[libsanitizer] merge from upstream r168699

From-SVN: r193849
This commit is contained in:
Kostya Serebryany 2012-11-27 14:01:46 +00:00 committed by Kostya Serebryany
parent 169d8507ca
commit 4ba5ca4650
26 changed files with 415 additions and 158 deletions

View file

@ -1,3 +1,7 @@
2012-11-27 Kostya Serebryany <kcc@google.com>
* All files: Merge from upstream r168699.
2012-11-24 Kostya Serebryany kcc@google.com
Jack Howarth <howarth@bromo.med.uc.edu>

View file

@ -1,4 +1,4 @@
168514
168699
The first line of this file holds the svn revision number of the
last merge done from the master library sources.

View file

@ -130,7 +130,7 @@ static void PoisonHeapPartialRightRedzone(uptr mem, uptr size) {
}
static u8 *MmapNewPagesAndPoisonShadow(uptr size) {
CHECK(IsAligned(size, kPageSize));
CHECK(IsAligned(size, GetPageSizeCached()));
u8 *res = (u8*)MmapOrDie(size, __FUNCTION__);
PoisonShadow((uptr)res, size, kAsanHeapLeftRedzoneMagic);
if (flags()->debug) {
@ -532,12 +532,13 @@ class MallocInfo {
uptr mmap_size = Max(size, kMinMmapSize);
uptr n_chunks = mmap_size / size;
CHECK(n_chunks * size == mmap_size);
if (size < kPageSize) {
uptr PageSize = GetPageSizeCached();
if (size < PageSize) {
// Size is small, just poison the last chunk.
n_chunks--;
} else {
// Size is large, allocate an extra page at right and poison it.
mmap_size += kPageSize;
mmap_size += PageSize;
}
CHECK(n_chunks > 0);
u8 *mem = MmapNewPagesAndPoisonShadow(mmap_size);
@ -811,18 +812,19 @@ void *asan_realloc(void *p, uptr size, StackTrace *stack) {
}
void *asan_valloc(uptr size, StackTrace *stack) {
void *ptr = (void*)Allocate(kPageSize, size, stack);
void *ptr = (void*)Allocate(GetPageSizeCached(), size, stack);
__asan_malloc_hook(ptr, size);
return ptr;
}
void *asan_pvalloc(uptr size, StackTrace *stack) {
size = RoundUpTo(size, kPageSize);
uptr PageSize = GetPageSizeCached();
size = RoundUpTo(size, PageSize);
if (size == 0) {
// pvalloc(0) should allocate one page.
size = kPageSize;
size = PageSize;
}
void *ptr = (void*)Allocate(kPageSize, size, stack);
void *ptr = (void*)Allocate(PageSize, size, stack);
__asan_malloc_hook(ptr, size);
return ptr;
}
@ -941,7 +943,7 @@ uptr FakeStack::ClassMmapSize(uptr size_class) {
}
void FakeStack::AllocateOneSizeClass(uptr size_class) {
CHECK(ClassMmapSize(size_class) >= kPageSize);
CHECK(ClassMmapSize(size_class) >= GetPageSizeCached());
uptr new_mem = (uptr)MmapOrDie(
ClassMmapSize(size_class), __FUNCTION__);
// Printf("T%d new_mem[%zu]: %p-%p mmap %zu\n",

View file

@ -174,9 +174,10 @@ void ClearShadowMemoryForContext(void *context) {
uptr sp = (uptr)ucp->uc_stack.ss_sp;
uptr size = ucp->uc_stack.ss_size;
// Align to page size.
uptr bottom = sp & ~(kPageSize - 1);
uptr PageSize = GetPageSizeCached();
uptr bottom = sp & ~(PageSize - 1);
size += sp - bottom;
size = RoundUpTo(size, kPageSize);
size = RoundUpTo(size, PageSize);
PoisonShadow(bottom, size, 0);
}
#else

View file

@ -182,11 +182,11 @@ void ClearShadowMemoryForContext(void *context) {
static void *island_allocator_pos = 0;
#if SANITIZER_WORDSIZE == 32
# define kIslandEnd (0xffdf0000 - kPageSize)
# define kIslandBeg (kIslandEnd - 256 * kPageSize)
# define kIslandEnd (0xffdf0000 - GetPageSizeCached())
# define kIslandBeg (kIslandEnd - 256 * GetPageSizeCached())
#else
# define kIslandEnd (0x7fffffdf0000 - kPageSize)
# define kIslandBeg (kIslandEnd - 256 * kPageSize)
# define kIslandEnd (0x7fffffdf0000 - GetPageSizeCached())
# define kIslandBeg (kIslandEnd - 256 * GetPageSizeCached())
#endif
extern "C"
@ -210,7 +210,7 @@ mach_error_t __interception_allocate_island(void **ptr,
internal_memset(island_allocator_pos, 0xCC, kIslandEnd - kIslandBeg);
};
*ptr = island_allocator_pos;
island_allocator_pos = (char*)island_allocator_pos + kPageSize;
island_allocator_pos = (char*)island_allocator_pos + GetPageSizeCached();
if (flags()->verbosity) {
Report("Branch island allocated at %p\n", *ptr);
}

