libgomp, nvptx: low-latency memory allocator

This patch adds support for allocating low-latency ".shared" memory on
NVPTX GPU device, via the omp_low_lat_mem_space and omp_alloc.  The memory
can be allocated, reallocated, and freed using a basic but fast algorithm,
is thread safe and the size of the low-latency heap can be configured using
the GOMP_NVPTX_LOWLAT_POOL environment variable.

The use of the PTX dynamic_smem_size feature means that low-latency allocator
will not work with the PTX 3.1 multilib.

For now, the omp_low_lat_mem_alloc allocator also works, but that will change
when I implement the access traits.

libgomp/ChangeLog:

	* allocator.c (MEMSPACE_ALLOC): New macro.
	(MEMSPACE_CALLOC): New macro.
	(MEMSPACE_REALLOC): New macro.
	(MEMSPACE_FREE): New macro.
	(predefined_alloc_mapping): New array.  Add _Static_assert to match.
	(ARRAY_SIZE): New macro.
	(omp_aligned_alloc): Use MEMSPACE_ALLOC.
	Implement fall-backs for predefined allocators.  Simplify existing
	fall-backs.
	(omp_free): Use MEMSPACE_FREE.
	(omp_calloc): Use MEMSPACE_CALLOC. Implement fall-backs for
	predefined allocators.  Simplify existing fall-backs.
	(omp_realloc): Use MEMSPACE_REALLOC, MEMSPACE_ALLOC, and MEMSPACE_FREE.
	Implement fall-backs for predefined allocators.  Simplify existing
	fall-backs.
	* config/nvptx/team.c (__nvptx_lowlat_pool): New asm variable.
	(__nvptx_lowlat_init): New prototype.
	(gomp_nvptx_main): Call __nvptx_lowlat_init.
	* libgomp.texi: Update memory space table.
	* plugin/plugin-nvptx.c (lowlat_pool_size): New variable.
	(GOMP_OFFLOAD_init_device): Read the GOMP_NVPTX_LOWLAT_POOL envvar.
	(GOMP_OFFLOAD_run): Apply lowlat_pool_size.
	* basic-allocator.c: New file.
	* config/nvptx/allocator.c: New file.
	* testsuite/libgomp.c/omp_alloc-1.c: New test.
	* testsuite/libgomp.c/omp_alloc-2.c: New test.
	* testsuite/libgomp.c/omp_alloc-3.c: New test.
	* testsuite/libgomp.c/omp_alloc-4.c: New test.
	* testsuite/libgomp.c/omp_alloc-5.c: New test.
	* testsuite/libgomp.c/omp_alloc-6.c: New test.

Co-authored-by: Kwok Cheung Yeung  <kcy@codesourcery.com>
Co-Authored-By: Thomas Schwinge <thomas@codesourcery.com>
This commit is contained in:
Andrew Stubbs 2021-12-03 17:46:41 +00:00
parent 458e7c9379
commit 30486fab71
12 changed files with 1239 additions and 105 deletions

View file

@ -37,6 +37,47 @@
#define omp_max_predefined_alloc omp_thread_mem_alloc
/* These macros may be overridden in config/<target>/allocator.c.
The following definitions (ab)use comma operators to avoid unused
variable errors. */
#ifndef MEMSPACE_ALLOC
#define MEMSPACE_ALLOC(MEMSPACE, SIZE) \
malloc (((void)(MEMSPACE), (SIZE)))
#endif
#ifndef MEMSPACE_CALLOC
#define MEMSPACE_CALLOC(MEMSPACE, SIZE) \
calloc (1, (((void)(MEMSPACE), (SIZE))))
#endif
#ifndef MEMSPACE_REALLOC
#define MEMSPACE_REALLOC(MEMSPACE, ADDR, OLDSIZE, SIZE) \
realloc (ADDR, (((void)(MEMSPACE), (void)(OLDSIZE), (SIZE))))
#endif
#ifndef MEMSPACE_FREE
#define MEMSPACE_FREE(MEMSPACE, ADDR, SIZE) \
free (((void)(MEMSPACE), (void)(SIZE), (ADDR)))
#endif
/* Map the predefined allocators to the correct memory space.
The index to this table is the omp_allocator_handle_t enum value.
When the user calls omp_alloc with a predefined allocator this
table determines what memory they get. */
static const omp_memspace_handle_t predefined_alloc_mapping[] = {
omp_default_mem_space, /* omp_null_allocator doesn't actually use this. */
omp_default_mem_space, /* omp_default_mem_alloc. */
omp_large_cap_mem_space, /* omp_large_cap_mem_alloc. */
omp_const_mem_space, /* omp_const_mem_alloc. */
omp_high_bw_mem_space, /* omp_high_bw_mem_alloc. */
omp_low_lat_mem_space, /* omp_low_lat_mem_alloc. */
omp_low_lat_mem_space, /* omp_cgroup_mem_alloc (implementation defined). */
omp_low_lat_mem_space, /* omp_pteam_mem_alloc (implementation defined). */
omp_low_lat_mem_space, /* omp_thread_mem_alloc (implementation defined). */
};
#define ARRAY_SIZE(A) (sizeof (A) / sizeof ((A)[0]))
_Static_assert (ARRAY_SIZE (predefined_alloc_mapping)
== omp_max_predefined_alloc + 1,
"predefined_alloc_mapping must match omp_memspace_handle_t");
enum gomp_numa_memkind_kind
{
GOMP_MEMKIND_NONE = 0,
@ -533,7 +574,7 @@ retry:
}
else
#endif
ptr = malloc (new_size);
ptr = MEMSPACE_ALLOC (allocator_data->memspace, new_size);
if (ptr == NULL)
{
#ifdef HAVE_SYNC_BUILTINS
@ -565,7 +606,13 @@ retry:
}
else
#endif
ptr = malloc (new_size);
{
omp_memspace_handle_t memspace;
memspace = (allocator_data
? allocator_data->memspace
: predefined_alloc_mapping[allocator]);
ptr = MEMSPACE_ALLOC (memspace, new_size);
}
if (ptr == NULL)
goto fail;
}
@ -582,36 +629,26 @@ retry:
((struct omp_mem_header *) ret)[-1].allocator = allocator;
return ret;
fail:
if (allocator_data)
fail:;
int fallback = (allocator_data
? allocator_data->fallback
: allocator == omp_default_mem_alloc
? omp_atv_null_fb
: omp_atv_default_mem_fb);
switch (fallback)
{
switch (allocator_data->fallback)
{
case omp_atv_default_mem_fb:
if ((new_alignment > sizeof (void *) && new_alignment > alignment)
#if defined(LIBGOMP_USE_MEMKIND) || defined(LIBGOMP_USE_LIBNUMA)
|| memkind
#endif
|| (allocator_data
&& allocator_data->pool_size < ~(uintptr_t) 0))
{
allocator = omp_default_mem_alloc;
goto retry;
}
/* Otherwise, we've already performed default mem allocation
and if that failed, it won't succeed again (unless it was
intermittent. Return NULL then, as that is the fallback. */
break;
case omp_atv_null_fb:
break;
default:
case omp_atv_abort_fb:
gomp_fatal ("Out of memory allocating %lu bytes",
(unsigned long) size);
case omp_atv_allocator_fb:
allocator = allocator_data->fb_data;
goto retry;
}
case omp_atv_default_mem_fb:
allocator = omp_default_mem_alloc;
goto retry;
case omp_atv_null_fb:
break;
default:
case omp_atv_abort_fb:
gomp_fatal ("Out of memory allocating %lu bytes",
(unsigned long) size);
case omp_atv_allocator_fb:
allocator = allocator_data->fb_data;
goto retry;
}
return NULL;
}
@ -644,6 +681,7 @@ void
omp_free (void *ptr, omp_allocator_handle_t allocator)
{
struct omp_mem_header *data;
omp_memspace_handle_t memspace = omp_default_mem_space;
if (ptr == NULL)
return;
@ -683,10 +721,12 @@ omp_free (void *ptr, omp_allocator_handle_t allocator)
return;
}
#endif
memspace = allocator_data->memspace;
}
#ifdef LIBGOMP_USE_MEMKIND
else
{
#ifdef LIBGOMP_USE_MEMKIND
enum gomp_numa_memkind_kind memkind = GOMP_MEMKIND_NONE;
if (data->allocator == omp_high_bw_mem_alloc)
memkind = GOMP_MEMKIND_HBW_PREFERRED;
@ -702,9 +742,12 @@ omp_free (void *ptr, omp_allocator_handle_t allocator)
return;
}
}
}
#endif
free (data->ptr);
memspace = predefined_alloc_mapping[data->allocator];
}
MEMSPACE_FREE (memspace, data->ptr, data->size);
}
ialias (omp_free)
@ -831,7 +874,7 @@ retry:
}
else
#endif
ptr = calloc (1, new_size);
ptr = MEMSPACE_CALLOC (allocator_data->memspace, new_size);
if (ptr == NULL)
{
#ifdef HAVE_SYNC_BUILTINS
@ -865,7 +908,13 @@ retry:
}
else
#endif
ptr = calloc (1, new_size);
{
omp_memspace_handle_t memspace;
memspace = (allocator_data
? allocator_data->memspace
: predefined_alloc_mapping[allocator]);
ptr = MEMSPACE_CALLOC (memspace, new_size);
}
if (ptr == NULL)
goto fail;
}
@ -882,36 +931,26 @@ retry:
((struct omp_mem_header *) ret)[-1].allocator = allocator;
return ret;
fail:
if (allocator_data)
fail:;
int fallback = (allocator_data
? allocator_data->fallback
: allocator == omp_default_mem_alloc
? omp_atv_null_fb
: omp_atv_default_mem_fb);
switch (fallback)
{
switch (allocator_data->fallback)
{
case omp_atv_default_mem_fb:
if ((new_alignment > sizeof (void *) && new_alignment > alignment)
#if defined(LIBGOMP_USE_MEMKIND) || defined(LIBGOMP_USE_LIBNUMA)
|| memkind
#endif
|| (allocator_data
&& allocator_data->pool_size < ~(uintptr_t) 0))
{
allocator = omp_default_mem_alloc;
goto retry;
}
/* Otherwise, we've already performed default mem allocation
and if that failed, it won't succeed again (unless it was
intermittent. Return NULL then, as that is the fallback. */
break;
case omp_atv_null_fb:
break;
default:
case omp_atv_abort_fb:
gomp_fatal ("Out of memory allocating %lu bytes",
(unsigned long) (size * nmemb));
case omp_atv_allocator_fb:
allocator = allocator_data->fb_data;
goto retry;
}
case omp_atv_default_mem_fb:
allocator = omp_default_mem_alloc;
goto retry;
case omp_atv_null_fb:
break;
default:
case omp_atv_abort_fb:
gomp_fatal ("Out of memory allocating %lu bytes",
(unsigned long) (size * nmemb));
case omp_atv_allocator_fb:
allocator = allocator_data->fb_data;
goto retry;
}
return NULL;
}
@ -1101,9 +1140,10 @@ retry:
else
#endif
if (prev_size)
new_ptr = realloc (data->ptr, new_size);
new_ptr = MEMSPACE_REALLOC (allocator_data->memspace, data->ptr,
data->size, new_size);
else
new_ptr = malloc (new_size);
new_ptr = MEMSPACE_ALLOC (allocator_data->memspace, new_size);
if (new_ptr == NULL)
{
#ifdef HAVE_SYNC_BUILTINS
@ -1151,7 +1191,13 @@ retry:
}
else
#endif
new_ptr = realloc (data->ptr, new_size);
{
omp_memspace_handle_t memspace;
memspace = (allocator_data
? allocator_data->memspace
: predefined_alloc_mapping[allocator]);
new_ptr = MEMSPACE_REALLOC (memspace, data->ptr, data->size, new_size);
}
if (new_ptr == NULL)
goto fail;
ret = (char *) new_ptr + sizeof (struct omp_mem_header);
@ -1178,7 +1224,13 @@ retry:
}
else
#endif
new_ptr = malloc (new_size);
{
omp_memspace_handle_t memspace;
memspace = (allocator_data
? allocator_data->memspace
: predefined_alloc_mapping[allocator]);
new_ptr = MEMSPACE_ALLOC (memspace, new_size);
}
if (new_ptr == NULL)
goto fail;
}
@ -1227,39 +1279,35 @@ retry:
return ret;
}
#endif
free (data->ptr);
{
omp_memspace_handle_t was_memspace;
was_memspace = (free_allocator_data
? free_allocator_data->memspace
: predefined_alloc_mapping[free_allocator]);
MEMSPACE_FREE (was_memspace, data->ptr, data->size);
}
return ret;
fail:
if (allocator_data)
fail:;
int fallback = (allocator_data
? allocator_data->fallback
: allocator == omp_default_mem_alloc
? omp_atv_null_fb
: omp_atv_default_mem_fb);
switch (fallback)
{
switch (allocator_data->fallback)
{
case omp_atv_default_mem_fb:
if (new_alignment > sizeof (void *)
#if defined(LIBGOMP_USE_MEMKIND) || defined(LIBGOMP_USE_LIBNUMA)
|| memkind
#endif
|| (allocator_data
&& allocator_data->pool_size < ~(uintptr_t) 0))
{
allocator = omp_default_mem_alloc;
goto retry;
}
/* Otherwise, we've already performed default mem allocation
and if that failed, it won't succeed again (unless it was
intermittent. Return NULL then, as that is the fallback. */
break;
case omp_atv_null_fb:
break;
default:
case omp_atv_abort_fb:
gomp_fatal ("Out of memory allocating %lu bytes",
(unsigned long) size);
case omp_atv_allocator_fb:
allocator = allocator_data->fb_data;
goto retry;
}
case omp_atv_default_mem_fb:
allocator = omp_default_mem_alloc;
goto retry;
case omp_atv_null_fb:
break;
default:
case omp_atv_abort_fb:
gomp_fatal ("Out of memory allocating %lu bytes",
(unsigned long) size);
case omp_atv_allocator_fb:
allocator = allocator_data->fb_data;
goto retry;
}
return NULL;
}

382
libgomp/basic-allocator.c Normal file
View file

@ -0,0 +1,382 @@
/* Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU Offloading and Multi Processing Library
(libgomp).
Libgomp is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* This is a basic "malloc" implementation intended for use with small,
low-latency memories.
To use this template, define BASIC_ALLOC_PREFIX, and then #include the
source file. The other configuration macros are optional.
The root heap descriptor is stored in the first bytes of the heap, and each
free chunk contains a similar descriptor for the next free chunk in the
chain.
The descriptor is two values: offset and size, which describe the
location of a chunk of memory available for allocation. The offset is
relative to the base of the heap. The special offset value 0xffffffff
indicates that the heap (free chain) is locked. The offset and size are
32-bit values so the base alignment can be 8-bytes.
Memory is allocated to the first free chunk that fits. The free chain
is always stored in order of the offset to assist coalescing adjacent
chunks. */
#include "libgomp.h"
#ifndef BASIC_ALLOC_PREFIX
#error "BASIC_ALLOC_PREFIX not defined."
#endif
#ifndef BASIC_ALLOC_YIELD
#define BASIC_ALLOC_YIELD
#endif
#define ALIGN(VAR) (((VAR) + 7) & ~7) /* 8-byte granularity. */
#define fn1(prefix, name) prefix ## _ ## name
#define fn(prefix, name) fn1 (prefix, name)
#define basic_alloc_init fn(BASIC_ALLOC_PREFIX,init)
#define basic_alloc_alloc fn(BASIC_ALLOC_PREFIX,alloc)
#define basic_alloc_calloc fn(BASIC_ALLOC_PREFIX,calloc)
#define basic_alloc_free fn(BASIC_ALLOC_PREFIX,free)
#define basic_alloc_realloc fn(BASIC_ALLOC_PREFIX,realloc)
typedef struct {
uint32_t offset;
uint32_t size;
} heapdesc;
void
basic_alloc_init (char *heap, size_t limit)
{
if (heap == NULL)
return;
/* Initialize the head of the free chain. */
heapdesc *root = (heapdesc *) heap;
root->offset = ALIGN(1);
root->size = limit - root->offset;
/* And terminate the chain. */
heapdesc *next = (heapdesc *) (heap + root->offset);
next->offset = 0;
next->size = 0;
}
static void *
basic_alloc_alloc (char *heap, size_t size)
{
if (heap == NULL)
return NULL;
/* Memory is allocated in N-byte granularity. */
size = ALIGN (size);
/* Acquire a lock on the low-latency heap. */
heapdesc root, *root_ptr = (heapdesc *) heap;
do
{
root.offset = __atomic_exchange_n (&root_ptr->offset, 0xffffffff,
MEMMODEL_ACQUIRE);
if (root.offset != 0xffffffff)
{
root.size = root_ptr->size;
break;
}
/* Spin. */
BASIC_ALLOC_YIELD;
}
while (1);
/* Walk the free chain. */
heapdesc chunk = root;
heapdesc *prev_chunkptr = NULL;
heapdesc *chunkptr = (heapdesc *) (heap + chunk.offset);
heapdesc onward_chain = *chunkptr;
while (chunk.size != 0 && (uint32_t) size > chunk.size)
{
chunk = onward_chain;
prev_chunkptr = chunkptr;
chunkptr = (heapdesc *) (heap + chunk.offset);
onward_chain = *chunkptr;
}
void *result = NULL;
if (chunk.size != 0)
{
/* Allocation successful. */
result = chunkptr;
/* Update the free chain. */
heapdesc stillfree = chunk;
stillfree.offset += size;
stillfree.size -= size;
heapdesc *stillfreeptr = (heapdesc *) (heap + stillfree.offset);
if (stillfree.size == 0)
/* The whole chunk was used. */
stillfree = onward_chain;
else
/* The chunk was split, so restore the onward chain. */
*stillfreeptr = onward_chain;
/* The previous free slot or root now points to stillfree. */
if (prev_chunkptr)
*prev_chunkptr = stillfree;
else
root = stillfree;
}
/* Update the free chain root and release the lock. */
root_ptr->size = root.size;
__atomic_store_n (&root_ptr->offset, root.offset, MEMMODEL_RELEASE);
return result;
}
static void *
basic_alloc_calloc (char *heap, size_t size)
{
/* Memory is allocated in N-byte granularity. */
size = ALIGN (size);
uint64_t *result = basic_alloc_alloc (heap, size);
if (result)
/* Inline memset in which we know size is a multiple of 8. */
for (unsigned i = 0; i < (unsigned) size / 8; i++)
result[i] = 0;
return result;
}
static void
basic_alloc_free (char *heap, void *addr, size_t size)
{
/* Memory is allocated in N-byte granularity. */
size = ALIGN (size);
/* Acquire a lock on the low-latency heap. */
heapdesc root, *root_ptr = (heapdesc *) heap;
do
{
root.offset = __atomic_exchange_n (&root_ptr->offset, 0xffffffff,
MEMMODEL_ACQUIRE);
if (root.offset != 0xffffffff)
{
root.size = root_ptr->size;
break;
}
/* Spin. */
BASIC_ALLOC_YIELD;
}
while (1);
/* Walk the free chain to find where to insert a new entry. */
heapdesc chunk = root, prev_chunk = {0};
heapdesc *prev_chunkptr = NULL, *prevprev_chunkptr = NULL;
heapdesc *chunkptr = (heapdesc *) (heap + chunk.offset);
heapdesc onward_chain = *chunkptr;
while (chunk.size != 0 && addr > (void *) chunkptr)
{
prev_chunk = chunk;
chunk = onward_chain;
prevprev_chunkptr = prev_chunkptr;
prev_chunkptr = chunkptr;
chunkptr = (heapdesc *) (heap + chunk.offset);
onward_chain = *chunkptr;
}
/* Create the new chunk descriptor. */
heapdesc newfreechunk;
newfreechunk.offset = (uint32_t) ((uintptr_t) addr - (uintptr_t) heap);
newfreechunk.size = (uint32_t) size;
/* Coalesce adjacent free chunks. */
if (newfreechunk.offset + size == chunk.offset)
{
/* Free chunk follows. */
newfreechunk.size += chunk.size;
chunk = onward_chain;
}
if (prev_chunkptr)
{
if (prev_chunk.offset + prev_chunk.size
== newfreechunk.offset)
{
/* Free chunk precedes. */
newfreechunk.offset = prev_chunk.offset;
newfreechunk.size += prev_chunk.size;
addr = heap + prev_chunk.offset;
prev_chunkptr = prevprev_chunkptr;
}
}
/* Update the free chain in the new and previous chunks. */
*(heapdesc *) addr = chunk;
if (prev_chunkptr)
*prev_chunkptr = newfreechunk;
else
root = newfreechunk;
/* Update the free chain root and release the lock. */
root_ptr->size = root.size;
__atomic_store_n (&root_ptr->offset, root.offset, MEMMODEL_RELEASE);
}
static void *
basic_alloc_realloc (char *heap, void *addr, size_t oldsize,
size_t size)
{
/* Memory is allocated in N-byte granularity. */
oldsize = ALIGN (oldsize);
size = ALIGN (size);
if (oldsize == size)
return addr;
/* Acquire a lock on the low-latency heap. */
heapdesc root, *root_ptr = (heapdesc *) heap;
do
{
root.offset = __atomic_exchange_n (&root_ptr->offset, 0xffffffff,
MEMMODEL_ACQUIRE);
if (root.offset != 0xffffffff)
{
root.size = root_ptr->size;
break;
}
/* Spin. */
BASIC_ALLOC_YIELD;
}
while (1);
/* Walk the free chain. */
heapdesc chunk = root;
heapdesc *prev_chunkptr = NULL;
heapdesc *chunkptr = (heapdesc *) (heap + chunk.offset);
heapdesc onward_chain = *chunkptr;
while (chunk.size != 0 && (void *) chunkptr < addr)
{
chunk = onward_chain;
prev_chunkptr = chunkptr;
chunkptr = (heapdesc *) (heap + chunk.offset);
onward_chain = *chunkptr;
}
void *result = NULL;
if (size < oldsize)
{
/* The new allocation is smaller than the old; we can always
shrink an allocation in place. */
result = addr;
heapdesc *nowfreeptr = (heapdesc *) (addr + size);
/* Update the free chain. */
heapdesc nowfree;
nowfree.offset = (char *) nowfreeptr - heap;
nowfree.size = oldsize - size;
if (nowfree.offset + size == chunk.offset)
{
/* Coalesce following free chunk. */
nowfree.size += chunk.size;
*nowfreeptr = onward_chain;
}
else
*nowfreeptr = chunk;
/* The previous free slot or root now points to nowfree. */
if (prev_chunkptr)
*prev_chunkptr = nowfree;
else
root = nowfree;
}
else if (chunk.size != 0
&& (char *) addr + oldsize == (char *) chunkptr
&& chunk.size >= size-oldsize)
{
/* The new allocation is larger than the old, and we found a
large enough free block right after the existing block,
so we extend into that space. */
result = addr;
uint32_t delta = size-oldsize;
/* Update the free chain. */
heapdesc stillfree = chunk;
stillfree.offset += delta;
stillfree.size -= delta;
heapdesc *stillfreeptr = (heapdesc *) (heap + stillfree.offset);
if (stillfree.size == 0)
/* The whole chunk was used. */
stillfree = onward_chain;
else
/* The chunk was split, so restore the onward chain. */
*stillfreeptr = onward_chain;
/* The previous free slot or root now points to stillfree. */
if (prev_chunkptr)
*prev_chunkptr = stillfree;
else
root = stillfree;
}
/* Else realloc in-place has failed and result remains NULL. */
/* Update the free chain root and release the lock. */
root_ptr->size = root.size;
__atomic_store_n (&root_ptr->offset, root.offset, MEMMODEL_RELEASE);
if (result == NULL)
{
/* The allocation could not be extended in place, so we simply
allocate fresh memory and move the data. If we can't allocate
from low-latency memory then we leave the original alloaction
intact and return NULL.
We could do a fall-back to main memory, but we don't know what
the fall-back trait said to do. */
result = basic_alloc_alloc (heap, size);
if (result != NULL)
{
/* Inline memcpy in which we know oldsize is a multiple of 8. */
uint64_t *from = addr, *to = result;
for (unsigned i = 0; i < (unsigned) oldsize / 8; i++)
to[i] = from[i];
basic_alloc_free (heap, addr, oldsize);
}
}
return result;
}
#undef ALIGN
#undef fn1
#undef fn
#undef basic_alloc_init
#undef basic_alloc_alloc
#undef basic_alloc_free
#undef basic_alloc_realloc

View file

@ -0,0 +1,120 @@
/* Copyright (C) 2023 Free Software Foundation, Inc.
This file is part of the GNU Offloading and Multi Processing Library
(libgomp).
Libgomp is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 3, or (at your option)
any later version.
Libgomp is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for
more details.
Under Section 7 of GPL version 3, you are granted additional
permissions described in the GCC Runtime Library Exception, version
3.1, as published by the Free Software Foundation.
You should have received a copy of the GNU General Public License and
a copy of the GCC Runtime Library Exception along with this program;
see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
<http://www.gnu.org/licenses/>. */
/* The low-latency allocators use space reserved in .shared memory when the
kernel is launched. The heap is initialized in gomp_nvptx_main and all
allocations are forgotten when the kernel exits. Allocations to other
memory spaces all use the system malloc syscall.
The root heap descriptor is stored elsewhere in shared memory, and each
free chunk contains a similar descriptor for the next free chunk in the
chain.
The descriptor is two 16-bit values: offset and size, which describe the
location of a chunk of memory available for allocation. The offset is
relative to the base of the heap. The special value 0xffff, 0xffff
indicates that the heap is locked. The descriptor is encoded into a
single 32-bit integer so that it may be easily accessed atomically.
Memory is allocated to the first free chunk that fits. The free chain
is always stored in order of the offset to assist coalescing adjacent
chunks. */
#include "libgomp.h"
#include <stdlib.h>
#define BASIC_ALLOC_PREFIX __nvptx_lowlat
#include "../../basic-allocator.c"
/* There should be some .shared space reserved for us. There's no way to
express this magic extern sizeless array in C so use asm. */
asm (".extern .shared .u8 __nvptx_lowlat_pool[];\n");
static void *
nvptx_memspace_alloc (omp_memspace_handle_t memspace, size_t size)
{
if (memspace == omp_low_lat_mem_space)
{
char *shared_pool;
asm ("cvta.shared.u64\t%0, __nvptx_lowlat_pool;" : "=r" (shared_pool));
return __nvptx_lowlat_alloc (shared_pool, size);
}
else
return malloc (size);
}
static void *
nvptx_memspace_calloc (omp_memspace_handle_t memspace, size_t size)
{
if (memspace == omp_low_lat_mem_space)
{
char *shared_pool;
asm ("cvta.shared.u64\t%0, __nvptx_lowlat_pool;" : "=r" (shared_pool));
return __nvptx_lowlat_calloc (shared_pool, size);
}
else
return calloc (1, size);
}
static void
nvptx_memspace_free (omp_memspace_handle_t memspace, void *addr, size_t size)
{
if (memspace == omp_low_lat_mem_space)
{
char *shared_pool;
asm ("cvta.shared.u64\t%0, __nvptx_lowlat_pool;" : "=r" (shared_pool));
__nvptx_lowlat_free (shared_pool, addr, size);
}
else
free (addr);
}
static void *
nvptx_memspace_realloc (omp_memspace_handle_t memspace, void *addr,
size_t oldsize, size_t size)
{
if (memspace == omp_low_lat_mem_space)
{
char *shared_pool;
asm ("cvta.shared.u64\t%0, __nvptx_lowlat_pool;" : "=r" (shared_pool));
return __nvptx_lowlat_realloc (shared_pool, addr, oldsize, size);
}
else
return realloc (addr, size);
}
#define MEMSPACE_ALLOC(MEMSPACE, SIZE) \
nvptx_memspace_alloc (MEMSPACE, SIZE)
#define MEMSPACE_CALLOC(MEMSPACE, SIZE) \
nvptx_memspace_calloc (MEMSPACE, SIZE)
#define MEMSPACE_REALLOC(MEMSPACE, ADDR, OLDSIZE, SIZE) \
nvptx_memspace_realloc (MEMSPACE, ADDR, OLDSIZE, SIZE)
#define MEMSPACE_FREE(MEMSPACE, ADDR, SIZE) \
nvptx_memspace_free (MEMSPACE, ADDR, SIZE)
#include "../../allocator.c"

View file

@ -37,6 +37,12 @@ int __gomp_team_num __attribute__((shared,nocommon));
static void gomp_thread_start (struct gomp_thread_pool *);
extern void build_indirect_map (void);
/* There should be some .shared space reserved for us. There's no way to
express this magic extern sizeless array in C so use asm. */
asm (".extern .shared .u8 __nvptx_lowlat_pool[];\n");
/* Defined in basic-allocator.c via config/nvptx/allocator.c. */
void __nvptx_lowlat_init (void *heap, size_t size);
/* This externally visible function handles target region entry. It
sets up a per-team thread pool and transfers control by calling FN (FN_DATA)
@ -68,6 +74,18 @@ gomp_nvptx_main (void (*fn) (void *), void *fn_data)
nvptx_thrs = alloca (ntids * sizeof (*nvptx_thrs));
memset (nvptx_thrs, 0, ntids * sizeof (*nvptx_thrs));
/* Find the low-latency heap details .... */
uint32_t *shared_pool;
uint32_t shared_pool_size = 0;
asm ("cvta.shared.u64\t%0, __nvptx_lowlat_pool;" : "=r"(shared_pool));
#if __PTX_ISA_VERSION_MAJOR__ > 4 \
|| (__PTX_ISA_VERSION_MAJOR__ == 4 && __PTX_ISA_VERSION_MINOR__ >= 1)
asm ("mov.u32\t%0, %%dynamic_smem_size;\n"
: "=r"(shared_pool_size));
#endif
__nvptx_lowlat_init (shared_pool, shared_pool_size);
/* Initialize the thread pool. */
struct gomp_thread_pool *pool = alloca (sizeof (*pool));
pool->threads = alloca (ntids * sizeof (*pool->threads));
for (tid = 0; tid < ntids; tid++)

