re PR fortran/33197 (Fortran 2008: math functions)

2009-07-09  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * check.c (gfc_check_fn_rc2008): New function.
        * intrinsic.h (gfc_check_fn_rc2008): New prototype.
        * intrinsic.c (add_functions): Add complex tan, cosh, sinh,
        and tanh.

2009-07-09  Tobias Burnus  <burnus@net-b.de>

        PR fortran/33197
        * gfortran.dg/complex_intrinsic_3.f90: New test.
        * gfortran.dg/complex_intrinsic_4.f90: New test.

From-SVN: r149503
This commit is contained in:
Tobias Burnus 2009-07-11 02:03:07 +02:00 committed by Tobias Burnus
parent 98ac6510fa
commit 8d3681f914
8 changed files with 116 additions and 20 deletions

View file

@ -1,3 +1,11 @@
2009-07-11 Tobias Burnus <burnus@net-b.de>
PR fortran/33197
* check.c (gfc_check_fn_rc2008): New function.
* intrinsic.h (gfc_check_fn_rc2008): New prototype.
* intrinsic.c (add_functions): Add complex tan, cosh, sinh,
and tanh.
2009-07-10 Paul Thomas <pault@gcc.gnu.org>
PR fortran/39334

View file

@ -1211,6 +1211,23 @@ gfc_check_fn_rc (gfc_expr *a)
}
gfc_try
gfc_check_fn_rc2008 (gfc_expr *a)
{
if (real_or_complex_check (a, 0) == FAILURE)
return FAILURE;
if (a->ts.type == BT_COMPLEX
&& gfc_notify_std (GFC_STD_F2008, "Fortran 2008: COMPLEX argument '%s' "
"argument of '%s' intrinsic at %L",
gfc_current_intrinsic_arg[0], gfc_current_intrinsic,
&a->where) == FAILURE)
return FAILURE;
return SUCCESS;
}
gfc_try
gfc_check_fnum (gfc_expr *unit)
{

View file

@ -1440,7 +1440,7 @@ add_functions (void)
make_generic ("cos", GFC_ISYM_COS, GFC_STD_F77);
add_sym_1 ("cosh", GFC_ISYM_COSH, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dr, GFC_STD_F77,
gfc_check_fn_r, gfc_simplify_cosh, gfc_resolve_cosh,
gfc_check_fn_rc2008, gfc_simplify_cosh, gfc_resolve_cosh,
x, BT_REAL, dr, REQUIRED);
add_sym_1 ("dcosh", GFC_ISYM_COSH, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dd, GFC_STD_F77,
@ -2405,7 +2405,7 @@ add_functions (void)
make_generic ("sin", GFC_ISYM_SIN, GFC_STD_F77);
add_sym_1 ("sinh", GFC_ISYM_SINH, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dr, GFC_STD_F77,
gfc_check_fn_r, gfc_simplify_sinh, gfc_resolve_sinh,
gfc_check_fn_rc2008, gfc_simplify_sinh, gfc_resolve_sinh,
x, BT_REAL, dr, REQUIRED);
add_sym_1 ("dsinh", GFC_ISYM_SINH,CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dd, GFC_STD_F77,
@ -2488,7 +2488,7 @@ add_functions (void)
make_generic ("system", GFC_ISYM_SYSTEM, GFC_STD_GNU);
add_sym_1 ("tan", GFC_ISYM_TAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dr, GFC_STD_F77,
gfc_check_fn_r, gfc_simplify_tan, gfc_resolve_tan,
gfc_check_fn_rc2008, gfc_simplify_tan, gfc_resolve_tan,
x, BT_REAL, dr, REQUIRED);
add_sym_1 ("dtan", GFC_ISYM_TAN, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dd, GFC_STD_F77,
@ -2498,7 +2498,7 @@ add_functions (void)
make_generic ("tan", GFC_ISYM_TAN, GFC_STD_F77);
add_sym_1 ("tanh", GFC_ISYM_TANH, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dr, GFC_STD_F77,
gfc_check_fn_r, gfc_simplify_tanh, gfc_resolve_tanh,
gfc_check_fn_rc2008, gfc_simplify_tanh, gfc_resolve_tanh,
x, BT_REAL, dr, REQUIRED);
add_sym_1 ("dtanh", GFC_ISYM_TANH, CLASS_ELEMENTAL, ACTUAL_YES, BT_REAL, dd, GFC_STD_F77,

View file

@ -64,6 +64,7 @@ gfc_try gfc_check_fn_c (gfc_expr *);
gfc_try gfc_check_fn_d (gfc_expr *);
gfc_try gfc_check_fn_r (gfc_expr *);
gfc_try gfc_check_fn_rc (gfc_expr *);
gfc_try gfc_check_fn_rc2008 (gfc_expr *);
gfc_try gfc_check_fnum (gfc_expr *);
gfc_try gfc_check_hostnm (gfc_expr *);
gfc_try gfc_check_huge (gfc_expr *);

