snames.ads-tmpl (Name_Ivdep): New pragma-related name.

* snames.ads-tmpl (Name_Ivdep): New pragma-related name.
	* sem_prag.adb (Analyze_Pragma) <Pragma_Loop_Optimize>: Add support
	for Ivdep hint.
	* gnat_rm.texi (Implementation Defined Pragmas): Document new Ivdep
	hint for Loop_Optimize.
	* gnat_ugn.texi (Vectorization of loops): Mention new Ivdep hint.
	* gcc-interface/trans.c (Pragma_to_gnu) <Pragma_Loop_Optimize>: Deal
	with new Ivdep hint.
	* gcc-interface/ada-tree.h (LOOP_STMT_IVDEP): New macro.
	* gcc-interface/trans.c (Pragma_to_gnu) <Pragma_Loop_Optimize>: Deal
	with new Ivdep hint.
	(gnat_gimplify_stmt) <LOOP_STMT>: Propagate the loop hints.

From-SVN: r209375
This commit is contained in:
Eric Botcazou 2014-04-14 14:18:26 +00:00 committed by Eric Botcazou
parent cddaefa376
commit 3418f5e92a
10 changed files with 129 additions and 15 deletions

View file

@ -1,3 +1,18 @@
2014-04-14 Eric Botcazou <ebotcazou@adacore.com>
* snames.ads-tmpl (Name_Ivdep): New pragma-related name.
* sem_prag.adb (Analyze_Pragma) <Pragma_Loop_Optimize>: Add support
for Ivdep hint.
* gnat_rm.texi (Implementation Defined Pragmas): Document new Ivdep
hint for Loop_Optimize.
* gnat_ugn.texi (Vectorization of loops): Mention new Ivdep hint.
* gcc-interface/trans.c (Pragma_to_gnu) <Pragma_Loop_Optimize>: Deal
with new Ivdep hint.
* gcc-interface/ada-tree.h (LOOP_STMT_IVDEP): New macro.
* gcc-interface/trans.c (Pragma_to_gnu) <Pragma_Loop_Optimize>: Deal
with new Ivdep hint.
(gnat_gimplify_stmt) <LOOP_STMT>: Propagate the loop hints.
2014-04-14 Eric Botcazou <ebotcazou@adacore.com>
Robert Dewar <dewar@adacore.com>

View file

@ -6,7 +6,7 @@
* *
* C Header File *
* *
* Copyright (C) 1992-2013, Free Software Foundation, Inc. *
* Copyright (C) 1992-2014, Free Software Foundation, Inc. *
* *
* GNAT is free software; you can redistribute it and/or modify it under *
* terms of the GNU General Public License as published by the Free Soft- *
@ -504,10 +504,11 @@ do { \
#define LOOP_STMT_TOP_UPDATE_P(NODE) TREE_LANG_FLAG_1 (LOOP_STMT_CHECK (NODE))
/* Optimization hints on loops. */
#define LOOP_STMT_NO_UNROLL(NODE) TREE_LANG_FLAG_2 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_UNROLL(NODE) TREE_LANG_FLAG_3 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_NO_VECTOR(NODE) TREE_LANG_FLAG_4 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_VECTOR(NODE) TREE_LANG_FLAG_5 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_IVDEP(NODE) TREE_LANG_FLAG_2 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_NO_UNROLL(NODE) TREE_LANG_FLAG_3 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_UNROLL(NODE) TREE_LANG_FLAG_4 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_NO_VECTOR(NODE) TREE_LANG_FLAG_5 (LOOP_STMT_CHECK (NODE))
#define LOOP_STMT_VECTOR(NODE) TREE_LANG_FLAG_6 (LOOP_STMT_CHECK (NODE))
#define EXIT_STMT_COND(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 0)
#define EXIT_STMT_LABEL(NODE) TREE_OPERAND_CHECK_CODE (NODE, EXIT_STMT, 1)

View file

@ -1268,10 +1268,14 @@ Pragma_to_gnu (Node_Id gnat_node)
Present (gnat_temp);
gnat_temp = Next (gnat_temp))
{
tree gnu_loop_stmt = gnu_loop_stack ->last ()->stmt;
tree gnu_loop_stmt = gnu_loop_stack->last ()->stmt;
switch (Chars (Expression (gnat_temp)))
{
case Name_Ivdep:
LOOP_STMT_IVDEP (gnu_loop_stmt) = 1;
break;
case Name_No_Unroll:
LOOP_STMT_NO_UNROLL (gnu_loop_stmt) = 1;
break;
@ -7747,13 +7751,20 @@ gnat_gimplify_stmt (tree *stmt_p)
tree gnu_cond = LOOP_STMT_COND (stmt);
tree gnu_update = LOOP_STMT_UPDATE (stmt);
tree gnu_end_label = LOOP_STMT_LABEL (stmt);
tree t;
/* Build the condition expression from the test, if any. */
if (gnu_cond)
gnu_cond
= build3 (COND_EXPR, void_type_node, gnu_cond, alloc_stmt_list (),
build1 (GOTO_EXPR, void_type_node, gnu_end_label));
{
/* Deal with the optimization hints. */
if (LOOP_STMT_IVDEP (stmt))
gnu_cond = build2 (ANNOTATE_EXPR, TREE_TYPE (gnu_cond), gnu_cond,
build_int_cst (integer_type_node,
annot_expr_ivdep_kind));
gnu_cond
= build3 (COND_EXPR, void_type_node, gnu_cond, NULL_TREE,
build1 (GOTO_EXPR, void_type_node, gnu_end_label));
}
/* Set to emit the statements of the loop. */
*stmt_p = NULL_TREE;
@ -7782,7 +7793,7 @@ gnat_gimplify_stmt (tree *stmt_p)
if (gnu_update && !LOOP_STMT_TOP_UPDATE_P (stmt))
append_to_statement_list (gnu_update, stmt_p);
t = build1 (GOTO_EXPR, void_type_node, gnu_start_label);
tree t = build1 (GOTO_EXPR, void_type_node, gnu_start_label);
SET_EXPR_LOCATION (t, DECL_SOURCE_LOCATION (gnu_end_label));
append_to_statement_list (t, stmt_p);