View file

@ -3012,9 +3012,9 @@ value.
@item omp_const_mem_alloc @tab omp_const_mem_space
@item omp_high_bw_mem_alloc @tab omp_high_bw_mem_space
@item omp_low_lat_mem_alloc @tab omp_low_lat_mem_space
@item omp_cgroup_mem_alloc @tab --
@item omp_pteam_mem_alloc @tab --
@item omp_thread_mem_alloc @tab --
@item omp_cgroup_mem_alloc @tab omp_low_lat_mem_space (implementation defined)
@item omp_pteam_mem_alloc @tab omp_low_lat_mem_space (implementation defined)
@item omp_thread_mem_alloc @tab omp_low_lat_mem_space (implementation defined)
@end multitable
The predefined allocators use the default values for the traits,
@ -3060,7 +3060,7 @@ OMP_ALLOCATOR=omp_low_lat_mem_space:pinned=true,partition=nearest
@item @emph{See also}:
@ref{Memory allocation}, @ref{omp_get_default_allocator},
@ref{omp_set_default_allocator}
@ref{omp_set_default_allocator}, @ref{Offload-Target Specifics}
@item @emph{Reference}:
@uref{https://www.openmp.org, OpenMP specification v5.0}, Section 6.21
@ -5710,7 +5710,8 @@ For the memory spaces, the following applies:
@itemize
@item @code{omp_default_mem_space} is supported
@item @code{omp_const_mem_space} maps to @code{omp_default_mem_space}
@item @code{omp_low_lat_mem_space} maps to @code{omp_default_mem_space}
@item @code{omp_low_lat_mem_space} is only available on supported devices,
and maps to @code{omp_default_mem_space} otherwise.
@item @code{omp_large_cap_mem_space} maps to @code{omp_default_mem_space},
unless the memkind library is available
@item @code{omp_high_bw_mem_space} maps to @code{omp_default_mem_space},

View file

@ -341,6 +341,11 @@ struct ptx_device
static struct ptx_device **ptx_devices;
/* OpenMP kernels reserve a small amount of ".shared" space for use by
omp_alloc. The size is configured using GOMP_NVPTX_LOWLAT_POOL, but the
default is set here. */
static unsigned lowlat_pool_size = 8 * 1024;
static inline struct nvptx_thread *
nvptx_thread (void)
{
@ -1219,6 +1224,22 @@ GOMP_OFFLOAD_init_device (int n)
instantiated_devices++;
}
const char *var_name = "GOMP_NVPTX_LOWLAT_POOL";
const char *env_var = secure_getenv (var_name);
notify_var (var_name, env_var);
if (env_var != NULL)
{
char *endptr;
unsigned long val = strtoul (env_var, &endptr, 10);
if (endptr == NULL || *endptr != '\0'
|| errno == ERANGE || errno == EINVAL
|| val > UINT_MAX)
GOMP_PLUGIN_error ("Error parsing %s", var_name);
else
lowlat_pool_size = val;
}
pthread_mutex_unlock (&ptx_dev_lock);
return dev != NULL;
@ -2178,7 +2199,7 @@ GOMP_OFFLOAD_run (int ord, void *tgt_fn, void *tgt_vars, void **args)
" [(teams: %u), 1, 1] [(lanes: 32), (threads: %u), 1]\n",
__FUNCTION__, fn_name, teams, threads);
r = CUDA_CALL_NOCHECK (cuLaunchKernel, function, teams, 1, 1,
32, threads, 1, 0, NULL, NULL, config);
32, threads, 1, lowlat_pool_size, NULL, NULL, config);
if (r != CUDA_SUCCESS)
GOMP_PLUGIN_fatal ("cuLaunchKernel error: %s", cuda_error (r));
if (reverse_offload)

View file

@ -0,0 +1,56 @@
/* { dg-do run } */
/* Test that omp_alloc returns usable memory. */
#include <omp.h>
#pragma omp requires dynamic_allocators
void
test (int n, omp_allocator_handle_t allocator)
{
#pragma omp target map(to:n) map(to:allocator)
{
int *a;
a = (int *) omp_alloc (n * sizeof (int), allocator);
#pragma omp parallel
for (int i = 0; i < n; i++)
a[i] = i;
for (int i = 0; i < n; i++)
if (a[i] != i)
{
__builtin_printf ("data mismatch at %i\n", i);
__builtin_abort ();
}
omp_free (a, allocator);
}
}
int
main ()
{
// Smaller than low-latency memory limit
test (10, omp_default_mem_alloc);
test (10, omp_large_cap_mem_alloc);
test (10, omp_const_mem_alloc);
test (10, omp_high_bw_mem_alloc);
test (10, omp_low_lat_mem_alloc);
test (10, omp_cgroup_mem_alloc);
test (10, omp_pteam_mem_alloc);
test (10, omp_thread_mem_alloc);
// Larger than low-latency memory limit
test (100000, omp_default_mem_alloc);
test (100000, omp_large_cap_mem_alloc);
test (100000, omp_const_mem_alloc);
test (100000, omp_high_bw_mem_alloc);
test (100000, omp_low_lat_mem_alloc);
test (100000, omp_cgroup_mem_alloc);
test (100000, omp_pteam_mem_alloc);
test (100000, omp_thread_mem_alloc);
return 0;
}

View file

@ -0,0 +1,64 @@
/* { dg-do run } */
/* Test concurrent and repeated allocations. */
#include <omp.h>
#pragma omp requires dynamic_allocators
void
test (int n, omp_allocator_handle_t allocator)
{
#pragma omp target map(to:n) map(to:allocator)
{
int **a;
a = (int **) omp_alloc (n * sizeof (int *), allocator);
#pragma omp parallel for
for (int i = 0; i < n; i++)
{
/*Use 10x to ensure we do activate low-latency fall-back. */
a[i] = omp_alloc (sizeof (int) * 10, allocator);
a[i][0] = i;
}
for (int i = 0; i < n; i++)
if (a[i][0] != i)
{
__builtin_printf ("data mismatch at %i\n", i);
__builtin_abort ();
}
#pragma omp parallel for
for (int i = 0; i < n; i++)
omp_free (a[i], allocator);
omp_free (a, allocator);
}
}
int
main ()
{
// Smaller than low-latency memory limit
test (10, omp_default_mem_alloc);
test (10, omp_large_cap_mem_alloc);
test (10, omp_const_mem_alloc);
test (10, omp_high_bw_mem_alloc);
test (10, omp_low_lat_mem_alloc);
test (10, omp_cgroup_mem_alloc);
test (10, omp_pteam_mem_alloc);
test (10, omp_thread_mem_alloc);
// Larger than low-latency memory limit (on aggregate)
test (1000, omp_default_mem_alloc);
test (1000, omp_large_cap_mem_alloc);
test (1000, omp_const_mem_alloc);
test (1000, omp_high_bw_mem_alloc);
test (1000, omp_low_lat_mem_alloc);
test (1000, omp_cgroup_mem_alloc);
test (1000, omp_pteam_mem_alloc);
test (1000, omp_thread_mem_alloc);
return 0;
}