View file

@ -163,7 +163,7 @@ void *mz_valloc(malloc_zone_t *zone, size_t size) {
return malloc_zone_valloc(system_malloc_zone, size);
}
GET_STACK_TRACE_HERE_FOR_MALLOC;
return asan_memalign(kPageSize, size, &stack);
return asan_memalign(GetPageSizeCached(), size, &stack);
}
#define GET_ZONE_FOR_PTR(ptr) \

View file

@ -66,7 +66,12 @@ extern __attribute__((visibility("default"))) uptr __asan_mapping_offset;
#define kHighShadowBeg MEM_TO_SHADOW(kHighMemBeg)
#define kHighShadowEnd MEM_TO_SHADOW(kHighMemEnd)
#define kShadowGapBeg (kLowShadowEnd ? kLowShadowEnd + 1 : 16 * kPageSize)
// With the zero shadow base we can not actually map pages starting from 0.
// This constant is somewhat arbitrary.
#define kZeroBaseShadowStart (1 << 18)
#define kShadowGapBeg (kLowShadowEnd ? kLowShadowEnd + 1 \
: kZeroBaseShadowStart)
#define kShadowGapEnd (kHighShadowBeg - 1)
#define kGlobalAndStackRedzone \

View file

@ -163,8 +163,8 @@ void ShowStatsAndAbort() {
// ---------------------- mmap -------------------- {{{1
// Reserve memory range [beg, end].
static void ReserveShadowMemoryRange(uptr beg, uptr end) {
CHECK((beg % kPageSize) == 0);
CHECK(((end + 1) % kPageSize) == 0);
CHECK((beg % GetPageSizeCached()) == 0);
CHECK(((end + 1) % GetPageSizeCached()) == 0);
uptr size = end - beg + 1;
void *res = MmapFixedNoReserve(beg, size);
if (res != (void*)beg) {
@ -269,8 +269,9 @@ void NOINLINE __asan_handle_no_return() {
int local_stack;
AsanThread *curr_thread = asanThreadRegistry().GetCurrent();
CHECK(curr_thread);
uptr PageSize = GetPageSizeCached();
uptr top = curr_thread->stack_top();
uptr bottom = ((uptr)&local_stack - kPageSize) & ~(kPageSize-1);
uptr bottom = ((uptr)&local_stack - PageSize) & ~(PageSize-1);
PoisonShadow(bottom, top - bottom, 0);
}
@ -347,12 +348,13 @@ void __asan_init() {
}
uptr shadow_start = kLowShadowBeg;
if (kLowShadowBeg > 0) shadow_start -= kMmapGranularity;
if (kLowShadowBeg > 0) shadow_start -= GetMmapGranularity();
uptr shadow_end = kHighShadowEnd;
if (MemoryRangeIsAvailable(shadow_start, shadow_end)) {
if (kLowShadowBeg != kLowShadowEnd) {
// mmap the low shadow plus at least one page.
ReserveShadowMemoryRange(kLowShadowBeg - kMmapGranularity, kLowShadowEnd);
ReserveShadowMemoryRange(kLowShadowBeg - GetMmapGranularity(),
kLowShadowEnd);
}
// mmap the high shadow.
ReserveShadowMemoryRange(kHighShadowBeg, kHighShadowEnd);

View file

@ -41,7 +41,7 @@ void AsanStats::Print() {
Printf("Stats: %zuM really freed by %zu calls\n",
really_freed>>20, real_frees);
Printf("Stats: %zuM (%zu full pages) mmaped in %zu calls\n",
mmaped>>20, mmaped / kPageSize, mmaps);
mmaped>>20, mmaped / GetPageSizeCached(), mmaps);
PrintMallocStatsArray(" mmaps by size class: ", mmaped_by_size);
PrintMallocStatsArray(" mallocs by size class: ", malloced_by_size);

View file

@ -26,15 +26,16 @@ AsanThread::AsanThread(LinkerInitialized x)
AsanThread *AsanThread::Create(u32 parent_tid, thread_callback_t start_routine,
void *arg, StackTrace *stack) {
uptr size = RoundUpTo(sizeof(AsanThread), kPageSize);
uptr PageSize = GetPageSizeCached();
uptr size = RoundUpTo(sizeof(AsanThread), PageSize);
AsanThread *thread = (AsanThread*)MmapOrDie(size, __FUNCTION__);
thread->start_routine_ = start_routine;
thread->arg_ = arg;
const uptr kSummaryAllocSize = kPageSize;
const uptr kSummaryAllocSize = PageSize;
CHECK_LE(sizeof(AsanThreadSummary), kSummaryAllocSize);
AsanThreadSummary *summary =
(AsanThreadSummary*)MmapOrDie(kPageSize, "AsanThreadSummary");
(AsanThreadSummary*)MmapOrDie(PageSize, "AsanThreadSummary");
summary->Init(parent_tid, stack);
summary->set_thread(thread);
thread->set_summary(summary);
@ -64,7 +65,7 @@ void AsanThread::Destroy() {
// and we don't want it to have any poisoned stack.
ClearShadowForThreadStack();
fake_stack().Cleanup();
uptr size = RoundUpTo(sizeof(AsanThread), kPageSize);
uptr size = RoundUpTo(sizeof(AsanThread), GetPageSizeCached());
UnmapOrDie(this, size);
}

