property, or the default
* @throws SecurityException if accessing the system property is forbidden
* @see System#getProperty(String)
* @see #decode(String)
*/
public static Integer getInteger(String nm, int val)
{
Integer result = getInteger(nm, null);
return result == null ? new Integer(val) : result;
}
/**
* Get the specified system property as an <code>Integer</code>, or use a
* default <code>Integer</code> value if the property is not found or is
* not decodable. The <code>decode()</code> method will be used to
* interpret the value of the property.
*
* @param nm the name of the system property
* @param val the default value
* @return the value of the system property, or the default
* @throws SecurityException if accessing the system property is forbidden
* @see System#getProperty(String)
* @see #decode(String)
*/
public static Integer getInteger(String nm, Integer def)
{
if (nm == null || "".equals(nm))
return def;
nm = System.getProperty(nm);
if (nm == null)
return def;
try
{
return decode(nm);
}
catch (NumberFormatException e)
{
return def;
}
}
/**
* Convert the specified <code>String</code> into an <code>Integer</code>.
* The <code>String</code> may represent decimal, hexadecimal, or
* octal numbers.
*
* <p>The extended BNF grammar is as follows:<br>
* <pre>
* <em>DecodableString</em>:
* ( [ <code>-</code> ] <em>DecimalNumber</em> )
* | ( [ <code>-</code> ] ( <code>0x</code> | <code>0X</code>
* | <code>#</code> ) <em>HexDigit</em> { <em>HexDigit</em> } )
* | ( [ <code>-</code> ] <code>0</code> { <em>OctalDigit</em> } )
* <em>DecimalNumber</em>:
* <em>DecimalDigit except '0'</em> { <em>DecimalDigit</em> }
* <em>DecimalDigit</em>:
* <em>Character.digit(d, 10) has value 0 to 9</em>
* <em>OctalDigit</em>:
* <em>Character.digit(d, 8) has value 0 to 7</em>
* <em>DecimalDigit</em>:
* <em>Character.digit(d, 16) has value 0 to 15</em>
* </pre>
* Finally, the value must be in the range <code>MIN_VALUE</code> to
* <code>MAX_VALUE</code>, or an exception is thrown.
*
* @param s the <code>String</code> to interpret
* @return the value of the String as an <code>Integer</code>
* @throws NumberFormatException if <code>s</code> cannot be parsed as a
* <code>int</code>
* @throws NullPointerException if <code>s</code> is null
* @since 1.2
*/
public static Integer decode(String str)
{
return new Integer(parseInt(str, 10, true));
}
/**
* Compare two Integers numerically by comparing their <code>int</code>
* values. The result is positive if the first is greater, negative if the
* second is greater, and 0 if the two are equal.
*
* @param i the Integer to compare
* @return the comparison
* @since 1.2
*/
public int compareTo(Integer i)
{
if (value == i.value)
return 0;
// Returns just -1 or 1 on inequality; doing math might overflow.
return value > i.value ? 1 : -1;
}
/**
* Behaves like <code>compareTo(Integer)</code> unless the Object
* is not an <code>Integer</code>.
*
* @param o the object to compare
* @return the comparison
* @throws ClassCastException if the argument is not an <code>Integer</code>
* @see #compareTo(Integer)
* @see Comparable
* @since 1.2
*/
public int compareTo(Object o)
{
return compareTo((Integer) o);
}
/**
* Helper for converting unsigned numbers to String.
*
* @param num the number
* @param exp log2(digit) (ie. 1, 3, or 4 for binary, oct, hex)
*/
// Package visible for use by Long.
static String toUnsignedString(int num, int exp)
{
// Use an array large enough for a binary number.
int mask = (1 << exp) - 1;
char[] buffer = new char[32];
int i = 32;
do
{
buffer[--i] = digits[num & mask];
num >>>= exp;
}
while (num != 0);
// Package constructor avoids an array copy.
return new String(buffer, i, 32 - i, true);
}
/**
* Helper for parsing ints, used by Integer, Short, and Byte.
*
* @param str the string to parse
* @param radix the radix to use, must be 10 if decode is true
* @param decode if called from decode
* @return the parsed int value
* @throws NumberFormatException if there is an error
* @throws NullPointerException if decode is true and str if null
* @see #parseInt(String, int)
* @see #decode(String)
* @see Byte#parseInt(String, int)
* @see Short#parseInt(String, int)
*/
static int parseInt(String str, int radix, boolean decode)
{
if (! decode && str == null)
throw new NumberFormatException();
int index = 0;
int len = str.length();
boolean isNeg = false;
if (len == 0)
throw new NumberFormatException();
int ch = str.charAt(index);
if (ch == '-')
{
if (len == 1)
throw new NumberFormatException();
isNeg = true;
ch = str.charAt(++index);
}
if (decode)
{
if (ch == '0')
{
if (++index == len)
return 0;
if ((str.charAt(index) & ~('x' ^ 'X')) == 'X')
{
radix = 16;
index++;
}
else
radix = 8;
}
