Force a [NAN, NAN] range when the definite NAN property is set.
Setting the definite NAN property should also force a [NAN, NAN] range, otherwise we'd have two ways of representing a NAN: with the endpoints or with the property. In the ranger world we avoid at all costs having more than one representation for a range. In doing this, I removed the FRANGE_PROP_ACCESSOR macro, since it looks like setting a property may have repercurssions in the range itself, so it's best for the client to definte its own setter. gcc/ChangeLog: * value-range-storage.cc (frange_storage_slot::get_frange): Use frange_nan. * value-range.cc (frange::set_nan): New. (frange_nan): Move to header file. (range_tests_nan): Adjust frange_nan callers to pass type. New test. * value-range.h (FRANGE_PROP_ACCESSOR): Remove. (frange_nan): New.
This commit is contained in:
parent
865d7352b6
commit
7e3f184399
3 changed files with 51 additions and 34 deletions
|
@ -267,9 +267,7 @@ frange_storage_slot::get_frange (frange &r, tree type) const
|
|||
// endpoints.
|
||||
if (m_props.get_nan ().yes_p ())
|
||||
{
|
||||
REAL_VALUE_TYPE rv;
|
||||
real_nan (&rv, "", 1, TYPE_MODE (type));
|
||||
r.set (type, rv, rv);
|
||||
r = frange_nan (type);
|
||||
return;
|
||||
}
|
||||
|
||||
|
|
|
@ -267,6 +267,29 @@ tree_compare (tree_code code, tree op1, tree op2)
|
|||
return !integer_zerop (fold_build2 (code, integer_type_node, op1, op2));
|
||||
}
|
||||
|
||||
// Set the NAN property. Adjust the range if appopriate.
|
||||
|
||||
void
|
||||
frange::set_nan (fp_prop::kind k)
|
||||
{
|
||||
if (k == fp_prop::YES)
|
||||
{
|
||||
gcc_checking_assert (!undefined_p ());
|
||||
*this = frange_nan (m_type);
|
||||
return;
|
||||
}
|
||||
|
||||
// Setting NO on an obviously NAN range is nonsensical.
|
||||
gcc_checking_assert (k != fp_prop::NO || !real_isnan (&m_min));
|
||||
|
||||
// Setting VARYING on an obviously NAN range is a no-op.
|
||||
if (k == fp_prop::VARYING && real_isnan (&m_min))
|
||||
return;
|
||||
|
||||
m_props.set_nan (k);
|
||||
normalize_kind ();
|
||||
}
|
||||
|
||||
// Setter for franges.
|
||||
|
||||
void
|
||||
|
@ -3493,17 +3516,6 @@ frange_float (const char *lb, const char *ub, tree type = float_type_node)
|
|||
return frange (type, min, max);
|
||||
}
|
||||
|
||||
// Build a NAN of type TYPE.
|
||||
|
||||
static inline frange
|
||||
frange_nan (tree type = float_type_node)
|
||||
{
|
||||
REAL_VALUE_TYPE r;
|
||||
|
||||
gcc_assert (real_nan (&r, "", 1, TYPE_MODE (type)));
|
||||
return frange (type, r, r);
|
||||
}
|
||||
|
||||
static void
|
||||
range_tests_nan ()
|
||||
{
|
||||
|
@ -3517,18 +3529,16 @@ range_tests_nan ()
|
|||
ASSERT_NE (r0, r1);
|
||||
r0.set_nan (fp_prop::YES);
|
||||
ASSERT_NE (r0, r1);
|
||||
r0.set_nan (fp_prop::VARYING);
|
||||
ASSERT_EQ (r0, r1);
|
||||
|
||||
// NAN ranges are not equal to each other.
|
||||
r0 = frange_nan ();
|
||||
r0 = frange_nan (float_type_node);
|
||||
r1 = r0;
|
||||
ASSERT_FALSE (r0 == r1);
|
||||
ASSERT_FALSE (r0 == r0);
|
||||
ASSERT_TRUE (r0 != r0);
|
||||
|
||||
// Make sure that combining NAN and INF doesn't give any crazy results.