View file

@ -61,7 +61,7 @@ void *LowLevelAllocator::Allocate(uptr size) {
// Align allocation size.
size = RoundUpTo(size, 8);
if (allocated_end_ - allocated_current_ < (sptr)size) {
uptr size_to_allocate = Max(size, kPageSize);
uptr size_to_allocate = Max(size, GetPageSizeCached());
allocated_current_ =
(char*)MmapOrDie(size_to_allocate, __FUNCTION__);
allocated_end_ = allocated_current_ + size_to_allocate;

View file

@ -215,7 +215,6 @@ class SizeClassAllocator64 {
}
static uptr AllocBeg() { return kSpaceBeg; }
static uptr AllocEnd() { return kSpaceBeg + kSpaceSize + AdditionalSize(); }
static uptr AllocSize() { return kSpaceSize + AdditionalSize(); }
static const uptr kNumClasses = 256; // Power of two <= 256
@ -241,7 +240,7 @@ class SizeClassAllocator64 {
static uptr AdditionalSize() {
uptr res = sizeof(RegionInfo) * kNumClasses;
CHECK_EQ(res % kPageSize, 0);
CHECK_EQ(res % GetPageSizeCached(), 0);
return res;
}
@ -364,17 +363,18 @@ class LargeMmapAllocator {
public:
void Init() {
internal_memset(this, 0, sizeof(*this));
page_size_ = GetPageSizeCached();
}
void *Allocate(uptr size, uptr alignment) {
CHECK(IsPowerOfTwo(alignment));
uptr map_size = RoundUpMapSize(size);
if (alignment > kPageSize)
if (alignment > page_size_)
map_size += alignment;
if (map_size < size) return 0; // Overflow.
uptr map_beg = reinterpret_cast<uptr>(
MmapOrDie(map_size, "LargeMmapAllocator"));
uptr map_end = map_beg + map_size;
uptr res = map_beg + kPageSize;
uptr res = map_beg + page_size_;
if (res & (alignment - 1)) // Align.
res += alignment - (res & (alignment - 1));
CHECK_EQ(0, res & (alignment - 1));
@ -421,7 +421,7 @@ class LargeMmapAllocator {
bool PointerIsMine(void *p) {
// Fast check.
if ((reinterpret_cast<uptr>(p) % kPageSize) != 0) return false;
if ((reinterpret_cast<uptr>(p) & (page_size_ - 1))) return false;
SpinMutexLock l(&mutex_);
for (Header *l = list_; l; l = l->next) {
if (GetUser(l) == p) return true;
@ -430,10 +430,10 @@ class LargeMmapAllocator {
}
uptr GetActuallyAllocatedSize(void *p) {
return RoundUpMapSize(GetHeader(p)->size) - kPageSize;
return RoundUpMapSize(GetHeader(p)->size) - page_size_;
}
// At least kPageSize/2 metadata bytes is available.
// At least page_size_/2 metadata bytes is available.
void *GetMetaData(void *p) {
return GetHeader(p) + 1;
}
@ -457,17 +457,20 @@ class LargeMmapAllocator {
Header *prev;
};
Header *GetHeader(uptr p) { return reinterpret_cast<Header*>(p - kPageSize); }
Header *GetHeader(uptr p) {
return reinterpret_cast<Header*>(p - page_size_);
}
Header *GetHeader(void *p) { return GetHeader(reinterpret_cast<uptr>(p)); }
void *GetUser(Header *h) {
return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + kPageSize);
return reinterpret_cast<void*>(reinterpret_cast<uptr>(h) + page_size_);
}
uptr RoundUpMapSize(uptr size) {
return RoundUpTo(size, kPageSize) + kPageSize;
return RoundUpTo(size, page_size_) + page_size_;
}
uptr page_size_;
Header *list_;
SpinMutex mutex_;
};

View file

@ -14,6 +14,13 @@
namespace __sanitizer {
uptr GetPageSizeCached() {
static uptr PageSize;
if (!PageSize)
PageSize = GetPageSize();
return PageSize;
}
// By default, dump to stderr. If report_fd is kInvalidFd, try to obtain file
// descriptor by opening file in report_path.
static fd_t report_fd = kStderrFd;
@ -75,7 +82,8 @@ void RawWrite(const char *buffer) {
uptr ReadFileToBuffer(const char *file_name, char **buff,
uptr *buff_size, uptr max_len) {
const uptr kMinFileLen = kPageSize;
uptr PageSize = GetPageSizeCached();
uptr kMinFileLen = PageSize;
uptr read_len = 0;
*buff = 0;
*buff_size = 0;
@ -89,8 +97,8 @@ uptr ReadFileToBuffer(const char *file_name, char **buff,
// Read up to one page at a time.
read_len = 0;
bool reached_eof = false;
while (read_len + kPageSize <= size) {
uptr just_read = internal_read(fd, *buff + read_len, kPageSize);
while (read_len + PageSize <= size) {
uptr just_read = internal_read(fd, *buff + read_len, PageSize);
if (just_read == 0) {
reached_eof = true;
break;

View file

@ -21,25 +21,16 @@ namespace __sanitizer {
// Constants.
const uptr kWordSize = SANITIZER_WORDSIZE / 8;
const uptr kWordSizeInBits = 8 * kWordSize;
#if defined(__powerpc__) || defined(__powerpc64__)
// Current PPC64 kernels use 64K pages sizes, but they can be
// configured with 4K or even other sizes.
// We may want to use getpagesize() or sysconf(_SC_PAGESIZE) here rather than
// hardcoding the values, but today these values need to be compile-time
// constants.
const uptr kPageSize = 1UL << 16;
const uptr kCacheLineSize = 128;
const uptr kMmapGranularity = kPageSize;
#elif !defined(_WIN32)
const uptr kPageSize = 1UL << 12;
const uptr kCacheLineSize = 64;
const uptr kMmapGranularity = kPageSize;
#else
const uptr kPageSize = 1UL << 12;
const uptr kCacheLineSize = 64;
const uptr kMmapGranularity = 1UL << 16;
#endif
uptr GetPageSize();
uptr GetPageSizeCached();
uptr GetMmapGranularity();
// Threads
int GetPid();
uptr GetTid();

View file

@ -30,6 +30,13 @@
namespace __sanitizer {
// ------------- sanitizer_common.h
uptr GetPageSize() {
return sysconf(_SC_PAGESIZE);
}
uptr GetMmapGranularity() {
return GetPageSize();
}
int GetPid() {
return getpid();
@ -40,7 +47,7 @@ uptr GetThreadSelf() {
}
void *MmapOrDie(uptr size, const char *mem_type) {
size = RoundUpTo(size, kPageSize);
size = RoundUpTo(size, GetPageSizeCached());
void *res = internal_mmap(0, size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
@ -72,8 +79,9 @@ void UnmapOrDie(void *addr, uptr size) {
}
void *MmapFixedNoReserve(uptr fixed_addr, uptr size) {
void *p = internal_mmap((void*)(fixed_addr & ~(kPageSize - 1)),
RoundUpTo(size, kPageSize),
uptr PageSize = GetPageSizeCached();
void *p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)),
RoundUpTo(size, PageSize),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_FIXED | MAP_NORESERVE,
-1, 0);
@ -96,7 +104,7 @@ void *MapFileToMemory(const char *file_name, uptr *buff_size) {
uptr fsize = internal_filesize(fd);
CHECK_NE(fsize, (uptr)-1);
CHECK_GT(fsize, 0);
*buff_size = RoundUpTo(fsize, kPageSize);
*buff_size = RoundUpTo(fsize, GetPageSizeCached());
void *map = internal_mmap(0, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0);
return (map == MAP_FAILED) ? 0 : map;
}

View file

@ -63,7 +63,7 @@ void StackTrace::PrintStack(const uptr *addr, uptr size,
bool symbolize, const char *strip_file_prefix,
SymbolizeCallback symbolize_callback ) {
MemoryMappingLayout proc_maps;
InternalScopedBuffer<char> buff(kPageSize * 2);
InternalScopedBuffer<char> buff(GetPageSizeCached() * 2);
InternalScopedBuffer<AddressInfo> addr_frames(64);
uptr frame_num = 0;
for (uptr i = 0; i < size && addr[i]; i++) {

View file

@ -21,6 +21,14 @@
namespace __sanitizer {
// --------------------- sanitizer_common.h
uptr GetPageSize() {
return 1U << 14; // FIXME: is this configurable?
}
uptr GetMmapGranularity() {
return 1U << 16; // FIXME: is this configurable?
}
bool FileExists(const char *filename) {
UNIMPLEMENTED();
}

View file

@ -564,13 +564,13 @@ TSAN_INTERCEPTOR(void*, memalign, uptr align, uptr sz) {
TSAN_INTERCEPTOR(void*, valloc, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(valloc, sz);
return user_alloc(thr, pc, sz, kPageSize);
return user_alloc(thr, pc, sz, GetPageSizeCached());
}
TSAN_INTERCEPTOR(void*, pvalloc, uptr sz) {
SCOPED_TSAN_INTERCEPTOR(pvalloc, sz);
sz = RoundUp(sz, kPageSize);
return user_alloc(thr, pc, sz, kPageSize);
sz = RoundUp(sz, GetPageSizeCached());
return user_alloc(thr, pc, sz, GetPageSizeCached());
}
TSAN_INTERCEPTOR(int, posix_memalign, void **memptr, uptr align, uptr sz) {

View file

@ -42,6 +42,9 @@ void __tsan_vptr_update(void **vptr_p, void *new_val);
void __tsan_func_entry(void *call_pc);
void __tsan_func_exit();
void __tsan_read_range(void *addr, unsigned long size); // NOLINT
void __tsan_write_range(void *addr, unsigned long size); // NOLINT
#ifdef __cplusplus
} // extern "C"
#endif

View file

@ -9,6 +9,14 @@
//
//===----------------------------------------------------------------------===//
// ThreadSanitizer atomic operations are based on C++11/C1x standards.
// For background see C++11 standard. A slightly older, publically
// available draft of the standard (not entirely up-to-date, but close enough
// for casual browsing) is available here:
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
// The following page contains more background information:
// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
#include "sanitizer_common/sanitizer_placement_new.h"
#include "tsan_interface_atomic.h"
#include "tsan_flags.h"
@ -37,6 +45,7 @@ typedef __tsan_atomic8 a8;
typedef __tsan_atomic16 a16;
typedef __tsan_atomic32 a32;
typedef __tsan_atomic64 a64;
typedef __tsan_atomic128 a128;
const morder mo_relaxed = __tsan_memory_order_relaxed;
const morder mo_consume = __tsan_memory_order_consume;
const morder mo_acquire = __tsan_memory_order_acquire;
@ -50,7 +59,8 @@ static void AtomicStatInc(ThreadState *thr, uptr size, morder mo, StatType t) {
StatInc(thr, size == 1 ? StatAtomic1
: size == 2 ? StatAtomic2
: size == 4 ? StatAtomic4
: StatAtomic8);
: size == 8 ? StatAtomic8
: StatAtomic16);
StatInc(thr, mo == mo_relaxed ? StatAtomicRelaxed
: mo == mo_consume ? StatAtomicConsume
: mo == mo_acquire ? StatAtomicAcquire
@ -77,6 +87,10 @@ static bool IsAcquireOrder(morder mo) {
|| mo == mo_acq_rel || mo == mo_seq_cst;
}
static bool IsAcqRelOrder(morder mo) {
return mo == mo_acq_rel || mo == mo_seq_cst;
}
static morder ConvertOrder(morder mo) {
if (mo > (morder)100500) {
mo = morder(mo - 100500);
@ -98,6 +112,34 @@ static morder ConvertOrder(morder mo) {
return mo;
}
template<typename T> T func_xchg(T v, T op) {
return op;
}
template<typename T> T func_add(T v, T op) {
return v + op;
}
template<typename T> T func_sub(T v, T op) {
return v - op;
}
template<typename T> T func_and(T v, T op) {
return v & op;
}
template<typename T> T func_or(T v, T op) {
return v | op;
}
template<typename T> T func_xor(T v, T op) {
return v ^ op;
}
template<typename T> T func_nand(T v, T op) {
return ~v & op;
}
#define SCOPED_ATOMIC(func, ...) \
mo = ConvertOrder(mo); \
mo = flags()->force_seq_cst_atomics ? (morder)mo_seq_cst : mo; \
@ -113,9 +155,15 @@ template<typename T>
static T AtomicLoad(ThreadState *thr, uptr pc, const volatile T *a,
morder mo) {
CHECK(IsLoadOrder(mo));
// This fast-path is critical for performance.
// Assume the access is atomic.
if (!IsAcquireOrder(mo) && sizeof(T) <= sizeof(a))
return *a;
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, false);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.acquire(&s->clock);
T v = *a;
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
s->mtx.ReadUnlock();
return v;
}
@ -123,100 +171,112 @@ template<typename T>
static void AtomicStore(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
CHECK(IsStoreOrder(mo));
if (IsReleaseOrder(mo))
ReleaseStore(thr, pc, (uptr)a);
// This fast-path is critical for performance.
// Assume the access is atomic.
// Strictly saying even relaxed store cuts off release sequence,
// so must reset the clock.
if (!IsReleaseOrder(mo) && sizeof(T) <= sizeof(a)) {
*a = v;
return;
}
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
thr->clock.ReleaseStore(&s->clock);
*a = v;
s->mtx.Unlock();
}
template<typename T, T (*F)(T v, T op)>
static T AtomicRMW(ThreadState *thr, uptr pc, volatile T *a, T v, morder mo) {
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
if (IsAcqRelOrder(mo))
thr->clock.acq_rel(&s->clock);
else if (IsReleaseOrder(mo))
thr->clock.release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.acquire(&s->clock);
T c = *a;
*a = F(c, v);
s->mtx.Unlock();
return c;
}
template<typename T>
static T AtomicExchange(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_lock_test_and_set(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_xchg>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAdd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_add(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_add>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchSub(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_sub(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_sub>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchAnd(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_and(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_and>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchOr(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_or(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_or>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchXor(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
v = __sync_fetch_and_xor(a, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
return v;
return AtomicRMW<T, func_xor>(thr, pc, a, v, mo);
}
template<typename T>
static T AtomicFetchNand(ThreadState *thr, uptr pc, volatile T *a, T v,
morder mo) {
return AtomicRMW<T, func_nand>(thr, pc, a, v, mo);
}
template<typename T>
static bool AtomicCAS(ThreadState *thr, uptr pc,
volatile T *a, T *c, T v, morder mo) {
if (IsReleaseOrder(mo))
Release(thr, pc, (uptr)a);
T cc = *c;
T pr = __sync_val_compare_and_swap(a, cc, v);
if (IsAcquireOrder(mo))
Acquire(thr, pc, (uptr)a);
if (pr == cc)
return true;
*c = pr;
return false;
volatile T *a, T *c, T v, morder mo, morder fmo) {
(void)fmo; // Unused because llvm does not pass it yet.
