re PR tree-optimization/35787 (Revision 133680 breaks 447.dealII)

2008-04-02  Richard Guenther  <rguenther@suse.de>

	* tree-vrp.c (extract_range_from_assert): Make sure to not
	produce range min/max with TREE_OVERFOW set.
	If merging a anti-range and a range keep the anti-range if
	the range covers all values of the type.
	(register_edge_assert_for_2): Only allow sign-changing
	conversions in detecting canonical range checks.  Also
	register an assert for the unsigned name if useful.

	PR tree-optimization/35787
	* tree-vrp.c (vrp_val_max): New function.
	(vrp_val_min): Likewise.
	(vrp_val_is_max): Move earlier, use vrp_val_{min,max}.
	(vrp_val_is_min): Likewise.
	(supports_overflow_infinity): Use vrp_val_{min,max}.
	(negative_overflow_infinity): Likewise.
	(positive_overflow_infinity): Likewise.
	(is_negative_overflow_infinity): Use vrp_val_is_{min,max}.
	(is_positive_overflow_infinity): Likewise.
	(is_overflow_infinity): Likewise.
	(avoid_overflow_infinity): Use vrp_val_{min,max} and
	vrp_val_is_{min,max}.
	(set_and_canonicalize_value_range): Canonicalize anti-ranges
	to ranges if possible.  Avoid empty ranges.

	* gcc.dg/tree-ssa/vrp38.c: New testcase.
	* gcc.dg/tree-ssa/vrp39.c: Likewise.

From-SVN: r133808
This commit is contained in:
Richard Guenther 2008-04-01 22:59:21 +00:00 committed by Richard Biener
parent a6a0635ec1
commit 70b7b0376e
5 changed files with 256 additions and 89 deletions

View file

@ -1,3 +1,29 @@
2008-04-02 Richard Guenther <rguenther@suse.de>
* tree-vrp.c (extract_range_from_assert): Make sure to not
produce range min/max with TREE_OVERFOW set.
If merging a anti-range and a range keep the anti-range if
the range covers all values of the type.
(register_edge_assert_for_2): Only allow sign-changing
conversions in detecting canonical range checks. Also
register an assert for the unsigned name if useful.
PR tree-optimization/35787
* tree-vrp.c (vrp_val_max): New function.
(vrp_val_min): Likewise.
(vrp_val_is_max): Move earlier, use vrp_val_{min,max}.
(vrp_val_is_min): Likewise.
(supports_overflow_infinity): Use vrp_val_{min,max}.
(negative_overflow_infinity): Likewise.
(positive_overflow_infinity): Likewise.
(is_negative_overflow_infinity): Use vrp_val_is_{min,max}.
(is_positive_overflow_infinity): Likewise.
(is_overflow_infinity): Likewise.
(avoid_overflow_infinity): Use vrp_val_{min,max} and
vrp_val_is_{min,max}.
(set_and_canonicalize_value_range): Canonicalize anti-ranges
to ranges if possible. Avoid empty ranges.
2008-04-01 John David Anglin <dave.anglin@nrc-cnrc.gc.ca>
PR middle-end/35705

View file

@ -1,3 +1,8 @@
2008-04-02 Richard Guenther <rguenther@suse.de>
* gcc.dg/tree-ssa/vrp38.c: New testcase.
* gcc.dg/tree-ssa/vrp39.c: Likewise.
2008-04-01 George Helffrich <george@gcc.gnu.org>
PRs fortran/PR35154, fortran/PR23057

View file

@ -0,0 +1,21 @@
/* { dg-do run } */
/* { dg-options "-O2" } */
int __attribute__((noinline))
foo(char c)
{
unsigned short a = (unsigned short)c;
if (a >= -32000 && a <= 32000)
return c == 0;
return -1;
}
extern void abort (void);
int main()
{
if (foo(1) == 1)
abort ();
return 0;
}

View file

@ -0,0 +1,18 @@
/* { dg-do link } */
/* { dg-options "-O2" } */
extern void link_error (void);
void test1(int i)
{
if (i >= -5 && i <= 8)
{
unsigned int j = i;
if (j == -6)
link_error ();
if (j == 9)
link_error ();
}
}
int main() { return 0; }

