re PR fortran/38823 (Diagnose and treat (-2.0)**2.0 properly)
2009-03-29 Steven G. Kargl <kargl@gcc.gnu.org> PR fortran/38823 * gfortran.dg/power1.f90: New test. 2009-03-29 Steven G. Kargl <kargl@gcc.gnu.org> PR fortran/38823 * gfortran.h: Add ARITH_PROHIBIT to arith enum. expr.c (gfc_match_init_expr): Add global variable init_flag to flag matching an initialization expression. (check_intrinsic_op): Move no longer reachable error message to ... * arith.c (arith_power): ... here. Remove gfc_ prefix in gfc_arith_power. Use init_flag. Allow constant folding of x**y when y is REAL or COMPLEX. (eval_intrinsic): Remove restriction that y in x**y must be INTEGER for constant folding. * gfc_power: Update gfc_arith_power to arith_power From-SVN: r145261
This commit is contained in:
parent
615ce5fd7a
commit
6bb6267173
6 changed files with 272 additions and 111 deletions
|
@ -1,3 +1,17 @@
|
|||
2009-03-29 Steven G. Kargl <kargl@gcc.gnu.org>
|
||||
|
||||
PR fortran/38823
|
||||
* gfortran.h: Add ARITH_PROHIBIT to arith enum.
|
||||
expr.c (gfc_match_init_expr): Add global variable init_flag to
|
||||
flag matching an initialization expression.
|
||||
(check_intrinsic_op): Move no longer reachable error message to ...
|
||||
* arith.c (arith_power): ... here. Remove gfc_ prefix in
|
||||
gfc_arith_power. Use init_flag. Allow constant folding of x**y
|
||||
when y is REAL or COMPLEX.
|
||||
(eval_intrinsic): Remove restriction that y in x**y must be INTEGER
|
||||
for constant folding.
|
||||
* gfc_power: Update gfc_arith_power to arith_power
|
||||
|
||||
2009-03-29 Daniel Kraft <d@domob.eu>
|
||||
|
||||
PR fortran/37423
|
||||
|
|
|
@ -932,131 +932,213 @@ complex_pow (gfc_expr *result, gfc_expr *base, mpz_t power)
|
|||
}
|
||||
|
||||
|
||||
/* Raise a number to an integer power. */
|
||||
/* Raise a number to a power. */
|
||||
|
||||
static arith
|
||||
gfc_arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
||||
arith_power (gfc_expr *op1, gfc_expr *op2, gfc_expr **resultp)
|
||||
{
|
||||
int power_sign;
|
||||
gfc_expr *result;
|
||||
arith rc;
|
||||
|
||||
gcc_assert (op2->expr_type == EXPR_CONSTANT && op2->ts.type == BT_INTEGER);
|
||||
extern bool init_flag;
|
||||
|
||||
rc = ARITH_OK;
|
||||
result = gfc_constant_result (op1->ts.type, op1->ts.kind, &op1->where);
|
||||
power_sign = mpz_sgn (op2->value.integer);
|
||||
|
||||
if (power_sign == 0)
|
||||
switch (op2->ts.type)
|
||||
{
|
||||
/* Handle something to the zeroth power. Since we're dealing
|
||||
with integral exponents, there is no ambiguity in the
|
||||
limiting procedure used to determine the value of 0**0. */
|
||||
switch (op1->ts.type)
|
||||
case BT_INTEGER:
|
||||
power_sign = mpz_sgn (op2->value.integer);
|
||||
|
||||
if (power_sign == 0)
|
||||
{
|
||||
case BT_INTEGER:
|
||||
mpz_set_ui (result->value.integer, 1);
|
||||
break;
|
||||
/* Handle something to the zeroth power. Since we're dealing
|
||||
with integral exponents, there is no ambiguity in the
|
||||
limiting procedure used to determine the value of 0**0. */
|
||||
switch (op1->ts.type)
|
||||
{
|
||||
case BT_INTEGER:
|
||||
mpz_set_ui (result->value.integer, 1);
|
||||
break;
|
||||
|
||||
case BT_REAL:
|
||||
mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
|
||||
break;
|
||||
case BT_REAL:
|
||||
mpfr_set_ui (result->value.real, 1, GFC_RND_MODE);
|
||||
break;
|
||||
|
||||
case BT_COMPLEX:
|
||||
mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE);
|
||||
mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
|
||||
break;
|
||||
case BT_COMPLEX:
|
||||
mpfr_set_ui (result->value.complex.r, 1, GFC_RND_MODE);
|
||||
mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
|
||||
break;
|
||||
|
||||
default:
|
||||
gfc_internal_error ("gfc_arith_power(): Bad base");
|
||||
default:
|
||||
gfc_internal_error ("arith_power(): Bad base");
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
switch (op1->ts.type)
|
||||
else
|
||||
{
|
||||
case BT_INTEGER:
|
||||
{
|
||||
int power;
|
||||
switch (op1->ts.type)
|
||||
{
|
||||
case BT_INTEGER:
|
||||
{
|
||||
int power;
|
||||
|
||||
/* First, we simplify the cases of op1 == 1, 0 or -1. */
|
||||
if (mpz_cmp_si (op1->value.integer, 1) == 0)
|
||||
{
|
||||
/* 1**op2 == 1 */
|
||||
mpz_set_si (result->value.integer, 1);
|
||||
}
|
||||
else if (mpz_cmp_si (op1->value.integer, 0) == 0)
|
||||
{
|
||||
/* 0**op2 == 0, if op2 > 0
|
||||
0**op2 overflow, if op2 < 0 ; in that case, we
|
||||
set the result to 0 and return ARITH_DIV0. */
|
||||
mpz_set_si (result->value.integer, 0);
|
||||
if (mpz_cmp_si (op2->value.integer, 0) < 0)
|
||||
rc = ARITH_DIV0;
|
||||
}
|
||||
else if (mpz_cmp_si (op1->value.integer, -1) == 0)
|
||||
{
|
||||
/* (-1)**op2 == (-1)**(mod(op2,2)) */
|
||||
unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2);
|
||||
if (odd)
|
||||
mpz_set_si (result->value.integer, -1);
|
||||
/* First, we simplify the cases of op1 == 1, 0 or -1. */
|
||||
if (mpz_cmp_si (op1->value.integer, 1) == 0)
|
||||
{
|
||||
/* 1**op2 == 1 */
|
||||
mpz_set_si (result->value.integer, 1);
|
||||
}
|
||||
else if (mpz_cmp_si (op1->value.integer, 0) == 0)
|
||||
{
|
||||
/* 0**op2 == 0, if op2 > 0
|
||||
0**op2 overflow, if op2 < 0 ; in that case, we
|
||||
set the result to 0 and return ARITH_DIV0. */
|
||||
mpz_set_si (result->value.integer, 0);
|
||||
if (mpz_cmp_si (op2->value.integer, 0) < 0)
|
||||
rc = ARITH_DIV0;
|
||||
}
|
||||
else if (mpz_cmp_si (op1->value.integer, -1) == 0)
|
||||
{
|
||||
/* (-1)**op2 == (-1)**(mod(op2,2)) */
|
||||
unsigned int odd = mpz_fdiv_ui (op2->value.integer, 2);
|
||||
if (odd)
|
||||
mpz_set_si (result->value.integer, -1);
|
||||
else
|
||||
mpz_set_si (result->value.integer, 1);
|
||||
}
|
||||
/* Then, we take care of op2 < 0. */
|
||||
else if (mpz_cmp_si (op2->value.integer, 0) < 0)
|
||||
{
|
||||
/* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */
|
||||
mpz_set_si (result->value.integer, 0);
|
||||
}
|
||||
else if (gfc_extract_int (op2, &power) != NULL)
|
||||
{
|
||||
/* If op2 doesn't fit in an int, the exponentiation will
|
||||
overflow, because op2 > 0 and abs(op1) > 1. */
|
||||
mpz_t max;
|
||||
int i;
|
||||
i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false);
|
||||
|
||||
if (gfc_option.flag_range_check)
|
||||
rc = ARITH_OVERFLOW;
|
||||
|
||||
/* Still, we want to give the same value as the
|
||||
processor. */
|
||||
mpz_init (max);
|
||||
mpz_add_ui (max, gfc_integer_kinds[i].huge, 1);
|
||||
mpz_mul_ui (max, max, 2);
|
||||
mpz_powm (result->value.integer, op1->value.integer,
|
||||
op2->value.integer, max);
|
||||
mpz_clear (max);
|
||||
}
|
||||
else
|
||||
mpz_set_si (result->value.integer, 1);
|
||||
mpz_pow_ui (result->value.integer, op1->value.integer,
|
||||
power);
|
||||
}
|
||||
/* Then, we take care of op2 < 0. */
|
||||
else if (mpz_cmp_si (op2->value.integer, 0) < 0)
|
||||
break;
|
||||
|
||||
case BT_REAL:
|
||||
mpfr_pow_z (result->value.real, op1->value.real,
|
||||
op2->value.integer, GFC_RND_MODE);
|
||||
break;
|
||||
|
||||
case BT_COMPLEX:
|
||||
{
|
||||
/* if op2 < 0, op1**op2 == 0 because abs(op1) > 1. */
|
||||
mpz_set_si (result->value.integer, 0);
|
||||
mpz_t apower;
|
||||
|
||||
/* Compute op1**abs(op2) */
|
||||
mpz_init (apower);
|
||||
mpz_abs (apower, op2->value.integer);
|
||||
complex_pow (result, op1, apower);
|
||||
mpz_clear (apower);
|
||||
|
||||
/* If (op2 < 0), compute the inverse. */
|
||||
if (power_sign < 0)
|
||||
complex_reciprocal (result);
|
||||
}
|
||||
else if (gfc_extract_int (op2, &power) != NULL)
|
||||
{
|
||||
/* If op2 doesn't fit in an int, the exponentiation will
|
||||
overflow, because op2 > 0 and abs(op1) > 1. */
|
||||
mpz_t max;
|
||||
int i = gfc_validate_kind (BT_INTEGER, result->ts.kind, false);
|
||||
break;
|
||||
|
||||
if (gfc_option.flag_range_check)
|
||||
rc = ARITH_OVERFLOW;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
/* Still, we want to give the same value as the processor. */
|
||||
mpz_init (max);
|
||||
mpz_add_ui (max, gfc_integer_kinds[i].huge, 1);
|
||||
mpz_mul_ui (max, max, 2);
|
||||
mpz_powm (result->value.integer, op1->value.integer,
|
||||
op2->value.integer, max);
|
||||
mpz_clear (max);
|
||||
}
|
||||
else
|
||||
mpz_pow_ui (result->value.integer, op1->value.integer, power);
|
||||
}
|
||||
break;
|
||||
case BT_REAL:
|
||||
|
||||
case BT_REAL:
|
||||
mpfr_pow_z (result->value.real, op1->value.real, op2->value.integer,
|
||||
GFC_RND_MODE);
|
||||
break;
|
||||
if (init_flag)
|
||||
{
|
||||
if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
|
||||
"exponent in an initialization "
|
||||
"expression at %L", &op2->where) == FAILURE)
|
||||
return ARITH_PROHIBIT;
|
||||
}
|
||||
|
||||
case BT_COMPLEX:
|
||||
if (mpfr_cmp_si (op1->value.real, 0) < 0)
|
||||
{
|
||||
gfc_error ("Raising a negative REAL at %L to "
|
||||
"a REAL power is prohibited", &op1->where);
|
||||
gfc_free (result);
|
||||
return ARITH_PROHIBIT;
|
||||
}
|
||||
|
||||
mpfr_pow (result->value.real, op1->value.real, op2->value.real,
|
||||
GFC_RND_MODE);
|
||||
break;
|
||||
|
||||
case BT_COMPLEX:
|
||||
{
|
||||
mpfr_t x, y, r, t;
|
||||
|
||||
if (init_flag)
|
||||
{
|
||||
mpz_t apower;
|
||||
if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
|
||||
"exponent in an initialization "
|
||||
"expression at %L", &op2->where) == FAILURE)
|
||||
return ARITH_PROHIBIT;
|
||||
}
|
||||
|
||||
/* Compute op1**abs(op2) */
|
||||
mpz_init (apower);
|
||||
mpz_abs (apower, op2->value.integer);
|
||||
complex_pow (result, op1, apower);
|
||||
mpz_clear (apower);
|
||||
gfc_set_model (op1->value.complex.r);
|
||||
|
||||
/* If (op2 < 0), compute the inverse. */
|
||||
if (power_sign < 0)
|
||||
complex_reciprocal (result);
|
||||
mpfr_init (r);
|
||||
|
||||
mpfr_hypot (r, op1->value.complex.r, op1->value.complex.i,
|
||||
GFC_RND_MODE);
|
||||
if (mpfr_cmp_si (r, 0) == 0)
|
||||
{
|
||||
mpfr_set_ui (result->value.complex.r, 0, GFC_RND_MODE);
|
||||
mpfr_set_ui (result->value.complex.i, 0, GFC_RND_MODE);
|
||||
mpfr_clear (r);
|
||||
break;
|
||||
}
|
||||
mpfr_log (r, r, GFC_RND_MODE);
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
mpfr_init (t);
|
||||
|
||||
mpfr_atan2 (t, op1->value.complex.i, op1->value.complex.r,
|
||||
GFC_RND_MODE);
|
||||
|
||||
mpfr_init (x);
|
||||
mpfr_init (y);
|
||||
|
||||
mpfr_mul (x, op2->value.complex.r, r, GFC_RND_MODE);
|
||||
mpfr_mul (y, op2->value.complex.i, t, GFC_RND_MODE);
|
||||
mpfr_sub (x, x, y, GFC_RND_MODE);
|
||||
mpfr_exp (x, x, GFC_RND_MODE);
|
||||
|
||||
mpfr_mul (y, op2->value.complex.r, t, GFC_RND_MODE);
|
||||
mpfr_mul (t, op2->value.complex.i, r, GFC_RND_MODE);
|
||||
mpfr_add (y, y, t, GFC_RND_MODE);
|
||||
mpfr_cos (t, y, GFC_RND_MODE);
|
||||
mpfr_sin (y, y, GFC_RND_MODE);
|
||||
mpfr_mul (result->value.complex.r, x, t, GFC_RND_MODE);
|
||||
mpfr_mul (result->value.complex.i, x, y, GFC_RND_MODE);
|
||||
mpfr_clears (r, t, x, y, NULL);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
gfc_internal_error ("arith_power(): unknown type");
|
||||
}
|
||||
|
||||
if (rc == ARITH_OK)
|
||||
|
@ -1695,10 +1777,6 @@ eval_intrinsic (gfc_intrinsic_op op,
|
|||
gfc_internal_error ("eval_intrinsic(): Bad operator");
|
||||
}
|
||||
|
||||
/* Try to combine the operators. */
|
||||
if (op == INTRINSIC_POWER && op2->ts.type != BT_INTEGER)
|
||||
goto runtime;
|
||||
|
||||
if (op1->expr_type != EXPR_CONSTANT
|
||||
&& (op1->expr_type != EXPR_ARRAY
|
||||
|| !gfc_is_constant_expr (op1) || !gfc_expanded_ac (op1)))
|
||||
|
@ -1715,8 +1793,13 @@ eval_intrinsic (gfc_intrinsic_op op,
|
|||
else
|
||||
rc = reduce_binary (eval.f3, op1, op2, &result);
|
||||
|
||||
|
||||
/* Something went wrong. */
|
||||
if (op == INTRINSIC_POWER && rc == ARITH_PROHIBIT)
|
||||
return NULL;
