[debug] Avoid dropping bits from num/den in fixed-point types

We used to use an unsigned 128-bit type to hold the numerator and
denominator used to represent the delta of a fixed-point type in debug
information, but there are cases in which that was not enough, and
more significant bits silently overflowed and got omitted from debug
information.

Introduce a mode in which UI_to_gnu selects a wide-enough unsigned
type, and use that to convert numerator and denominator.  While at
that, avoid exceeding the maximum precision for wide ints, and for
available int modes, when selecting a type to represent very wide
constants, falling back to 0/0 for unrepresentable fractions.


for  gcc/ada/ChangeLog

	* gcc-interface/cuintp.cc (UI_To_gnu): Add mode that selects a
	wide enough unsigned type.  Fail if the constant exceeds the
	representable numbers.
	* gcc-interface/decl.cc (gnat_to_gnu_entity): Use it for
	numerator and denominator of fixed-point types.  In case of
	failure, fall back to an indeterminate fraction.
This commit is contained in:
Alexandre Oliva 2024-07-03 07:33:00 -03:00 committed by Alexandre Oliva
parent bf2fc0a27b
commit 113c4826f5
2 changed files with 64 additions and 21 deletions

View file

@ -35,6 +35,7 @@
#include "tree.h"
#include "inchash.h"
#include "fold-const.h"
#include "stor-layout.h"
#include "ada.h"
#include "types.h"
@ -67,7 +68,9 @@ build_cst_from_int (tree type, HOST_WIDE_INT low)
/* Similar to UI_To_Int, but return a GCC INTEGER_CST or REAL_CST node,
depending on whether TYPE is an integral or real type. Overflow is tested
by the constant-folding used to build the node. TYPE is the GCC type of
the resulting node. */
the resulting node. If TYPE is NULL, an unsigned integer type wide enough
to hold the entire constant is selected, and if no such type exists,
return NULL_TREE. */
tree
UI_To_gnu (Uint Input, tree type)
@ -77,8 +80,10 @@ UI_To_gnu (Uint Input, tree type)
any such possible value for intermediate computations and then rely on a
conversion back to TYPE to perform the bias adjustment when need be. */
tree comp_type
= TREE_CODE (type) == INTEGER_TYPE && TYPE_BIASED_REPRESENTATION_P (type)
? get_base_type (type) : type;
= (!type ? gnat_type_for_size (32, 1)
: (TREE_CODE (type) == INTEGER_TYPE
&& TYPE_BIASED_REPRESENTATION_P (type))
? get_base_type (type) : type);
tree gnu_ret;
if (Input <= Uint_Direct_Last)
@ -88,9 +93,14 @@ UI_To_gnu (Uint Input, tree type)
Int Idx = (*Uints_Ptr)[Input - Uint_Table_Start].Loc;
Pos Length = (*Uints_Ptr)[Input - Uint_Table_Start].Length;
Int First = (*Udigits_Ptr)[Idx];
tree_code code = First < 0 ? MINUS_EXPR : PLUS_EXPR;
tree gnu_base;
gcc_assert (Length > 0);
/* The extension of unsigned types we use to try to fit the
constant only works if we're dealing with nonnegative
constants, but that's what we expect when !TYPE. */
gcc_assert (type || First >= 0);
/* The computations we perform below always require a type at least as
large as an integer not to overflow. FP types are always fine, but
@ -103,22 +113,44 @@ UI_To_gnu (Uint Input, tree type)
gnu_base = build_cst_from_int (comp_type, Base);
gnu_ret = build_cst_from_int (comp_type, First);
if (First < 0)
for (Idx++, Length--; Length; Idx++, Length--)
gnu_ret = fold_build2 (MINUS_EXPR, comp_type,
fold_build2 (MULT_EXPR, comp_type,
gnu_ret, gnu_base),
build_cst_from_int (comp_type,
(*Udigits_Ptr)[Idx]));
else
for (Idx++, Length--; Length; Idx++, Length--)
gnu_ret = fold_build2 (PLUS_EXPR, comp_type,
fold_build2 (MULT_EXPR, comp_type,
gnu_ret, gnu_base),
build_cst_from_int (comp_type,
(*Udigits_Ptr)[Idx]));
for (Idx++, Length--; Length; Idx++, Length--)
for (;;)
{
tree elt, scaled, next_ret;
elt = build_cst_from_int (comp_type, (*Udigits_Ptr)[Idx]);
/* We want to detect overflows with an unsigned type when
TYPE is not given, but int_const_binop doesn't work for
e.g. floating-point TYPEs. */
if (!type)
{
scaled = int_const_binop (MULT_EXPR, gnu_ret, gnu_base, -1);
next_ret = int_const_binop (code, scaled, elt, -1);
}
else
{
scaled = fold_build2 (MULT_EXPR, comp_type, gnu_ret, gnu_base);
next_ret = fold_build2 (code, comp_type, scaled, elt);
}
if (!TREE_OVERFLOW (next_ret) || type)
{
gnu_ret = next_ret;
break;
}
opt_scalar_int_mode wider_mode
= GET_MODE_WIDER_MODE (SCALAR_INT_TYPE_MODE
(comp_type)).require ();
if (!wider_mode.exists ())
/* Signal that we couldn't represent the value. */
return NULL_TREE;
comp_type = make_unsigned_type (GET_MODE_BITSIZE
(wider_mode.require ()));
gnu_base = convert (comp_type, gnu_base);
gnu_ret = convert (comp_type, gnu_ret);
}
}
if (!type)
type = comp_type;
gnu_ret = convert (type, gnu_ret);
/* We don't need any NOP_EXPR or NON_LVALUE_EXPR on GNU_RET. */

View file

@ -1767,14 +1767,25 @@ gnat_to_gnu_entity (Entity_Id gnat_entity, tree gnu_expr, bool definition)
/* Use the arbitrary scale factor description. Note that we support
a Small_Value whose magnitude is larger than 64-bit even on 32-bit
platforms, so we unconditionally use a (dummy) 128-bit type. */
platforms. UI_To_gnu chooses a wide-enough integral type. */
else
{
const Uint gnat_num = Norm_Num (gnat_small_value);
const Uint gnat_den = Norm_Den (gnat_small_value);
tree gnu_small_type = make_unsigned_type (128);
tree gnu_num = UI_To_gnu (gnat_num, gnu_small_type);
tree gnu_den = UI_To_gnu (gnat_den, gnu_small_type);
tree gnu_num = UI_To_gnu (gnat_num, NULL_TREE);
tree gnu_den = UI_To_gnu (gnat_den, NULL_TREE);
if (!gnu_num || !gnu_den)
gnu_num = gnu_den = integer_zero_node;
tree gnu_num_type = TREE_TYPE (gnu_num);
tree gnu_den_type = TREE_TYPE (gnu_den);
tree gnu_small_type = (TYPE_PRECISION (gnu_num_type)
>= TYPE_PRECISION (gnu_den_type)
? gnu_num_type : gnu_den_type);
gnu_num = convert (gnu_small_type, gnu_num);
gnu_den = convert (gnu_small_type, gnu_den);
scale_factor
= build2 (RDIV_EXPR, gnu_small_type, gnu_num, gnu_den);