libstdc++: Add P1206R7 from_range members to unordered maps [PR111055]

This is another piece of P1206R7, adding new members to std::unordered_map
and std::unordered_multimap.

	PR libstdc++/111055

libstdc++-v3/ChangeLog:

	* include/bits/unordered_map.h (unordered_map): Define from_range
	constructors and insert_range member.
	(unordered_multimap): Likewise.
	* testsuite/23_containers/unordered_multimap/cons/from_range.cc:
	New test.
	* testsuite/23_containers/unordered_multimap/modifiers/insert_range.cc:
	New test.
	* testsuite/23_containers/unordered_map/cons/from_range.cc:
	New test.
	* testsuite/23_containers/unordered_map/modifiers/insert_range.cc:
	New test.

Reviewed-by: Jonathan Wakely <jwakely@redhat.com>
Signed-off-by: Tomasz Kamiński <tkaminsk@redhat.com>
This commit is contained in:
Tomasz Kamiński 2025-03-18 11:08:19 +01:00
parent 5f033bf164
commit 453d42046c
5 changed files with 828 additions and 0 deletions

View file

@ -34,6 +34,9 @@
#include <bits/allocator.h>
#include <bits/functional_hash.h> // hash
#include <bits/stl_function.h> // equal_to
#if __glibcxx_ranges_to_container // C++ >= 23
# include <bits/ranges_base.h> // ranges::begin, ranges::distance etc.
#endif
namespace std _GLIBCXX_VISIBILITY(default)
{
@ -274,6 +277,42 @@ _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
: unordered_map(__l, __n, __hf, key_equal(), __a)
{ }
#if __glibcxx_ranges_to_container // C++ >= 23
/**
* @brief Builds an %unordered_map from a range.
* @since C++23
* @param __rg An input range of elements that can be converted to
* the maps's value type.
* @param __n Minimal initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*
* Create an %unordered_map consisting of copies of the elements in the
* range. This is linear in N (where N is `std::ranges::size(__rg)`).
*/
template<__detail::__container_compatible_range<value_type> _Rg>
unordered_map(from_range_t, _Rg&& __rg,
size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__n, __hf, __eql, __a)
{ insert_range(std::forward<_Rg>(__rg)); }
template<__detail::__container_compatible_range<value_type> _Rg>
unordered_map(from_range_t, _Rg&& __rg, size_type __n,
const allocator_type& __a)
: _M_h(__n, hasher(), key_equal(), __a)
{ insert_range(std::forward<_Rg>(__rg)); }
template<__detail::__container_compatible_range<value_type> _Rg>
unordered_map(from_range_t, _Rg&& __rg, size_type __n,
const hasher& __hf, const allocator_type& __a)
: _M_h(__n, __hf, key_equal(), __a)
{ insert_range(std::forward<_Rg>(__rg)); }
#endif
/// Copy assignment operator.
unordered_map&
operator=(const unordered_map&) = default;
@ -635,6 +674,23 @@ _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
insert(initializer_list<value_type> __l)
{ _M_h.insert(__l); }
#if __glibcxx_ranges_to_container // C++ >= 23
/**
* @brief Inserts a range of elements.
* @since C++23
* @param __rg An input range of elements that can be converted to
* the map's value type.
*/
template<__detail::__container_compatible_range<value_type> _Rg>
void
insert_range(_Rg&& __rg)
{
auto __first = ranges::begin(__rg);
const auto __last = ranges::end(__rg);
for (; __first != __last; ++__first)
_M_h.emplace(*__first);
}
#endif
#ifdef __glibcxx_unordered_map_try_emplace // >= C++17 && HOSTED
/**
@ -1228,6 +1284,47 @@ _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
_Hash, _Allocator)
-> unordered_map<_Key, _Tp, _Hash, equal_to<_Key>, _Allocator>;
#if __glibcxx_ranges_to_container // C++ >= 23
template<ranges::input_range _Rg,
__not_allocator_like _Hash = hash<__detail::__range_key_type<_Rg>>,
__not_allocator_like _Pred = equal_to<__detail::__range_key_type<_Rg>>,
__allocator_like _Allocator =
allocator<__detail::__range_to_alloc_type<_Rg>>>
unordered_map(from_range_t, _Rg&&, unordered_map<int, int>::size_type = {},
_Hash = _Hash(), _Pred = _Pred(), _Allocator = _Allocator())
-> unordered_map<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
_Hash, _Pred, _Allocator>;
template<ranges::input_range _Rg,
__allocator_like _Allocator>
unordered_map(from_range_t, _Rg&&, unordered_map<int, int>::size_type,
_Allocator)
-> unordered_map<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
hash<__detail::__range_key_type<_Rg>>,
equal_to<__detail::__range_key_type<_Rg>>,
_Allocator>;
template<ranges::input_range _Rg,
__allocator_like _Allocator>
unordered_map(from_range_t, _Rg&&, _Allocator)
-> unordered_map<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
hash<__detail::__range_key_type<_Rg>>,
equal_to<__detail::__range_key_type<_Rg>>,