View file

@ -0,0 +1,42 @@
/* { dg-do run } */
/* Stress-test omp_alloc/omp_malloc under concurrency. */
#include <omp.h>
#include <stdio.h>
#include <stdlib.h>
#pragma omp requires dynamic_allocators
#define N 1000
void
test (omp_allocator_handle_t allocator)
{
#pragma omp target map(to:allocator)
{
#pragma omp parallel for
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
{
int *p = omp_alloc (sizeof (int), allocator);
omp_free (p, allocator);
}
}
}
int
main ()
{
// Smaller than low-latency memory limit
test (omp_default_mem_alloc);
test (omp_large_cap_mem_alloc);
test (omp_const_mem_alloc);
test (omp_high_bw_mem_alloc);
test (omp_low_lat_mem_alloc);
test (omp_cgroup_mem_alloc);
test (omp_pteam_mem_alloc);
test (omp_thread_mem_alloc);
return 0;
}

View file

@ -0,0 +1,199 @@
/* { dg-do run } */
/* Test that low-latency free chains are sound. */
#include <stddef.h>
#include <omp.h>
#pragma omp requires dynamic_allocators
void
check (int cond, const char *msg)
{
if (!cond)
{
__builtin_printf ("%s\n", msg);
__builtin_abort ();
}
}
int
main ()
{
if (omp_get_initial_device () == omp_get_default_device ())
return 0; /* This test isn't interesting with host-fallback. */
#pragma omp target
{
/* Ensure that the memory we get *is* low-latency with a null-fallback. */
omp_alloctrait_t traits[1]
= { { omp_atk_fallback, omp_atv_null_fb } };
omp_allocator_handle_t lowlat = omp_init_allocator (omp_low_lat_mem_space,
1, traits);
int size = 4;
char *a = omp_alloc (size, lowlat);
char *b = omp_alloc (size, lowlat);
char *c = omp_alloc (size, lowlat);
char *d = omp_alloc (size, lowlat);
/* There are headers and padding to account for. */
int size2 = size + (b-a);
int size3 = size + (c-a);
int size4 = size + (d-a) + 100; /* Random larger amount. */
check (a != NULL && b != NULL && c != NULL && d != NULL,
"omp_alloc returned NULL\n");
omp_free (a, lowlat);
char *p = omp_alloc (size, lowlat);
check (p == a, "allocate did not reuse first chunk");
omp_free (b, lowlat);
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not reuse second chunk");
omp_free (c, lowlat);
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not reuse third chunk");
omp_free (a, lowlat);
omp_free (b, lowlat);
p = omp_alloc (size2, lowlat);
check (p == a, "allocate did not coalesce first two chunks");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == a, "allocate did not split first chunk (1)");
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split first chunk (2)");
omp_free (b, lowlat);
omp_free (c, lowlat);
p = omp_alloc (size2, lowlat);
check (p == b, "allocate did not coalesce middle two chunks");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split second chunk (1)");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split second chunk (2)");
omp_free (b, lowlat);
omp_free (a, lowlat);
p = omp_alloc (size2, lowlat);
check (p == a, "allocate did not coalesce first two chunks, reverse free");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == a, "allocate did not split first chunk (1), reverse free");
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split first chunk (2), reverse free");
omp_free (c, lowlat);
omp_free (b, lowlat);
p = omp_alloc (size2, lowlat);
check (p == b, "allocate did not coalesce second two chunks, reverse free");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split second chunk (1), reverse free");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split second chunk (2), reverse free");
omp_free (a, lowlat);
omp_free (b, lowlat);
omp_free (c, lowlat);
p = omp_alloc (size3, lowlat);
check (p == a, "allocate did not coalesce first three chunks");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == a, "allocate did not split first chunk (1)");
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split first chunk (2)");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split first chunk (3)");
omp_free (b, lowlat);
omp_free (c, lowlat);
omp_free (d, lowlat);
p = omp_alloc (size3, lowlat);
check (p == b, "allocate did not coalesce last three chunks");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split second chunk (1)");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split second chunk (2)");
p = omp_alloc (size, lowlat);
check (p == d, "allocate did not split second chunk (3)");
omp_free (c, lowlat);
omp_free (b, lowlat);
omp_free (a, lowlat);
p = omp_alloc (size3, lowlat);
check (p == a, "allocate did not coalesce first three chunks, reverse free");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == a, "allocate did not split first chunk (1), reverse free");
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split first chunk (2), reverse free");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split first chunk (3), reverse free");
omp_free (d, lowlat);
omp_free (c, lowlat);
omp_free (b, lowlat);
p = omp_alloc (size3, lowlat);
check (p == b, "allocate did not coalesce second three chunks, reverse free");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split second chunk (1), reverse free");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split second chunk (2), reverse free");
p = omp_alloc (size, lowlat);
check (p == d, "allocate did not split second chunk (3), reverse free");
omp_free (c, lowlat);
omp_free (a, lowlat);
omp_free (b, lowlat);
p = omp_alloc (size3, lowlat);
check (p == a, "allocate did not coalesce first three chunks, mixed free");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == a, "allocate did not split first chunk (1), mixed free");
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split first chunk (2), mixed free");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split first chunk (3), mixed free");
omp_free (d, lowlat);
omp_free (b, lowlat);
omp_free (c, lowlat);
p = omp_alloc (size3, lowlat);
check (p == b, "allocate did not coalesce second three chunks, mixed free");
omp_free (p, lowlat);
p = omp_alloc (size, lowlat);
check (p == b, "allocate did not split second chunk (1), mixed free");
p = omp_alloc (size, lowlat);
check (p == c, "allocate did not split second chunk (2), mixed free");
p = omp_alloc (size, lowlat);
check (p == d, "allocate did not split second chunk (3), mixed free");
omp_free (a, lowlat);
omp_free (b, lowlat);
omp_free (c, lowlat);
omp_free (d, lowlat);
p = omp_alloc (size4, lowlat);
check (p == a, "allocate did not coalesce all memory");
}
return 0;
}

