re PR tree-optimization/90078 (ICE with deep templates caused by overflow)

PR tree-optimization/90078
	* tree-ssa-loop-ivopts.c (INFTY): Increase value for infinite cost.
	(struct comp_cost): Promote type of members to int64_t.
	(infinite_cost): Don't set complexity in initialization.
	(comp_cost::operator +,-,+=,-+,/=,*=): Assert when cost computation
	overflows to infinite_cost.
	(adjust_setup_cost): Promote type of parameter and cost computation
	to int64_t.
	(struct ainc_cost_data, struct iv_ca): Promote type of member to
	int64_t.
	(get_scaled_computation_cost_at, determine_iv_cost): Promote type of
	cost computation to int64_t.
	(determine_group_iv_costs, iv_ca_dump, find_optimal_iv_set): Use
	int64_t's format specifier in dump.

	gcc/testsuite
	* g++.dg/tree-ssa/pr90078.C: New test.

From-SVN: r271008
This commit is contained in:
Bin Cheng 2019-05-08 11:37:45 +00:00 committed by Bin Cheng
parent 98d8f14213
commit 8363a2f1f7
4 changed files with 253 additions and 25 deletions

View file

@ -1,3 +1,21 @@
2019-05-08 Bin Cheng <bin.cheng@linux.alibaba.com>
PR tree-optimization/90078
* tree-ssa-loop-ivopts.c (inttypes.h): Include new header file.
(INFTY): Increase the value for infinite cost.
(struct comp_cost): Promote type of members to int64_t.
(infinite_cost): Don't set complexity in initialization.
(comp_cost::operator +,-,+=,-+,/=,*=): Assert when cost computation
overflows to infinite_cost.
(adjust_setup_cost): Promote type of parameter and cost computation
to int64_t.
(struct ainc_cost_data, struct iv_ca): Promote type of member to
int64_t.
(get_scaled_computation_cost_at, determine_iv_cost): Promote type of
cost computation to int64_t.
(determine_group_iv_costs, iv_ca_dump, find_optimal_iv_set): Use
int64_t's format specifier in dump.
2019-05-08 Bin Cheng <bin.cheng@linux.alibaba.com>
PR tree-optimization/90240

View file

@ -1,3 +1,8 @@
2018-05-08 Bin Cheng <bin.cheng@linux.alibaba.com>
PR tree-optimization/90078
* g++.dg/tree-ssa/pr90078.C: New test.
2018-05-08 Bin Cheng <bin.cheng@linux.alibaba.com>
PR tree-optimization/90240