View file

@ -2676,7 +2676,7 @@ Inverse function: @ref{ACOS}
@code{COSH(X)} computes the hyperbolic cosine of @var{X}.
@item @emph{Standard}:
Fortran 77 and later
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@ -2686,14 +2686,14 @@ Elemental function
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} and it is positive
(@math{ \cosh (x) \geq 0 }). For a @code{REAL} argument @var{X},
@math{ \cosh (x) \geq 1 }.
The return value is of the same kind as @var{X}.
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians. If @var{X}
is @code{REAL}, the return value has a lower bound of one,
@math{\cosh (x) \geq 1}.
@item @emph{Example}:
@smallexample
@ -9820,7 +9820,7 @@ end program test_sin
@code{SINH(X)} computes the hyperbolic sine of @var{X}.
@item @emph{Standard}:
Fortran 95 and later
Fortran 95 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@ -9830,11 +9830,11 @@ Elemental function
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL}.
The return value has same type and kind as @var{X}.
@item @emph{Example}:
@smallexample
@ -10508,7 +10508,7 @@ END PROGRAM
@code{TAN(X)} computes the tangent of @var{X}.
@item @emph{Standard}:
Fortran 77 and later
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@ -10518,12 +10518,11 @@ Elemental function
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL}. The kind type parameter is
the same as @var{X}.
The return value has same type and kind as @var{X}.
@item @emph{Example}:
@smallexample
@ -10558,7 +10557,7 @@ end program test_tan
@code{TANH(X)} computes the hyperbolic tangent of @var{X}.
@item @emph{Standard}:
Fortran 77 and later
Fortran 77 and later, for a complex argument Fortran 2008 or later
@item @emph{Class}:
Elemental function
@ -10568,11 +10567,13 @@ Elemental function
@item @emph{Arguments}:
@multitable @columnfractions .15 .70
@item @var{X} @tab The type shall be @code{REAL}.
@item @var{X} @tab The type shall be @code{REAL} or @code{COMPLEX}.
@end multitable
@item @emph{Return value}:
The return value is of type @code{REAL} and lies in the range
The return value has same type and kind as @var{X}. If @var{X} is
complex, the imaginary part of the result is in radians. If @var{X}
is @code{REAL}, the return value lies in the range
@math{ - 1 \leq tanh(x) \leq 1 }.
@item @emph{Example}:

View file

@ -1,3 +1,9 @@
2009-07-11 Tobias Burnus <burnus@net-b.de>
PR fortran/33197
* gfortran.dg/complex_intrinsic_3.f90: New test.
* gfortran.dg/complex_intrinsic_4.f90: New test.
2009-07-10 David Daney <ddaney@caviumnetworks.com>
PR target/39079

View file

@ -0,0 +1,39 @@
! { dg-do run }
!
! PR fortran/33197
!
! Fortran 2008 complex trigonometric functions: tan, cosh, sinh, tanh
!
implicit none
real(4), parameter :: pi = 2*acos(0.0_4)
real(8), parameter :: pi8 = 2*acos(0.0_8)
real(4), parameter :: eps = 10*epsilon(0.0_4)
real(8), parameter :: eps8 = 10*epsilon(0.0_8)
complex(4), volatile :: z0_0 = cmplx(0.0_4, 0.0_4, kind=4)
complex(4), volatile :: z1_1 = cmplx(1.0_4, 1.0_4, kind=4)
complex(4), volatile :: zp_p = cmplx(pi, pi, kind=4)
complex(8), volatile :: z80_0 = cmplx(0.0_8, 0.0_8, kind=8)
complex(8), volatile :: z81_1 = cmplx(1.0_8, 1.0_8, kind=8)
complex(8), volatile :: z8p_p = cmplx(pi8, pi8, kind=8)
if (abs(tan(z0_0) - cmplx(0.0,0.0,4)) > eps) call abort()
if (abs(tan(z1_1) - cmplx(0.27175257,1.0839232,4)) > eps) call abort()
if (abs(tan(z80_0) - cmplx(0.0_8,0.0_8,8)) > eps8) call abort()
if (abs(tan(z81_1) - cmplx(0.27175258531951174_8,1.0839233273386946_8,8)) > eps8) call abort()
if (abs(cosh(z0_0) - cmplx(1.0,0.0,4)) > eps) call abort()
if (abs(cosh(z1_1) - cmplx(0.83372992,0.98889768,4)) > eps) call abort()
if (abs(cosh(z80_0) - cmplx(1.0_8,0.0_8,8)) > eps8) call abort()
if (abs(cosh(z81_1) - cmplx(0.83373002513114913_8,0.98889770576286506_8,8)) > eps8) call abort()
if (abs(sinh(z0_0) - cmplx(0.0,0.0,4)) > eps) call abort()
if (abs(sinh(z1_1) - cmplx(0.63496387,1.2984575,4)) > eps) call abort()
if (abs(sinh(z80_0) - cmplx(0.0_8,0.0_8,8)) > eps8) call abort()
if (abs(sinh(z81_1) - cmplx(0.63496391478473613_8,1.2984575814159773_8,8)) > eps8) call abort()
if (abs(tanh(z0_0) - cmplx(0.0,0.0,4)) > eps) call abort()
if (abs(tanh(z1_1) - cmplx(1.0839232,0.27175257,4)) > eps) call abort()
if (abs(tanh(z80_0) - cmplx(0.0_8,0.0_8,8)) > eps8) call abort()
if (abs(tanh(z81_1) - cmplx(1.0839233273386946_8,0.27175258531951174_8,8)) > eps8) call abort()
end

View file

@ -0,0 +1,24 @@
! { dg-do compile }
! { dg-options "-std=f2003" }
!
! PR fortran/33197
!
! Fortran 2008 complex trigonometric functions: tan, cosh, sinh, tanh
!
real :: r
complex :: z
r = -45.5
r = sin(r)
r = cos(r)
r = tan(r)
r = cosh(r)
r = sinh(r)
r = tanh(r)
z = 4.0
z = cos(z)
z = sin(z)
z = tan(z) ! { dg-error "Fortran 2008: COMPLEX argument" }
z = cosh(z)! { dg-error "Fortran 2008: COMPLEX argument" }
z = sinh(z)! { dg-error "Fortran 2008: COMPLEX argument" }
z = tanh(z)! { dg-error "Fortran 2008: COMPLEX argument" }
end