[ARM] [Neon types 10/10] Remove neon-schedgen.ml
gcc/ * config/arm/neon-schedgen.ml: Remove. * config/arm/cortex-a9-neon.md: Remove comment regarding neon-schedgen.ml. From-SVN: r203621
This commit is contained in:
parent
52b69ad240
commit
8ff5a4e40b
3 changed files with 6 additions and 545 deletions
|
@ -1,3 +1,9 @@
|
|||
2013-10-15 James Greenhalgh <james.greenhalgh@arm.com>
|
||||
|
||||
* config/arm/neon-schedgen.ml: Remove.
|
||||
* config/arm/cortex-a9-neon.md: Remove comment regarding
|
||||
neon-schedgen.ml.
|
||||
|
||||
2013-10-15 James Greenhalgh <james.greenhalgh@arm.com>
|
||||
|
||||
* config/arm/types: Remove old neon types.
|
||||
|
|
|
@ -330,8 +330,6 @@
|
|||
(eq_attr "cortex_a9_neon_type" "neon_mrrc"))
|
||||
"ca9_issue_vfp_neon + cortex_a9_neon_mcr")
|
||||
|
||||
;; The remainder of this file is auto-generated by neon-schedgen.
|
||||
|
||||
;; Instructions using this reservation read their source operands at N2, and
|
||||
;; produce a result at N3.
|
||||
(define_insn_reservation "cortex_a9_neon_int_1" 3
|
||||
|
|
|
@ -1,543 +0,0 @@
|
|||
(* Emission of the core of the Cortex-A8 NEON scheduling description.
|
||||
Copyright (C) 2007-2013 Free Software Foundation, Inc.
|
||||
Contributed by CodeSourcery.
|
||||
This file is part of GCC.
|
||||
|
||||
GCC is free software; you can redistribute it and/or modify it under
|
||||
the terms of the GNU General Public License as published by the Free
|
||||
Software Foundation; either version 3, or (at your option) any later
|
||||
version.
|
||||
|
||||
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
|
||||
for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GCC; see the file COPYING3. If not see
|
||||
<http://www.gnu.org/licenses/>.
|
||||
*)
|
||||
|
||||
(* This scheduling description generator works as follows.
|
||||
- Each group of instructions has source and destination requirements
|
||||
specified and a list of cores supported. This is then filtered
|
||||
and per core scheduler descriptions are generated out.
|
||||
The reservations generated are prefixed by the name of the
|
||||
core and the check is performed on the basis of what the tuning
|
||||
string is. Running this will generate Neon scheduler descriptions
|
||||
for all cores supported.
|
||||
|
||||
The source requirements may be specified using
|
||||
Source (the stage at which all source operands not otherwise
|
||||
described are read), Source_m (the stage at which Rm operands are
|
||||
read), Source_n (likewise for Rn) and Source_d (likewise for Rd).
|
||||
- For each group of instructions the earliest stage where a source
|
||||
operand may be required is calculated.
|
||||
- Each group of instructions is selected in turn as a producer.
|
||||
The latencies between this group and every other group are then
|
||||
calculated, yielding up to four values for each combination:
|
||||
1. Producer -> consumer Rn latency
|
||||
2. Producer -> consumer Rm latency
|
||||
3. Producer -> consumer Rd (as a source) latency
|
||||
4. Producer -> consumer worst-case latency.
|
||||
Value 4 is calculated from the destination availability requirements
|
||||
of the consumer and the earliest source availability requirements
|
||||
of the producer.
|
||||
- The largest Value 4 calculated for the current producer is the
|
||||
worse-case latency, L, for that instruction group. This value is written
|
||||
out in a define_insn_reservation for the producer group.
|
||||
- For each producer and consumer pair, the latencies calculated above
|
||||
are collated. The average (of up to four values) is calculated and
|
||||
if this average is different from the worst-case latency, an
|
||||
unguarded define_bypass construction is issued for that pair.
|
||||
(For each pair only one define_bypass construction will be emitted,
|
||||
and at present we do not emit specific guards.)
