[multiple changes]
Fri May 28 22:20:03 1999 Anthony Green <green@cygnus.com> * java/lang/fdlibm.h: Don't use __uint32_t. Include mprec.h. * java/lang/e_log.c: Don't use __uint32_t. 1999-05-27 Eric Christopher <echristo@cygnus.com> * configure: Rebuilt * configure.in: Fixed ISO C9X and namespace collision with __uint32_t * acconfig.h: Rebuilt * include/config.h.in: Rebuilt * java/lang/mprec.h, java/lang/e_acos.c, java/lang/e_asin.c, java/lang/e_atan2.c, java/lang/e_exp.c, java/lang/e_fmod.c, e_log.c, java/lang/e_pow.c, java/lang/e_rem_pio2.c, java/lang/e_remainder.c, java/lang/e_sqrt.c, java/lang/fdlibm.h, k_tan.c, java/lang/mprec.h, java/lang/s_atan.c, java/lang/s_ceil.c, java/lang/s_copysign.c, java/lang/s_fabs.c, s_floor.c, java/lang/s_rint.c, java/lang/sf_rint.c: Fixed ISO C9X and namespace collision with __uint32_t From-SVN: r27729
This commit is contained in:
parent
fe574d5d92
commit
0d16618c58
31 changed files with 614 additions and 526 deletions
|
@ -6,7 +6,7 @@
|
|||
*
|
||||
* Developed at SunPro, a Sun Microsystems, Inc. business.
|
||||
* Permission to use, copy, modify, and distribute this
|
||||
* software is freely granted, provided that this notice
|
||||
* software is freely granted, provided that this notice
|
||||
* is preserved.
|
||||
* ====================================================
|
||||
*/
|
||||
|
@ -19,36 +19,36 @@
|
|||
* Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
|
||||
* Given x, find r and integer k such that
|
||||
*
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
* x = k*ln2 + r, |r| <= 0.5*ln2.
|
||||
*
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* Here r will be represented as r = hi-lo for better
|
||||
* accuracy.
|
||||
*
|
||||
* 2. Approximation of exp(r) by a special rational function on
|
||||
* the interval [0,0.34658]:
|
||||
* Write
|
||||
* R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
|
||||
* We use a special Reme algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* We use a special Reme algorithm on [0,0.34658] to generate
|
||||
* a polynomial of degree 5 to approximate R. The maximum error
|
||||
* of this polynomial approximation is bounded by 2**-59. In
|
||||
* other words,
|
||||
* R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
|
||||
* (where z=r*r, and the values of P1 to P5 are listed below)
|
||||
* and
|
||||
* | 5 | -59
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | 2.0+P1*z+...+P5*z - R(z) | <= 2
|
||||
* | |
|
||||
* The computation of exp(r) thus becomes
|
||||
* 2*r
|
||||
* exp(r) = 1 + -------
|
||||
* R - r
|
||||
* r*R1(r)
|
||||
* r*R1(r)
|
||||
* = 1 + r + ----------- (for better accuracy)
|
||||
* 2 - R1(r)
|
||||
* where
|
||||
* 2 4 10
|
||||
* R1(r) = r - (P1*r + P2*r + ... + P5*r ).
|
||||
*
|
||||
*
|
||||
* 3. Scale back to obtain exp(x):
|
||||
* From step 1, we have
|
||||
* exp(x) = 2^k * exp(r)
|
||||
|
@ -63,13 +63,13 @@
|
|||
* 1 ulp (unit in the last place).
|
||||
*
|
||||
* Misc. info.
|
||||
* For IEEE double
|
||||
* For IEEE double
|
||||
* if x > 7.09782712893383973096e+02 then exp(x) overflow
|
||||
* if x < -7.45133219101941108420e+02 then exp(x) underflow
|
||||
*
|
||||
* Constants:
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* The hexadecimal values are the intended ones for the following
|
||||
* constants. The decimal values may be used, provided that the
|
||||
* compiler will convert from decimal to binary accurately enough
|
||||
* to produce the hexadecimal values shown.
|
||||
*/
|
||||
|
@ -109,8 +109,8 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|||
#endif
|
||||
{
|
||||
double y,hi,lo,c,t;
|
||||
__int32_t k,xsb;
|
||||
__uint32_t hx;
|
||||
int32_t k,xsb;
|
||||
uint32_t hx;
|
||||
|
||||
GET_HIGH_WORD(hx,x);
|
||||
xsb = (hx>>31)&1; /* sign bit of x */
|
||||
|
@ -119,9 +119,9 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|||
/* filter out non-finite argument */
|
||||
if(hx >= 0x40862E42) { /* if |x|>=709.78... */
|
||||
if(hx>=0x7ff00000) {
|
||||
__uint32_t lx;
|
||||
uint32_t lx;
|
||||
GET_LOW_WORD(lx,x);
|
||||
if(((hx&0xfffff)|lx)!=0)
|
||||
if(((hx&0xfffff)|lx)!=0)
|
||||
return x+x; /* NaN */
|
||||
else return (xsb==0)? x:0.0; /* exp(+-inf)={inf,0} */
|
||||
}
|
||||
|
@ -130,7 +130,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|||
}
|
||||
|
||||
/* argument reduction */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx > 0x3fd62e42) { /* if |x| > 0.5 ln2 */
|
||||
if(hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
|
||||
hi = x-ln2HI[xsb]; lo=ln2LO[xsb]; k = 1-xsb-xsb;
|
||||
} else {
|
||||
|
@ -140,7 +140,7 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|||
lo = t*ln2LO[0];
|
||||
}
|
||||
x = hi - lo;
|
||||
}
|
||||
}
|
||||
else if(hx < 0x3e300000) { /* when |x|<2**-28 */
|
||||
if(huge+x>one) return one+x;/* trigger inexact */
|
||||
}
|
||||
|
@ -149,15 +149,15 @@ P5 = 4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
|
|||
/* x is now in primary range */
|
||||
t = x*x;
|
||||
c = x - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
|
||||
if(k==0) return one-((x*c)/(c-2.0)-x);
|
||||
if(k==0) return one-((x*c)/(c-2.0)-x);
|
||||
else y = one-((lo-(x*c)/(2.0-c))-hi);
|
||||
if(k >= -1021) {
|
||||
__uint32_t hy;
|
||||
uint32_t hy;
|
||||
GET_HIGH_WORD(hy,y);
|
||||
SET_HIGH_WORD(y,hy+(k<<20)); /* add k to y's exponent */
|
||||
return y;
|
||||
} else {
|
||||
__uint32_t hy;
|
||||
uint32_t hy;
|
||||
GET_HIGH_WORD(hy,y);
|
||||
SET_HIGH_WORD(y,hy+((k+1000)<<20)); /* add k to y's exponent */
|
||||
return y*twom1000;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue