re PR fortran/35993 (wrong answer for all array intrinsics with scalar mask)
2008-04-30 Thomas Koenig <tkoenig@gcc.gnu.org> PR libfortran/35993 * ifunction.m4 (SCALAR_ARRAY_FUNCTION): Use correct implementation for multi-dimensional return arrays when the mask is .false. * generated/maxloc1_16_i1.c: Regenerated. * generated/maxloc1_16_i16.c: Regenerated. * generated/maxloc1_16_i2.c: Regenerated. * generated/maxloc1_16_i4.c: Regenerated. * generated/maxloc1_16_i8.c: Regenerated. * generated/maxloc1_16_r10.c: Regenerated. * generated/maxloc1_16_r16.c: Regenerated. * generated/maxloc1_16_r4.c: Regenerated. * generated/maxloc1_16_r8.c: Regenerated. * generated/maxloc1_4_i1.c: Regenerated. * generated/maxloc1_4_i16.c: Regenerated. * generated/maxloc1_4_i2.c: Regenerated. * generated/maxloc1_4_i4.c: Regenerated. * generated/maxloc1_4_i8.c: Regenerated. * generated/maxloc1_4_r10.c: Regenerated. * generated/maxloc1_4_r16.c: Regenerated. * generated/maxloc1_4_r4.c: Regenerated. * generated/maxloc1_4_r8.c: Regenerated. * generated/maxloc1_8_i1.c: Regenerated. * generated/maxloc1_8_i16.c: Regenerated. * generated/maxloc1_8_i2.c: Regenerated. * generated/maxloc1_8_i4.c: Regenerated. * generated/maxloc1_8_i8.c: Regenerated. * generated/maxloc1_8_r10.c: Regenerated. * generated/maxloc1_8_r16.c: Regenerated. * generated/maxloc1_8_r4.c: Regenerated. * generated/maxloc1_8_r8.c: Regenerated. * generated/maxval_i1.c: Regenerated. * generated/maxval_i16.c: Regenerated. * generated/maxval_i2.c: Regenerated. * generated/maxval_i4.c: Regenerated. * generated/maxval_i8.c: Regenerated. * generated/maxval_r10.c: Regenerated. * generated/maxval_r16.c: Regenerated. * generated/maxval_r4.c: Regenerated. * generated/maxval_r8.c: Regenerated. * generated/minloc1_16_i1.c: Regenerated. * generated/minloc1_16_i16.c: Regenerated. * generated/minloc1_16_i2.c: Regenerated. * generated/minloc1_16_i4.c: Regenerated. * generated/minloc1_16_i8.c: Regenerated. * generated/minloc1_16_r10.c: Regenerated. * generated/minloc1_16_r16.c: Regenerated. * generated/minloc1_16_r4.c: Regenerated. * generated/minloc1_16_r8.c: Regenerated. * generated/minloc1_4_i1.c: Regenerated. * generated/minloc1_4_i16.c: Regenerated. * generated/minloc1_4_i2.c: Regenerated. * generated/minloc1_4_i4.c: Regenerated. * generated/minloc1_4_i8.c: Regenerated. * generated/minloc1_4_r10.c: Regenerated. * generated/minloc1_4_r16.c: Regenerated. * generated/minloc1_4_r4.c: Regenerated. * generated/minloc1_4_r8.c: Regenerated. * generated/minloc1_8_i1.c: Regenerated. * generated/minloc1_8_i16.c: Regenerated. * generated/minloc1_8_i2.c: Regenerated. * generated/minloc1_8_i4.c: Regenerated. * generated/minloc1_8_i8.c: Regenerated. * generated/minloc1_8_r10.c: Regenerated. * generated/minloc1_8_r16.c: Regenerated. * generated/minloc1_8_r4.c: Regenerated. * generated/minloc1_8_r8.c: Regenerated. * generated/minval_i1.c: Regenerated. * generated/minval_i16.c: Regenerated. * generated/minval_i2.c: Regenerated. * generated/minval_i4.c: Regenerated. * generated/minval_i8.c: Regenerated. * generated/minval_r10.c: Regenerated. * generated/minval_r16.c: Regenerated. * generated/minval_r4.c: Regenerated. * generated/minval_r8.c: Regenerated. * generated/product_c10.c: Regenerated. * generated/product_c16.c: Regenerated. * generated/product_c4.c: Regenerated. * generated/product_c8.c: Regenerated. * generated/product_i1.c: Regenerated. * generated/product_i16.c: Regenerated. * generated/product_i2.c: Regenerated. * generated/product_i4.c: Regenerated. * generated/product_i8.c: Regenerated. * generated/product_r10.c: Regenerated. * generated/product_r16.c: Regenerated. * generated/product_r4.c: Regenerated. * generated/product_r8.c: Regenerated. * generated/sum_c10.c: Regenerated. * generated/sum_c16.c: Regenerated. * generated/sum_c4.c: Regenerated. * generated/sum_c8.c: Regenerated. * generated/sum_i1.c: Regenerated. * generated/sum_i16.c: Regenerated. * generated/sum_i2.c: Regenerated. * generated/sum_i4.c: Regenerated. * generated/sum_i8.c: Regenerated. * generated/sum_r10.c: Regenerated. * generated/sum_r16.c: Regenerated. * generated/sum_r4.c: Regenerated. * generated/sum_r8.c: Regenerated. 2008-04-30 Thomas Koenig <tkoenig@gcc.gnu.org> PR libfortran/35993 * gfortran.dg/intrinsic_product_1.f90: New test case. From-SVN: r134830
This commit is contained in:
parent
9eec643d36
commit
802367d7c9
102 changed files with 10435 additions and 2376 deletions
|
@ -1,3 +1,8 @@
|
|||
2008-04-30 Thomas Koenig <tkoenig@gcc.gnu.org>
|
||||
|
||||
PR libfortran/35993
|
||||
* gfortran.dg/intrinsic_product_1.f90: New test case.
|
||||
|
||||
2008-04-30 Richard Guenther <rguenther@suse.de>
|
||||
|
||||
PR tree-optimization/14847
|
||||
|
|
29
gcc/testsuite/gfortran.dg/intrinsic_product_1.f90
Normal file
29
gcc/testsuite/gfortran.dg/intrinsic_product_1.f90
Normal file
|
@ -0,0 +1,29 @@
|
|||
! { dg-do run }
|
||||
! PR 35993 - some intrinsics with mask = .false. didn't set
|
||||
! the whole return array for multi-dimensional arrays.
|
||||
! Test case adapted from Dick Hendrickson.
|
||||
|
||||
program try
|
||||
|
||||
call ga3019( 1, 2, 3, 4)
|
||||
end program
|
||||
|
||||
SUBROUTINE GA3019(nf1,nf2,nf3,nf4)
|
||||
INTEGER IDA(NF2,NF3)
|
||||
INTEGER IDA1(NF2,NF4,NF3)
|
||||
|
||||
ida1 = 3
|
||||
|
||||
ida = -3
|
||||
IDA(NF1:NF2,NF1:NF3) = PRODUCT(IDA1,NF2, NF1 .LT. 0) !fails
|
||||
if (any(ida /= 1)) call abort
|
||||
|
||||
ida = -3
|
||||
IDA(NF1:NF2,NF1:NF3) = PRODUCT(IDA1,NF2, .false. ) !fails
|
||||
if (any(ida /= 1)) call abort
|
||||
|
||||
ida = -3
|
||||
IDA(NF1:NF2,NF1:NF3) = PRODUCT(IDA1,NF2, ida1 .eq. 137 ) !works
|
||||
if (any(ida /= 1)) call abort
|
||||
|
||||
END SUBROUTINE
|
|
@ -1,3 +1,108 @@
|
|||
2008-04-30 Thomas Koenig <tkoenig@gcc.gnu.org>
|
||||
|
||||
PR libfortran/35993
|
||||
* ifunction.m4 (SCALAR_ARRAY_FUNCTION): Use correct
|
||||
implementation for multi-dimensional return arrays when
|
||||
the mask is .false.
|
||||
* generated/maxloc1_16_i1.c: Regenerated.
|
||||
* generated/maxloc1_16_i16.c: Regenerated.
|
||||
* generated/maxloc1_16_i2.c: Regenerated.
|
||||
* generated/maxloc1_16_i4.c: Regenerated.
|
||||
* generated/maxloc1_16_i8.c: Regenerated.
|
||||
* generated/maxloc1_16_r10.c: Regenerated.
|
||||
* generated/maxloc1_16_r16.c: Regenerated.
|
||||
* generated/maxloc1_16_r4.c: Regenerated.
|
||||
* generated/maxloc1_16_r8.c: Regenerated.
|
||||
* generated/maxloc1_4_i1.c: Regenerated.
|
||||
* generated/maxloc1_4_i16.c: Regenerated.
|
||||
* generated/maxloc1_4_i2.c: Regenerated.
|
||||
* generated/maxloc1_4_i4.c: Regenerated.
|
||||
* generated/maxloc1_4_i8.c: Regenerated.
|
||||
* generated/maxloc1_4_r10.c: Regenerated.
|
||||
* generated/maxloc1_4_r16.c: Regenerated.
|
||||
* generated/maxloc1_4_r4.c: Regenerated.
|
||||
* generated/maxloc1_4_r8.c: Regenerated.
|
||||
* generated/maxloc1_8_i1.c: Regenerated.
|
||||
* generated/maxloc1_8_i16.c: Regenerated.
|
||||
* generated/maxloc1_8_i2.c: Regenerated.
|
||||
* generated/maxloc1_8_i4.c: Regenerated.
|
||||
* generated/maxloc1_8_i8.c: Regenerated.
|
||||
* generated/maxloc1_8_r10.c: Regenerated.
|
||||
* generated/maxloc1_8_r16.c: Regenerated.
|
||||
* generated/maxloc1_8_r4.c: Regenerated.
|
||||
* generated/maxloc1_8_r8.c: Regenerated.
|
||||
* generated/maxval_i1.c: Regenerated.
|
||||
* generated/maxval_i16.c: Regenerated.
|
||||
* generated/maxval_i2.c: Regenerated.
|
||||
* generated/maxval_i4.c: Regenerated.
|
||||
* generated/maxval_i8.c: Regenerated.
|
||||
* generated/maxval_r10.c: Regenerated.
|
||||
* generated/maxval_r16.c: Regenerated.
|
||||
* generated/maxval_r4.c: Regenerated.
|
||||
* generated/maxval_r8.c: Regenerated.
|
||||
* generated/minloc1_16_i1.c: Regenerated.
|
||||
* generated/minloc1_16_i16.c: Regenerated.
|
||||
* generated/minloc1_16_i2.c: Regenerated.
|
||||
* generated/minloc1_16_i4.c: Regenerated.
|
||||
* generated/minloc1_16_i8.c: Regenerated.
|
||||
* generated/minloc1_16_r10.c: Regenerated.
|
||||
* generated/minloc1_16_r16.c: Regenerated.
|
||||
* generated/minloc1_16_r4.c: Regenerated.
|
||||
* generated/minloc1_16_r8.c: Regenerated.
|
||||
* generated/minloc1_4_i1.c: Regenerated.
|
||||
* generated/minloc1_4_i16.c: Regenerated.
|
||||
* generated/minloc1_4_i2.c: Regenerated.
|
||||
* generated/minloc1_4_i4.c: Regenerated.
|
||||
* generated/minloc1_4_i8.c: Regenerated.
|
||||
* generated/minloc1_4_r10.c: Regenerated.
|
||||
* generated/minloc1_4_r16.c: Regenerated.
|
||||
* generated/minloc1_4_r4.c: Regenerated.
|
||||
* generated/minloc1_4_r8.c: Regenerated.
|
||||
* generated/minloc1_8_i1.c: Regenerated.
|
||||
* generated/minloc1_8_i16.c: Regenerated.
|
||||
* generated/minloc1_8_i2.c: Regenerated.
|
||||
* generated/minloc1_8_i4.c: Regenerated.
|
||||
* generated/minloc1_8_i8.c: Regenerated.
|
||||
* generated/minloc1_8_r10.c: Regenerated.
|
||||
* generated/minloc1_8_r16.c: Regenerated.
|
||||
* generated/minloc1_8_r4.c: Regenerated.
|
||||
* generated/minloc1_8_r8.c: Regenerated.
|
||||
* generated/minval_i1.c: Regenerated.
|
||||
* generated/minval_i16.c: Regenerated.
|
||||
* generated/minval_i2.c: Regenerated.