View file

@ -0,0 +1,199 @@
// { dg-do compile }
// { dg-options "-std=c++14 -O2 -ftemplate-depth=1000000" }
template <class T, int Dim0, int Dim1, int Dim2> struct Tensor3;
template <class A, class T, int Dim0, int Dim1, int Dim2, char i, char j,
char k>
struct Tensor3_Expr;
template <class T, int Dim0, int Dim1, int Dim2, int Dim3> struct Tensor4;
template <class A, class T, int Dim0, int Dim1, int Dim2, int Dim3, char i,
char j, char k, char l>
struct Tensor4_Expr;
template <char i, int Dim> struct Index
{};
template <const int N> struct Number
{
Number(){};
operator int() const { return N; }
};
template <class T, int Tensor_Dim0, int Tensor_Dim1, int Tensor_Dim2>
struct Tensor3
{
T data[Tensor_Dim0][Tensor_Dim1][Tensor_Dim2];
T operator()(const int N1, const int N2, const int N3) const
{
return data[N1][N2][N3];
}
template <char i, char j, char k, int Dim0, int Dim1, int Dim2>
Tensor3_Expr<const Tensor3<T, Tensor_Dim0, Tensor_Dim1, Tensor_Dim2>, T,
Dim0, Dim1, Dim2, i, j, k>
operator()(const Index<i, Dim0>, const Index<j, Dim1>,
const Index<k, Dim2>) const
{
return Tensor3_Expr<const Tensor3<T, Tensor_Dim0, Tensor_Dim1, Tensor_Dim2>,
T, Dim0, Dim1, Dim2, i, j, k>(*this);
}
};
template <class A, class T, int Dim0, int Dim1, int Dim2, char i, char j,
char k>
struct Tensor3_Expr
{
A iter;
Tensor3_Expr(const A &a) : iter(a) {}
T operator()(const int N1, const int N2, const int N3) const
{
return iter(N1, N2, N3);
}
};
template <class A, class T, int Tensor_Dim0, int Tensor_Dim1, int Tensor_Dim2,
int Dim0, int Dim1, int Dim2, char i, char j, char k>
struct Tensor3_Expr<Tensor3<A, Tensor_Dim0, Tensor_Dim1, Tensor_Dim2>, T, Dim0,
Dim1, Dim2, i, j, k>
{
Tensor3<A, Tensor_Dim0, Tensor_Dim1, Tensor_Dim2> &iter;
Tensor3_Expr(Tensor3<A, Tensor_Dim0, Tensor_Dim1, Tensor_Dim2> &a) : iter(a)
{}
T operator()(const int N1, const int N2, const int N3) const
{
return iter(N1, N2, N3);
}
};
template <class A, class B, class T, class U, int Dim0, int Dim1, int Dim23,
int Dim4, int Dim5, char i, char j, char k, char l, char m>
struct Tensor3_times_Tensor3_21
{
Tensor3_Expr<A, T, Dim0, Dim1, Dim23, i, j, k> iterA;
Tensor3_Expr<B, U, Dim23, Dim4, Dim5, k, l, m> iterB;
template <int CurrentDim>
T eval(const int N1, const int N2, const int N3, const int N4,
const Number<CurrentDim> &) const
{
return iterA(N1, N2, CurrentDim - 1) * iterB(CurrentDim - 1, N3, N4)
+ eval(N1, N2, N3, N4, Number<CurrentDim - 1>());
}
T eval(const int N1, const int N2, const int N3, const int N4,
const Number<1> &) const
{
return iterA(N1, N2, 0) * iterB(0, N3, N4);
}
Tensor3_times_Tensor3_21(
const Tensor3_Expr<A, T, Dim0, Dim1, Dim23, i, j, k> &a,
const Tensor3_Expr<B, U, Dim23, Dim4, Dim5, k, l, m> &b)
: iterA(a), iterB(b)
{}
T operator()(const int &N1, const int &N2, const int &N3,
const int &N4) const
{
return eval(N1, N2, N3, N4, Number<Dim23>());
}
};
template <class A, class B, class T, class U, int Dim0, int Dim1, int Dim23,
int Dim4, int Dim5, char i, char j, char k, char l, char m>
Tensor4_Expr<Tensor3_times_Tensor3_21<A, B, T, U, Dim0, Dim1, Dim23, Dim4,
Dim5, i, j, k, l, m>,
T, Dim0, Dim1, Dim4, Dim5, i, j, l, m>
operator*(const Tensor3_Expr<A, T, Dim0, Dim1, Dim23, i, j, k> &a,
const Tensor3_Expr<B, U, Dim23, Dim4, Dim5, k, l, m> &b)
{
using TensorExpr = Tensor3_times_Tensor3_21<A, B, T, U, Dim0, Dim1, Dim23,
Dim4, Dim5, i, j, k, l, m>;
return Tensor4_Expr<TensorExpr, T, Dim0, Dim1, Dim4, Dim5, i, j, l, m>(
TensorExpr(a, b));
};
template <class T, int Tensor_Dim0, int Tensor_Dim1, int Tensor_Dim2,
int Tensor_Dim3>
struct Tensor4
{
T data[Tensor_Dim0][Tensor_Dim1][Tensor_Dim2][Tensor_Dim3];
Tensor4() {}
T &operator()(const int N1, const int N2, const int N3, const int N4)
{
return data[N1][N2][N3][N4];
}
template <char i, char j, char k, char l, int Dim0, int Dim1, int Dim2,
int Dim3>
Tensor4_Expr<Tensor4<T, Tensor_Dim0, Tensor_Dim1, Tensor_Dim2, Tensor_Dim3>,
T, Dim0, Dim1, Dim2, Dim3, i, j, k, l>
operator()(const Index<i, Dim0>, const Index<j, Dim1>, const Index<k, Dim2>,
const Index<l, Dim3>)
{
return Tensor4_Expr<
Tensor4<T, Tensor_Dim0, Tensor_Dim1, Tensor_Dim2, Tensor_Dim3>, T, Dim0,
Dim1, Dim2, Dim3, i, j, k, l>(*this);
};
};
template <class A, class T, int Dim0, int Dim1, int Dim2, int Dim3, char i,
char j, char k, char l>
struct Tensor4_Expr
{
A iter;
Tensor4_Expr(const A &a) : iter(a) {}
T operator()(const int N1, const int N2, const int N3, const int N4) const
{
return iter(N1, N2, N3, N4);
}
};
template <class A, class T, int Dim0, int Dim1, int Dim2, int Dim3, char i,
char j, char k, char l>
struct Tensor4_Expr<Tensor4<A, Dim0, Dim1, Dim2, Dim3>, T, Dim0, Dim1, Dim2,
Dim3, i, j, k, l>
{
Tensor4<A, Dim0, Dim1, Dim2, Dim3> &iter;
Tensor4_Expr(Tensor4<A, Dim0, Dim1, Dim2, Dim3> &a) : iter(a) {}
T operator()(const int N1, const int N2, const int N3, const int N4) const
{
return iter(N1, N2, N3, N4);
}
template <class B, class U, int Dim1_0, int Dim1_1, int Dim1_2, int Dim1_3,
char i_1, char j_1, char k_1, char l_1>
auto &operator=(const Tensor4_Expr<B, U, Dim1_0, Dim1_1, Dim1_2, Dim1_3, i_1,
j_1, k_1, l_1> &rhs)
{
for(int ii = 0; ii < Dim0; ++ii)
for(int jj = 0; jj < Dim1; ++jj)
for(int kk = 0; kk < Dim2; ++kk)
for(int ll = 0; ll < Dim3; ++ll)
{
iter(ii, jj, kk, ll) = rhs(ii, jj, kk, ll);
}
return *this;
}
};
int main()
{
Tensor3<float, 100, 100, 1000> t1;
Tensor3<float, 1000, 100, 100> t2;
Index<'l', 100> l;
Index<'m', 100> m;
Index<'k', 1000> k;
Index<'n', 100> n;
Index<'o', 100> o;
Tensor4<float, 100, 100, 100, 100> res;
res(l, m, n, o) = t1(l, m, k) * t2(k, n, o);
return 0;
}

View file

@ -114,7 +114,7 @@ along with GCC; see the file COPYING3. If not see
interface between the GIMPLE and RTL worlds. */
/* The infinite cost. */
#define INFTY 10000000
#define INFTY 1000000000
/* Returns the expected number of loop iterations for LOOP.
The average trip count is computed from profile data if it
@ -180,7 +180,7 @@ struct comp_cost
comp_cost (): cost (0), complexity (0), scratch (0)
{}
comp_cost (int cost, unsigned complexity, int scratch = 0)
comp_cost (int64_t cost, unsigned complexity, int64_t scratch = 0)
: cost (cost), complexity (complexity), scratch (scratch)
{}
@ -220,16 +220,16 @@ struct comp_cost
/* Returns true if COST1 is smaller or equal than COST2. */
friend bool operator<= (comp_cost cost1, comp_cost cost2);
int cost; /* The runtime cost. */
int64_t cost; /* The runtime cost. */
unsigned complexity; /* The estimate of the complexity of the code for
the computation (in no concrete units --
complexity field should be larger for more
complex expressions and addressing modes). */
int scratch; /* Scratch used during cost computation. */
int64_t scratch; /* Scratch used during cost computation. */
};
static const comp_cost no_cost;
static const comp_cost infinite_cost (INFTY, INFTY, INFTY);
static const comp_cost infinite_cost (INFTY, 0, INFTY);
bool
comp_cost::infinite_cost_p ()
@ -243,6 +243,7 @@ operator+ (comp_cost cost1, comp_cost cost2)
if (cost1.infinite_cost_p () || cost2.infinite_cost_p ())
return infinite_cost;
gcc_assert (cost1.cost + cost2.cost < infinite_cost.cost);
cost1.cost += cost2.cost;
cost1.complexity += cost2.complexity;
@ -256,6 +257,7 @@ operator- (comp_cost cost1, comp_cost cost2)
return infinite_cost;
gcc_assert (!cost2.infinite_cost_p ());
gcc_assert (cost1.cost - cost2.cost < infinite_cost.cost);
cost1.cost -= cost2.cost;
cost1.complexity -= cost2.complexity;
@ -276,6 +278,7 @@ comp_cost::operator+= (HOST_WIDE_INT c)
if (infinite_cost_p ())
return *this;
gcc_assert (this->cost + c < infinite_cost.cost);
this->cost += c;
return *this;
@ -287,6 +290,7 @@ comp_cost::operator-= (HOST_WIDE_INT c)
if (infinite_cost_p ())
return *this;
gcc_assert (this->cost - c < infinite_cost.cost);
this->cost -= c;
return *this;
@ -295,6 +299,7 @@ comp_cost::operator-= (HOST_WIDE_INT c)
comp_cost
comp_cost::operator/= (HOST_WIDE_INT c)
{
gcc_assert (c != 0);
if (infinite_cost_p ())
return *this;
@ -309,6 +314,7 @@ comp_cost::operator*= (HOST_WIDE_INT c)
if (infinite_cost_p ())
return *this;
gcc_assert (this->cost * c < infinite_cost.cost);
this->cost *= c;
return *this;
@ -638,7 +644,7 @@ struct iv_ca
comp_cost cand_use_cost;
/* Total cost of candidates. */
unsigned cand_cost;
int64_t cand_cost;
/* Number of times each invariant variable is used. */
unsigned *n_inv_var_uses;
@ -4025,16 +4031,16 @@ get_computation_at (struct loop *loop, gimple *at,
if we're optimizing for speed, amortize it over the per-iteration cost.
If ROUND_UP_P is true, the result is round up rather than to zero when
optimizing for speed. */
static unsigned
adjust_setup_cost (struct ivopts_data *data, unsigned cost,
static int64_t
adjust_setup_cost (struct ivopts_data *data, int64_t cost,
bool round_up_p = false)
{
if (cost == INFTY)
return cost;
else if (optimize_loop_for_speed_p (data->current_loop))
{
HOST_WIDE_INT niters = avg_loop_niter (data->current_loop);
return ((HOST_WIDE_INT) cost + (round_up_p ? niters - 1 : 0)) / niters;
int64_t niters = (int64_t) avg_loop_niter (data->current_loop);
return (cost + (round_up_p ? niters - 1 : 0)) / niters;
}
else
return cost;
@ -4305,7 +4311,7 @@ enum ainc_type
struct ainc_cost_data
{
unsigned costs[AINC_NONE];
int64_t costs[AINC_NONE];
};
static comp_cost
@ -4566,12 +4572,12 @@ get_scaled_computation_cost_at (ivopts_data *data, gimple *at, comp_cost cost)
if (scale_factor == 1)
return cost;
int scaled_cost
int64_t scaled_cost
= cost.scratch + (cost.cost - cost.scratch) * scale_factor;
if (dump_file && (dump_flags & TDF_DETAILS))
fprintf (dump_file, "Scaling cost based on bb prob "
"by %2.2f: %d (scratch: %d) -> %d\n",
fprintf (dump_file, "Scaling cost based on bb prob by %2.2f: "
"%" PRId64 " (scratch: %" PRId64 ") -> %" PRId64 "\n",
1.0f * scale_factor, cost.cost, cost.scratch, scaled_cost);
cost.cost = scaled_cost;
@ -5539,7 +5545,7 @@ determine_group_iv_costs (struct ivopts_data *data)
|| group->cost_map[j].cost.infinite_cost_p ())
continue;
fprintf (dump_file, " %d\t%d\t%d\t",
fprintf (dump_file, " %d\t%" PRId64 "\t%d\t",
group->cost_map[j].cand->id,
group->cost_map[j].cost.cost,
group->cost_map[j].cost.complexity);
@ -5569,7 +5575,7 @@ static void
determine_iv_cost (struct ivopts_data *data, struct iv_cand *cand)
{
comp_cost cost_base;
unsigned cost, cost_step;
int64_t cost, cost_step;
tree base;
gcc_assert (cand->iv != NULL);
@ -6139,11 +6145,11 @@ iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
unsigned i;
comp_cost cost = iv_ca_cost (ivs);
fprintf (file, " cost: %d (complexity %d)\n", cost.cost,
fprintf (file, " cost: %" PRId64 " (complexity %d)\n", cost.cost,
cost.complexity);
fprintf (file, " cand_cost: %d\n cand_group_cost: %d (complexity %d)\n",
ivs->cand_cost, ivs->cand_use_cost.cost,
ivs->cand_use_cost.complexity);
fprintf (file, " cand_cost: %" PRId64 "\n cand_group_cost: "
"%" PRId64 " (complexity %d)\n", ivs->cand_cost,
ivs->cand_use_cost.cost, ivs->cand_use_cost.complexity);
bitmap_print (file, ivs->cands, " candidates: ","\n");
for (i = 0; i < ivs->upto; i++)
@ -6151,9 +6157,9 @@ iv_ca_dump (struct ivopts_data *data, FILE *file, struct iv_ca *ivs)
struct iv_group *group = data->vgroups[i];
struct cost_pair *cp = iv_ca_cand_for_group (ivs, group);
if (cp)
fprintf (file, " group:%d --> iv_cand:%d, cost=(%d,%d)\n",
group->id, cp->cand->id, cp->cost.cost,
cp->cost.complexity);
fprintf (file, " group:%d --> iv_cand:%d, cost=("
"%" PRId64 ",%d)\n", group->id, cp->cand->id,
cp->cost.cost, cp->cost.complexity);
else
fprintf (file, " group:%d --> ??\n", group->id);
}
@ -6751,9 +6757,9 @@ find_optimal_iv_set (struct ivopts_data *data)
if (dump_file && (dump_flags & TDF_DETAILS))
{
fprintf (dump_file, "Original cost %d (complexity %d)\n\n",
fprintf (dump_file, "Original cost %" PRId64 " (complexity %d)\n\n",
origcost.cost, origcost.complexity);
fprintf (dump_file, "Final cost %d (complexity %d)\n\n",
fprintf (dump_file, "Final cost %" PRId64 " (complexity %d)\n\n",
cost.cost, cost.complexity);
}