_Allocator>;
template<ranges::input_range _Rg,
__not_allocator_like _Hash,
__allocator_like _Allocator>
unordered_map(from_range_t, _Rg&&, unordered_map<int, int>::size_type,
_Hash, _Allocator)
-> unordered_map<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
_Hash, equal_to<__detail::__range_key_type<_Rg>>,
_Allocator>;
#endif
#endif
/**
@ -1426,6 +1523,42 @@ _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
: unordered_multimap(__l, __n, __hf, key_equal(), __a)
{ }
#if __glibcxx_ranges_to_container // C++ >= 23
/**
* @brief Builds an %unordered_multimap from a range.
* @since C++23
* @param __rg An input range of elements that can be converted to
* the maps's value type.
* @param __n Minimal initial number of buckets.
* @param __hf A hash functor.
* @param __eql A key equality functor.
* @param __a An allocator object.
*
* Create an %unordered_multimap consisting of copies of the elements in
* the range. This is linear in N (where N is `std::ranges::size(__rg)`).
*/
template<__detail::__container_compatible_range<value_type> _Rg>
unordered_multimap(from_range_t, _Rg&& __rg,
size_type __n = 0,
const hasher& __hf = hasher(),
const key_equal& __eql = key_equal(),
const allocator_type& __a = allocator_type())
: _M_h(__n, __hf, __eql, __a)
{ insert_range(std::forward<_Rg>(__rg)); }
template<__detail::__container_compatible_range<value_type> _Rg>
unordered_multimap(from_range_t, _Rg&& __rg, size_type __n,
const allocator_type& __a)
: _M_h(__n, hasher(), key_equal(), __a)
{ insert_range(std::forward<_Rg>(__rg)); }
template<__detail::__container_compatible_range<value_type> _Rg>
unordered_multimap(from_range_t, _Rg&& __rg, size_type __n,
const hasher& __hf, const allocator_type& __a)
: _M_h(__n, __hf, key_equal(), __a)
{ insert_range(std::forward<_Rg>(__rg)); }
#endif
/// Copy assignment operator.
unordered_multimap&
operator=(const unordered_multimap&) = default;
@ -1655,6 +1788,32 @@ _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
insert(initializer_list<value_type> __l)
{ _M_h.insert(__l); }
#if __glibcxx_ranges_to_container // C++ >= 23
/**
* @brief Inserts a range of elements.
* @since C++23
* @param __rg An input range of elements that can be converted to
* the maps's value type.
*/
template<__detail::__container_compatible_range<value_type> _Rg>
void
insert_range(_Rg&& __rg)
{
auto __first = ranges::begin(__rg);
const auto __last = ranges::end(__rg);
if (__first == __last)
return;
if constexpr (ranges::forward_range<_Rg> || ranges::sized_range<_Rg>)
_M_h._M_rehash_insert(ranges::distance(__rg));
else
_M_h._M_rehash_insert(1);
for (; __first != __last; ++__first)
_M_h.emplace(*__first);
}
#endif
#ifdef __glibcxx_node_extract // >= C++17 && HOSTED
/// Extract a node.
node_type
@ -2138,6 +2297,50 @@ _GLIBCXX_BEGIN_NAMESPACE_CONTAINER
_Hash, _Allocator)
-> unordered_multimap<_Key, _Tp, _Hash, equal_to<_Key>, _Allocator>;
#if __glibcxx_ranges_to_container // C++ >= 23
template<ranges::input_range _Rg,
__not_allocator_like _Hash = hash<__detail::__range_key_type<_Rg>>,
__not_allocator_like _Pred = equal_to<__detail::__range_key_type<_Rg>>,
__allocator_like _Allocator =
allocator<__detail::__range_to_alloc_type<_Rg>>>
unordered_multimap(from_range_t, _Rg&&,
unordered_multimap<int, int>::size_type = {},
_Hash = _Hash(), _Pred = _Pred(),
_Allocator = _Allocator())
-> unordered_multimap<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
_Hash, _Pred, _Allocator>;
template<ranges::input_range _Rg,
__allocator_like _Allocator>
unordered_multimap(from_range_t, _Rg&&, unordered_multimap<int, int>::size_type,
_Allocator)
-> unordered_multimap<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
hash<__detail::__range_key_type<_Rg>>,
equal_to<__detail::__range_key_type<_Rg>>,
_Allocator>;
template<ranges::input_range _Rg,
__allocator_like _Allocator>
unordered_multimap(from_range_t, _Rg&&, _Allocator)
-> unordered_multimap<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
hash<__detail::__range_key_type<_Rg>>,
equal_to<__detail::__range_key_type<_Rg>>,
_Allocator>;
template<ranges::input_range _Rg,
__not_allocator_like _Hash,
__allocator_like _Allocator>
unordered_multimap(from_range_t, _Rg&&,
unordered_multimap<int, int>::size_type,
_Hash, _Allocator)
-> unordered_multimap<__detail::__range_key_type<_Rg>,
__detail::__range_mapped_type<_Rg>,
_Hash, equal_to<__detail::__range_key_type<_Rg>>,
_Allocator>;
#endif
#endif
template<class _Key, class _Tp, class _Hash, class _Pred, class _Alloc>

