re PR rtl-optimization/44919 (ICE on ia64 with -O3 at sel-sched.c:4672)
PR rtl-optimization/44919 * sel-sched.c (move_cond_jump): Remove assert, check that the several blocks case can only happen with mutually exclusive insns instead. Rewrite the movement code to support moving through several basic blocks. * g++.dg/opt/pr44919.C: New. From-SVN: r163904
This commit is contained in:
parent
7b74bb63ff
commit
324d3f4525
4 changed files with 314 additions and 24 deletions
|
@ -1,3 +1,11 @@
|
|||
2010-09-06 Andrey Belevantsev <abel@ispras.ru>
|
||||
|
||||
PR rtl-optimization/44919
|
||||
* sel-sched.c (move_cond_jump): Remove assert, check that
|
||||
the several blocks case can only happen with mutually exclusive
|
||||
insns instead. Rewrite the movement code to support moving through
|
||||
several basic blocks.
|
||||
|
||||
2010-09-06 Uros Bizjak <ubizjak@gmail.com>
|
||||
|
||||
* config/i386/i386.md (iptrsize): New mode attribute.
|
||||
|
|
|
@ -4875,18 +4875,35 @@ static void
|
|||
move_cond_jump (rtx insn, bnd_t bnd)
|
||||
{
|
||||
edge ft_edge;
|
||||
basic_block block_from, block_next, block_new;
|
||||
rtx next, prev, link;
|
||||
basic_block block_from, block_next, block_new, block_bnd, bb;
|
||||
rtx next, prev, link, head;
|
||||
|
||||
/* BLOCK_FROM holds basic block of the jump. */
|
||||
block_from = BLOCK_FOR_INSN (insn);
|
||||
block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
|
||||
prev = BND_TO (bnd);
|
||||
|
||||
/* Moving of jump should not cross any other jumps or
|
||||
beginnings of new basic blocks. */
|
||||
gcc_assert (block_from == BLOCK_FOR_INSN (BND_TO (bnd)));
|
||||
#ifdef ENABLE_CHECKING
|
||||
/* Moving of jump should not cross any other jumps or beginnings of new
|
||||
basic blocks. The only exception is when we move a jump through
|
||||
mutually exclusive insns along fallthru edges. */
|
||||
if (block_from != block_bnd)
|
||||
{
|
||||
bb = block_from;
|
||||
for (link = PREV_INSN (insn); link != PREV_INSN (prev);
|
||||
link = PREV_INSN (link))
|
||||
{
|
||||
if (INSN_P (link))
|
||||
gcc_assert (sched_insns_conditions_mutex_p (insn, link));
|
||||
if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
|
||||
{
|
||||
gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
|
||||
bb = BLOCK_FOR_INSN (link);
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
/* Jump is moved to the boundary. */
|
||||
prev = BND_TO (bnd);
|
||||
next = PREV_INSN (insn);
|
||||
BND_TO (bnd) = insn;
|
||||
|
||||
|
@ -4901,28 +4918,35 @@ move_cond_jump (rtx insn, bnd_t bnd)
|
|||
gcc_assert (block_new->next_bb == block_next
|
||||
&& block_from->next_bb == block_new);
|
||||
|
||||
gcc_assert (BB_END (block_from) == insn);
|
||||
|
||||
/* Move all instructions except INSN from BLOCK_FROM to
|
||||
BLOCK_NEW. */
|
||||
for (link = prev; link != insn; link = NEXT_INSN (link))
|
||||
/* Move all instructions except INSN to BLOCK_NEW. */
|
||||
bb = block_bnd;
|
||||
head = BB_HEAD (block_new);
|
||||
while (bb != block_from->next_bb)
|
||||
{
|
||||
EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
|
||||
df_insn_change_bb (link, block_new);
|
||||
rtx from, to;
|
||||
from = bb == block_bnd ? prev : sel_bb_head (bb);
|
||||
to = bb == block_from ? next : sel_bb_end (bb);
|
||||
|
||||
/* The jump being moved can be the first insn in the block.