View file

@ -105,6 +105,64 @@ static value_range_t **vr_value;
static int *vr_phi_edge_counts;
/* Return the maximum value for TYPEs base type. */
static inline tree
vrp_val_max (const_tree type)
{
if (!INTEGRAL_TYPE_P (type))
return NULL_TREE;
/* For integer sub-types the values for the base type are relevant. */
if (TREE_TYPE (type))
type = TREE_TYPE (type);
return TYPE_MAX_VALUE (type);
}
/* Return the minimum value for TYPEs base type. */
static inline tree
vrp_val_min (const_tree type)
{
if (!INTEGRAL_TYPE_P (type))
return NULL_TREE;
/* For integer sub-types the values for the base type are relevant. */
if (TREE_TYPE (type))
type = TREE_TYPE (type);
return TYPE_MIN_VALUE (type);
}
/* Return whether VAL is equal to the maximum value of its type. This
will be true for a positive overflow infinity. We can't do a
simple equality comparison with TYPE_MAX_VALUE because C typedefs
and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
to the integer constant with the same value in the type. */
static inline bool
vrp_val_is_max (const_tree val)
{
tree type_max = vrp_val_max (TREE_TYPE (val));
return (val == type_max
|| (type_max != NULL_TREE
&& operand_equal_p (val, type_max, 0)));
}
/* Return whether VAL is equal to the minimum value of its type. This
will be true for a negative overflow infinity. */
static inline bool
vrp_val_is_min (const_tree val)
{
tree type_min = vrp_val_min (TREE_TYPE (val));
return (val == type_min
|| (type_min != NULL_TREE
&& operand_equal_p (val, type_min, 0)));
}
/* Return whether TYPE should use an overflow infinity distinct from
TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
represent a signed overflow during VRP computations. An infinity
@ -130,13 +188,14 @@ needs_overflow_infinity (const_tree type)
static inline bool
supports_overflow_infinity (const_tree type)
{
tree min = vrp_val_min (type), max = vrp_val_max (type);
#ifdef ENABLE_CHECKING
gcc_assert (needs_overflow_infinity (type));
#endif
return (TYPE_MIN_VALUE (type) != NULL_TREE
&& CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
&& TYPE_MAX_VALUE (type) != NULL_TREE
&& CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
return (min != NULL_TREE
&& CONSTANT_CLASS_P (min)
&& max != NULL_TREE
&& CONSTANT_CLASS_P (max));
}
/* VAL is the maximum or minimum value of a type. Return a
@ -161,7 +220,7 @@ negative_overflow_infinity (tree type)
#ifdef ENABLE_CHECKING
gcc_assert (supports_overflow_infinity (type));
#endif
return make_overflow_infinity (TYPE_MIN_VALUE (type));
return make_overflow_infinity (vrp_val_min (type));
}
/* Return a positive overflow infinity for TYPE. */
@ -172,7 +231,7 @@ positive_overflow_infinity (tree type)
#ifdef ENABLE_CHECKING
gcc_assert (supports_overflow_infinity (type));
#endif
return make_overflow_infinity (TYPE_MAX_VALUE (type));
return make_overflow_infinity (vrp_val_max (type));
}
/* Return whether VAL is a negative overflow infinity. */
@ -183,7 +242,7 @@ is_negative_overflow_infinity (const_tree val)
return (needs_overflow_infinity (TREE_TYPE (val))
&& CONSTANT_CLASS_P (val)
&& TREE_OVERFLOW (val)
&& operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
&& vrp_val_is_min (val));
}
/* Return whether VAL is a positive overflow infinity. */
@ -194,7 +253,7 @@ is_positive_overflow_infinity (const_tree val)
return (needs_overflow_infinity (TREE_TYPE (val))
&& CONSTANT_CLASS_P (val)
&& TREE_OVERFLOW (val)
&& operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
&& vrp_val_is_max (val));
}
/* Return whether VAL is a positive or negative overflow infinity. */
@ -205,8 +264,7 @@ is_overflow_infinity (const_tree val)
return (needs_overflow_infinity (TREE_TYPE (val))
&& CONSTANT_CLASS_P (val)
&& TREE_OVERFLOW (val)
&& (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
|| operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
&& (vrp_val_is_min (val) || vrp_val_is_max (val)));
}
/* If VAL is now an overflow infinity, return VAL. Otherwise, return
@ -219,58 +277,18 @@ avoid_overflow_infinity (tree val)
if (!is_overflow_infinity (val))
return val;
if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
return TYPE_MAX_VALUE (TREE_TYPE (val));
if (vrp_val_is_max (val))
return vrp_val_max (TREE_TYPE (val));
else
{
#ifdef ENABLE_CHECKING
gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
gcc_assert (vrp_val_is_min (val));
#endif
return TYPE_MIN_VALUE (TREE_TYPE (val));
return vrp_val_min (TREE_TYPE (val));
}
}
/* Return whether VAL is equal to the maximum value of its type. This
will be true for a positive overflow infinity. We can't do a
simple equality comparison with TYPE_MAX_VALUE because C typedefs
and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
to the integer constant with the same value in the type. */
static inline bool
vrp_val_is_max (const_tree val)
{
tree type_max, type = TREE_TYPE (val);
/* For integer sub-types the values for the base type are relevant. */
if (TREE_TYPE (type))
type = TREE_TYPE (type);
type_max = TYPE_MAX_VALUE (type);
return (val == type_max
|| (type_max != NULL_TREE
&& operand_equal_p (val, type_max, 0)));
}
/* Return whether VAL is equal to the minimum value of its type. This
will be true for a negative overflow infinity. */
static inline bool
vrp_val_is_min (const_tree val)
{
tree type_min, type = TREE_TYPE (val);
/* For integer sub-types the values for the base type are relevant. */
if (TREE_TYPE (type))
type = TREE_TYPE (type);
type_min = TYPE_MIN_VALUE (type);
return (val == type_min
|| (type_min != NULL_TREE
&& operand_equal_p (val, type_min, 0)));
}
/* Return true if ARG is marked with the nonnull attribute in the
current function signature. */
@ -396,13 +414,11 @@ static void
set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
tree min, tree max, bitmap equiv)
{
tree one, tmp;
/* Nothing to canonicalize for symbolic or unknown or varying ranges. */
if ((t != VR_RANGE
&& t != VR_ANTI_RANGE)
|| TREE_CODE (min) != INTEGER_CST
|| TREE_CODE (max) != INTEGER_CST
|| !tree_int_cst_lt (max, min))
|| TREE_CODE (max) != INTEGER_CST)
{
set_value_range (vr, t, min, max, equiv);
return;
@ -410,21 +426,56 @@ set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
/* Wrong order for min and max, to swap them and the VR type we need
to adjust them. */
one = build_int_cst (TREE_TYPE (min), 1);
tmp = int_const_binop (PLUS_EXPR, max, one, 0);
max = int_const_binop (MINUS_EXPR, min, one, 0);
min = tmp;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if (tree_int_cst_lt (max, min))
{
set_value_range_to_varying (vr);
return;
tree one = build_int_cst (TREE_TYPE (min), 1);
tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
max = int_const_binop (MINUS_EXPR, min, one, 0);
min = tmp;
/* There's one corner case, if we had [C+1, C] before we now have
that again. But this represents an empty value range, so drop
to varying in this case. */
if (tree_int_cst_lt (max, min))
{
set_value_range_to_varying (vr);
return;
}
t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
}
/* Anti-ranges that can be represented as ranges should be so. */
if (t == VR_ANTI_RANGE)
{
bool is_min = vrp_val_is_min (min);
bool is_max = vrp_val_is_max (max);
if (is_min && is_max)
{
/* We cannot deal with empty ranges, drop to varying. */
set_value_range_to_varying (vr);
return;
}
else if (is_min
/* As a special exception preserve non-null ranges. */
&& !(TYPE_UNSIGNED (TREE_TYPE (min))
&& integer_zerop (max)))
{
tree one = build_int_cst (TREE_TYPE (max), 1);
min = int_const_binop (PLUS_EXPR, max, one, 0);
max = vrp_val_max (TREE_TYPE (max));
t = VR_RANGE;
}
else if (is_max)
{
tree one = build_int_cst (TREE_TYPE (min), 1);
max = int_const_binop (MINUS_EXPR, min, one, 0);
min = vrp_val_min (TREE_TYPE (min));
t = VR_RANGE;
}
}
t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
set_value_range (vr, t, min, max, equiv);
}
@ -1233,23 +1284,26 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
if (TREE_CODE (cond) == NOP_EXPR
|| TREE_CODE (cond) == PLUS_EXPR)
{
tree cst2 = NULL_TREE;
