PHIOPT: Rename tree_ssa_phiopt_worker to pass_phiopt::execute

Now that store elimination and phiopt does not
share outer code, we can move tree_ssa_phiopt_worker
directly into pass_phiopt::execute and remove
many declarations (prototypes) from the file.

gcc/ChangeLog:

	* tree-ssa-phiopt.cc (two_value_replacement): Remove
	prototype.
	(match_simplify_replacement): Likewise.
	(factor_out_conditional_conversion): Likewise.
	(value_replacement): Likewise.
	(minmax_replacement): Likewise.
	(spaceship_replacement): Likewise.
	(cond_removal_in_builtin_zero_pattern): Likewise.
	(hoist_adjacent_loads): Likewise.
	(tree_ssa_phiopt_worker): Move into ...
	(pass_phiopt::execute): this.
This commit is contained in:
Andrew Pinski 2023-04-24 09:40:35 -07:00
parent b9fedabe38
commit 4c728f20d3

View file

@ -55,27 +55,10 @@ along with GCC; see the file COPYING3. If not see
#include "tree-ssa-propagate.h"
#include "tree-ssa-dce.h"
static bool two_value_replacement (basic_block, basic_block, edge, gphi *,
tree, tree);
static bool match_simplify_replacement (basic_block, basic_block, basic_block,
edge, edge, gphi *, tree, tree, bool, bool);
static gphi *factor_out_conditional_conversion (edge, edge, gphi *, tree, tree,
gimple *);
static int value_replacement (basic_block, basic_block,
edge, edge, gphi *, tree, tree);
static bool minmax_replacement (basic_block, basic_block, basic_block,
edge, edge, gphi *, tree, tree, bool);
static bool spaceship_replacement (basic_block, basic_block,
edge, edge, gphi *, tree, tree);
static bool cond_removal_in_builtin_zero_pattern (basic_block, basic_block,
edge, edge, gphi *,
tree, tree);
static bool cond_store_replacement (basic_block, basic_block, edge, edge,
hash_set<tree> *);
static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
static hash_set<tree> * get_non_trapping ();
static void hoist_adjacent_loads (basic_block, basic_block,
basic_block, basic_block);
/* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
@ -104,188 +87,6 @@ single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
return phi;
}
/* The core routine of phi optimizations.
DO_HOIST_LOADS is true when we want to hoist adjacent loads out
of diamond control flow patterns, false otherwise. */
static unsigned int
tree_ssa_phiopt_worker (bool do_hoist_loads, bool early_p)
{
basic_block bb;
basic_block *bb_order;
unsigned n, i;
bool cfgchanged = false;
calculate_dominance_info (CDI_DOMINATORS);
/* Search every basic block for COND_EXPR we may be able to optimize.
We walk the blocks in order that guarantees that a block with
a single predecessor is processed before the predecessor.
This ensures that we collapse inner ifs before visiting the
outer ones, and also that we do not try to visit a removed
block. */
bb_order = single_pred_before_succ_order ();
n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
for (i = 0; i < n; i++)
{
gphi *phi;
basic_block bb1, bb2;
edge e1, e2;
tree arg0, arg1;
bool diamond_p = false;
bb = bb_order[i];
/* Check to see if the last statement is a GIMPLE_COND. */
gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
if (!cond_stmt)
continue;
e1 = EDGE_SUCC (bb, 0);
bb1 = e1->dest;
e2 = EDGE_SUCC (bb, 1);
bb2 = e2->dest;
/* We cannot do the optimization on abnormal edges. */
if ((e1->flags & EDGE_ABNORMAL) != 0
|| (e2->flags & EDGE_ABNORMAL) != 0)
continue;
/* If either bb1's succ or bb2 or bb2's succ is non NULL. */
if (EDGE_COUNT (bb1->succs) == 0
|| EDGE_COUNT (bb2->succs) == 0)
continue;
/* Find the bb which is the fall through to the other. */
if (EDGE_SUCC (bb1, 0)->dest == bb2)
;
else if (EDGE_SUCC (bb2, 0)->dest == bb1)
{
std::swap (bb1, bb2);
std::swap (e1, e2);
}
else if (EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest
&& single_succ_p (bb2))
{
diamond_p = true;
e2 = EDGE_SUCC (bb2, 0);