View file

@ -0,0 +1,232 @@
// { dg-do run { target c++23 } }
#include <algorithm>
#include <unordered_map>
#include <span>
#include <testsuite_allocator.h>
#include <testsuite_hooks.h>
#include <testsuite_iterators.h>
struct StateHash {
int state = 17;
template<typename T>
size_t operator()(T const& t) const {
return std::hash<T>()(t) + 43;
}
};
struct StateEq {
int state = 7;
template<typename T, typename U>
bool operator()(T const& l, U const & r) const {
return l == r;
}
};
void
test_deduction_guide()
{
__gnu_test::test_input_range<std::pair<long, float>> r(0, 0);
std::unordered_map m(std::from_range, r);
static_assert(std::is_same_v<decltype(m), std::unordered_map<long, float>>);
std::unordered_map m2(std::from_range, r, 0);
static_assert(std::is_same_v<decltype(m2), std::unordered_map<long, float>>);
StateHash hf;
std::unordered_map m3(std::from_range, r, 0, hf);
static_assert(std::is_same_v<
decltype(m3),
std::unordered_map<long, float, StateHash>>);
StateEq eq;
std::unordered_map m4(std::from_range, r, 0, hf, eq);
static_assert(std::is_same_v<
decltype(m4),
std::unordered_map<long, float, StateHash, StateEq>>);
using Alloc = __gnu_test::SimpleAllocator<std::pair<const long, float>>;
Alloc alloc;
// LWG2713: there is no matching constructor
// std::unordered_map m5(std::from_range, r, alloc);
// static_assert(std::is_same_v<
// decltype(m5),
// std::unordered_map<long, float,
// std::hash<long>, std::equal_to<long>, Alloc>>);
std::unordered_map m6(std::from_range, r, 0, alloc);
static_assert(std::is_same_v<
decltype(m6),
std::unordered_map<long, float,
std::hash<long>, std::equal_to<long>, Alloc>>);
std::unordered_map m7(std::from_range, r, 0, hf, alloc);
static_assert(std::is_same_v<
decltype(m7),
std::unordered_map<long, float, StateHash, std::equal_to<long>, Alloc>>);
std::unordered_map m8(std::from_range, r, 0, hf, eq, alloc);
static_assert(std::is_same_v<
decltype(m8),
std::unordered_map<long, float, StateHash, StateEq, Alloc>>);
__gnu_test::test_input_range<std::pair<const long, const float>> r2(0, 0);
std::unordered_map m9(std::from_range, r2);
static_assert(std::is_same_v<
decltype(m9),
std::unordered_map<long, const float>>);
// LWG4223: deduces map<const long&, float&>
// __gnu_test::test_input_range<std::pair<const long&, float&>> r3(0, 0);
// std::unordered_map m10(std::from_range, r3);
// LWG4223: no deduction guide
// __gnu_test::test_input_range<std::tuple<long, float>> r4(0, 0);
// std::unordered_map m11(std::from_range, r4);
}
template<typename T, typename U>
constexpr bool is_equal(std::hash<T>, std::hash<U>)
{ return true; }
template<typename T, typename U>
constexpr bool is_equal(std::equal_to<T>, std::equal_to<U>)
{ return true; }
constexpr bool is_equal(StateHash lhs, StateHash rhs)
{ return lhs.state = rhs.state; }
constexpr bool is_equal(StateEq lhs, StateEq rhs)
{ return lhs.state = rhs.state; }
template<typename Range, typename Alloc, typename Hash, typename Equal>
constexpr void
do_test(Alloc alloc, Hash hf, Equal eqf)
{
// The map's value_type, key_type and mapped_type.
using P = typename Alloc::value_type;
using K = typename P::first_type;
using V = typename P::second_type;
// The range's value_type.
using T = std::ranges::range_value_t<Range>;
T a[]{{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,0},
{1,1},{2,2},{3,3},{4,4},{5,5}};
auto eq = [&](std::unordered_map<K, V, Hash, Equal, Alloc> const& l,
std::span<T> r) {
if (l.size() != r.size())
return false;
return std::ranges::is_permutation(l, r);
};
std::unordered_map<K, V, Hash, Equal, Alloc>
m0(std::from_range, Range(a, a+0));
VERIFY( m0.empty() );
VERIFY( is_equal(m0.hash_function(), Hash()) );
VERIFY( is_equal(m0.key_eq(), Equal()) );
VERIFY( m0.get_allocator() == Alloc() );
std::unordered_map<K, V, Hash, Equal, Alloc>
m4(std::from_range, Range(a, a+4), 2);
VERIFY( eq(m4, {a, 4}) );
VERIFY( m4.bucket_count() >= 2 );
VERIFY( is_equal(m4.hash_function(), Hash()) );
VERIFY( is_equal(m4.key_eq(), Equal()) );
VERIFY( m4.get_allocator() == Alloc() );
std::unordered_map<K, V, Hash, Equal, Alloc>
m7(std::from_range, Range(a, a+7), 3, hf);
VERIFY( eq(m7, {a, 7}) );
VERIFY( m7.bucket_count() >= 3 );
VERIFY( is_equal(m7.hash_function(), hf) );
VERIFY( is_equal(m7.key_eq(), Equal()) );
VERIFY( m7.get_allocator() == Alloc() );
std::unordered_map<K, V, Hash, Equal, Alloc>
m9(std::from_range, Range(a, a+9), 5, hf, eqf);
VERIFY( eq(m9, {a, 9}) );
VERIFY( m9.bucket_count() >= 5 );
VERIFY( m9.get_allocator() == Alloc() );
VERIFY( is_equal(m9.hash_function(), hf) );
VERIFY( is_equal(m9.key_eq(), eqf) );
// LWG2713: there is no matching constructor
// std::unordered_map<K, V, Hash, Equal, Alloc>
// ma1(std::from_range, Range(a, a+14), alloc);
// VERIFY( eq(ma1, {a, 9}) );
// VERIFY( is_equal(ma1.hash_function(), Hash()) );
// VERIFY( is_equal(ma1.key_eq(), Equal()) );
// VERIFY( ma1.get_allocator() == alloc );
std::unordered_map<K, V, Hash, Equal, Alloc>
ma2(std::from_range, Range(a, a+14), 2, alloc);
VERIFY( eq(ma2, {a, 9}) );
VERIFY( ma2.bucket_count() >= 2 );
VERIFY( is_equal(ma2.hash_function(), Hash()) );
VERIFY( is_equal(ma2.key_eq(), Equal()) );
VERIFY( ma2.get_allocator() == alloc );
std::unordered_map<K, V, Hash, Equal, Alloc>
ma3(std::from_range, Range(a, a+14), 3, hf, alloc);
VERIFY( eq(ma3, {a, 9}) );
VERIFY( ma3.bucket_count() >= 3 );
VERIFY( is_equal(ma3.hash_function(), hf) );
VERIFY( is_equal(ma3.key_eq(), Equal()) );
VERIFY( ma3.get_allocator() == alloc );
std::unordered_map<K, V, Hash, Equal, Alloc>
ma4(std::from_range, Range(a, a+14), 5, hf, eqf, alloc);
VERIFY( eq(ma4, {a, 9}) );
VERIFY( ma4.bucket_count() >= 5 );
VERIFY( is_equal(ma4.hash_function(), hf) );
VERIFY( is_equal(ma4.key_eq(), eqf) );
VERIFY( ma4.get_allocator() == alloc );
}
template<typename Range>
void
do_test_ahe()
{
do_test<Range>(std::allocator<std::pair<const int, double>>(),
std::hash<int>(), std::equal_to<int>());
do_test<Range>(std::allocator<std::pair<const int, double>>(),
StateHash{27}, StateEq{17});
do_test<Range>(__gnu_test::uneq_allocator<std::pair<const int, double>>(42),
std::hash<int>(), std::equal_to<int>());
do_test<Range>(__gnu_test::uneq_allocator<std::pair<const int, double>>(42),
StateHash{27}, StateEq{17});
}
struct MyPair {
long x;
long y;
constexpr operator std::pair<int const, double>() const
{ return {x, y}; }
friend bool operator==(MyPair, MyPair) = default;
constexpr friend bool operator==(MyPair lhs, std::pair<int const, double> rhs)
{ return (lhs.x == rhs.first) && (lhs.y == rhs.second); }
};
bool
test_ranges()
{
using namespace __gnu_test;
do_test_ahe<test_forward_range<std::pair<int, double>>>();
do_test_ahe<test_forward_range<std::pair<short, float>>>();
do_test_ahe<test_forward_range<std::tuple<int, double>>>();
do_test_ahe<test_forward_range<MyPair>>();
return true;
}
int main()
{
test_ranges();
}

View file

@ -0,0 +1,79 @@
// { dg-do run { target c++23 } }
#include <algorithm>
#include <unordered_map>
#include <span>
#include <testsuite_allocator.h>
#include <testsuite_hooks.h>
#include <testsuite_iterators.h>
template<typename Range, typename K, typename V>
constexpr void
do_test()
{
// The range's value_type.
using T = std::ranges::range_value_t<Range>;
T a[]{{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,0},
{1,1},{2,2},{3,3},{4,4},{5,5}};
auto eq = [&](std::unordered_map<K, V> const& l,
std::span<T> r) {
if (l.size() != r.size())
return false;
return std::ranges::is_permutation(l, r);
};
std::unordered_map<K, V> m;
m.insert_range(Range(a, a+0));
VERIFY( m.empty() );
m.insert_range(Range(a, a+4));
VERIFY( eq(m, {a, 4}) );
m.insert_range(Range(a+4, a+7));
VERIFY( eq(m, {a, 7}) );
m.insert_range(Range(a, a+9));
VERIFY( eq(m, {a, 9}) );
m.insert_range(Range(a, a+14));
VERIFY( eq(m, {a, 9}) );
}
struct MyPair {
long x;
long y;
constexpr operator std::pair<int const, double>() const
{ return {x, y}; }
friend bool operator==(MyPair, MyPair) = default;
constexpr friend bool operator==(MyPair lhs, std::pair<int const, double> rhs)
{ return (lhs.x == rhs.first) && (lhs.y == rhs.second); }
};
template<typename Range>
void
do_test_v()
{
do_test<Range, int, double>();
}
bool
test_ranges()
{
using namespace __gnu_test;
do_test_v<test_forward_range<std::pair<int, double>>>();
do_test_v<test_forward_range<std::pair<short, float>>>();
do_test_v<test_forward_range<std::tuple<int, double>>>();
do_test_v<test_forward_range<MyPair>>();
return true;
}
int main()
{
test_ranges();
}

View file

@ -0,0 +1,238 @@
// { dg-do run { target c++23 } }
#include <algorithm>
#include <unordered_map>
#include <span>
#include <testsuite_allocator.h>
#include <testsuite_hooks.h>
#include <testsuite_iterators.h>
struct StateHash {
int state = 17;
template<typename T>
size_t operator()(T const& t) const {
return std::hash<T>()(t) + 43;
}
};
struct StateEq {
int state = 7;
template<typename T, typename U>
bool operator()(T const& l, U const & r) const {
return l == r;
}
};
void
test_deduction_guide()
{
__gnu_test::test_input_range<std::pair<long, float>> r(0, 0);
std::unordered_multimap m(std::from_range, r);
static_assert(std::is_same_v<
decltype(m),
std::unordered_multimap<long, float>>);
std::unordered_multimap m2(std::from_range, r, 0);
static_assert(std::is_same_v<
decltype(m2),
std::unordered_multimap<long, float>>);
StateHash hf;
std::unordered_multimap m3(std::from_range, r, 0, hf);
static_assert(std::is_same_v<
decltype(m3),
std::unordered_multimap<long, float, StateHash>>);
StateEq eq;
std::unordered_multimap m4(std::from_range, r, 0, hf, eq);
static_assert(std::is_same_v<
decltype(m4),
std::unordered_multimap<long, float, StateHash, StateEq>>);
using Alloc = __gnu_test::SimpleAllocator<std::pair<const long, float>>;
Alloc alloc;
// LWG2713: there is no matching constructor
// std::unordered_multimap m5(std::from_range, r, alloc);
// static_assert(std::is_same_v<
// decltype(m5),
// std::unordered_multimap<long, float,
// std::hash<long>, std::equal_to<long>, Alloc>>);
std::unordered_multimap m6(std::from_range, r, 0, alloc);
static_assert(std::is_same_v<
decltype(m6),
std::unordered_multimap<long, float,
std::hash<long>, std::equal_to<long>, Alloc>>);
std::unordered_multimap m7(std::from_range, r, 0, hf, alloc);
static_assert(std::is_same_v<
decltype(m7),
std::unordered_multimap<long, float,
StateHash, std::equal_to<long>, Alloc>>);
std::unordered_multimap m8(std::from_range, r, 0, hf, eq, alloc);
static_assert(std::is_same_v<
decltype(m8),
std::unordered_multimap<long, float, StateHash, StateEq, Alloc>>);
__gnu_test::test_input_range<std::pair<const long, const float>> r2(0, 0);
std::unordered_multimap m9(std::from_range, r2);
static_assert(std::is_same_v<
decltype(m9),
std::unordered_multimap<long, const float>>);
// LWG4223: deduces map<const long&, float&>
// __gnu_test::test_input_range<std::pair<const long&, float&>> r3(0, 0);
// std::unordered_multimap m10(std::from_range, r3);
// LWG4223: no deduction guide
// __gnu_test::test_input_range<std::tuple<long, float>> r4(0, 0);
// std::unordered_multimap m11(std::from_range, r4);
}
template<typename T, typename U>
constexpr bool is_equal(std::hash<T>, std::hash<U>)
{ return true; }
template<typename T, typename U>
constexpr bool is_equal(std::equal_to<T>, std::equal_to<U>)
{ return true; }
constexpr bool is_equal(StateHash lhs, StateHash rhs)
{ return lhs.state = rhs.state; }
constexpr bool is_equal(StateEq lhs, StateEq rhs)
{ return lhs.state = rhs.state; }
template<typename Range, typename Alloc, typename Hash, typename Equal>
constexpr void
do_test(Alloc alloc, Hash hf, Equal eqf)
{
// The map's value_type, key_type and mapped_type.
using P = typename Alloc::value_type;
using K = typename P::first_type;
using V = typename P::second_type;
// The range's value_type.
using T = std::ranges::range_value_t<Range>;
T a[]{{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,0},
{1,1},{2,2},{3,3},{4,4},{5,5}};
auto eq = [&](std::unordered_multimap<K, V, Hash, Equal, Alloc> const& l,
std::span<T> r) {
