Add LXVKQ support.

This patch adds support to generate the LXVKQ instruction to load specific
IEEE-128 floating point constants.

Compared to the last time I submitted this patch, I modified it so that it
uses the bit pattern of the vector to see if it can generate the LXVKQ
instruction.  This means on a little endian Power<xxx> system, the
following code will generate a LXVKQ 34,16 instruction:

    vector long long foo (void)
    {
      return (vector long long) { 0x0000000000000000, 0x8000000000000000 };
    }

because that vector pattern is the same bit pattern as -0.0F128.

2021-12-14  Michael Meissner  <meissner@the-meissners.org>

gcc/

	* config/rs6000/constraints.md (eQ): New constraint.
	* config/rs6000/predicates.md (easy_fp_constant): Add support for
	generating the LXVKQ instruction.
	(easy_vector_constant_ieee128): New predicate.
	(easy_vector_constant): Add support for generating the LXVKQ
	instruction.
	* config/rs6000/rs6000-protos.h (constant_generates_lxvkq): New
	declaration.
	* config/rs6000/rs6000.c (output_vec_const_move): Add support for
	generating LXVKQ.
	(constant_generates_lxvkq): New function.
	* config/rs6000/rs6000.opt (-mieee128-constant): New debug
	option.
	* config/rs6000/vsx.md (vsx_mov<mode>_64bit): Add support for
	generating LXVKQ.
	(vsx_mov<mode>_32bit): Likewise.
	* doc/md.texi (PowerPC and IBM RS6000 constraints): Document the
	eQ constraint.

gcc/testsuite/

	* gcc.target/powerpc/float128-constant.c: New test.
This commit is contained in:
Michael Meissner 2021-12-15 00:57:44 -05:00
parent c6756b3bc1
commit 8ccd8b12de
8 changed files with 285 additions and 0 deletions

View file

@ -213,6 +213,12 @@
"A signed 34-bit integer constant if prefixed instructions are supported."
(match_operand 0 "cint34_operand"))
;; A TF/KF scalar constant or a vector constant that can load certain IEEE
;; 128-bit constants into vector registers using LXVKQ.
(define_constraint "eQ"
"An IEEE 128-bit constant that can be loaded into VSX registers."
(match_operand 0 "easy_vector_constant_ieee128"))
;; Floating-point constraints. These two are defined so that insn
;; length attributes can be calculated exactly.

View file

@ -601,6 +601,14 @@
if (TARGET_VSX && op == CONST0_RTX (mode))
return 1;
/* Constants that can be generated with ISA 3.1 instructions are easy. */
vec_const_128bit_type vsx_const;
if (TARGET_POWER10 && vec_const_128bit_to_bytes (op, mode, &vsx_const))
{
if (constant_generates_lxvkq (&vsx_const) != 0)
return true;
}
/* Otherwise consider floating point constants hard, so that the
constant gets pushed to memory during the early RTL phases. This
has the advantage that double precision constants that can be
@ -609,6 +617,23 @@
return 0;
})
;; Return 1 if the operand is a special IEEE 128-bit value that can be loaded
;; via the LXVKQ instruction.
(define_predicate "easy_vector_constant_ieee128"
(match_code "const_vector,const_double")
{
vec_const_128bit_type vsx_const;
/* Can we generate the LXVKQ instruction? */
if (!TARGET_IEEE128_CONSTANT || !TARGET_FLOAT128_HW || !TARGET_POWER10
|| !TARGET_VSX)
return false;
return (vec_const_128bit_to_bytes (op, mode, &vsx_const)
&& constant_generates_lxvkq (&vsx_const) != 0);
})
;; Return 1 if the operand is a constant that can loaded with a XXSPLTIB
;; instruction and then a VUPKHSB, VECSB2W or VECSB2D instruction.
@ -653,6 +678,15 @@
if (zero_constant (op, mode) || all_ones_constant (op, mode))
return true;
/* Constants that can be generated with ISA 3.1 instructions are
easy. */
vec_const_128bit_type vsx_const;
if (TARGET_POWER10 && vec_const_128bit_to_bytes (op, mode, &vsx_const))
{
if (constant_generates_lxvkq (&vsx_const) != 0)
return true;
}
if (TARGET_P9_VECTOR
&& xxspltib_constant_p (op, mode, &num_insns, &value))
return true;

View file

@ -250,6 +250,7 @@ typedef struct {
extern bool vec_const_128bit_to_bytes (rtx, machine_mode,
vec_const_128bit_type *);
extern unsigned constant_generates_lxvkq (vec_const_128bit_type *);
#endif /* RTX_CODE */
#ifdef TREE_CODE

View file

@ -6700,6 +6700,17 @@ output_vec_const_move (rtx *operands)
gcc_unreachable ();
}
vec_const_128bit_type vsx_const;
if (TARGET_POWER10 && vec_const_128bit_to_bytes (vec, mode, &vsx_const))
{
unsigned imm = constant_generates_lxvkq (&vsx_const);
if (imm)
{
operands[2] = GEN_INT (imm);
return "lxvkq %x0,%2";
}
}
if (TARGET_P9_VECTOR
&& xxspltib_constant_p (vec, mode, &num_insns, &xxspltib_value))
{
@ -28587,6 +28598,57 @@ vec_const_128bit_to_bytes (rtx op,
return true;
}
/* Determine if an IEEE 128-bit constant can be loaded with LXVKQ. Return zero
if the LXVKQ instruction cannot be used. Otherwise return the immediate
value to be used with the LXVKQ instruction. */
unsigned
constant_generates_lxvkq (vec_const_128bit_type *vsx_const)
{
/* Is the instruction supported with power10 code generation, IEEE 128-bit
floating point hardware and VSX registers are available. */
if (!TARGET_IEEE128_CONSTANT || !TARGET_FLOAT128_HW || !TARGET_POWER10
|| !TARGET_VSX)
return 0;
/* All of the constants that are generated by LXVKQ have the bottom 3 words
that are 0. */
if (vsx_const->words[1] != 0
|| vsx_const->words[2] != 0
|| vsx_const->words[3] != 0)
return 0;
/* See if we have a match for the first word. */
switch (vsx_const->words[0])
{
case 0x3FFF0000U: return 1; /* IEEE 128-bit +1.0. */
case 0x40000000U: return 2; /* IEEE 128-bit +2.0. */
case 0x40008000U: return 3; /* IEEE 128-bit +3.0. */
case 0x40010000U: return 4; /* IEEE 128-bit +4.0. */
case 0x40014000U: return 5; /* IEEE 128-bit +5.0. */
case 0x40018000U: return 6; /* IEEE 128-bit +6.0. */
case 0x4001C000U: return 7; /* IEEE 128-bit +7.0. */
case 0x7FFF0000U: return 8; /* IEEE 128-bit +Infinity. */
case 0x7FFF8000U: return 9; /* IEEE 128-bit quiet NaN. */
case 0x80000000U: return 16; /* IEEE 128-bit -0.0. */
case 0xBFFF0000U: return 17; /* IEEE 128-bit -1.0. */
case 0xC0000000U: return 18; /* IEEE 128-bit -2.0. */
case 0xC0008000U: return 19; /* IEEE 128-bit -3.0. */
case 0xC0010000U: return 20; /* IEEE 128-bit -4.0. */
case 0xC0014000U: return 21; /* IEEE 128-bit -5.0. */
case 0xC0018000U: return 22; /* IEEE 128-bit -6.0. */
case 0xC001C000U: return 23; /* IEEE 128-bit -7.0. */
case 0xFFFF0000U: return 24; /* IEEE 128-bit -Infinity. */
/* anything else cannot be loaded. */
default:
break;
}
return 0;
}
struct gcc_target targetm = TARGET_INITIALIZER;
#include "gt-rs6000.h"

View file

@ -640,6 +640,10 @@ mprivileged
Target Var(rs6000_privileged) Init(0)
Generate code that will run in privileged state.
mieee128-constant
Target Var(TARGET_IEEE128_CONSTANT) Init(1) Save
Generate (do not generate) code that uses the LXVKQ instruction.
-param=rs6000-density-pct-threshold=
Target Undocumented Joined UInteger Var(rs6000_density_pct_threshold) Init(85) IntegerRange(0, 100) Param
When costing for loop vectorization, we probably need to penalize the loop body

View file

@ -1192,16 +1192,19 @@
;; VSX store VSX load VSX move VSX->GPR GPR->VSX LQ (GPR)
;; STQ (GPR) GPR load GPR store GPR move XXSPLTIB VSPLTISW
;; LXVKQ
;; VSX 0/-1 VMX const GPR const LVX (VMX) STVX (VMX)
(define_insn "vsx_mov<mode>_64bit"
[(set (match_operand:VSX_M 0 "nonimmediate_operand"
"=ZwO, wa, wa, r, we, ?wQ,
?&r, ??r, ??Y, <??r>, wa, v,
wa,
?wa, v, <??r>, wZ, v")
(match_operand:VSX_M 1 "input_operand"
"wa, ZwO, wa, we, r, r,
wQ, Y, r, r, wE, jwM,
eQ,
?jwM, W, <nW>, v, wZ"))]
"TARGET_POWERPC64 && VECTOR_MEM_VSX_P (<MODE>mode)
@ -1213,35 +1216,43 @@
[(set_attr "type"
"vecstore, vecload, vecsimple, mtvsr, mfvsr, load,
store, load, store, *, vecsimple, vecsimple,
vecperm,
vecsimple, *, *, vecstore, vecload")
(set_attr "num_insns"
"*, *, *, 2, *, 2,
2, 2, 2, 2, *, *,
*,
*, 5, 2, *, *")
(set_attr "max_prefixed_insns"
"*, *, *, *, *, 2,
2, 2, 2, 2, *, *,
*,
*, *, *, *, *")
(set_attr "length"
"*, *, *, 8, *, 8,
8, 8, 8, 8, *, *,
*,
*, 20, 8, *, *")
(set_attr "isa"
"<VSisa>, <VSisa>, <VSisa>, *, *, *,
*, *, *, *, p9v, *,
p10,
<VSisa>, *, *, *, *")])
;; VSX store VSX load VSX move GPR load GPR store GPR move
;; LXVKQ
;; XXSPLTIB VSPLTISW VSX 0/-1 VMX const GPR const
;; LVX (VMX) STVX (VMX)
(define_insn "*vsx_mov<mode>_32bit"
[(set (match_operand:VSX_M 0 "nonimmediate_operand"
"=ZwO, wa, wa, ??r, ??Y, <??r>,
wa,
wa, v, ?wa, v, <??r>,
wZ, v")
(match_operand:VSX_M 1 "input_operand"
"wa, ZwO, wa, Y, r, r,
eQ,
wE, jwM, ?jwM, W, <nW>,
v, wZ"))]
@ -1253,14 +1264,17 @@
}
[(set_attr "type"
"vecstore, vecload, vecsimple, load, store, *,
vecperm,
vecsimple, vecsimple, vecsimple, *, *,
vecstore, vecload")
(set_attr "length"
"*, *, *, 16, 16, 16,
*,
*, *, *, 20, 16,
*, *")
(set_attr "isa"
"<VSisa>, <VSisa>, <VSisa>, *, *, *,
p10,
p9v, *, <VSisa>, *, *,
*, *")])

View file

@ -3336,6 +3336,10 @@ A constant whose negation is a signed 16-bit constant.
@item eI
A signed 34-bit integer constant if prefixed instructions are supported.
@item eQ
An IEEE 128-bit constant that can be loaded into a VSX register with
the @code{lxvkq} instruction.
@ifset INTERNALS
@item G
A floating point constant that can be loaded into a register with one

View file

@ -0,0 +1,160 @@
/* { dg-require-effective-target ppc_float128_hw } */
/* { dg-require-effective-target power10_ok } */
/* { dg-options "-mdejagnu-cpu=power10 -O2" } */
/* Test whether the LXVKQ instruction is generated to load special IEEE 128-bit
constants. */
_Float128
return_0 (void)
{
return 0.0f128; /* XXSPLTIB 34,0. */
}
_Float128
return_1 (void)
{
return 1.0f128; /* LXVKQ 34,1. */
}
_Float128
return_2 (void)
{
return 2.0f128; /* LXVKQ 34,2. */
}
_Float128
return_3 (void)
{
return 3.0f128; /* LXVKQ 34,3. */
}
_Float128
return_4 (void)
{
return 4.0f128; /* LXVKQ 34,4. */
}
_Float128
return_5 (void)
{
return 5.0f128; /* LXVKQ 34,5. */
}
_Float128
return_6 (void)
{
return 6.0f128; /* LXVKQ 34,6. */
}
_Float128
return_7 (void)
{
return 7.0f128; /* LXVKQ 34,7. */
}
_Float128
return_m0 (void)
{
return -0.0f128; /* LXVKQ 34,16. */
}
_Float128
return_m1 (void)
{
return -1.0f128; /* LXVKQ 34,17. */
}
_Float128
return_m2 (void)
{
return -2.0f128; /* LXVKQ 34,18. */
}
_Float128
return_m3 (void)
{
return -3.0f128; /* LXVKQ 34,19. */
}
_Float128
return_m4 (void)
{
return -4.0f128; /* LXVKQ 34,20. */
}
_Float128
return_m5 (void)
{
return -5.0f128; /* LXVKQ 34,21. */
}
_Float128
return_m6 (void)
{
return -6.0f128; /* LXVKQ 34,22. */
}
_Float128
return_m7 (void)
{
return -7.0f128; /* LXVKQ 34,23. */
}
_Float128
return_inf (void)
{
return __builtin_inff128 (); /* LXVKQ 34,8. */
}
_Float128
return_minf (void)
{
return - __builtin_inff128 (); /* LXVKQ 34,24. */
}
_Float128
return_nan (void)
{
return __builtin_nanf128 (""); /* LXVKQ 34,9. */
}
/* Note, the following NaNs should not generate a LXVKQ instruction. */
_Float128
return_mnan (void)
{
return - __builtin_nanf128 (""); /* PLXV 34,... */
}
_Float128
return_nan2 (void)
{
return __builtin_nanf128 ("1"); /* PLXV 34,... */
}
_Float128
return_nans (void)
{
return __builtin_nansf128 (""); /* PLXV 34,... */
}
vector long long
return_longlong_neg_0 (void)
{
/* This vector is the same pattern as -0.0F128. */
#if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
#define FIRST 0x8000000000000000
#define SECOND 0x0000000000000000
#else
#define FIRST 0x0000000000000000
#define SECOND 0x8000000000000000
#endif
return (vector long long) { FIRST, SECOND }; /* LXVKQ 34,16. */
}
/* { dg-final { scan-assembler-times {\mlxvkq\M} 19 } } */
/* { dg-final { scan-assembler-times {\mplxv\M} 3 } } */
/* { dg-final { scan-assembler-times {\mxxspltib\M} 1 } } */