/* Make sure bb2 is just a fall through. */
if ((e2->flags & EDGE_FALLTHRU) == 0)
continue;
}
else
continue;
e1 = EDGE_SUCC (bb1, 0);
/* Make sure that bb1 is just a fall through. */
if (!single_succ_p (bb1)
|| (e1->flags & EDGE_FALLTHRU) == 0)
continue;
if (diamond_p)
{
basic_block bb3 = e1->dest;
if (!single_pred_p (bb1)
|| !single_pred_p (bb2))
continue;
if (do_hoist_loads
&& !FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
&& EDGE_COUNT (bb->succs) == 2
&& EDGE_COUNT (bb3->preds) == 2
/* If one edge or the other is dominant, a conditional move
is likely to perform worse than the well-predicted branch. */
&& !predictable_edge_p (EDGE_SUCC (bb, 0))
&& !predictable_edge_p (EDGE_SUCC (bb, 1)))
hoist_adjacent_loads (bb, bb1, bb2, bb3);
}
gimple_stmt_iterator gsi;
bool candorest = true;
/* Check that we're looking for nested phis. */
basic_block merge = diamond_p ? EDGE_SUCC (bb2, 0)->dest : bb2;
gimple_seq phis = phi_nodes (merge);
/* Value replacement can work with more than one PHI
so try that first. */
if (!early_p && !diamond_p)
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
{
phi = as_a <gphi *> (gsi_stmt (gsi));
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
{
candorest = false;
cfgchanged = true;
break;
}
}
if (!candorest)
continue;
phi = single_non_singleton_phi_for_edges (phis, e1, e2);
if (!phi)
continue;
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
/* Something is wrong if we cannot find the arguments in the PHI
node. */
gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
gphi *newphi;
if (single_pred_p (bb1)
&& !diamond_p
&& (newphi = factor_out_conditional_conversion (e1, e2, phi,
arg0, arg1,
cond_stmt)))
{
phi = newphi;
/* factor_out_conditional_conversion may create a new PHI in
BB2 and eliminate an existing PHI in BB2. Recompute values
that may be affected by that change. */
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
}
/* Do the replacement of conditional if it can be done. */
if (!early_p
&& !diamond_p
&& two_value_replacement (bb, bb1, e2, phi, arg0, arg1))
cfgchanged = true;
else if (match_simplify_replacement (bb, bb1, bb2, e1, e2, phi,
arg0, arg1, early_p, diamond_p))
cfgchanged = true;
else if (!early_p
&& !diamond_p
&& single_pred_p (bb1)
&& cond_removal_in_builtin_zero_pattern (bb, bb1, e1, e2,
phi, arg0, arg1))
cfgchanged = true;
else if (minmax_replacement (bb, bb1, bb2, e1, e2, phi, arg0, arg1,
diamond_p))
cfgchanged = true;
else if (single_pred_p (bb1)
&& !diamond_p
&& spaceship_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
cfgchanged = true;
}
free (bb_order);
if (cfgchanged)
return TODO_cleanup_cfg;
return 0;
}
/* The core routine of conditional store replacement. */
static unsigned int
store_elim_worker (void)
@ -4319,11 +4120,7 @@ public:
early_p = param;
}
bool gate (function *) final override { return flag_ssa_phiopt; }
unsigned int execute (function *) final override
{
return tree_ssa_phiopt_worker (!early_p ? gate_hoist_loads () : false,
early_p);
}
unsigned int execute (function *) final override;
private:
bool early_p;
@ -4337,6 +4134,186 @@ make_pass_phiopt (gcc::context *ctxt)
return new pass_phiopt (ctxt);
}
unsigned int
pass_phiopt::execute (function *)
{
bool do_hoist_loads = !early_p ? gate_hoist_loads () : false;
basic_block bb;
basic_block *bb_order;
unsigned n, i;
bool cfgchanged = false;
calculate_dominance_info (CDI_DOMINATORS);
/* Search every basic block for COND_EXPR we may be able to optimize.
We walk the blocks in order that guarantees that a block with
a single predecessor is processed before the predecessor.
This ensures that we collapse inner ifs before visiting the
outer ones, and also that we do not try to visit a removed
block. */
bb_order = single_pred_before_succ_order ();
n = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS;
for (i = 0; i < n; i++)