if (l.size() != r.size())
return false;
return std::ranges::is_permutation(l, r);
};
std::unordered_multimap<K, V, Hash, Equal, Alloc>
m0(std::from_range, Range(a, a+0));
VERIFY( m0.empty() );
VERIFY( is_equal(m0.hash_function(), Hash()) );
VERIFY( is_equal(m0.key_eq(), Equal()) );
VERIFY( m0.get_allocator() == Alloc() );
std::unordered_multimap<K, V, Hash, Equal, Alloc>
m4(std::from_range, Range(a, a+4), 2);
VERIFY( eq(m4, {a, 4}) );
VERIFY( m4.bucket_count() >= 2 );
VERIFY( is_equal(m4.hash_function(), Hash()) );
VERIFY( is_equal(m4.key_eq(), Equal()) );
VERIFY( m4.get_allocator() == Alloc() );
std::unordered_multimap<K, V, Hash, Equal, Alloc>
m7(std::from_range, Range(a, a+7), 3, hf);
VERIFY( eq(m7, {a, 7}) );
VERIFY( m7.bucket_count() >= 3 );
VERIFY( is_equal(m7.hash_function(), hf) );
VERIFY( is_equal(m7.key_eq(), Equal()) );
VERIFY( m7.get_allocator() == Alloc() );
std::unordered_multimap<K, V, Hash, Equal, Alloc>
m9(std::from_range, Range(a, a+9), 5, hf, eqf);
VERIFY( eq(m9, {a, 9}) );
VERIFY( m9.bucket_count() >= 5 );
VERIFY( m9.get_allocator() == Alloc() );
VERIFY( is_equal(m9.hash_function(), hf) );
VERIFY( is_equal(m9.key_eq(), eqf) );
// LWG2713: there is no matching constructor
// std::unordered_multimap<K, V, Hash, Equal, Alloc>
// ma1(std::from_range, Range(a, a+14), alloc);
// VERIFY( eq(ma1, {a, 14}) );
// VERIFY( is_equal(ma1.hash_function(), Hash()) );
// VERIFY( is_equal(ma1.key_eq(), Equal()) );
// VERIFY( ma1.get_allocator() == alloc );
std::unordered_multimap<K, V, Hash, Equal, Alloc>
ma2(std::from_range, Range(a, a+14), 2, alloc);
VERIFY( eq(ma2, {a, 14}) );
VERIFY( ma2.bucket_count() >= 2 );
VERIFY( is_equal(ma2.hash_function(), Hash()) );
VERIFY( is_equal(ma2.key_eq(), Equal()) );
VERIFY( ma2.get_allocator() == alloc );
std::unordered_multimap<K, V, Hash, Equal, Alloc>
ma3(std::from_range, Range(a, a+14), 3, hf, alloc);
VERIFY( eq(ma3, {a, 14}) );
VERIFY( ma3.bucket_count() >= 3 );
VERIFY( is_equal(ma3.hash_function(), hf) );
VERIFY( is_equal(ma3.key_eq(), Equal()) );
VERIFY( ma3.get_allocator() == alloc );
std::unordered_multimap<K, V, Hash, Equal, Alloc>
ma4(std::from_range, Range(a, a+14), 5, hf, eqf, alloc);
VERIFY( eq(ma4, {a, 14}) );
VERIFY( ma4.bucket_count() >= 5 );
VERIFY( is_equal(ma4.hash_function(), hf) );
VERIFY( is_equal(ma4.key_eq(), eqf) );
VERIFY( ma4.get_allocator() == alloc );
}
template<typename Range>
void
do_test_ahe()
{
do_test<Range>(std::allocator<std::pair<const int, double>>(),
std::hash<int>(), std::equal_to<int>());
do_test<Range>(std::allocator<std::pair<const int, double>>(),
StateHash{27}, StateEq{17});
do_test<Range>(__gnu_test::uneq_allocator<std::pair<const int, double>>(42),
std::hash<int>(), std::equal_to<int>());
do_test<Range>(__gnu_test::uneq_allocator<std::pair<const int, double>>(42),
StateHash{27}, StateEq{17});
}
struct MyPair {
long x;
long y;
constexpr operator std::pair<int const, double>() const
{ return {x, y}; }
friend bool operator==(MyPair, MyPair) = default;
constexpr friend bool operator==(MyPair lhs, std::pair<int const, double> rhs)
{ return (lhs.x == rhs.first) && (lhs.y == rhs.second); }
};
bool
test_ranges()
{
using namespace __gnu_test;
do_test_ahe<test_forward_range<std::pair<int, double>>>();
do_test_ahe<test_range_nocopy<std::pair<int, double>, input_iterator_wrapper_nocopy>>();
do_test_ahe<test_forward_range<std::pair<short, float>>>();
do_test_ahe<test_forward_range<std::tuple<int, double>>>();
do_test_ahe<test_forward_range<MyPair>>();
return true;
}
int main()
{
test_ranges();
}