|
||||
|
||||
if (rc != ARITH_OK)
|
||||
{ /* Something went wrong. */
|
||||
{
|
||||
gfc_error (gfc_arith_error (rc), &op1->where);
|
||||
return NULL;
|
||||
}
|
||||
|
@ -1908,7 +1991,7 @@ gfc_divide (gfc_expr *op1, gfc_expr *op2)
|
|||
gfc_expr *
|
||||
gfc_power (gfc_expr *op1, gfc_expr *op2)
|
||||
{
|
||||
return eval_intrinsic_f3 (INTRINSIC_POWER, gfc_arith_power, op1, op2);
|
||||
return eval_intrinsic_f3 (INTRINSIC_POWER, arith_power, op1, op2);
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -1938,16 +1938,6 @@ check_intrinsic_op (gfc_expr *e, gfc_try (*check_function) (gfc_expr *))
|
|||
if (!numeric_type (et0 (op1)) || !numeric_type (et0 (op2)))
|
||||
goto not_numeric;
|
||||
|
||||
if (e->value.op.op == INTRINSIC_POWER
|
||||
&& check_function == check_init_expr && et0 (op2) != BT_INTEGER)
|
||||
{
|
||||
if (gfc_notify_std (GFC_STD_F2003,"Fortran 2003: Noninteger "
|
||||
"exponent in an initialization "
|
||||
"expression at %L", &op2->where)
|
||||
== FAILURE)
|
||||
return FAILURE;
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case INTRINSIC_CONCAT:
|
||||
|
@ -2424,7 +2414,11 @@ gfc_reduce_init_expr (gfc_expr *expr)
|
|||
|
||||
|
||||
/* Match an initialization expression. We work by first matching an
|
||||
expression, then reducing it to a constant. */
|
||||
expression, then reducing it to a constant. The reducing it to
|
||||
constant part requires a global variable to flag the prohibition
|
||||
of a non-integer exponent in -std=f95 mode. */
|
||||
|
||||
bool init_flag = false;
|
||||
|
||||
match
|
||||
gfc_match_init_expr (gfc_expr **result)
|
||||
|
@ -2435,18 +2429,25 @@ gfc_match_init_expr (gfc_expr **result)
|
|||
|
||||
expr = NULL;
|
||||
|
||||
init_flag = true;
|
||||
|
||||
m = gfc_match_expr (&expr);
|
||||
if (m != MATCH_YES)
|
||||
return m;
|
||||
{
|
||||
init_flag = false;
|
||||
return m;
|
||||
}
|
||||
|
||||
t = gfc_reduce_init_expr (expr);
|
||||
if (t != SUCCESS)
|
||||
{
|
||||
gfc_free_expr (expr);
|
||||
init_flag = false;
|
||||
return MATCH_ERROR;
|
||||
}
|
||||
|
||||
*result = expr;
|
||||
init_flag = false;
|
||||
|
||||
return MATCH_YES;
|
||||
}
|
||||
|
|
|
@ -199,7 +199,7 @@ gfc_intrinsic_op;
|
|||
/* Arithmetic results. */
|
||||
typedef enum
|
||||
{ ARITH_OK = 1, ARITH_OVERFLOW, ARITH_UNDERFLOW, ARITH_NAN,
|
||||
ARITH_DIV0, ARITH_INCOMMENSURATE, ARITH_ASYMMETRIC
|
||||
ARITH_DIV0, ARITH_INCOMMENSURATE, ARITH_ASYMMETRIC, ARITH_PROHIBIT
|
||||
}
|
||||
arith;
|
||||
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
2009-03-29 Steven G. Kargl <kargl@gcc.gnu.org>
|
||||
|
||||
PR fortran/38823
|
||||
* gfortran.dg/power1.f90: New test.
|
||||
|
||||
2009-03-29 Joseph Myers <joseph@codesourcery.com>
|
||||
|
||||
PR c/456
|
||||
|
|
58
gcc/testsuite/gfortran.dg/power1.f90
Normal file
58
gcc/testsuite/gfortran.dg/power1.f90
Normal file
|
@ -0,0 +1,58 @@
|
|||
! { dg-do run }
|
||||
! Test fix for PR fortran/38823.
