AWT/Swing merge from GNU Classpath.

From-SVN: r56147
This commit is contained in:
Bryce McKinlay 2002-08-09 04:26:17 +00:00 committed by Bryce McKinlay
parent 097684ce62
commit 7bde45b2eb
490 changed files with 86038 additions and 9753 deletions

View file

@ -1,4 +1,5 @@
/* Copyright (C) 2000, 2002 Free Software Foundation
/* PathIterator.java -- describes a shape by iterating over its vertices
Copyright (C) 2000, 2002 Free Software Foundation
This file is part of GNU Classpath.
@ -37,23 +38,152 @@ exception statement from your version. */
package java.awt.geom;
/**
* This interface provides a directed path over the boundary of a shape. The
* path can contain 1st through 3rd order Bezier curves (lines, and quadratic
* and cubic splines). A shape can have multiple disjoint paths via the
* MOVETO directive, and can close a circular path back to the previos
* MOVETO via the CLOSE directive.
*
* @author Tom Tromey <tromey@cygnus.com>
* @date April 16, 2000
* @author Eric Blake <ebb9@email.byu.edu>
* @see Shape
* @see Stroke
* @see FlatteningPathIterator
* @since 1.2
* @status updated to 1.4
*/
public interface PathIterator
{
public static final int SEG_CLOSE = 4;
public static final int SEG_CUBICTO = 3;
public static final int SEG_LINETO = 1;
public static final int SEG_MOVETO = 0;
public static final int SEG_QUADTO = 2;
public static final int WIND_EVEN_ODD = 0;
public static final int WIND_NON_ZERO = 1;
/**
* The even-odd winding mode: a point is internal to the shape if a ray
* from the point to infinity (in any direction) crosses an odd number of
* segments.
*/
int WIND_EVEN_ODD = 0;
public int currentSegment (double[] coords);
public int currentSegment (float[] coords);
public int getWindingRule ();
public boolean isDone ();
public void next ();
}
/**
* The non-zero winding mode: a point is internal to the shape if a ray
* from the point to infinity (in any direction) crosses a different number
* of segments headed clockwise than those headed counterclockwise.
*/
int WIND_NON_ZERO = 1;
/**
* Starts a new subpath. There is no segment from the previous vertex.
*/
int SEG_MOVETO = 0;
/**
* The current segment is a line.
*/
int SEG_LINETO = 1;
/**
* The current segment is a quadratic parametric curve. It is interpolated
* as t varies from 0 to 1 over the current point (CP), first control point
* (P1), and final interpolated control point (P2):
* <pre>
* P(t) = B(2,0)*CP + B(2,1)*P1 + B(2,2)*P2
* 0 <= t <= 1
* B(n,m) = mth coefficient of nth degree Bernstein polynomial
* = C(n,m) * t^(m) * (1 - t)^(n-m)
* C(n,m) = Combinations of n things, taken m at a time
* = n! / (m! * (n-m)!)
* </pre>
*/
int SEG_QUADTO = 2;
/**
* The current segment is a cubic parametric curve (more commonly known as
* a Bezier curve). It is interpolated as t varies from 0 to 1 over the
* current point (CP), first control point (P1), the second control point
* (P2), and final interpolated control point (P3):
* <pre>
* P(t) = B(3,0)*CP + B(3,1)*P1 + B(3,2)*P2 + B(3,3)*P3
* 0 <= t <= 1
* B(n,m) = mth coefficient of nth degree Bernstein polynomial
* = C(n,m) * t^(m) * (1 - t)^(n-m)
* C(n,m) = Combinations of n things, taken m at a time
* = n! / (m! * (n-m)!)
* </pre>
*/
int SEG_CUBICTO = 3;
/**
* The current segment closes a loop by an implicit line to the previous
* SEG_MOVETO coordinate.
*/
int SEG_CLOSE = 4;
/**
* Returns the winding rule to determine which points are inside this path.
*
* @return the winding rule
* @see #WIND_EVEN_ODD
* @see #WIND_NON_ZERO
*/
int getWindingRule();
/**
* Tests if the iterator is exhausted. If this returns false, currentSegment
* and next may throw a NoSuchElementException (although this is not
* required).
*
* @return true if the iteration is complete
*/
boolean isDone();
/**
* Advance to the next segment in the iteration. It is not specified what
* this does if called when isDone() returns false.
*
* @throws java.util.NoSuchElementException optional when isDone() is true
*/
void next();
/**
* Returns the coordinates of the next point(s), as well as the type of
* line segment. The input array must be at least a float[6], to accomodate
* up to three (x,y) point pairs (although if you know the iterator is
* flat, you can probably get by with a float[2]). If the returned type is
* SEG_MOVETO or SEG_LINETO, the first point in the array is modified; if
* the returned type is SEG_QUADTO, the first two points are modified; if
* the returned type is SEG_CUBICTO, all three points are modified; and if
* the returned type is SEG_CLOSE, the array is untouched.
*
* @param coords the array to place the point coordinates in
* @return the segment type
* @throws NullPointerException if coords is null
* @throws ArrayIndexOutOfBoundsException if coords is too small
* @throws java.util.NoSuchElementException optional when isDone() is true
* @see #SEG_MOVETO
* @see #SEG_LINETO
* @see #SEG_QUADTO
* @see #SEG_CUBICTO
* @see #SEG_CLOSE
*/
int currentSegment(float[] coords);
/**
* Returns the coordinates of the next point(s), as well as the type of
* line segment. The input array must be at least a double[6], to accomodate
* up to three (x,y) point pairs (although if you know the iterator is
* flat, you can probably get by with a double[2]). If the returned type is
* SEG_MOVETO or SEG_LINETO, the first point in the array is modified; if
* the returned type is SEG_QUADTO, the first two points are modified; if
* the returned type is SEG_CUBICTO, all three points are modified; and if
* the returned type is SEG_CLOSE, the array is untouched.
*
* @param coords the array to place the point coordinates in
* @return the segment type
* @throws NullPointerException if coords is null
* @throws ArrayIndexOutOfBoundsException if coords is too small
* @throws java.util.NoSuchElementException optional when isDone() is true
* @see #SEG_MOVETO
* @see #SEG_LINETO
* @see #SEG_QUADTO
* @see #SEG_CUBICTO
* @see #SEG_CLOSE
*/
int currentSegment(double[] coords);
} // interface PathIterator