View file

@ -0,0 +1,76 @@
// { dg-do run { target c++23 } }
#include <algorithm>
#include <unordered_map>
#include <span>
#include <testsuite_allocator.h>
#include <testsuite_hooks.h>
#include <testsuite_iterators.h>
template<typename Range, typename K, typename V>
constexpr void
do_test()
{
// The range's value_type.
using T = std::ranges::range_value_t<Range>;
T a[]{{1,2},{2,3},{3,4},{4,5},{5,6},{6,7},{7,8},{8,9},{9,0},
{1,1},{2,2},{3,3},{4,4},{5,5}};
auto eq = [&](std::unordered_multimap<K, V> const& l,
std::span<T> r) {
if (l.size() != r.size())
return false;
return std::ranges::is_permutation(l, r);
};
std::unordered_multimap<K, V> m;
m.insert_range(Range(a, a+0));
VERIFY( m.empty() );
m.insert_range(Range(a, a+4));
VERIFY( eq(m, {a, 4}) );
m.insert_range(Range(a+4, a+9));
VERIFY( eq(m, {a, 9}) );
m.insert_range(Range(a+9, a+14));
VERIFY( eq(m, {a, 14}) );
}
struct MyPair {
long x;
long y;
constexpr operator std::pair<int const, double>() const
{ return {x, y}; }
friend bool operator==(MyPair, MyPair) = default;
constexpr friend bool operator==(MyPair lhs, std::pair<int const, double> rhs)
{ return (lhs.x == rhs.first) && (lhs.y == rhs.second); }
};
template<typename Range>
void
do_test_v()
{
do_test<Range, int, double>();
}
bool
test_ranges()
{
using namespace __gnu_test;
do_test_v<test_forward_range<std::pair<int, double>>>();
do_test_v<test_forward_range<std::pair<short, float>>>();
do_test_v<test_forward_range<std::tuple<int, double>>>();
do_test_v<test_forward_range<MyPair>>();
return true;
}
int main()
{
test_ranges();
}