|
||||
*)
|
||||
|
||||
let find_with_result fn lst =
|
||||
let rec scan = function
|
||||
[] -> raise Not_found
|
||||
| l::ls ->
|
||||
match fn l with
|
||||
Some result -> result
|
||||
| _ -> scan ls in
|
||||
scan lst
|
||||
|
||||
let n1 = 1 and n2 = 2 and n3 = 3 and n4 = 4 and n5 = 5 and n6 = 6
|
||||
and n7 = 7 and n8 = 8 and n9 = 9
|
||||
|
||||
type availability = Source of int
|
||||
| Source_n of int
|
||||
| Source_m of int
|
||||
| Source_d of int
|
||||
| Dest of int
|
||||
| Dest_n_after of int * int
|
||||
|
||||
type guard = Guard_none | Guard_only_m | Guard_only_n | Guard_only_d
|
||||
|
||||
(* Reservation behaviors. All but the last row here correspond to one
|
||||
pipeline each. Each constructor will correspond to one
|
||||
define_reservation. *)
|
||||
type reservation =
|
||||
Mul | Mul_2cycle | Mul_4cycle
|
||||
| Shift | Shift_2cycle
|
||||
| ALU | ALU_2cycle
|
||||
| Fmul | Fmul_2cycle
|
||||
| Fadd | Fadd_2cycle
|
||||
(* | VFP *)
|
||||
| Permute of int
|
||||
| Ls of int
|
||||
| Fmul_then_fadd | Fmul_then_fadd_2
|
||||
|
||||
type core = CortexA8 | CortexA9
|
||||
let allCores = [CortexA8; CortexA9]
|
||||
let coreStr = function
|
||||
CortexA8 -> "cortex_a8"
|
||||
| CortexA9 -> "cortex_a9"
|
||||
|
||||
let tuneStr = function
|
||||
CortexA8 -> "cortexa8"
|
||||
| CortexA9 -> "cortexa9"
|
||||
|
||||
|
||||
(* This table must be kept as short as possible by conflating
|
||||
entries with the same availability behavior.
|
||||
|
||||
First components: instruction group names
|
||||
Second components: availability requirements, in the order in which
|
||||
they should appear in the comments in the .md file.
|
||||
Third components: reservation info
|
||||
Fourth components: List of supported cores.
|
||||
*)
|
||||
let availability_table = [
|
||||
(* NEON integer ALU instructions. *)
|
||||
(* vbit vbif vbsl vorr vbic vnot vcls vclz vcnt vadd vand vorr
|
||||
veor vbic vorn ddd qqq *)
|
||||
"neon_int_1", [Source n2; Dest n3], ALU, allCores;
|
||||
(* vadd vsub qqd vsub ddd qqq *)
|
||||
"neon_int_2", [Source_m n1; Source_n n2; Dest n3], ALU, allCores;
|
||||
(* vsum vneg dd qq vadd vsub qdd *)
|
||||
"neon_int_3", [Source n1; Dest n3], ALU, allCores;
|
||||
(* vabs vceqz vcgez vcbtz vclez vcltz vadh vradh vsbh vrsbh dqq *)
|
||||
(* vhadd vrhadd vqadd vtst ddd qqq *)
|
||||
"neon_int_4", [Source n2; Dest n4], ALU, allCores;
|
||||
(* vabd qdd vhsub vqsub vabd vceq vcge vcgt vmax vmin vfmx vfmn ddd ddd *)
|
||||
"neon_int_5", [Source_m n1; Source_n n2; Dest n4], ALU, allCores;
|
||||
(* vqneg vqabs dd qq *)
|
||||
"neon_vqneg_vqabs", [Source n1; Dest n4], ALU, allCores;
|
||||
(* vmov vmvn *)
|
||||
"neon_vmov", [Dest n3], ALU, allCores;
|
||||
(* vaba *)
|
||||
"neon_vaba", [Source_n n2; Source_m n1; Source_d n3; Dest n6], ALU, allCores;
|
||||
"neon_vaba_qqq",
|
||||
[Source_n n2; Source_m n1; Source_d n3; Dest_n_after (1, n6)],
|
||||
ALU_2cycle, allCores;
|
||||
(* vsma *)
|
||||
"neon_vsma", [Source_m n1; Source_d n3; Dest n6], ALU, allCores;