{
gphi *phi;
basic_block bb1, bb2;
edge e1, e2;
tree arg0, arg1;
bool diamond_p = false;
bb = bb_order[i];
/* Check to see if the last statement is a GIMPLE_COND. */
gcond *cond_stmt = safe_dyn_cast <gcond *> (*gsi_last_bb (bb));
if (!cond_stmt)
continue;
e1 = EDGE_SUCC (bb, 0);
bb1 = e1->dest;
e2 = EDGE_SUCC (bb, 1);
bb2 = e2->dest;
/* We cannot do the optimization on abnormal edges. */
if ((e1->flags & EDGE_ABNORMAL) != 0
|| (e2->flags & EDGE_ABNORMAL) != 0)
continue;
/* If either bb1's succ or bb2 or bb2's succ is non NULL. */
if (EDGE_COUNT (bb1->succs) == 0
|| EDGE_COUNT (bb2->succs) == 0)
continue;
/* Find the bb which is the fall through to the other. */
if (EDGE_SUCC (bb1, 0)->dest == bb2)
;
else if (EDGE_SUCC (bb2, 0)->dest == bb1)
{
std::swap (bb1, bb2);
std::swap (e1, e2);
}
else if (EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest
&& single_succ_p (bb2))
{
diamond_p = true;
e2 = EDGE_SUCC (bb2, 0);
/* Make sure bb2 is just a fall through. */
if ((e2->flags & EDGE_FALLTHRU) == 0)
continue;
}
else
continue;
e1 = EDGE_SUCC (bb1, 0);
/* Make sure that bb1 is just a fall through. */
if (!single_succ_p (bb1)
|| (e1->flags & EDGE_FALLTHRU) == 0)
continue;
if (diamond_p)
{
basic_block bb3 = e1->dest;
if (!single_pred_p (bb1)
|| !single_pred_p (bb2))
continue;
if (do_hoist_loads
&& !FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
&& EDGE_COUNT (bb->succs) == 2
&& EDGE_COUNT (bb3->preds) == 2
/* If one edge or the other is dominant, a conditional move
is likely to perform worse than the well-predicted branch. */
&& !predictable_edge_p (EDGE_SUCC (bb, 0))
&& !predictable_edge_p (EDGE_SUCC (bb, 1)))
hoist_adjacent_loads (bb, bb1, bb2, bb3);
}
gimple_stmt_iterator gsi;
bool candorest = true;
/* Check that we're looking for nested phis. */
basic_block merge = diamond_p ? EDGE_SUCC (bb2, 0)->dest : bb2;
gimple_seq phis = phi_nodes (merge);
/* Value replacement can work with more than one PHI
so try that first. */
if (!early_p && !diamond_p)
for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
{
phi = as_a <gphi *> (gsi_stmt (gsi));
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
{
candorest = false;
cfgchanged = true;
break;
}
}
if (!candorest)
continue;
phi = single_non_singleton_phi_for_edges (phis, e1, e2);
if (!phi)
continue;
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
/* Something is wrong if we cannot find the arguments in the PHI
node. */
gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
gphi *newphi;
if (single_pred_p (bb1)
&& !diamond_p
&& (newphi = factor_out_conditional_conversion (e1, e2, phi,
arg0, arg1,
cond_stmt)))
{
phi = newphi;
/* factor_out_conditional_conversion may create a new PHI in
BB2 and eliminate an existing PHI in BB2. Recompute values
that may be affected by that change. */
arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
gcc_assert (arg0 != NULL_TREE && arg1 != NULL_TREE);
}
/* Do the replacement of conditional if it can be done. */
if (!early_p
&& !diamond_p
&& two_value_replacement (bb, bb1, e2, phi, arg0, arg1))
cfgchanged = true;
else if (match_simplify_replacement (bb, bb1, bb2, e1, e2, phi,
arg0, arg1, early_p, diamond_p))
cfgchanged = true;
else if (!early_p
&& !diamond_p
&& single_pred_p (bb1)
&& cond_removal_in_builtin_zero_pattern (bb, bb1, e1, e2,
phi, arg0, arg1))
cfgchanged = true;
else if (minmax_replacement (bb, bb1, bb2, e1, e2, phi, arg0, arg1,
diamond_p))
cfgchanged = true;
else if (single_pred_p (bb1)
&& !diamond_p
&& spaceship_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
cfgchanged = true;
}
free (bb_order);
if (cfgchanged)
return TODO_cleanup_cfg;
return 0;
}
/* This pass tries to transform conditional stores into unconditional
ones, enabling further simplifications with the simpler then and else
blocks. In particular it replaces this: