invoke.texi (floop-flatten): Declare obsolete.
gcc/ * doc/invoke.texi (floop-flatten): Declare obsolete. * toplev.c (process_options): Remove references to flag_loop_flatten. * tree-ssa-loop.c (gate_graphite_transform): Same. * common.opt (floop-flatten): Obsolete. * graphite-poly.c (apply_poly_transforms): Remove reference to flag_loop_flatten. * Makefile.in (graphite-flattening.o): Remove. * graphite-flattening.c: Remove. gcc/testsuite/ * gcc.dg/graphite/pr50561.c: Update. From-SVN: r184820
This commit is contained in:
parent
501699af16
commit
093193bed7
10 changed files with 21 additions and 485 deletions
|
@ -1,3 +1,14 @@
|
|||
2012-03-02 Maxim Kuvyrkov <maxim@codesourcery.com>
|
||||
|
||||
* doc/invoke.texi (floop-flatten): Remove.
|
||||
* toplev.c (process_options): Remove references to flag_loop_flatten.
|
||||
* tree-ssa-loop.c (gate_graphite_transform): Same.
|
||||
* common.opt (floop-flatten): Obsolete.
|
||||
* graphite-poly.c (apply_poly_transforms): Remove reference to
|
||||
flag_loop_flatten.
|
||||
* Makefile.in (graphite-flattening.o): Remove.
|
||||
* graphite-flattening.c: Remove.
|
||||
|
||||
2012-03-02 Uros Bizjak <ubizjak@gmail.com>
|
||||
|
||||
* compare-elim.c (find_comparisons_in_bb): Eliminate only compares
|
||||
|
|
|
@ -1241,7 +1241,6 @@ OBJS = \
|
|||
graphite-clast-to-gimple.o \
|
||||
graphite-cloog-util.o \
|
||||
graphite-dependences.o \
|
||||
graphite-flattening.o \
|
||||
graphite-interchange.o \
|
||||
graphite-poly.o \
|
||||
graphite-ppl.o \
|
||||
|
@ -2619,9 +2618,6 @@ graphite-dependences.o : graphite-dependences.c $(CONFIG_H) $(SYSTEM_H) \
|
|||
coretypes.h $(TREE_FLOW_H) $(TREE_DUMP_H) $(CFGLOOP_H) $(TREE_DATA_REF_H) \
|
||||
sese.h graphite-ppl.h graphite-poly.h graphite-dependences.h \
|
||||
graphite-cloog-util.h
|
||||
graphite-flattening.o : graphite-flattening.c $(CONFIG_H) $(SYSTEM_H) \
|
||||
coretypes.h $(TREE_FLOW_H) $(TREE_DUMP_H) $(CFGLOOP_H) $(TREE_DATA_REF_H) \
|
||||
sese.h graphite-ppl.h graphite-poly.h
|
||||
graphite-interchange.o : graphite-interchange.c $(CONFIG_H) $(SYSTEM_H) \
|
||||
coretypes.h $(TREE_FLOW_H) $(TREE_DUMP_H) $(CFGLOOP_H) $(TREE_DATA_REF_H) \
|
||||
sese.h graphite-ppl.h graphite-poly.h
|
||||
|
|
|
@ -1198,8 +1198,8 @@ Common Report Var(flag_tm)
|
|||
Enable support for GNU transactional memory
|
||||
|
||||
floop-flatten
|
||||
Common Report Var(flag_loop_flatten) Optimization
|
||||
Enable Loop Flattening transformation
|
||||
Common Ignore
|
||||
Does nothing. Preserved for backward compatibility.
|
||||
|
||||
fstrict-volatile-bitfields
|
||||
Common Report Var(flag_strict_volatile_bitfields) Init(-1)
|
||||
|
|
|
@ -371,7 +371,7 @@ Objective-C and Objective-C++ Dialects}.
|
|||
-fira-loop-pressure -fno-ira-share-save-slots @gol
|
||||
-fno-ira-share-spill-slots -fira-verbose=@var{n} @gol
|
||||
-fivopts -fkeep-inline-functions -fkeep-static-consts @gol
|
||||
-floop-block -floop-flatten -floop-interchange -floop-strip-mine @gol
|
||||
-floop-block -floop-interchange -floop-strip-mine @gol
|
||||
-floop-parallelize-all -flto -flto-compression-level @gol
|
||||
-flto-partition=@var{alg} -flto-report -fmerge-all-constants @gol
|
||||
-fmerge-constants -fmodulo-sched -fmodulo-sched-allow-regmoves @gol
|
||||
|
@ -7287,16 +7287,6 @@ GIMPLE -> GRAPHITE -> GIMPLE transformation. Some minimal optimizations
|
|||
are also performed by the code generator CLooG, like index splitting and
|
||||
dead code elimination in loops.
|
||||
|
||||
@item -floop-flatten
|
||||
@opindex floop-flatten
|
||||
Removes the loop nesting structure: transforms the loop nest into a
|
||||
single loop. This transformation can be useful as an enablement
|
||||
transform for vectorization and parallelization. This feature
|
||||
is experimental.
|
||||
To use this code transformation, GCC has to be configured
|
||||
with @option{--with-ppl} and @option{--with-cloog} to enable the
|
||||
Graphite loop transformation infrastructure.
|
||||
|
||||
@item -floop-parallelize-all
|
||||
@opindex floop-parallelize-all
|
||||
Use the Graphite data dependence analysis to identify loops that can
|
||||
|
|
|
@ -1,460 +0,0 @@
|
|||
/* Loop flattening for Graphite.
|
||||
Copyright (C) 2010 Free Software Foundation, Inc.
|
||||
Contributed by Sebastian Pop <sebastian.pop@amd.com>.
|
||||
|
||||
This file is part of GCC.
|
||||
|
||||
GCC is free software; you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation; either version 3, or (at your option)
|
||||
any later version.
|
||||
|
||||
GCC is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with GCC; see the file COPYING3. If not see
|
||||
<http://www.gnu.org/licenses/>. */
|
||||
|
||||
#include "config.h"
|
||||
#include "system.h"
|
||||
#include "coretypes.h"
|
||||
#include "tree-flow.h"
|
||||
#include "tree-dump.h"
|
||||
#include "cfgloop.h"
|
||||
#include "tree-chrec.h"
|
||||
#include "tree-data-ref.h"
|
||||
#include "tree-scalar-evolution.h"
|
||||
#include "sese.h"
|
||||
|
||||
#ifdef HAVE_cloog
|
||||
#include "ppl_c.h"
|
||||
#include "graphite-ppl.h"
|
||||
#include "graphite-poly.h"
|
||||
|
||||
/* The loop flattening pass transforms loop nests into a single loop,
|
||||
removing the loop nesting structure. The auto-vectorization can
|
||||
then apply on the full loop body, without needing the outer-loop
|
||||
vectorization.
|
||||
|
||||
The loop flattening pass that has been described in a very Fortran
|
||||
specific way in the 1992 paper by Reinhard von Hanxleden and Ken
|
||||
Kennedy: "Relaxing SIMD Control Flow Constraints using Loop
|
||||
Transformations" available from
|
||||
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.5033
|
||||
|
||||
The canonical example is as follows: suppose that we have a loop
|
||||
nest with known iteration counts
|
||||
|
||||
| for (i = 1; i <= 6; i++)
|
||||
| for (j = 1; j <= 6; j++)
|
||||
| S1(i,j);
|
||||
|
||||
The loop flattening is performed by linearizing the iteration space
|
||||
using the function "f (x) = 6 * i + j". In this case, CLooG would
|
||||
produce this code:
|
||||
|
||||
| for (c1=7;c1<=42;c1++) {
|
||||
| i = floord(c1-1,6);
|
||||
| S1(i,c1-6*i);
|
||||
| }
|
||||
|
||||
There are several limitations for loop flattening that are linked
|
||||
to the expressivity of the polyhedral model. One has to take an
|
||||
upper bound approximation to deal with the parametric case of loop
|
||||
flattening. For example, in the loop nest:
|
||||
|
||||
| for (i = 1; i <= N; i++)
|
||||
| for (j = 1; j <= M; j++)
|
||||
| S1(i,j);
|
||||
|
||||
One would like to flatten this loop using a linearization function
|
||||
like this "f (x) = M * i + j". However CLooG's schedules are not
|
||||
expressive enough to deal with this case, and so the parameter M
|
||||
has to be replaced by an integer upper bound approximation. If we
|
||||
further know in the context of the scop that "M <= 6", then it is
|
||||
possible to linearize the loop with "f (x) = 6 * i + j". In this
|
||||
case, CLooG would produce this code:
|
||||
|
||||
| for (c1=7;c1<=6*M+N;c1++) {
|
||||
| i = ceild(c1-N,6);
|
||||
| if (i <= floord(c1-1,6)) {
|
||||
| S1(i,c1-6*i);
|
||||
| }
|
||||
| }
|
||||
|
||||
For an arbitrarily complex loop nest the algorithm proceeds in two
|
||||
steps. First, the LST is flattened by removing the loops structure
|
||||
and by inserting the statements in the order they appear in
|
||||
depth-first order. Then, the scattering of each statement is
|
||||
transformed accordingly.
|
||||
|
||||
Supposing that the original program is represented by the following
|
||||
LST:
|
||||
|
||||
| (loop_1
|
||||
| stmt_1
|
||||
| (loop_2 stmt_3
|
||||
| (loop_3 stmt_4)
|
||||
| (loop_4 stmt_5 stmt_6)
|
||||
| stmt_7
|
||||
| )
|
||||
| stmt_2
|
||||
| )
|
||||
|
||||
Loop flattening traverses the LST in depth-first order, and
|
||||
flattens pairs of loops successively by projecting the inner loops
|
||||
in the iteration domain of the outer loops:
|
||||
|
||||
lst_project_loop (loop_2, loop_3, stride)
|
||||
|
||||
| (loop_1
|
||||
| stmt_1
|
||||
| (loop_2 stmt_3 stmt_4
|
||||
| (loop_4 stmt_5 stmt_6)
|
||||
| stmt_7
|
||||
| )
|
||||
| stmt_2
|
||||
| )
|
||||
|
||||
lst_project_loop (loop_2, loop_4, stride)
|
||||
|
||||
| (loop_1
|
||||
| stmt_1
|
||||
| (loop_2 stmt_3 stmt_4 stmt_5 stmt_6 stmt_7)
|
||||
| stmt_2
|
||||
| )
|
||||
|
||||
lst_project_loop (loop_1, loop_2, stride)
|
||||
|
||||
| (loop_1
|
||||
| stmt_1 stmt_3 stmt_4 stmt_5 stmt_6 stmt_7 stmt_2
|
||||
| )
|
||||
|
||||
At each step, the iteration domain of the outer loop is enlarged to
|
||||
contain enough points to iterate over the inner loop domain. */
|
||||
|
||||
/* Initializes RES to the number of iterations of the linearized loop
|
||||
LST. RES is the cardinal of the iteration domain of LST. */
|
||||
|
||||
static void
|
||||
lst_linearized_niter (lst_p lst, mpz_t res)
|
||||
{
|
||||
int i;
|
||||
lst_p l;
|
||||
mpz_t n;
|
||||
|
||||
mpz_init (n);
|
||||
mpz_set_si (res, 0);
|
||||
|
||||
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
|
||||
if (LST_LOOP_P (l))
|
||||
{
|
||||
lst_linearized_niter (l, n);
|
||||
mpz_add (res, res, n);
|
||||
}
|
||||
|
||||
if (LST_LOOP_P (lst))
|
||||
{
|
||||
lst_niter_for_loop (lst, n);
|
||||
|
||||
if (mpz_cmp_si (res, 0) != 0)
|
||||
mpz_mul (res, res, n);
|
||||
else
|
||||
mpz_set (res, n);
|
||||
}
|
||||
|
||||
mpz_clear (n);
|
||||
}
|
||||
|
||||
/* Applies the translation "f (x) = x + OFFSET" to the loop containing
|
||||
STMT. */
|
||||
|
||||
static void
|
||||
lst_offset (lst_p stmt, mpz_t offset)
|
||||
{
|
||||
lst_p inner = LST_LOOP_FATHER (stmt);
|
||||
poly_bb_p pbb = LST_PBB (stmt);
|
||||
ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
|
||||
int inner_depth = lst_depth (inner);
|
||||
ppl_dimension_type inner_dim = psct_dynamic_dim (pbb, inner_depth);
|
||||
ppl_Linear_Expression_t expr;
|
||||
ppl_dimension_type dim;
|
||||
ppl_Coefficient_t one;
|
||||
mpz_t x;
|
||||
|
||||
mpz_init (x);
|
||||
mpz_set_si (x, 1);
|
||||
ppl_new_Coefficient (&one);
|
||||
ppl_assign_Coefficient_from_mpz_t (one, x);
|
||||
|
||||
ppl_Polyhedron_space_dimension (poly, &dim);
|
||||
ppl_new_Linear_Expression_with_dimension (&expr, dim);
|
||||
|
||||
ppl_set_coef (expr, inner_dim, 1);
|
||||
ppl_set_inhomogeneous_gmp (expr, offset);
|
||||
ppl_Polyhedron_affine_image (poly, inner_dim, expr, one);
|
||||
ppl_delete_Linear_Expression (expr);
|
||||
ppl_delete_Coefficient (one);
|
||||
}
|
||||
|
||||
/* Scale by FACTOR the loop LST containing STMT. */
|
||||
|
||||
static void
|
||||
lst_scale (lst_p lst, lst_p stmt, mpz_t factor)
|
||||
{
|
||||
mpz_t x;
|
||||
ppl_Coefficient_t one;
|
||||
int outer_depth = lst_depth (lst);
|
||||
poly_bb_p pbb = LST_PBB (stmt);
|
||||
ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
|
||||
ppl_dimension_type outer_dim = psct_dynamic_dim (pbb, outer_depth);
|
||||
ppl_Linear_Expression_t expr;
|
||||
ppl_dimension_type dim;
|
||||
|
||||
mpz_init (x);
|
||||
mpz_set_si (x, 1);
|
||||
ppl_new_Coefficient (&one);
|
||||
ppl_assign_Coefficient_from_mpz_t (one, x);
|
||||
|
||||
ppl_Polyhedron_space_dimension (poly, &dim);
|
||||
ppl_new_Linear_Expression_with_dimension (&expr, dim);
|
||||
|
||||
/* outer_dim = factor * outer_dim. */
|
||||
ppl_set_coef_gmp (expr, outer_dim, factor);
|
||||
ppl_Polyhedron_affine_image (poly, outer_dim, expr, one);
|
||||
ppl_delete_Linear_Expression (expr);
|
||||
|
||||
mpz_clear (x);
|
||||
ppl_delete_Coefficient (one);
|
||||
}
|
||||
|
||||
/* Project the INNER loop into the iteration domain of the OUTER loop.
|
||||
STRIDE is the number of iterations between two iterations of the
|
||||
outer loop. */
|
||||
|
||||
static void
|
||||
lst_project_loop (lst_p outer, lst_p inner, mpz_t stride)
|
||||
{
|
||||
int i;
|
||||
lst_p stmt;
|
||||
mpz_t x;
|
||||
ppl_Coefficient_t one;
|
||||
int outer_depth = lst_depth (outer);
|
||||
int inner_depth = lst_depth (inner);
|
||||
|
||||
mpz_init (x);
|
||||
mpz_set_si (x, 1);
|
||||
ppl_new_Coefficient (&one);
|
||||
ppl_assign_Coefficient_from_mpz_t (one, x);
|
||||
|
||||
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (inner), i, stmt)
|
||||
{
|
||||
poly_bb_p pbb = LST_PBB (stmt);
|
||||
ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
|
||||
ppl_dimension_type outer_dim = psct_dynamic_dim (pbb, outer_depth);
|
||||
ppl_dimension_type inner_dim = psct_dynamic_dim (pbb, inner_depth);
|
||||
ppl_Linear_Expression_t expr;
|
||||
ppl_dimension_type dim;
|
||||
ppl_dimension_type *ds;
|
||||
|
||||
/* There should be no loops under INNER. */
|
||||
gcc_assert (!LST_LOOP_P (stmt));
|
||||
ppl_Polyhedron_space_dimension (poly, &dim);
|
||||
ppl_new_Linear_Expression_with_dimension (&expr, dim);
|
||||
|
||||
/* outer_dim = outer_dim * stride + inner_dim. */
|
||||
ppl_set_coef (expr, inner_dim, 1);
|
||||
ppl_set_coef_gmp (expr, outer_dim, stride);
|
||||
ppl_Polyhedron_affine_image (poly, outer_dim, expr, one);
|
||||
ppl_delete_Linear_Expression (expr);
|
||||
|
||||
/* Project on inner_dim. */
|
||||
ppl_new_Linear_Expression_with_dimension (&expr, dim - 1);
|
||||
ppl_Polyhedron_affine_image (poly, inner_dim, expr, one);
|
||||
ppl_delete_Linear_Expression (expr);
|
||||
|
||||
/* Remove inner loop and the static schedule of its body. */
|
||||
/* FIXME: As long as we use PPL we are not able to remove the old
|
||||
scattering dimensions. The reason is that these dimensions are not
|
||||
entirely unused. They are not necessary as part of the scheduling
|
||||
vector, as the earlier dimensions already unambiguously define the
|
||||
execution time, however they may still be needed to carry modulo
|
||||
constraints as introduced e.g. by strip mining. The correct solution
|
||||
would be to project these dimensions out of the scattering polyhedra.