View file

@ -4417,7 +4417,7 @@ Syntax:
@smallexample @c ada
pragma Loop_Optimize (OPTIMIZATION_HINT @{, OPTIMIZATION_HINT@});
OPTIMIZATION_HINT ::= No_Unroll | Unroll | No_Vector | Vector
OPTIMIZATION_HINT ::= Ivdep | No_Unroll | Unroll | No_Vector | Vector
@end smallexample
@noindent
@ -4426,8 +4426,13 @@ programmer to specify optimization hints for the enclosing loop. The hints
are not mutually exclusive and can be freely mixed, but not all combinations
will yield a sensible outcome.
There are four supported optimization hints for a loop:
There are five supported optimization hints for a loop:
@itemize @bullet
@item Ivdep
The programmer asserts that there are no loop-carried dependencies which would prevent consecutive iterations of the loop from being executed simultaneously.
@item No_Unroll
The loop must not be unrolled. This is a strong hint: the compiler will not

View file

@ -10780,6 +10780,38 @@ preferably to other optimizations by means of pragma @code{Loop_Optimize}:
placed immediately within the loop will convey the appropriate hint to the
compiler for this loop.
It is also possible to help the compiler generate better vectorized code
for a given loop by asserting that there are no loop-carried dependencies
in the loop. Consider for example the procedure:
@smallexample @c ada
type Arr is array (1 .. 4) of Long_Float;
procedure Add (X, Y : not null access Arr; R : not null access Arr) is
begin
for I in Arr'Range loop
R(I) := X(I) + Y(I);
end loop;
end;
@end smallexample
@noindent
By default, the compiler cannot unconditionally vectorize the loop because
assigning to a component of the array designated by R in one iteration could
change the value read from the components of the arrays designated by X or Y
in a later iteration. As a result, the compiler will generate two versions
of the loop in the object code, one vectorized and the other not vectorized,
as well as a test to select the appropriate version at run time. This can
be overcome by another hint:
@smallexample @c ada
pragma Loop_Optimize (Ivdep);
@end smallexample
@noindent
placed immediately within the loop will tell the compiler that it can safely
omit the non-vectorized version of the loop as well as the run-time test.
@node Other Optimization Switches
@subsection Other Optimization Switches
@cindex Optimization Switches

View file

@ -16560,7 +16560,8 @@ package body Sem_Prag is
-- pragma Loop_Optimize ( OPTIMIZATION_HINT {, OPTIMIZATION_HINT } );
-- OPTIMIZATION_HINT ::= No_Unroll | Unroll | No_Vector | Vector
-- OPTIMIZATION_HINT ::=
-- Ivdep | No_Unroll | Unroll | No_Vector | Vector
when Pragma_Loop_Optimize => Loop_Optimize : declare
Hint : Node_Id;
@ -16572,7 +16573,7 @@ package body Sem_Prag is
Hint := First (Pragma_Argument_Associations (N));
while Present (Hint) loop
Check_Arg_Is_One_Of (Hint,
Check_Arg_Is_One_Of (Hint, Name_Ivdep,
Name_No_Unroll, Name_Unroll, Name_No_Vector, Name_Vector);
Next (Hint);
end loop;

View file

@ -730,6 +730,7 @@ package Snames is
Name_Increases : constant Name_Id := N + $;
Name_Info : constant Name_Id := N + $;
Name_Internal : constant Name_Id := N + $;
Name_Ivdep : constant Name_Id := N + $;
Name_Link_Name : constant Name_Id := N + $;
Name_Lowercase : constant Name_Id := N + $;
Name_Max_Entry_Queue_Depth : constant Name_Id := N + $;

View file

@ -1,3 +1,7 @@
2014-04-14 Eric Botcazou <ebotcazou@adacore.com>
* gnat.dg/vect11.ad[sb]: New test.
2014-04-14 Richard Biener <rguenther@suse.de>
* g++.dg/tree-ssa/forwprop-switch.C: New testcase.

View file

@ -0,0 +1,33 @@
-- { dg-do compile { target i?86-*-* x86_64-*-* } }
-- { dg-options "-O3 -msse2 -fdump-tree-optimized" }
package body Vect11 is
function "+" (X, Y : Sarray) return Sarray is
R : Sarray;
begin
for I in Sarray'Range loop
R(I) := X(I) + Y(I);
end loop;
return R;
end;
procedure Add (X, Y : Sarray; R : out Sarray) is
begin
for I in Sarray'Range loop
R(I) := X(I) + Y(I);
end loop;
end;
procedure Add (X, Y : not null access Sarray; R : not null access Sarray) is
begin
for I in Sarray'Range loop
pragma Loop_Optimize (Ivdep);
R(I) := X(I) + Y(I);
end loop;
end;
end Vect11;
-- { dg-final { scan-tree-dump-not "goto" "optimized" } }
-- { dg-final { cleanup-tree-dump "optimized" } }

View file

@ -0,0 +1,11 @@
package Vect11 is
-- Constrained array types are vectorizable
type Sarray is array (1 .. 4) of Float;
for Sarray'Alignment use 16;
function "+" (X, Y : Sarray) return Sarray;
procedure Add (X, Y : Sarray; R : out Sarray);
procedure Add (X, Y : not null access Sarray; R : not null access Sarray);
end Vect11;