else if (ch == '#')
{
radix = 16;
index++;
}
}
if (index == len)
throw new NumberFormatException();
int max = MAX_VALUE / radix;
// We can't directly write `max = (MAX_VALUE + 1) / radix'.
@ -409,174 +590,17 @@ public final class Integer extends Number implements Comparable
if (isNeg && MAX_VALUE % radix == radix - 1)
++max;
for ( ; index < len; index++)
int val = 0;
while (index < len)
{
if (val < 0 || val > max)
throw new NumberFormatException();
if ((digval = Character.digit(str.charAt(index), radix)) < 0)
ch = Character.digit(str.charAt(index++), radix);
val = val * radix + ch;
if (ch < 0 || (val < 0 && (! isNeg || val != MIN_VALUE)))
throw new NumberFormatException();
// Throw an exception for overflow if result is negative.
// However, we special-case the most negative value.
val = val * radix + digval;
if (val < 0 && (! isNeg || val != MIN_VALUE))
throw new NumberFormatException();
}
return isNeg ? -(val) : val;
}
/**
* Convert the specified <code>String</code> into an <code>Integer</code>.
* The <code>String</code> may represent decimal, hexadecimal, or
* octal numbers.
*
* The <code>String</code> argument is interpreted based on the leading
* characters. Depending on what the String begins with, the base will be
* interpreted differently:
*
* <table border=1>
* <tr><th>Leading<br>Characters</th><th>Base</th></tr>
* <tr><td>#</td><td>16</td></tr>
* <tr><td>0x</td><td>16</td></tr>
* <tr><td>0X</td><td>16</td></tr>
* <tr><td>0</td><td>8</td></tr>
* <tr><td>Anything<br>Else</td><td>10</td></tr>
* </table>
*
* @param str the <code>String</code> to interpret.
* @return the value of the String as an <code>Integer</code>.
* @exception NumberFormatException thrown if the <code>String</code>
* cannot be parsed as an <code>int</code>.
*/
public static Integer decode(String str) throws NumberFormatException
{
boolean isNeg = false;
int index = 0;
int radix = 10;
final int len;
if (str == null || (len = str.length()) == 0)
throw new NumberFormatException("string null or empty");
// Negative numbers are always radix 10.
if (str.charAt(index) == '-')
{
radix = 10;
index++;
isNeg = true;
}
else if (str.charAt(index) == '#')
{
radix = 16;
index++;
}
else if (str.charAt(index) == '0')
{
// Check if str is just "0"
if (len == 1)
return new Integer(0);
index++;
if (str.charAt(index) == 'x' || str.charAt(index) == 'X')
{
radix = 16;
index++;
}
else
radix = 8;
}
if (index >= len)
throw new NumberFormatException("empty value");
return new Integer(parseInt(str, index, len, isNeg, radix));
}
/** Return the value of this <code>Integer</code> as a <code>byte</code>.
** @return the value of this <code>Integer</code> as a <code>byte</code>.
**/
public byte byteValue()
{
return (byte) value;
}
/** Return the value of this <code>Integer</code> as a <code>short</code>.
** @return the value of this <code>Integer</code> as a <code>short</code>.
**/
public short shortValue()
{
return (short) value;
}
/** Return the value of this <code>Integer</code> as an <code>int</code>.
** @return the value of this <code>Integer</code> as an <code>int</code>.
**/
public int intValue()
{
return value;
}
/** Return the value of this <code>Integer</code> as a <code>long</code>.
** @return the value of this <code>Integer</code> as a <code>long</code>.
**/
public long longValue()
{
return value;
}
/** Return the value of this <code>Integer</code> as a <code>float</code>.
** @return the value of this <code>Integer</code> as a <code>float</code>.
**/
public float floatValue()
{
return value;
}
/** Return the value of this <code>Integer</code> as a <code>double</code>.
** @return the value of this <code>Integer</code> as a <code>double</code>.
**/
public double doubleValue()
{
return value;
}
/**
* Compare two Integers numerically by comparing their
* <code>int</code> values.
* @return a positive value if this <code>Integer</code> is greater
* in value than the argument <code>Integer</code>; a negative value
* if this <code>Integer</code> is smaller in value than the argument
* <code>Integer</code>; and <code>0</code>, zero, if this
* <code>Integer</code> is equal in value to the argument
* <code>Integer</code>.
*
* @since 1.2
*/
public int compareTo(Integer i)
{
if (this.value == i.value)
return 0;
// Returns just -1 or 1 on inequality; doing math might overflow.
if (this.value > i.value)
return 1;
return -1;
}
/**
* Behaves like <code>compareTo(java.lang.Integer)</code> unless the Object
* is not a <code>Integer</code>. Then it throws a
* <code>ClassCastException</code>.
* @exception ClassCastException if the argument is not a
* <code>Integer</code>.
*
* @since 1.2
*/
public int compareTo(Object o)
{
return compareTo((Integer)o);
return isNeg ? -val : val;
}
}