|
||||
In this case we don't have to move anything in this block. */
|
||||
if (NEXT_INSN (to) != from)
|
||||
{
|
||||
reorder_insns (from, to, head);
|
||||
|
||||
for (link = to; link != head; link = PREV_INSN (link))
|
||||
EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
|
||||
head = to;
|
||||
}
|
||||
|
||||
/* Cleanup possibly empty blocks left. */
|
||||
block_next = bb->next_bb;
|
||||
if (bb != block_from)
|
||||
maybe_tidy_empty_bb (bb);
|
||||
bb = block_next;
|
||||
}
|
||||
|
||||
/* Set correct basic block and instructions properties. */
|
||||
BB_END (block_new) = PREV_INSN (insn);
|
||||
|
||||
NEXT_INSN (PREV_INSN (prev)) = insn;
|
||||
PREV_INSN (insn) = PREV_INSN (prev);
|
||||
|
||||
/* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
|
||||
gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
|
||||
PREV_INSN (prev) = BB_HEAD (block_new);
|
||||
NEXT_INSN (next) = NEXT_INSN (BB_HEAD (block_new));
|
||||
NEXT_INSN (BB_HEAD (block_new)) = prev;
|
||||
PREV_INSN (NEXT_INSN (next)) = next;
|
||||
|
||||
gcc_assert (!sel_bb_empty_p (block_from)
|
||||
&& !sel_bb_empty_p (block_new));
|
||||
|
|
|
@ -1,3 +1,8 @@
|
|||
2010-09-06 Alexander Monakov <amonakov@ispras.ru>
|
||||
|
||||
PR rtl-optimization/44919
|
||||
* g++.dg/opt/pr44919.C: New.
|
||||
|
||||
2010-09-06 Tobias Burnus <burnus@net-b.de>
|
||||
|
||||
PR fortran/38282
|
||||
|
|
253
gcc/testsuite/g++.dg/opt/pr44919.C
Normal file
253
gcc/testsuite/g++.dg/opt/pr44919.C
Normal file
|
@ -0,0 +1,253 @@
|
|||
// { dg-do compile { target powerpc*-*-* ia64-*-* x86_64-*-* } }
|
||||
// { dg-options "-O3 -fselective-scheduling2" }
|
||||
|
||||
namespace std {
|
||||
|
||||
typedef long unsigned int size_t;
|
||||
|
||||
template<typename _Tp> class new_allocator { public: typedef size_t size_type; typedef _Tp* pointer; };
|
||||
template<typename _Tp> class allocator: public new_allocator<_Tp> { public: typedef size_t size_type; template<typename _Tp1> struct rebind { typedef allocator<_Tp1> other; }; };
|
||||
|
||||
class back_insert_iterator { };
|
||||
template<typename _Container> back_insert_iterator back_inserter(_Container& __x) { };
|
||||
|
||||
class vector { };
|
||||
|
||||
struct _List_node_base { };
|
||||
struct _List_node : public _List_node_base { };
|
||||
template<typename _Tp> struct _List_iterator { typedef _List_iterator<_Tp> _Self; typedef _Tp& reference; explicit _List_iterator(_List_node_base* __x) : _M_node(__x) { } reference operator*() const { } _Self& operator++() { } bool operator!=(const _Self& __x) const { return _M_node != __x._M_node; } _List_node_base* _M_node; };
|
||||
template<typename _Tp, typename _Alloc> class _List_base { protected: typedef typename _Alloc::template rebind<_List_node >::other _Node_alloc_type; struct _List_impl : public _Node_alloc_type { _List_node_base _M_node; }; _List_impl _M_impl; };
|
||||
template<typename _Tp, typename _Alloc = std::allocator<_Tp> > class list : protected _List_base<_Tp, _Alloc> { public: typedef _Tp value_type; typedef _List_iterator<_Tp> iterator; iterator begin() { } iterator end() { return iterator(&this->_M_impl._M_node); } };
|
||||
|
||||
namespace tr1 { template<typename _Tp, size_t _Nm> struct array { typedef _Tp value_type; typedef const value_type& const_reference; typedef const value_type* const_iterator; typedef size_t size_type; value_type _M_instance[_Nm ? _Nm : 1]; const_iterator begin() const { return const_iterator(&_M_instance[0]); } const_reference operator[](size_type __n) const { return _M_instance[__n]; } }; }
|
||||
}
|
||||
|
||||
namespace X {
|
||||
|
||||
class Object { };
|
||||
struct Has_qrt { };
|
||||
template <typename F> struct qrt_or_not { typedef const typename F::result_type & type; };
|
||||
template <typename Functor, typename P1 = void> struct Qualified_result_of : qrt_or_not<Functor> { };
|
||||
|
||||
using std::tr1::array;
|
||||
|
||||
template <class R_> class Point_2 : public R_::Kernel_base::Point_2 {
|
||||
public:
|
||||
typedef typename R_::Kernel_base::Point_2 RPoint_2;
|
||||
typedef RPoint_2 Rep;
|
||||
const Rep& rep() const { }
|
||||
};
|
||||
|
||||
template <class R_> class Vector_2 : public R_::Kernel_base::Vector_2 {
|
||||
public:
|
||||
typedef typename R_::Kernel_base::Vector_2 RVector_2;
|
||||
typedef RVector_2 Rep;
|
||||
const Rep& rep() const { return *this; }
|
||||
typedef R_ R;
|
||||
typename Qualified_result_of<typename R::Compute_x_2,Vector_2>::type x() const { return R().compute_x_2_object()(*this); }
|
||||
typename Qualified_result_of<typename R::Compute_y_2,Vector_2>::type y() const { return R().compute_y_2_object()(*this); }
|
||||
typename Qualified_result_of<typename R::Compute_y_2,Vector_2>::type cartesian(int i) const { return (i==0) ? x() : y(); }
|
||||
typename Qualified_result_of<typename R::Compute_hx_2,Vector_2>::type hx() const { return R().compute_hx_2_object()(*this); }
|
||||
typename Qualified_result_of<typename R::Compute_hy_2,Vector_2>::type hy() const { return R().compute_hy_2_object()(*this); }
|
||||
typename Qualified_result_of<typename R::Compute_hw_2,Vector_2>::type hw() const { return R().compute_hw_2_object()(*this); }
|
||||
typename Qualified_result_of<typename R::Compute_hx_2,Vector_2>::type homogeneous(int i) const { return (i==0) ? hx() : (i==1)? hy() : hw(); }
|
||||
};
|
||||
|
||||
template <class R_> class Segment_2 : public R_::Kernel_base::Segment_2 { };
|
||||
template <class R_> class Iso_rectangle_2 : public R_::Kernel_base::Iso_rectangle_2 { };
|
||||
|
||||
template <typename T, int i > const T& constant() { static const T t(i); return t; }
|
||||
template <class T, class Alloc = std::allocator<T > > class Handle_for { struct RefCounted { T t; }; typedef typename Alloc::template rebind<RefCounted>::other Allocator; typedef typename Allocator::pointer pointer; pointer ptr_; public: typedef T element_type; const T * Ptr() const { return &(ptr_->t); } };
|
||||
template <class T, class Allocator> const T& get(const Handle_for<T, Allocator> &h) { return *(h.Ptr()); }
|
||||
|
||||
template <class R_> class PointC2 {
|
||||
public:
|
||||
typedef typename R_::Vector_2 Vector_2; Vector_2 base;
|
||||
typedef typename Vector_2::Cartesian_const_iterator Cartesian_const_iterator; Cartesian_const_iterator cartesian_begin() const { return base.cartesian_begin(); }
|
||||
};
|
||||
|
||||
template <class R_> class VectorC2 {
|
||||
public:
|
||||
typedef typename R_::FT FT;
|
||||
typedef array<FT, 2> Rep;
|
||||
typedef typename R_::template Handle<Rep>::type Base;
|
||||
Base base;
|
||||
typedef typename Rep::const_iterator Cartesian_const_iterator;
|
||||
const FT & x() const { return X::get(base)[0]; }
|
||||
const FT & y() const { return X::get(base)[1]; }
|
||||
const FT & hx() const { return x(); }
|
||||
const FT & hy() const { return y(); }
|
||||
const FT & hw() const { return constant<FT, 1>(); }
|
||||
Cartesian_const_iterator cartesian_begin() const { return X::get(base).begin(); }
|
||||
};
|
||||
|
||||
template <class R_> class SegmentC2 { };
|
||||
template <class R_> class Iso_rectangleC2 { };
|
||||
|
||||
namespace internal {
|
||||
template <class K> class Segment_2_Iso_rectangle_2_pair {
|
||||
public:
|
||||
enum Intersection_results { NO_INTERSECTION };
|
||||
Segment_2_Iso_rectangle_2_pair(typename K::Segment_2 const *seg, typename K::Iso_rectangle_2 const *rect) ;
|
||||
Intersection_results intersection_type() const;
|
||||
mutable Intersection_results _result;
|
||||
typename K::Point_2 _ref_point;
|
||||
typename K::Vector_2 _dir;
|
||||
typename K::Point_2 _isomin;
|
||||
typename K::Point_2 _isomax;
|
||||
mutable typename K::FT _min, _max;
|
||||
};
|
||||