View file

@ -0,0 +1,63 @@
/* { dg-do run } */
/* Test calloc with omp_alloc. */
#include <omp.h>
#pragma omp requires dynamic_allocators
void
test (int n, omp_allocator_handle_t allocator)
{
#pragma omp target map(to:n) map(to:allocator)
{
int *a;
a = (int *) omp_calloc (n, sizeof (int), allocator);
for (int i = 0; i < n; i++)
if (a[i] != 0)
{
__builtin_printf ("memory not zeroed at %i\n", i);
__builtin_abort ();
}
#pragma omp parallel
for (int i = 0; i < n; i++)
a[i] = i;
for (int i = 0; i < n; i++)
if (a[i] != i)
{
__builtin_printf ("data mismatch at %i\n", i);
__builtin_abort ();
}
omp_free (a, allocator);
}
}
int
main ()
{
// Smaller than low-latency memory limit
test (10, omp_default_mem_alloc);
test (10, omp_large_cap_mem_alloc);
test (10, omp_const_mem_alloc);
test (10, omp_high_bw_mem_alloc);
test (10, omp_low_lat_mem_alloc);
test (10, omp_cgroup_mem_alloc);
test (10, omp_pteam_mem_alloc);
test (10, omp_thread_mem_alloc);
// Larger than low-latency memory limit
test (100000, omp_default_mem_alloc);
test (100000, omp_large_cap_mem_alloc);
test (100000, omp_const_mem_alloc);
test (100000, omp_high_bw_mem_alloc);
test (100000, omp_low_lat_mem_alloc);
test (100000, omp_cgroup_mem_alloc);
test (100000, omp_pteam_mem_alloc);
test (100000, omp_thread_mem_alloc);
return 0;
}

View file

@ -0,0 +1,120 @@
/* { dg-do run } */
/* Test that low-latency realloc and free chains are sound. */
#include <stddef.h>
#include <omp.h>
#pragma omp requires dynamic_allocators
void
check (int cond, const char *msg)
{
if (!cond)
{
__builtin_printf ("%s\n", msg);
__builtin_abort ();
}
}
int
main ()
{
if (omp_get_initial_device () == omp_get_default_device ())
return 0; /* This test isn't interesting with host-fallback. */
#pragma omp target
{
/* Ensure that the memory we get *is* low-latency with a null-fallback. */
omp_alloctrait_t traits[1]
= { { omp_atk_fallback, omp_atv_null_fb } };
omp_allocator_handle_t lowlat = omp_init_allocator (omp_low_lat_mem_space,
1, traits);
int size = 16;
char *a = (char *) omp_alloc (size, lowlat);
char *b = (char *) omp_alloc (size, lowlat);
char *c = (char *) omp_alloc (size, lowlat);
char *d = (char *) omp_alloc (size, lowlat);
/* There are headers and padding to account for. */
int size2 = size + (b-a);
int size3 = size + (c-a);
int size4 = size + (d-a) + 100; /* Random larger amount. */
check (a != NULL && b != NULL && c != NULL && d != NULL,
"omp_alloc returned NULL\n");
char *p = omp_realloc (b, size, lowlat, lowlat);
check (p == b, "realloc did not reuse same size chunk, no space after");
p = omp_realloc (b, size-8, lowlat, lowlat);
check (p == b, "realloc did not reuse smaller chunk, no space after");
p = omp_realloc (b, size, lowlat, lowlat);
check (p == b, "realloc did not reuse original size chunk, no space after");
/* Make space after b. */
omp_free (c, lowlat);
p = omp_realloc (b, size, lowlat, lowlat);
check (p == b, "realloc did not reuse same size chunk");
p = omp_realloc (b, size-8, lowlat, lowlat);
check (p == b, "realloc did not reuse smaller chunk");
p = omp_realloc (b, size, lowlat, lowlat);
check (p == b, "realloc did not reuse original size chunk");
p = omp_realloc (b, size+8, lowlat, lowlat);
check (p == b, "realloc did not extend in place by a little");
p = omp_realloc (b, size2, lowlat, lowlat);
check (p == b, "realloc did not extend into whole next chunk");
p = omp_realloc (b, size3, lowlat, lowlat);
check (p != b, "realloc did not move b elsewhere");
omp_free (p, lowlat);
p = omp_realloc (a, size, lowlat, lowlat);
check (p == a, "realloc did not reuse same size chunk, first position");
p = omp_realloc (a, size-8, lowlat, lowlat);
check (p == a, "realloc did not reuse smaller chunk, first position");
p = omp_realloc (a, size, lowlat, lowlat);
check (p == a, "realloc did not reuse original size chunk, first position");
p = omp_realloc (a, size+8, lowlat, lowlat);
check (p == a, "realloc did not extend in place by a little, first position");
p = omp_realloc (a, size3, lowlat, lowlat);
check (p == a, "realloc did not extend into whole next chunk, first position");
p = omp_realloc (a, size4, lowlat, lowlat);
check (p != a, "realloc did not move a elsewhere, first position");
omp_free (p, lowlat);
p = omp_realloc (d, size, lowlat, lowlat);
check (p == d, "realloc did not reuse same size chunk, last position");
p = omp_realloc (d, size-8, lowlat, lowlat);
check (p == d, "realloc did not reuse smaller chunk, last position");
p = omp_realloc (d, size, lowlat, lowlat);
check (p == d, "realloc did not reuse original size chunk, last position");
p = omp_realloc (d, size+8, lowlat, lowlat);
check (p == d, "realloc did not extend in place by d little, last position");
/* Larger than low latency memory. */
p = omp_realloc (d, 100000000, lowlat, lowlat);
check (p == NULL, "realloc did not fail on OOM");
}
return 0;
}