File diff suppressed because it is too large Load diff

View file

@ -1,5 +1,5 @@
/* java.lang.Number
Copyright (C) 1998, 2001 Free Software Foundation, Inc.
/* Number.java =- abstract superclass of numeric objects
Copyright (C) 1998, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@ -41,54 +41,91 @@ package java.lang;
import java.io.Serializable;
/**
** Number is a generic superclass of all the numeric classes, namely
** <code>Byte</code>, <code>Short</code>, <code>Integer</code>,
** <code>Long</code>, <code>Float</code>, and <code>Double</code>.
**
** It provides ways to convert from any one value to any other.
**
** @author Paul Fisher
** @author John Keiser
** @author Warren Levy
** @since JDK1.0
**/
* Number is a generic superclass of all the numeric classes, including
* the wrapper classes {@link Byte}, {@link Short}, {@link Integer},
* {@link Long}, {@link Float}, and {@link Double}. Also worth mentioning
* are the classes in {@link java.math}.
*
* It provides ways to convert numeric objects to any primitive.
*
* @author Paul Fisher
* @author John Keiser
* @author Warren Levy
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.0
* @status updated to 1.4
*/
public abstract class Number implements Serializable
{
/** Return the value of this <code>Number</code> as a <code>byte</code>.
** @return the value of this <code>Number</code> as a <code>byte</code>.
**/
/**
* Compatible with JDK 1.1+.
*/
private static final long serialVersionUID = -8742448824652078965L;
/**
* Table for calculating digits, used in Character, Long, and Integer.
*/
static final char[] digits = {
'0', '1', '2', '3', '4', '5', '6', '7', '8', '9',
'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't',
'u', 'v', 'w', 'x', 'y', 'z'
};
/**
* The basic constructor (often called implicitly).
*/
public Number()
{
}
/**
* Return the value of this <code>Number</code> as an <code>int</code>.
*
* @return the int value
*/
public abstract int intValue();
/**
* Return the value of this <code>Number</code> as a <code>long</code>.
*
* @return the long value
*/
public abstract long longValue();
/**
* Return the value of this <code>Number</code> as a <code>float</code>.
*
* @return the float value
*/
public abstract float floatValue();
/**
* Return the value of this <code>Number</code> as a <code>float</code>.
*
* @return the double value
*/
public abstract double doubleValue();
/**
* Return the value of this <code>Number</code> as a <code>byte</code>.
*
* @return the byte value
* @since 1.1
*/
public byte byteValue()
{
return (byte) intValue();
}
/** Return the value of this <code>Number</code> as a <code>short</code>.
** @return the value of this <code>Number</code> as a <code>short</code>.
**/
/**
* Return the value of this <code>Number</code> as a <code>short</code>.
*
* @return the short value
* @since 1.1
*/
public short shortValue()
{
return (short) intValue();
}
/** Return the value of this <code>Number</code> as an <code>int</code>.
** @return the value of this <code>Number</code> as an <code>int</code>.
**/
public abstract int intValue();
/** Return the value of this <code>Number</code> as a <code>long</code>.
** @return the value of this <code>Number</code> as a <code>long</code>.
**/
public abstract long longValue();
/** Return the value of this <code>Number</code> as a <code>float</code>.
** @return the value of this <code>Number</code> as a <code>float</code>.
**/
public abstract float floatValue();
/** Return the value of this <code>Number</code> as a <code>float</code>.
** @return the value of this <code>Number</code> as a <code>float</code>.
**/
public abstract double doubleValue();
private static final long serialVersionUID = -8742448824652078965L;
}