template <class K> Object intersection( const typename K::Segment_2 &seg, const typename K::Iso_rectangle_2 &iso, const K&) {
|
||||
typedef Segment_2_Iso_rectangle_2_pair<K> is_t; is_t ispair(&seg, &iso); switch (ispair.intersection_type()) { }
|
||||
}
|
||||
template <class K> typename Segment_2_Iso_rectangle_2_pair<K>::Intersection_results Segment_2_Iso_rectangle_2_pair<K>::intersection_type() const {
|
||||
typedef typename K::RT RT;
|
||||
typedef typename K::FT FT;
|
||||
typename K::Construct_cartesian_const_iterator_2 construct_cccit;
|
||||
typename K::Cartesian_const_iterator_2 ref_point_it = construct_cccit(_ref_point);
|
||||
typename K::Cartesian_const_iterator_2 end = construct_cccit(_ref_point, 0);
|
||||
typename K::Cartesian_const_iterator_2 isomin_it = construct_cccit(_isomin);
|
||||
typename K::Cartesian_const_iterator_2 isomax_it = construct_cccit(_isomax);
|
||||
for (unsigned int i=0; ref_point_it != end; ++i, ++ref_point_it, ++isomin_it, ++isomax_it) {
|
||||
if (_dir.homogeneous(i) == RT(0)) {
|
||||
if ( *(ref_point_it) <*(isomin_it) ) {
|
||||
_result = NO_INTERSECTION;
|
||||
}
|
||||
if ( *(ref_point_it) > *(isomax_it)) {
|
||||
_result = NO_INTERSECTION;
|
||||
}
|
||||
} else {
|
||||
FT newmin, newmax;
|
||||
if (_dir.homogeneous(i) > RT(0)) {
|
||||
newmin = ( *(isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
|
||||
newmax = ( *(isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
|
||||
} else {
|
||||
newmin = ( (*isomax_it) - (*ref_point_it)) / _dir.cartesian(i);
|
||||
newmax = ( (*isomin_it) - (*ref_point_it)) / _dir.cartesian(i);
|
||||
}
|
||||
if (newmin > _min) _min = newmin;
|
||||
if (newmax <_max) _max = newmax;
|
||||
if (_max <_min) { return _result; }
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template <class K> Object intersection(const Segment_2<K> &seg, const Iso_rectangle_2<K> &iso) { typedef typename K::Intersect_2 Intersect; return Intersect()(seg, iso); }
|
||||
|
||||
namespace CommonKernelFunctors {
|
||||
template <typename K> class Construct_cartesian_const_iterator_2 {
|
||||
typedef typename K::Point_2 Point_2;
|
||||
typedef typename K::Cartesian_const_iterator_2 Cartesian_const_iterator_2;
|
||||
public:
|
||||
typedef Cartesian_const_iterator_2 result_type;
|
||||
Cartesian_const_iterator_2 operator()( const Point_2& p) const { return p.rep().cartesian_begin(); }
|
||||
Cartesian_const_iterator_2 operator()( const Point_2& p, int) const { }
|
||||
};
|
||||
template <typename K> class Intersect_2 {
|
||||
typedef typename K::Object_2 Object_2;
|
||||
public:
|
||||
typedef Object_2 result_type;
|
||||
template <class T1, class T2> Object_2 operator()(const T1& t1, const T2& t2) const { return internal::intersection(t1, t2, K()); }
|
||||
};
|
||||
}
|
||||
|
||||
namespace CartesianKernelFunctors {
|
||||
using namespace CommonKernelFunctors;
|
||||
template <typename K> class Compute_x_2 : Has_qrt {
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Vector_2 Vector_2;
|
||||
public:
|
||||
typedef FT result_type;
|
||||
const result_type & operator()(const Vector_2& v) const { return v.rep().x(); }
|
||||
};
|
||||
template <typename K> class Compute_y_2 : Has_qrt {
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Vector_2 Vector_2;
|
||||
public:
|
||||
typedef FT result_type;
|
||||
const result_type & operator()(const Vector_2& v) const { return v.rep().y(); }
|
||||
};
|
||||
template <typename K> class Compute_hx_2 : public Has_qrt {
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Vector_2 Vector_2;
|
||||
public:
|
||||
typedef FT result_type;
|
||||
const result_type & operator()(const Vector_2& v) const { return v.rep().hx(); }
|
||||
};
|
||||
template <typename K> class Compute_hy_2 : public Has_qrt {
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Vector_2 Vector_2;
|
||||
public:
|
||||
typedef FT result_type;