|
||||
* generated/minval_i4.c: Regenerated.
|
||||
* generated/minval_i8.c: Regenerated.
|
||||
* generated/minval_r10.c: Regenerated.
|
||||
* generated/minval_r16.c: Regenerated.
|
||||
* generated/minval_r4.c: Regenerated.
|
||||
* generated/minval_r8.c: Regenerated.
|
||||
* generated/product_c10.c: Regenerated.
|
||||
* generated/product_c16.c: Regenerated.
|
||||
* generated/product_c4.c: Regenerated.
|
||||
* generated/product_c8.c: Regenerated.
|
||||
* generated/product_i1.c: Regenerated.
|
||||
* generated/product_i16.c: Regenerated.
|
||||
* generated/product_i2.c: Regenerated.
|
||||
* generated/product_i4.c: Regenerated.
|
||||
* generated/product_i8.c: Regenerated.
|
||||
* generated/product_r10.c: Regenerated.
|
||||
* generated/product_r16.c: Regenerated.
|
||||
* generated/product_r4.c: Regenerated.
|
||||
* generated/product_r8.c: Regenerated.
|
||||
* generated/sum_c10.c: Regenerated.
|
||||
* generated/sum_c16.c: Regenerated.
|
||||
* generated/sum_c4.c: Regenerated.
|
||||
* generated/sum_c8.c: Regenerated.
|
||||
* generated/sum_i1.c: Regenerated.
|
||||
* generated/sum_i16.c: Regenerated.
|
||||
* generated/sum_i2.c: Regenerated.
|
||||
* generated/sum_i4.c: Regenerated.
|
||||
* generated/sum_i8.c: Regenerated.
|
||||
* generated/sum_r10.c: Regenerated.
|
||||
* generated/sum_r16.c: Regenerated.
|
||||
* generated/sum_r4.c: Regenerated.
|
||||
* generated/sum_r8.c: Regenerated.
|
||||
|
||||
2008-04-25 Thomas Koenig <tkoenig@gcc.gnu.org>
|
||||
|
||||
PR libfortran/35960
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_i1 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_i16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_i2 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_i4 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_i8 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_r10 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_r16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_r4 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_16_r8 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_16_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_i1 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_i16 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_i2 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_i4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_i8 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_r10 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_r16 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_r4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_4_r8 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_4_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_i1 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_i16 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_i2 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_i4 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_i8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_r10 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_r16 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_r4 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ smaxloc1_8_r8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxloc1_8_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_i1 (gfc_array_i1 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_1 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_1 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = (-GFC_INTEGER_1_HUGE-1) ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = (-GFC_INTEGER_1_HUGE-1);
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_i16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = (-GFC_INTEGER_16_HUGE-1) ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = (-GFC_INTEGER_16_HUGE-1);
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_i2 (gfc_array_i2 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_2 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_2 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_2) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = (-GFC_INTEGER_2_HUGE-1) ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = (-GFC_INTEGER_2_HUGE-1);
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_i4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = (-GFC_INTEGER_4_HUGE-1) ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = (-GFC_INTEGER_4_HUGE-1);
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_i8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = (-GFC_INTEGER_8_HUGE-1) ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = (-GFC_INTEGER_8_HUGE-1);
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_r10 (gfc_array_r10 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_10 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_10 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_10) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_10) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = -GFC_REAL_10_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = -GFC_REAL_10_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_r16 (gfc_array_r16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = -GFC_REAL_16_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = -GFC_REAL_16_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_r4 (gfc_array_r4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = -GFC_REAL_4_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = -GFC_REAL_4_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ smaxval_r8 (gfc_array_r8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
maxval_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MAXVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MAXVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MAXVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = -GFC_REAL_8_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = -GFC_REAL_8_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_i1 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_i16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_i2 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_i4 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_i8 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_r10 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_r16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_r4 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_16_r8 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_16_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_i1 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_i16 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_i2 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_i4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_i8 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_r10 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_r16 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_r4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_4_r8 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_4_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_i1 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_i16 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_i2 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_i4 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_i8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_r10 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_r16 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_r4 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -428,51 +428,131 @@ sminloc1_8_r8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minloc1_8_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINLOC intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINLOC intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINLOC intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_i1 (gfc_array_i1 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_1 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_1 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_INTEGER_1_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_INTEGER_1_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_i16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_INTEGER_16_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_INTEGER_16_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_i2 (gfc_array_i2 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_2 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_2 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_2) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_INTEGER_2_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_INTEGER_2_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_i4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_INTEGER_4_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_INTEGER_4_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_i8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_INTEGER_8_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_INTEGER_8_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_r10 (gfc_array_r10 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_10 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_10 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_10) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_10) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_REAL_10_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_REAL_10_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_r16 (gfc_array_r16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_REAL_16_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_REAL_16_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_r4 (gfc_array_r4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_REAL_4_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_REAL_4_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -417,51 +417,131 @@ sminval_r8 (gfc_array_r8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
minval_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" MINVAL intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in MINVAL intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" MINVAL intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = GFC_REAL_8_HUGE ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = GFC_REAL_8_HUGE;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_c10 (gfc_array_c10 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_10 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_10 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_c10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_10) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_10) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_c16 (gfc_array_c16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_c16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_c4 (gfc_array_c4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_c4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_c8 (gfc_array_c8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_c8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_i1 (gfc_array_i1 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_1 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_1 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_i16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_i2 (gfc_array_i2 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_2 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_2 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_2) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_i4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_i8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_r10 (gfc_array_r10 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_10 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_10 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_10) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_10) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_r16 (gfc_array_r16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_r4 (gfc_array_r4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ sproduct_r8 (gfc_array_r8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
product_r8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" PRODUCT intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in PRODUCT intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" PRODUCT intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 1 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 1;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_c10 (gfc_array_c10 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_10 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_10 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_c10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_10) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_10) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_c16 (gfc_array_c16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_c16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_c4 (gfc_array_c4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_c4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_c8 (gfc_array_c8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_COMPLEX_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_COMPLEX_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_c8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_COMPLEX_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_COMPLEX_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_i1 (gfc_array_i1 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_1 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_1 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_i1 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_1) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_1) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_i16 (gfc_array_i16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_i16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_i2 (gfc_array_i2 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_2 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_2 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_i2 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_2) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_2) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_i4 (gfc_array_i4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_i4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_i8 (gfc_array_i8 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_INTEGER_8 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_INTEGER_8 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_i8 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_INTEGER_8) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_INTEGER_8) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_r10 (gfc_array_r10 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_10 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_10 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_r10 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_10) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_10) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_r16 (gfc_array_r16 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_16 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_16 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_r16 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_16) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_16) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
|
@ -416,51 +416,131 @@ ssum_r4 (gfc_array_r4 * const restrict retarray,
|
|||
const index_type * const restrict pdim,
|
||||
GFC_LOGICAL_4 * mask)
|
||||
{
|
||||
index_type count[GFC_MAX_DIMENSIONS];
|
||||
index_type extent[GFC_MAX_DIMENSIONS];
|
||||
index_type sstride[GFC_MAX_DIMENSIONS];
|
||||
index_type dstride[GFC_MAX_DIMENSIONS];
|
||||
GFC_REAL_4 * restrict dest;
|
||||
index_type rank;
|
||||
index_type n;
|
||||
index_type dstride;
|
||||
GFC_REAL_4 *dest;
|
||||
index_type dim;
|
||||
|
||||
|
||||
if (*mask)
|
||||
{
|
||||
sum_r4 (retarray, array, pdim);
|
||||
return;
|
||||
}
|
||||
rank = GFC_DESCRIPTOR_RANK (array);
|
||||
if (rank <= 0)
|
||||
runtime_error ("Rank of array needs to be > 0");
|
||||
/* Make dim zero based to avoid confusion. */
|
||||
dim = (*pdim) - 1;
|
||||
rank = GFC_DESCRIPTOR_RANK (array) - 1;
|
||||
|
||||
for (n = 0; n < dim; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n].stride;
|
||||
extent[n] = array->dim[n].ubound + 1 - array->dim[n].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
for (n = dim; n < rank; n++)
|
||||
{
|
||||
sstride[n] = array->dim[n + 1].stride;
|
||||
extent[n] =
|
||||
array->dim[n + 1].ubound + 1 - array->dim[n + 1].lbound;
|
||||
|
||||
if (extent[n] <= 0)
|
||||
extent[n] = 0;
|
||||
}
|
||||
|
||||
if (retarray->data == NULL)
|
||||
{
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = rank-1;
|
||||
retarray->dim[0].stride = 1;
|
||||
retarray->dtype = (retarray->dtype & ~GFC_DTYPE_RANK_MASK) | 1;
|
||||
size_t alloc_size;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
retarray->dim[n].lbound = 0;
|
||||
retarray->dim[n].ubound = extent[n]-1;
|
||||
if (n == 0)
|
||||
retarray->dim[n].stride = 1;
|
||||
else
|
||||
retarray->dim[n].stride = retarray->dim[n-1].stride * extent[n-1];
|
||||
}
|
||||
|
||||
retarray->offset = 0;
|
||||
retarray->data = internal_malloc_size (sizeof (GFC_REAL_4) * rank);
|
||||
retarray->dtype = (array->dtype & ~GFC_DTYPE_RANK_MASK) | rank;
|
||||
|
||||
alloc_size = sizeof (GFC_REAL_4) * retarray->dim[rank-1].stride
|
||||
* extent[rank-1];
|
||||
|
||||
if (alloc_size == 0)
|
||||
{
|
||||
/* Make sure we have a zero-sized array. */
|
||||
retarray->dim[0].lbound = 0;
|
||||
retarray->dim[0].ubound = -1;
|
||||
return;
|
||||
}
|
||||
else
|
||||
retarray->data = internal_malloc_size (alloc_size);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (rank != GFC_DESCRIPTOR_RANK (retarray))
|
||||
runtime_error ("rank of return array incorrect in"
|
||||
" SUM intrinsic: is %ld, should be %ld",
|
||||
(long int) (GFC_DESCRIPTOR_RANK (retarray)),
|
||||
(long int) rank);
|
||||
|
||||
if (compile_options.bounds_check)
|
||||
{
|
||||
int ret_rank;
|
||||
index_type ret_extent;
|
||||
for (n=0; n < rank; n++)
|
||||
{
|
||||
index_type ret_extent;
|
||||
|
||||
ret_rank = GFC_DESCRIPTOR_RANK (retarray);
|
||||
if (ret_rank != 1)
|
||||
runtime_error ("rank of return array in SUM intrinsic"
|
||||
" should be 1, is %ld", (long int) ret_rank);
|
||||
|
||||
ret_extent = retarray->dim[0].ubound + 1 - retarray->dim[0].lbound;
|
||||
if (ret_extent != rank)
|
||||
runtime_error ("dimension of return array incorrect");
|
||||
ret_extent = retarray->dim[n].ubound + 1
|
||||
- retarray->dim[n].lbound;
|
||||
if (extent[n] != ret_extent)
|
||||
runtime_error ("Incorrect extent in return value of"
|
||||
" SUM intrinsic in dimension %ld:"
|
||||
" is %ld, should be %ld", (long int) n + 1,
|
||||
(long int) ret_extent, (long int) extent[n]);
|
||||
}
|
||||
}
|
||||
}
|
||||
dstride = retarray->dim[0].stride;
|
||||
dest = retarray->data;
|
||||
|
||||
for (n = 0; n < rank; n++)
|
||||
dest[n * dstride] = 0 ;
|
||||
for (n = 0; n < rank; n++)
|
||||
{
|
||||
count[n] = 0;
|
||||
dstride[n] = retarray->dim[n].stride;
|
||||
}
|
||||
|
||||
dest = retarray->data;
|
||||
|
||||
while(1)
|
||||
{
|
||||
*dest = 0;
|
||||
count[0]++;
|
||||
dest += dstride[0];
|
||||
n = 0;
|
||||
while (count[n] == extent[n])
|
||||
{
|
||||
/* When we get to the end of a dimension, reset it and increment
|
||||
the next dimension. */
|
||||
count[n] = 0;
|
||||
/* We could precalculate these products, but this is a less
|
||||
frequently used path so probably not worth it. */
|
||||
dest -= dstride[n] * extent[n];
|
||||
n++;
|
||||
if (n == rank)
|
||||
return;
|
||||
else
|
||||
{
|
||||
count[n]++;
|
||||
dest += dstride[n];
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Add table
Reference in a new issue