if (TREE_CODE (cond) == PLUS_EXPR)
{
min = TREE_OPERAND (cond, 1);
cst2 = fold_build1 (NEGATE_EXPR, TREE_TYPE (min), min);
min = fold_convert (TREE_TYPE (var), cst2);
min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
TREE_OPERAND (cond, 1));
max = int_const_binop (PLUS_EXPR, limit, min, 0);
cond = TREE_OPERAND (cond, 0);
}
else
min = build_int_cst (TREE_TYPE (var), 0);
{
min = build_int_cst (TREE_TYPE (var), 0);
max = limit;
}
if (cst2 != NULL_TREE)
max = int_const_binop (PLUS_EXPR, limit, min, 0);
else
max = limit;
max = fold_convert (TREE_TYPE (var), max);
/* Make sure to not set TREE_OVERFLOW on the final type
conversion. We are willingly interpreting large positive
unsigned values as negative singed values here. */
min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
TREE_INT_CST_HIGH (min), 0, false);
max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
TREE_INT_CST_HIGH (max), 0, false);
/* We can transform a max, min range to an anti-range or
vice-versa. Use set_and_canonicalize_value_range which does
@ -1547,8 +1601,12 @@ extract_range_from_assert (value_range_t *vr_p, tree expr)
if (compare_values (anti_max, real_max) == -1
&& compare_values (anti_min, real_min) == 1)
{
set_value_range (vr_p, VR_RANGE, real_min,
real_max, vr_p->equiv);
/* If the range is covering the whole valid range of
the type keep the anti-range. */
if (!vrp_val_is_min (real_min)
|| !vrp_val_is_max (real_max))
set_value_range (vr_p, VR_RANGE, real_min,
real_max, vr_p->equiv);
}
/* Case 2, VR_ANTI_RANGE completely disjoint from
VR_RANGE. */
@ -3754,7 +3812,7 @@ register_edge_assert_for_2 (tree name, edge e, block_stmt_iterator bsi,
&& TYPE_UNSIGNED (TREE_TYPE (val)))
{
tree def_stmt = SSA_NAME_DEF_STMT (name);
tree cst2 = NULL_TREE, name2 = NULL_TREE;
tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
/* Extract CST2 from the (optional) addition. */
if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
@ -3767,16 +3825,55 @@ register_edge_assert_for_2 (tree name, edge e, block_stmt_iterator bsi,
def_stmt = SSA_NAME_DEF_STMT (name2);
}
/* Extract NAME2 from the (optional) cast. */
/* Extract NAME2 from the (optional) sign-changing cast. */
if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
&& TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR)
name2 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
&& (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
|| TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == CONVERT_EXPR))
{
tree rhs = GIMPLE_STMT_OPERAND (def_stmt, 1);
if ((TREE_CODE (rhs) == NOP_EXPR
|| TREE_CODE (rhs) == CONVERT_EXPR)
&& ! TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (rhs, 0)))
&& (TYPE_PRECISION (TREE_TYPE (rhs))
== TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (rhs, 0)))))
name3 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
}
if (name2 != NULL_TREE
&& TREE_CODE (name2) == SSA_NAME
/* If name3 is used later, create an ASSERT_EXPR for it. */
if (name3 != NULL_TREE
&& TREE_CODE (name3) == SSA_NAME
&& (cst2 == NULL_TREE
|| TREE_CODE (cst2) == INTEGER_CST)
&& TREE_CODE (TREE_TYPE (name2)) == INTEGER_TYPE
&& INTEGRAL_TYPE_P (TREE_TYPE (name3))
&& TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name3))
&& !has_single_use (name3))
{
tree tmp;
/* Build an expression for the range test. */
tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
if (cst2 != NULL_TREE)
tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
if (dump_file)
{
fprintf (dump_file, "Adding assert for ");
print_generic_expr (dump_file, name3, 0);
fprintf (dump_file, " from ");
print_generic_expr (dump_file, tmp, 0);
fprintf (dump_file, "\n");
}
register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
retval = true;
}
/* If name2 is used later, create an ASSERT_EXPR for it. */
if (name2 != NULL_TREE
&& TREE_CODE (name2) == SSA_NAME
&& TREE_CODE (cst2) == INTEGER_CST
&& INTEGRAL_TYPE_P (TREE_TYPE (name2))
&& TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name2))
&& !has_single_use (name2))
{