|
||||
const result_type & operator()(const Vector_2& v) const { return v.rep().hy(); }
|
||||
};
|
||||
template <typename K> class Compute_hw_2 : public Has_qrt {
|
||||
typedef typename K::FT FT;
|
||||
typedef typename K::Vector_2 Vector_2;
|
||||
public:
|
||||
typedef FT result_type;
|
||||
const result_type & operator()(const Vector_2& v) const { return v.rep().hw(); }
|
||||
};
|
||||
}
|
||||
|
||||
template <typename K_, typename FT_> struct Cartesian_base {
|
||||
typedef K_ Kernel;
|
||||
typedef X::Object Object_2;
|
||||
typedef PointC2<Kernel> Point_2;
|
||||
typedef VectorC2<Kernel> Vector_2;
|
||||
typedef SegmentC2<Kernel> Segment_2;
|
||||
typedef Iso_rectangleC2<Kernel> Iso_rectangle_2;
|
||||
typedef typename array<FT_, 2>::const_iterator Cartesian_const_iterator_2;
|
||||
};
|
||||
|
||||
template <typename K_base, typename Kernel_ > struct Type_equality_wrapper : public K_base {
|
||||
typedef K_base Kernel_base;
|
||||
typedef X::Point_2<Kernel_> Point_2;
|
||||
typedef X::Vector_2<Kernel_> Vector_2;
|
||||
typedef X::Segment_2<Kernel_> Segment_2;
|
||||
typedef X::Iso_rectangle_2<Kernel_> Iso_rectangle_2;
|
||||
};
|
||||
|
||||
template <typename FT_, typename Kernel_ > struct Cartesian_base_ref_count : public Cartesian_base<Kernel_, FT_ > {
|
||||
typedef FT_ RT;
|
||||
typedef FT_ FT;
|
||||
template <typename T > struct Handle { typedef Handle_for<T> type; };
|
||||
typedef Kernel_ K;
|
||||
typedef CartesianKernelFunctors::Compute_x_2<K> Compute_x_2;
|
||||
Compute_x_2 compute_x_2_object() const { }
|
||||
typedef CartesianKernelFunctors::Compute_y_2<K> Compute_y_2;
|
||||
Compute_y_2 compute_y_2_object() const { }
|
||||
typedef CartesianKernelFunctors::Compute_hx_2<K> Compute_hx_2;
|
||||
Compute_hx_2 compute_hx_2_object() const { }
|
||||
typedef CartesianKernelFunctors::Compute_hy_2<K> Compute_hy_2;
|
||||
Compute_hy_2 compute_hy_2_object() const { }
|
||||
typedef CartesianKernelFunctors::Compute_hw_2<K> Compute_hw_2;
|
||||
Compute_hw_2 compute_hw_2_object() const { }
|
||||
typedef CartesianKernelFunctors::Construct_cartesian_const_iterator_2<K> Construct_cartesian_const_iterator_2;
|
||||
typedef CartesianKernelFunctors::Intersect_2<K> Intersect_2;
|
||||
};
|
||||
|
||||
template <typename FT_ > struct Cartesian : public Type_equality_wrapper<Cartesian_base_ref_count<FT_, Cartesian<FT_> >, Cartesian<FT_> > { };
|
||||
|
||||
template <class Kernel> class Ipelet_base {
|
||||
public:
|
||||
typedef typename X::Point_2<Kernel> Point_2;
|
||||
typedef typename Kernel::Segment_2 Segment_2;
|
||||
typedef typename Kernel::Iso_rectangle_2 Iso_rectangle_2;
|
||||
|
||||
Iso_rectangle_2 read_active_objects () const { }
|
||||
struct Voronoi_from_tri{ std::list<Segment_2> seg_list; };
|
||||
|
||||
template <class T,class output_iterator> bool cast_into_seg(const T& obj,const Iso_rectangle_2& bbox,output_iterator out_it) const{ X::intersection(obj,bbox); }
|
||||
template<class iterator,class output_iterator> void cast_into_seg(const iterator first,const iterator end, const Iso_rectangle_2& bbox, output_iterator out_it) const { for (iterator it=first; it!=end; ++it) cast_into_seg(*it,bbox,out_it); }
|
||||
void draw_dual_(Voronoi_from_tri& v_recup,const Iso_rectangle_2& bbox) const { std::vector seg_cont; cast_into_seg(v_recup.seg_list.begin(),v_recup.seg_list.end(),bbox,std::back_inserter(seg_cont)); }
|
||||
void draw_dual_in_ipe(const Iso_rectangle_2& bbox) const { Voronoi_from_tri v_recup; draw_dual_(v_recup,bbox); }
|
||||
};
|
||||
|
||||
typedef X::Cartesian<double> Kernel;
|
||||
|
||||
class diagrammeIpelet : public X::Ipelet_base<Kernel> { void protected_run(); };
|
||||
void diagrammeIpelet::protected_run() { Iso_rectangle_2 bbox = read_active_objects( ); draw_dual_in_ipe(bbox); }
|
||||
|
||||
}
|
Loading…
Add table
Reference in a new issue