|
||||
program power
|
||||
|
||||
implicit none
|
||||
|
||||
integer, parameter :: &
|
||||
& s = kind(1.e0), &
|
||||
& d = kind(1.d0), &
|
||||
& e = max(selected_real_kind(precision(1.d0)+1), d)
|
||||
|
||||
real(s), parameter :: ris = 2.e0_s**2
|
||||
real(d), parameter :: rid = 2.e0_d**2
|
||||
real(e), parameter :: rie = 2.e0_e**2
|
||||
complex(s), parameter :: cis = (2.e0_s,1.e0_s)**2
|
||||
complex(d), parameter :: cid = (2.e0_d,1.e0_d)**2
|
||||
complex(e), parameter :: cie = (2.e0_e,1.e0_e)**2
|
||||
|
||||
real(s), parameter :: rrs = 2.e0_s**2.e0
|
||||
real(d), parameter :: rrd = 2.e0_d**2.e0
|
||||
real(e), parameter :: rre = 2.e0_e**2.e0
|
||||
complex(s), parameter :: crs = (2.e0_s,1.e0_s)**2.e0
|
||||
complex(d), parameter :: crd = (2.e0_d,1.e0_d)**2.e0
|
||||
complex(e), parameter :: cre = (2.e0_e,1.e0_e)**2.e0
|
||||
|
||||
real(s), parameter :: rds = 2.e0_s**2.e0_d
|
||||
real(d), parameter :: rdd = 2.e0_d**2.e0_d
|
||||
real(e), parameter :: rde = 2.e0_e**2.e0_d
|
||||
complex(s), parameter :: cds = (2.e0_s,1.e0_s)**2.e0_d
|
||||
complex(d), parameter :: cdd = (2.e0_d,1.e0_d)**2.e0_d
|
||||
complex(e), parameter :: cde = (2.e0_e,1.e0_e)**2.e0_d
|
||||
|
||||
real(s), parameter :: eps_s = 1.e-5_s
|
||||
real(d), parameter :: eps_d = 1.e-10_d
|
||||
real(e), parameter :: eps_e = 1.e-10_e
|
||||
|
||||
if (abs(ris - 4) > eps_s) call abort
|
||||
if (abs(rid - 4) > eps_d) call abort
|
||||
if (abs(rie - 4) > eps_e) call abort
|
||||
if (abs(real(cis, s) - 3) > eps_s .or. abs(aimag(cis) - 4) > eps_s) call abort
|
||||
if (abs(real(cid, d) - 3) > eps_d .or. abs(aimag(cid) - 4) > eps_d) call abort
|
||||
if (abs(real(cie, e) - 3) > eps_e .or. abs(aimag(cie) - 4) > eps_e) call abort
|
||||
|
||||
if (abs(rrs - 4) > eps_s) call abort
|
||||
if (abs(rrd - 4) > eps_d) call abort
|
||||
if (abs(rre - 4) > eps_e) call abort
|
||||
if (abs(real(crs, s) - 3) > eps_s .or. abs(aimag(crs) - 4) > eps_s) call abort
|
||||
if (abs(real(crd, d) - 3) > eps_d .or. abs(aimag(crd) - 4) > eps_d) call abort
|
||||
if (abs(real(cre, e) - 3) > eps_e .or. abs(aimag(cre) - 4) > eps_e) call abort
|
||||
|
||||
if (abs(rds - 4) > eps_s) call abort
|
||||
if (abs(rdd - 4) > eps_d) call abort
|
||||
if (abs(rde - 4) > eps_e) call abort
|
||||
if (abs(real(cds, s) - 3) > eps_s .or. abs(aimag(cds) - 4) > eps_s) call abort
|
||||
if (abs(real(cdd, d) - 3) > eps_d .or. abs(aimag(cdd) - 4) > eps_d) call abort
|
||||
if (abs(real(cde, e) - 3) > eps_e .or. abs(aimag(cde) - 4) > eps_e) call abort
|
||||
|
||||
end program power
|
Loading…
Add table
Reference in a new issue