|
||||
|
||||
(* NEON integer multiply instructions. *)
|
||||
(* vmul, vqdmlh, vqrdmlh *)
|
||||
(* vmul, vqdmul, qdd 16/8 long 32/16 long *)
|
||||
"neon_mul_ddd_8_16_qdd_16_8_long_32_16_long", [Source n2; Dest n6],
|
||||
Mul, allCores;
|
||||
"neon_mul_qqq_8_16_32_ddd_32", [Source n2; Dest_n_after (1, n6)],
|
||||
Mul_2cycle, allCores;
|
||||
(* vmul, vqdmul again *)
|
||||
"neon_mul_qdd_64_32_long_qqd_16_ddd_32_scalar_64_32_long_scalar",
|
||||
[Source_n n2; Source_m n1; Dest_n_after (1, n6)], Mul_2cycle, allCores;
|
||||
(* vmla, vmls *)
|
||||
"neon_mla_ddd_8_16_qdd_16_8_long_32_16_long",
|
||||
[Source_n n2; Source_m n2; Source_d n3; Dest n6], Mul, allCores;
|
||||
"neon_mla_qqq_8_16",
|
||||
[Source_n n2; Source_m n2; Source_d n3; Dest_n_after (1, n6)],
|
||||
Mul_2cycle, allCores;
|
||||
"neon_mla_ddd_32_qqd_16_ddd_32_scalar_qdd_64_32_long_scalar_qdd_64_32_long",
|
||||
[Source_n n2; Source_m n1; Source_d n3; Dest_n_after (1, n6)],
|
||||
Mul_2cycle, allCores;
|
||||
"neon_mla_qqq_32_qqd_32_scalar",
|
||||
[Source_n n2; Source_m n1; Source_d n3; Dest_n_after (3, n6)],
|
||||
Mul_4cycle, allCores;
|
||||
(* vmul, vqdmulh, vqrdmulh *)
|
||||
(* vmul, vqdmul *)
|
||||
"neon_mul_ddd_16_scalar_32_16_long_scalar",
|
||||
[Source_n n2; Source_m n1; Dest n6], Mul, allCores;
|
||||
"neon_mul_qqd_32_scalar",
|
||||
[Source_n n2; Source_m n1; Dest_n_after (3, n6)], Mul_4cycle, allCores;
|
||||
(* vmla, vmls *)
|
||||
(* vmla, vmla, vqdmla, vqdmls *)
|
||||
"neon_mla_ddd_16_scalar_qdd_32_16_long_scalar",
|
||||
[Source_n n2; Source_m n1; Source_d n3; Dest n6], Mul, allCores;
|
||||
|
||||
(* NEON integer shift instructions. *)
|
||||
(* vshr/vshl immediate, vshr_narrow, vshl_vmvh, vsli_vsri_ddd *)
|
||||
"neon_shift_1", [Source n1; Dest n3], Shift, allCores;
|
||||
(* vqshl, vrshr immediate; vqshr, vqmov, vrshr, vqrshr narrow, allCores;
|
||||
vqshl_vrshl_vqrshl_ddd *)
|
||||
"neon_shift_2", [Source n1; Dest n4], Shift, allCores;
|
||||
(* vsli, vsri and vshl for qqq *)
|
||||
"neon_shift_3", [Source n1; Dest_n_after (1, n3)], Shift_2cycle, allCores;
|
||||
"neon_vshl_ddd", [Source n1; Dest n1], Shift, allCores;
|
||||
"neon_vqshl_vrshl_vqrshl_qqq", [Source n1; Dest_n_after (1, n4)],
|
||||
Shift_2cycle, allCores;
|
||||
"neon_vsra_vrsra", [Source_m n1; Source_d n3; Dest n6], Shift, allCores;
|
||||
|
||||
(* NEON floating-point instructions. *)
|
||||
(* vadd, vsub, vabd, vmul, vceq, vcge, vcgt, vcage, vcagt, vmax, vmin *)
|
||||
(* vabs, vneg, vceqz, vcgez, vcgtz, vclez, vcltz, vrecpe, vrsqrte, vcvt *)
|
||||
"neon_fp_vadd_ddd_vabs_dd", [Source n2; Dest n5], Fadd, allCores;
|
||||
"neon_fp_vadd_qqq_vabs_qq", [Source n2; Dest_n_after (1, n5)],
|
||||
Fadd_2cycle, allCores;
|
||||
(* vsum, fvmx, vfmn *)
|
||||
"neon_fp_vsum", [Source n1; Dest n5], Fadd, allCores;
|
||||
"neon_fp_vmul_ddd", [Source_n n2; Source_m n1; Dest n5], Fmul, allCores;
|
||||
"neon_fp_vmul_qqd", [Source_n n2; Source_m n1; Dest_n_after (1, n5)],
|
||||
Fmul_2cycle, allCores;
|
||||
(* vmla, vmls *)
|
||||
"neon_fp_vmla_ddd",
|
||||
[Source_n n2; Source_m n2; Source_d n3; Dest n9], Fmul_then_fadd, allCores;
|
||||
"neon_fp_vmla_qqq",
|
||||
[Source_n n2; Source_m n2; Source_d n3; Dest_n_after (1, n9)],
|
||||
Fmul_then_fadd_2, allCores;
|
||||
"neon_fp_vmla_ddd_scalar",
|
||||
[Source_n n2; Source_m n1; Source_d n3; Dest n9], Fmul_then_fadd, allCores;
|
||||
"neon_fp_vmla_qqq_scalar",
|
||||
[Source_n n2; Source_m n1; Source_d n3; Dest_n_after (1, n9)],
|
||||
Fmul_then_fadd_2, allCores;
|
||||
"neon_fp_vrecps_vrsqrts_ddd", [Source n2; Dest n9], Fmul_then_fadd, allCores;
|
||||
"neon_fp_vrecps_vrsqrts_qqq", [Source n2; Dest_n_after (1, n9)],
|
||||
Fmul_then_fadd_2, allCores;
|
||||
|
||||
(* NEON byte permute instructions. *)
|
||||
(* vmov; vtrn and vswp for dd; vzip for dd; vuzp for dd; vrev; vext for dd *)
|
||||
"neon_bp_simple", [Source n1; Dest n2], Permute 1, allCores;
|
||||
(* vswp for qq; vext for qqq; vtbl with {Dn} or {Dn, Dn1}, allCores;
|
||||
similarly for vtbx *)
|
||||
"neon_bp_2cycle", [Source n1; Dest_n_after (1, n2)], Permute 2, allCores;
|
||||
(* all the rest *)
|
||||
"neon_bp_3cycle", [Source n1; Dest_n_after (2, n2)], Permute 3, allCores;
|
||||
|
||||
(* NEON load/store instructions. *)
|
||||
"neon_ldr", [Dest n1], Ls 1, allCores;
|
||||
"neon_str", [Source n1], Ls 1, allCores;
|
||||
"neon_vld1_1_2_regs", [Dest_n_after (1, n1)], Ls 2, allCores;
|
||||
"neon_vld1_3_4_regs", [Dest_n_after (2, n1)], Ls 3, allCores;
|
||||
"neon_vld2_2_regs_vld1_vld2_all_lanes", [Dest_n_after (1, n2)], Ls 2, allCores;
|
||||
"neon_vld2_4_regs", [Dest_n_after (2, n2)], Ls 3, allCores;
|
||||
"neon_vld3_vld4", [Dest_n_after (3, n2)], Ls 4, allCores;
|
||||
"neon_vst1_1_2_regs_vst2_2_regs", [Source n1], Ls 2, allCores;
|
||||
"neon_vst1_3_4_regs", [Source n1], Ls 3, allCores;
|
||||
"neon_vst2_4_regs_vst3_vst4", [Source n1], Ls 4, allCores;
|
||||
"neon_vst3_vst4", [Source n1], Ls 4, allCores;
|
||||
"neon_vld1_vld2_lane", [Source n1; Dest_n_after (2, n2)], Ls 3, allCores;
|
||||
"neon_vld3_vld4_lane", [Source n1; Dest_n_after (4, n2)], Ls 5, allCores;
|
||||
"neon_vst1_vst2_lane", [Source n1], Ls 2, allCores;
|
||||
"neon_vst3_vst4_lane", [Source n1], Ls 3, allCores;
|
||||
"neon_vld3_vld4_all_lanes", [Dest_n_after (1, n2)], Ls 3, allCores;
|
||||
|
||||
(* NEON register transfer instructions. *)
|
||||
"neon_mcr", [Dest n2], Permute 1, allCores;
|
||||
"neon_mcr_2_mcrr", [Dest n2], Permute 2, allCores;
|
||||
(* MRC instructions are in the .tpl file. *)
|
||||
]
|
||||
|
||||
(* Augment the tuples in the availability table with an extra component
|
||||
that describes the earliest stage where a source operand may be
|
||||
required. (It is also possible that an entry in the table has no
|
||||
source requirements.) *)
|
||||
let calculate_sources =
|
||||
List.map (fun (name, avail, res, cores) ->
|
||||
let earliest_stage =
|
||||
List.fold_left
|
||||
(fun cur -> fun info ->
|
||||
match info with
|
||||
Source stage
|
||||
| Source_n stage
|
||||
| Source_m stage
|
||||
| Source_d stage ->
|
||||
(match cur with
|
||||
None -> Some stage
|
||||
| Some stage' when stage < stage' -> Some stage
|
||||
| _ -> cur)
|
||||
| _ -> cur) None avail
|
||||
in
|
||||
(name, avail, res, earliest_stage))
|
||||
|
||||
(* Find the stage, if any, at the end of which a group produces a result. *)
|
||||
let find_dest (attr, avail, _, _) =
|
||||
try
|
||||
find_with_result
|
||||
(fun av -> match av with
|
||||
Dest st -> Some (Some st)
|
||||
| Dest_n_after (after, st) -> Some (Some (after + st))
|
||||
| _ -> None) avail
|
||||
with Not_found -> None
|
||||
|
||||
(* Find the worst-case latency between a producer and a consumer. *)
|
||||
let worst_case_latency producer (_, _, _, earliest_required) =
|
||||
let dest = find_dest producer in
|
||||
match earliest_required, dest with
|
||||
None, _ ->
|
||||
(* The consumer doesn't have any source requirements. *)
|
||||
None
|
||||
| _, None ->
|
||||
(* The producer doesn't produce any results (e.g. a store insn). *)
|
||||
None
|
||||
| Some consumed, Some produced -> Some (produced - consumed + 1)
|
||||
|
||||
(* Helper function for below. *)
|
||||
let latency_calc f producer (_, avail, _, _) =
|
||||
try
|
||||
let source_avail = find_with_result f avail in
|
||||
match find_dest producer with
|
||||
None ->
|
||||
(* The producer does not produce a result. *)
|
||||
Some 0
|
||||
| Some produced ->
|
||||
let latency = produced - source_avail + 1 in
|
||||
(* Latencies below zero are raised to zero since we don't have
|
||||
delay slots. *)
|
||||
if latency < 0 then Some 0 else Some latency
|
||||
with Not_found -> None
|
||||
|
||||
(* Find any Rm latency between a producer and a consumer. If no
|
||||
Rm source requirement is explicitly specified for the consumer,
|
||||
return "positive infinity". Also return "positive infinity" if
|
||||
the latency matches the supplied worst-case latency for this
|
||||
producer. *)
|
||||
let get_m_latency producer consumer =
|
||||
match latency_calc (fun av -> match av with Source_m stage -> Some stage
|
||||
| _ -> None) producer consumer
|
||||
with None -> [] | Some latency -> [(Guard_only_m, latency)]
|
||||
|
||||
(* Likewise for Rn. *)
|
||||
let get_n_latency producer consumer =
|
||||
match latency_calc (fun av -> match av with Source_n stage -> Some stage
|
||||
| _ -> None) producer consumer
|
||||
with None -> [] | Some latency -> [(Guard_only_n, latency)]
|
||||
|
||||
(* Likewise for Rd. *)
|
||||
let get_d_latency producer consumer =
|
||||
match
|
||||
latency_calc (fun av -> match av with Source_d stage -> Some stage
|
||||
| _ -> None) producer consumer
|
||||
with None -> [] | Some latency -> [(Guard_only_d, latency)]
|
||||
|
||||
(* Given a producer and a consumer, work out the latency of the producer
|
||||
to the consumer in each of the four cases (availability information
|
||||
permitting) identified at the top of this file. Return the
|
||||
consumer, the worst-case unguarded latency and any guarded latencies. *)
|
||||
let calculate_latencies producer consumer =
|
||||
let worst = worst_case_latency producer consumer in
|
||||
let m_latency = get_m_latency producer consumer in
|
||||
let n_latency = get_n_latency producer consumer in
|
||||
let d_latency = get_d_latency producer consumer in
|
||||
(consumer, worst, m_latency @ n_latency @ d_latency)
|
||||
|
||||
(* Helper function for below. *)
|
||||
let pick_latency largest worst guards =
|
||||
let guards =
|
||||
match worst with
|
||||
None -> guards
|
||||
| Some worst -> (Guard_none, worst) :: guards
|
||||
in
|
||||
if List.length guards = 0 then None else
|
||||
let total_latency =
|
||||
List.fold_left (fun acc -> fun (_, latency) -> acc + latency) 0 guards
|
||||
in
|
||||
let average_latency = (float_of_int total_latency) /.
|
||||
(float_of_int (List.length guards)) in
|
||||
let rounded_latency = int_of_float (ceil average_latency) in
|
||||
if rounded_latency = largest then None
|
||||
else Some (Guard_none, rounded_latency)
|
||||
|
||||
(* Collate all bypasses for a particular producer as required in
|
||||
worst_case_latencies_and_bypasses. (By this stage there is a maximum
|
||||
of one bypass from this producer to any particular consumer listed
|
||||
in LATENCIES.) Use a hash table to collate bypasses with the
|
||||
same latency and guard. *)
|
||||
let collate_bypasses (producer_name, _, _, _) largest latencies core =
|
||||
let ht = Hashtbl.create 42 in
|
||||
let keys = ref [] in
|
||||
List.iter (
|
||||
fun ((consumer, _, _, _), worst, guards) ->
|
||||
(* Find out which latency to use. Ignoring latencies that match
|
||||
the *overall* worst-case latency for this producer (which will
|
||||
be in define_insn_reservation), we have to examine:
|
||||
1. the latency with no guard between this producer and this
|
||||
consumer; and
|
||||
2. any guarded latency. *)
|
||||
let guard_latency_opt = pick_latency largest worst guards in
|
||||
match guard_latency_opt with
|
||||
None -> ()
|
||||
| Some (guard, latency) ->
|
||||
begin
|
||||
(if (try ignore (Hashtbl.find ht (guard, latency)); false
|
||||
with Not_found -> true) then
|
||||
keys := (guard, latency) :: !keys);
|
||||
Hashtbl.add ht (guard, latency) ((coreStr core) ^ "_" ^ consumer)
|
||||
end
|
||||
) latencies;
|
||||
(* The hash table now has bypasses collated so that ones with the
|
||||
same latency and guard have the same keys. Walk through all the
|
||||
keys, extract the associated bypasses, and concatenate the names
|
||||
of the consumers for each bypass. *)
|
||||
List.map (
|
||||
fun ((guard, latency) as key) ->
|
||||
let consumers = Hashtbl.find_all ht key in
|
||||
(producer_name,
|
||||
String.concat ",\\\n " consumers,
|
||||
latency,
|
||||
guard)
|
||||
) !keys
|
||||
|
||||
(* For every producer, find the worst-case latency between it and
|
||||
*any* consumer. Also determine (if such a thing exists) the
|
||||
lowest-latency bypass from each producer to each consumer. Group
|
||||
the output in such a way that all bypasses with the same producer
|
||||
and latency are together, and so that bypasses with the worst-case
|
||||
latency are ignored. *)
|
||||
let worst_case_latencies_and_bypasses core =
|
||||
let rec f (worst_acc, bypasses_acc) prev xs =
|
||||
match xs with
|
||||
[] -> (worst_acc, bypasses_acc)
|
||||
| ((producer_name, producer_avail, res_string, _) as producer)::next ->
|
||||
(* For this particular producer, work out the latencies between
|
||||
it and every consumer. *)
|
||||
let latencies =
|
||||
List.fold_left (fun acc -> fun consumer ->
|
||||
(calculate_latencies producer consumer) :: acc)
|
||||
[] (prev @ xs)
|
||||
in
|
||||
(* Now work out what the overall worst case latency was for this
|
||||
particular producer. *)
|
||||
match latencies with
|
||||
[] -> assert false
|
||||
| _ ->
|
||||
let comp_fn (_, l1, _) (_, l2, _) =
|
||||
if l1 > l2 then -1 else if l1 = l2 then 0 else 1
|
||||
in
|
||||
let largest =
|
||||
match List.hd (List.sort comp_fn latencies) with
|
||||
(_, None, _) -> 0 (* Producer has no consumers. *)
|
||||
| (_, Some worst, _) -> worst
|
||||
in
|
||||
(* Having got the largest latency, collect all bypasses for
|
||||
this producer and filter out those with that larger
|
||||
latency. Record the others for later emission. *)
|
||||
let bypasses = collate_bypasses producer largest latencies core in
|
||||
(* Go on to process remaining producers, having noted
|
||||
the result for this one. *)
|
||||
f ((producer_name, producer_avail, largest,
|
||||
res_string) :: worst_acc,
|
||||
bypasses @ bypasses_acc)
|
||||
(prev @ [producer]) next
|
||||
in
|
||||
f ([], []) []
|
||||
|
||||
(* Emit a helpful comment for a define_insn_reservation. *)
|
||||
let write_comment producer avail =
|
||||
let seen_source = ref false in
|
||||
let describe info =
|
||||
let read = if !seen_source then "" else "read " in
|
||||
match info with
|
||||
Source stage ->
|
||||
seen_source := true;
|
||||
Printf.printf "%stheir source operands at N%d" read stage
|
||||
| Source_n stage ->
|
||||
seen_source := true;
|
||||
Printf.printf "%stheir (D|Q)n operands at N%d" read stage
|
||||
| Source_m stage ->
|
||||
seen_source := true;
|
||||
Printf.printf "%stheir (D|Q)m operands at N%d" read stage
|
||||
| Source_d stage ->
|
||||
Printf.printf "%stheir (D|Q)d operands at N%d" read stage
|
||||
| Dest stage ->
|
||||
Printf.printf "produce a result at N%d" stage
|
||||
| Dest_n_after (after, stage) ->
|
||||
Printf.printf "produce a result at N%d on cycle %d" stage (after + 1)
|
||||
in
|
||||
Printf.printf ";; Instructions using this reservation ";
|
||||
let rec f infos x =
|
||||
let sep = if x mod 2 = 1 then "" else "\n;;" in
|
||||
match infos with
|
||||
[] -> assert false
|
||||
| [info] -> describe info; Printf.printf ".\n"
|
||||
| info::(_::[] as infos) ->
|
||||
describe info; Printf.printf ", and%s " sep; f infos (x+1)
|
||||
| info::infos -> describe info; Printf.printf ",%s " sep; f infos (x+1)
|
||||
in
|
||||
f avail 0
|
||||
|
||||
|
||||
(* Emit a define_insn_reservation for each producer. The latency
|
||||
written in will be its worst-case latency. *)
|
||||
let emit_insn_reservations core =
|
||||
let corestring = coreStr core in
|
||||
let tunestring = tuneStr core
|
||||
in List.iter (
|
||||
fun (producer, avail, latency, reservation) ->
|
||||
write_comment producer avail;
|
||||
Printf.printf "(define_insn_reservation \"%s_%s\" %d\n"
|
||||
corestring producer latency;
|
||||
Printf.printf " (and (eq_attr \"tune\" \"%s\")\n" tunestring;
|
||||
Printf.printf " (eq_attr \"type\" \"%s\"))\n" producer;
|
||||
let str =
|
||||
match reservation with
|
||||
Mul -> "dp" | Mul_2cycle -> "dp_2" | Mul_4cycle -> "dp_4"
|
||||
| Shift -> "dp" | Shift_2cycle -> "dp_2"
|
||||
| ALU -> "dp" | ALU_2cycle -> "dp_2"
|
||||
| Fmul -> "dp" | Fmul_2cycle -> "dp_2"
|
||||
| Fadd -> "fadd" | Fadd_2cycle -> "fadd_2"
|
||||
| Ls 1 -> "ls"
|
||||
| Ls n -> "ls_" ^ (string_of_int n)
|
||||
| Permute 1 -> "perm"
|
||||
| Permute n -> "perm_" ^ (string_of_int n)
|
||||
| Fmul_then_fadd -> "fmul_then_fadd"
|
||||
| Fmul_then_fadd_2 -> "fmul_then_fadd_2"
|
||||
in
|
||||
Printf.printf " \"%s_neon_%s\")\n\n" corestring str
|
||||
)
|
||||
|
||||
(* Given a guard description, return the name of the C function to
|
||||
be used as the guard for define_bypass. *)
|
||||
let guard_fn g =
|
||||
match g with
|
||||
Guard_only_m -> "arm_neon_only_m_dependency"
|
||||
| Guard_only_n -> "arm_neon_only_n_dependency"
|
||||
| Guard_only_d -> "arm_neon_only_d_dependency"
|
||||
| Guard_none -> assert false
|
||||
|
||||
(* Emit a define_bypass for each bypass. *)
|
||||
let emit_bypasses core =
|
||||
List.iter (
|
||||
fun (producer, consumers, latency, guard) ->
|
||||
Printf.printf "(define_bypass %d \"%s_%s\"\n"
|
||||
latency (coreStr core) producer;
|
||||
|
||||
if guard = Guard_none then
|
||||
Printf.printf " \"%s\")\n\n" consumers
|
||||
else
|
||||
begin
|
||||
Printf.printf " \"%s\"\n" consumers;
|
||||
Printf.printf " \"%s\")\n\n" (guard_fn guard)
|
||||
end
|
||||
)
|
||||
|
||||
|
||||
let calculate_per_core_availability_table core availability_table =
|
||||
let table = calculate_sources availability_table in
|
||||
let worst_cases, bypasses = worst_case_latencies_and_bypasses core table in
|
||||
emit_insn_reservations core (List.rev worst_cases);
|
||||
Printf.printf ";; Exceptions to the default latencies.\n\n";
|
||||
emit_bypasses core bypasses
|
||||
|
||||
let calculate_core_availability_table core availability_table =
|
||||
let filter_core = List.filter (fun (_, _, _, cores)
|
||||
-> List.exists ((=) core) cores)
|
||||
in calculate_per_core_availability_table core (filter_core availability_table)
|
||||
|
||||
|
||||
(* Program entry point. *)
|
||||
let main =
|
||||
List.map (fun core -> calculate_core_availability_table
|
||||
core availability_table) allCores
|
Loading…
Add table
Reference in a new issue