SyncVar *s = CTX()->synctab.GetAndLock(thr, pc, (uptr)a, true);
thr->clock.set(thr->tid, thr->fast_state.epoch());
if (IsAcqRelOrder(mo))
thr->clock.acq_rel(&s->clock);
else if (IsReleaseOrder(mo))
thr->clock.release(&s->clock);
else if (IsAcquireOrder(mo))
thr->clock.acquire(&s->clock);
T cur = *a;
bool res = false;
if (cur == *c) {
*a = v;
res = true;
} else {
*c = cur;
}
s->mtx.Unlock();
return res;
}
template<typename T>
static T AtomicCAS(ThreadState *thr, uptr pc,
volatile T *a, T c, T v, morder mo) {
AtomicCAS(thr, pc, a, &c, v, mo);
volatile T *a, T c, T v, morder mo, morder fmo) {
AtomicCAS(thr, pc, a, &c, v, mo, fmo);
return c;
}
static void AtomicFence(ThreadState *thr, uptr pc, morder mo) {
// FIXME(dvyukov): not implemented.
__sync_synchronize();
}
@ -236,6 +296,12 @@ a64 __tsan_atomic64_load(const volatile a64 *a, morder mo) {
SCOPED_ATOMIC(Load, a, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_load(const volatile a128 *a, morder mo) {
SCOPED_ATOMIC(Load, a, mo);
}
#endif
void __tsan_atomic8_store(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
@ -252,6 +318,12 @@ void __tsan_atomic64_store(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
#if __TSAN_HAS_INT128
void __tsan_atomic128_store(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(Store, a, v, mo);
}
#endif
a8 __tsan_atomic8_exchange(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
@ -268,6 +340,12 @@ a64 __tsan_atomic64_exchange(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_exchange(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(Exchange, a, v, mo);
}
#endif
a8 __tsan_atomic8_fetch_add(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
@ -284,6 +362,12 @@ a64 __tsan_atomic64_fetch_add(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_fetch_add(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchAdd, a, v, mo);
}
#endif
a8 __tsan_atomic8_fetch_sub(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
@ -300,6 +384,12 @@ a64 __tsan_atomic64_fetch_sub(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_fetch_sub(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchSub, a, v, mo);
}
#endif
a8 __tsan_atomic8_fetch_and(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
@ -316,6 +406,12 @@ a64 __tsan_atomic64_fetch_and(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_fetch_and(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchAnd, a, v, mo);
}
#endif
a8 __tsan_atomic8_fetch_or(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
@ -332,6 +428,12 @@ a64 __tsan_atomic64_fetch_or(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_fetch_or(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchOr, a, v, mo);
}
#endif
a8 __tsan_atomic8_fetch_xor(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
@ -348,65 +450,114 @@ a64 __tsan_atomic64_fetch_xor(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_fetch_xor(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchXor, a, v, mo);
}
#endif
a8 __tsan_atomic8_fetch_nand(volatile a8 *a, a8 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
a16 __tsan_atomic16_fetch_nand(volatile a16 *a, a16 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
a32 __tsan_atomic32_fetch_nand(volatile a32 *a, a32 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
a64 __tsan_atomic64_fetch_nand(volatile a64 *a, a64 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic128_fetch_nand(volatile a128 *a, a128 v, morder mo) {
SCOPED_ATOMIC(FetchNand, a, v, mo);
}
#endif
int __tsan_atomic8_compare_exchange_strong(volatile a8 *a, a8 *c, a8 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic16_compare_exchange_strong(volatile a16 *a, a16 *c, a16 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic32_compare_exchange_strong(volatile a32 *a, a32 *c, a32 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic64_compare_exchange_strong(volatile a64 *a, a64 *c, a64 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#if __TSAN_HAS_INT128
int __tsan_atomic128_compare_exchange_strong(volatile a128 *a, a128 *c, a128 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#endif
int __tsan_atomic8_compare_exchange_weak(volatile a8 *a, a8 *c, a8 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic16_compare_exchange_weak(volatile a16 *a, a16 *c, a16 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic32_compare_exchange_weak(volatile a32 *a, a32 *c, a32 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
int __tsan_atomic64_compare_exchange_weak(volatile a64 *a, a64 *c, a64 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#if __TSAN_HAS_INT128
int __tsan_atomic128_compare_exchange_weak(volatile a128 *a, a128 *c, a128 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#endif
a8 __tsan_atomic8_compare_exchange_val(volatile a8 *a, a8 c, a8 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
a16 __tsan_atomic16_compare_exchange_val(volatile a16 *a, a16 c, a16 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
a32 __tsan_atomic32_compare_exchange_val(volatile a32 *a, a32 c, a32 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
a64 __tsan_atomic64_compare_exchange_val(volatile a64 *a, a64 c, a64 v,
morder mo) {
SCOPED_ATOMIC(CAS, a, c, v, mo);
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#if __TSAN_HAS_INT128
a128 __tsan_atomic64_compare_exchange_val(volatile a128 *a, a128 c, a128 v,
morder mo, morder fmo) {
SCOPED_ATOMIC(CAS, a, c, v, mo, fmo);
}
#endif
void __tsan_atomic_thread_fence(morder mo) {
char* a;
SCOPED_ATOMIC(Fence, mo);

View file

@ -15,10 +15,19 @@
extern "C" {
#endif
typedef char __tsan_atomic8;
typedef short __tsan_atomic16; // NOLINT
typedef int __tsan_atomic32;
typedef long __tsan_atomic64; // NOLINT
typedef char __tsan_atomic8;
typedef short __tsan_atomic16; // NOLINT
typedef int __tsan_atomic32;
typedef long __tsan_atomic64; // NOLINT
#if defined(__SIZEOF_INT128__) \
|| (__clang_major__ * 100 + __clang_minor__ >= 302)
typedef __int128 __tsan_atomic128;
#define __TSAN_HAS_INT128 1
#else
typedef char __tsan_atomic128;
#define __TSAN_HAS_INT128 0
#endif
// Part of ABI, do not change.
// http://llvm.org/viewvc/llvm-project/libcxx/trunk/include/atomic?view=markup
@ -39,6 +48,8 @@ __tsan_atomic32 __tsan_atomic32_load(const volatile __tsan_atomic32 *a,
__tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_load(const volatile __tsan_atomic64 *a,
__tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_load(const volatile __tsan_atomic128 *a,
__tsan_memory_order mo);
void __tsan_atomic8_store(volatile __tsan_atomic8 *a, __tsan_atomic8 v,
__tsan_memory_order mo);
@ -48,6 +59,8 @@ void __tsan_atomic32_store(volatile __tsan_atomic32 *a, __tsan_atomic32 v,
__tsan_memory_order mo);
void __tsan_atomic64_store(volatile __tsan_atomic64 *a, __tsan_atomic64 v,
__tsan_memory_order mo);
void __tsan_atomic128_store(volatile __tsan_atomic128 *a, __tsan_atomic128 v,
__tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_exchange(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
@ -57,6 +70,8 @@ __tsan_atomic32 __tsan_atomic32_exchange(volatile __tsan_atomic32 *a,
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_exchange(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_exchange(volatile __tsan_atomic128 *a,
__tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_add(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
@ -66,6 +81,8 @@ __tsan_atomic32 __tsan_atomic32_fetch_add(volatile __tsan_atomic32 *a,
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_add(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_fetch_add(volatile __tsan_atomic128 *a,
__tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_sub(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
@ -75,6 +92,8 @@ __tsan_atomic32 __tsan_atomic32_fetch_sub(volatile __tsan_atomic32 *a,
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_sub(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_fetch_sub(volatile __tsan_atomic128 *a,
__tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_and(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
@ -84,6 +103,8 @@ __tsan_atomic32 __tsan_atomic32_fetch_and(volatile __tsan_atomic32 *a,
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_and(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_fetch_and(volatile __tsan_atomic128 *a,
__tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_or(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
@ -93,6 +114,8 @@ __tsan_atomic32 __tsan_atomic32_fetch_or(volatile __tsan_atomic32 *a,
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_or(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_fetch_or(volatile __tsan_atomic128 *a,
__tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_xor(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
@ -102,37 +125,67 @@ __tsan_atomic32 __tsan_atomic32_fetch_xor(volatile __tsan_atomic32 *a,
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_xor(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_fetch_xor(volatile __tsan_atomic128 *a,
__tsan_atomic128 v, __tsan_memory_order mo);
__tsan_atomic8 __tsan_atomic8_fetch_nand(volatile __tsan_atomic8 *a,
__tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic16 __tsan_atomic16_fetch_nand(volatile __tsan_atomic16 *a,
__tsan_atomic16 v, __tsan_memory_order mo);
__tsan_atomic32 __tsan_atomic32_fetch_nand(volatile __tsan_atomic32 *a,
__tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic64 __tsan_atomic64_fetch_nand(volatile __tsan_atomic64 *a,
__tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic128 __tsan_atomic128_fetch_nand(volatile __tsan_atomic128 *a,
__tsan_atomic128 v, __tsan_memory_order mo);
int __tsan_atomic8_compare_exchange_weak(volatile __tsan_atomic8 *a,
__tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic16_compare_exchange_weak(volatile __tsan_atomic16 *a,
__tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo);
__tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic32_compare_exchange_weak(volatile __tsan_atomic32 *a,
__tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic64_compare_exchange_weak(volatile __tsan_atomic64 *a,
__tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic128_compare_exchange_weak(volatile __tsan_atomic128 *a,
__tsan_atomic128 *c, __tsan_atomic128 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic8_compare_exchange_strong(volatile __tsan_atomic8 *a,
__tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo);
__tsan_atomic8 *c, __tsan_atomic8 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic16_compare_exchange_strong(volatile __tsan_atomic16 *a,
__tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo);
__tsan_atomic16 *c, __tsan_atomic16 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic32_compare_exchange_strong(volatile __tsan_atomic32 *a,
__tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo);
__tsan_atomic32 *c, __tsan_atomic32 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic64_compare_exchange_strong(volatile __tsan_atomic64 *a,
__tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo);
__tsan_atomic64 *c, __tsan_atomic64 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
int __tsan_atomic128_compare_exchange_strong(volatile __tsan_atomic128 *a,
__tsan_atomic128 *c, __tsan_atomic128 v, __tsan_memory_order mo,
__tsan_memory_order fail_mo);
__tsan_atomic8 __tsan_atomic8_compare_exchange_val(
volatile __tsan_atomic8 *a, __tsan_atomic8 c, __tsan_atomic8 v,
__tsan_memory_order mo);
__tsan_memory_order mo, __tsan_memory_order fail_mo);
__tsan_atomic16 __tsan_atomic16_compare_exchange_val(
volatile __tsan_atomic16 *a, __tsan_atomic16 c, __tsan_atomic16 v,
__tsan_memory_order mo);
__tsan_memory_order mo, __tsan_memory_order fail_mo);
__tsan_atomic32 __tsan_atomic32_compare_exchange_val(
volatile __tsan_atomic32 *a, __tsan_atomic32 c, __tsan_atomic32 v,
__tsan_memory_order mo);
__tsan_memory_order mo, __tsan_memory_order fail_mo);
__tsan_atomic64 __tsan_atomic64_compare_exchange_val(
volatile __tsan_atomic64 *a, __tsan_atomic64 c, __tsan_atomic64 v,
__tsan_memory_order mo);
__tsan_memory_order mo, __tsan_memory_order fail_mo);
__tsan_atomic128 __tsan_atomic128_compare_exchange_val(
volatile __tsan_atomic128 *a, __tsan_atomic128 c, __tsan_atomic128 v,
__tsan_memory_order mo, __tsan_memory_order fail_mo);
void __tsan_atomic_thread_fence(__tsan_memory_order mo);
void __tsan_atomic_signal_fence(__tsan_memory_order mo);

View file

@ -61,3 +61,11 @@ void __tsan_func_entry(void *pc) {
void __tsan_func_exit() {
FuncExit(cur_thread());
}
void __tsan_read_range(void *addr, uptr size) {
MemoryAccessRange(cur_thread(), CALLERPC, (uptr)addr, size, false);
}
void __tsan_write_range(void *addr, uptr size) {
MemoryAccessRange(cur_thread(), CALLERPC, (uptr)addr, size, true);
}

View file

@ -50,7 +50,7 @@ static const uptr kLinuxAppMemMsk = 0x7c0000000000ULL;
static const uptr kLinuxShadowBeg = MemToShadow(kLinuxAppMemBeg);
static const uptr kLinuxShadowEnd =
MemToShadow(kLinuxAppMemEnd) | (kPageSize - 1);
MemToShadow(kLinuxAppMemEnd) | 0xff;
static inline bool IsAppMem(uptr mem) {
return mem >= kLinuxAppMemBeg && mem <= kLinuxAppMemEnd;

View file

@ -521,6 +521,7 @@ void AfterSleep(ThreadState *thr, uptr pc);
#define HACKY_CALL(f) \
__asm__ __volatile__("sub $1024, %%rsp;" \
"/*.cfi_adjust_cfa_offset 1024;*/" \
".hidden " #f "_thunk;" \
"call " #f "_thunk;" \
"add $1024, %%rsp;" \
"/*.cfi_adjust_cfa_offset -1024;*/" \

View file

@ -75,6 +75,11 @@ void StatOutput(u64 *stat) {
name[StatAtomicStore] = " store ";
name[StatAtomicExchange] = " exchange ";
name[StatAtomicFetchAdd] = " fetch_add ";
name[StatAtomicFetchSub] = " fetch_sub ";
name[StatAtomicFetchAnd] = " fetch_and ";
name[StatAtomicFetchOr] = " fetch_or ";
name[StatAtomicFetchXor] = " fetch_xor ";
name[StatAtomicFetchNand] = " fetch_nand ";
name[StatAtomicCAS] = " compare_exchange ";
name[StatAtomicFence] = " fence ";
name[StatAtomicRelaxed] = " Including relaxed ";
@ -87,6 +92,7 @@ void StatOutput(u64 *stat) {
name[StatAtomic2] = " size 2 ";
name[StatAtomic4] = " size 4 ";
name[StatAtomic8] = " size 8 ";
name[StatAtomic16] = " size 16 ";
name[StatInterceptor] = "Interceptors ";
name[StatInt_longjmp] = " longjmp ";

View file

@ -75,6 +75,7 @@ enum StatType {
StatAtomicFetchAnd,
StatAtomicFetchOr,
StatAtomicFetchXor,
StatAtomicFetchNand,
StatAtomicCAS,
StatAtomicFence,
StatAtomicRelaxed,
@ -87,6 +88,7 @@ enum StatType {
StatAtomic2,
StatAtomic4,
StatAtomic8,
StatAtomic16,
// Interceptors.
StatInterceptor,