|
||||
r0 = frange_nan ();
|
||||
r0 = frange_nan (float_type_node);
|
||||
ASSERT_TRUE (r0.get_nan ().yes_p ());
|
||||
r1 = frange_float ("+Inf", "+Inf");
|
||||
r0.union_ (r1);
|
||||
|
@ -3536,22 +3546,29 @@ range_tests_nan ()
|
|||
ASSERT_TRUE (r0.varying_p ());
|
||||
|
||||
// [INF, INF] ^ NAN = VARYING
|
||||
r0 = frange_nan ();
|
||||
r0 = frange_nan (float_type_node);
|
||||
r1 = frange_float ("+Inf", "+Inf");
|
||||
r0.intersect (r1);
|
||||
ASSERT_TRUE (r0.varying_p ());
|
||||
|
||||
// NAN ^ NAN = NAN
|
||||
r0 = frange_nan ();
|
||||
r1 = frange_nan ();
|
||||
r0 = frange_nan (float_type_node);
|
||||
r1 = frange_nan (float_type_node);
|
||||
r0.intersect (r1);
|
||||
ASSERT_TRUE (r0.get_nan ().yes_p ());
|
||||
|
||||
// VARYING ^ NAN = NAN.
|
||||
r0 = frange_nan ();
|
||||
r0 = frange_nan (float_type_node);
|
||||
r1.set_varying (float_type_node);
|
||||
r0.intersect (r1);
|
||||
ASSERT_TRUE (r0.get_nan ().yes_p ());
|
||||
|
||||
// Setting the NAN bit to yes, forces to range to [NAN, NAN].
|
||||
r0.set_varying (float_type_node);
|
||||
r0.set_nan (fp_prop::YES);
|
||||
ASSERT_TRUE (r0.get_nan ().yes_p ());
|
||||
ASSERT_TRUE (real_isnan (&r0.lower_bound ()));
|
||||
ASSERT_TRUE (real_isnan (&r0.upper_bound ()));
|
||||
}
|
||||
|
||||
static void
|
||||
|
|
|
@ -323,16 +323,6 @@ private:
|
|||
} u;
|
||||
};
|
||||
|
||||
// Accessors for getting/setting all FP properties at once.
|
||||
|
||||
#define FRANGE_PROP_ACCESSOR(NAME) \
|
||||
fp_prop get_##NAME () const { return m_props.get_##NAME (); } \
|
||||
void set_##NAME (fp_prop::kind f) \
|
||||
{ \
|
||||
m_props.set_##NAME (f); \
|
||||
normalize_kind (); \
|
||||
}
|
||||
|
||||
// A floating point range.
|
||||
|
||||
class frange : public vrange
|
||||
|
@ -371,8 +361,9 @@ public:
|
|||
const REAL_VALUE_TYPE &lower_bound () const;
|
||||
const REAL_VALUE_TYPE &upper_bound () const;
|
||||
|
||||
// Each fp_prop can be accessed with get_PROP() and set_PROP().
|
||||
FRANGE_PROP_ACCESSOR(nan)
|
||||
// Accessors for FP properties.
|
||||
fp_prop get_nan () const { return m_props.get_nan (); }
|
||||
void set_nan (fp_prop::kind f);
|
||||
private:
|
||||
void verify_range ();
|
||||
bool normalize_kind ();
|
||||
|
@ -1186,4 +1177,15 @@ real_min_representable (REAL_VALUE_TYPE *r, tree type)
|
|||
*r = real_value_negate (r);
|
||||
}
|
||||
|
||||
// Build a NAN of type TYPE.
|
||||
|
||||
inline frange
|
||||
frange_nan (tree type)
|
||||
{
|
||||
REAL_VALUE_TYPE r;
|
||||
|
||||
gcc_assert (real_nan (&r, "", 1, TYPE_MODE (type)));
|
||||
return frange (type, r, r);
|
||||
}
|
||||
|
||||
#endif // GCC_VALUE_RANGE_H
|
||||
|
|
Loading…
Add table
Reference in a new issue