View file

@ -1,4 +1,4 @@
/* Copyright (C) 1998, 1999, 2000, 2001 Free Software Foundation
/* Copyright (C) 1998, 1999, 2000, 2001, 2002 Free Software Foundation
This file is part of libgcj.
@ -112,6 +112,12 @@ public final class String implements Serializable, Comparable, CharSequence
init(data, offset, count, false);
}
// This is used by Integer.toString(int,int).
String (char[] data, int offset, int count, boolean dont_copy)
{
init(data, offset, count, dont_copy);
}
public String (byte[] byteArray)
{
this (byteArray, 0, byteArray.length);

View file

@ -1,5 +1,5 @@
/* java.lang.Void
Copyright (C) 1998, 1999, 2001 Free Software Foundation, Inc.
/* Void.class - defines void.class
Copyright (C) 1998, 1999, 2001, 2002 Free Software Foundation, Inc.
This file is part of GNU Classpath.
@ -7,7 +7,7 @@ GNU Classpath is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
GNU Classpath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
@ -38,30 +38,29 @@ exception statement from your version. */
package java.lang;
/* Written using "Java Class Libraries", 2nd edition, plus online
* API docs for JDK 1.2 beta from http://www.javasoft.com.
* Status: Complete.
*/
/**
* Void is a placeholder class so that the variable Void.TYPE can be
* supported for reflection return types.
* Void is a placeholder class so that the variable <code>Void.TYPE</code>
* (also available as <code>void.class</code>) can be supported for
* reflection return types.
*
* <p>This class could be Serializable, but that is up to Sun.
*
* @author Paul Fisher
* @author John Keiser
* @author Per Bothner <bothner@cygnus.com>
* @since JDK1.1
* @author Eric Blake <ebb9@email.byu.edu>
* @since 1.1
* @status updated to 1.4
*/
public final class Void
{
/**
* The return type <code>void</code> is represented by this
* The return type <code>void</code> is represented by this
* <code>Class</code> object.
*/
public static final Class TYPE = VMClassLoader.getPrimitiveClass('V');
/**
* Don't allow Void objects to be made.
* Void is non-instantiable.
*/
private Void() { }
}

View file

@ -456,9 +456,8 @@ java::lang::String::init(jcharArray chars, jint offset, jint count,
}
else
{
JvAssert (offset == 0);
array = chars;
pdst = elements (array);
pdst = &(elements(array)[offset]);
}
data = array;