|
||||
In case they are still required to carry modulo constraints they should be kept
|
||||
internally as existentially quantified dimensions. PPL does only support
|
||||
projection of rational polyhedra, however in this case we need an integer
|
||||
projection. With isl this will be trivial to implement. For now we just
|
||||
leave the dimensions. This is a little ugly, but should be correct. */
|
||||
if (0) {
|
||||
ds = XNEWVEC (ppl_dimension_type, 2);
|
||||
ds[0] = inner_dim;
|
||||
ds[1] = inner_dim + 1;
|
||||
ppl_Polyhedron_remove_space_dimensions (poly, ds, 2);
|
||||
PBB_NB_SCATTERING_TRANSFORM (pbb) -= 2;
|
||||
free (ds);
|
||||
}
|
||||
}
|
||||
|
||||
mpz_clear (x);
|
||||
ppl_delete_Coefficient (one);
|
||||
}
|
||||
|
||||
/* Flattens the loop nest LST. Return true when something changed.
|
||||
OFFSET is used to compute the number of iterations of the outermost
|
||||
loop before the current LST is executed. */
|
||||
|
||||
static bool
|
||||
lst_flatten_loop (lst_p lst, mpz_t init_offset)
|
||||
{
|
||||
int i;
|
||||
lst_p l;
|
||||
bool res = false;
|
||||
mpz_t n, one, offset, stride;
|
||||
|
||||
mpz_init (n);
|
||||
mpz_init (one);
|
||||
mpz_init (offset);
|
||||
mpz_init (stride);
|
||||
mpz_set (offset, init_offset);
|
||||
mpz_set_si (one, 1);
|
||||
|
||||
lst_linearized_niter (lst, stride);
|
||||
lst_niter_for_loop (lst, n);
|
||||
mpz_tdiv_q (stride, stride, n);
|
||||
|
||||
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
|
||||
if (LST_LOOP_P (l))
|
||||
{
|
||||
res = true;
|
||||
|
||||
lst_flatten_loop (l, offset);
|
||||
lst_niter_for_loop (l, n);
|
||||
|
||||
lst_project_loop (lst, l, stride);
|
||||
|
||||
/* The offset is the number of iterations minus 1, as we want
|
||||
to execute the next statements at the same iteration as the
|
||||
last iteration of the loop. */
|
||||
mpz_sub (n, n, one);
|
||||
mpz_add (offset, offset, n);
|
||||
}
|
||||
else
|
||||
{
|
||||
lst_scale (lst, l, stride);
|
||||
if (mpz_cmp_si (offset, 0) != 0)
|
||||
lst_offset (l, offset);
|
||||
}
|
||||
|
||||
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
|
||||
if (LST_LOOP_P (l))
|
||||
lst_remove_loop_and_inline_stmts_in_loop_father (l);
|
||||
|
||||
mpz_clear (n);
|
||||
mpz_clear (one);
|
||||
mpz_clear (offset);
|
||||
mpz_clear (stride);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Remove all but the first 3 dimensions of the scattering:
|
||||
- dim0: the static schedule for the loop
|
||||
- dim1: the dynamic schedule of the loop
|
||||
- dim2: the static schedule for the loop body. */
|
||||
|
||||
static void
|
||||
remove_unused_scattering_dimensions (lst_p lst)
|
||||
{
|
||||
int i;
|
||||
lst_p stmt;
|
||||
mpz_t x;
|
||||
ppl_Coefficient_t one;
|
||||
|
||||
mpz_init (x);
|
||||
mpz_set_si (x, 1);
|
||||
ppl_new_Coefficient (&one);
|
||||
ppl_assign_Coefficient_from_mpz_t (one, x);
|
||||
|
||||
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, stmt)
|
||||
{
|
||||
poly_bb_p pbb = LST_PBB (stmt);
|
||||
ppl_Polyhedron_t poly = PBB_TRANSFORMED_SCATTERING (pbb);
|
||||
int j, nb_dims_to_remove = PBB_NB_SCATTERING_TRANSFORM (pbb) - 3;
|
||||
ppl_dimension_type *ds;
|
||||
|
||||
/* There should be no loops inside LST after flattening. */
|
||||
gcc_assert (!LST_LOOP_P (stmt));
|
||||
|
||||
if (!nb_dims_to_remove)
|
||||
continue;
|
||||
|
||||
ds = XNEWVEC (ppl_dimension_type, nb_dims_to_remove);
|
||||
for (j = 0; j < nb_dims_to_remove; j++)
|
||||
ds[j] = j + 3;
|
||||
|
||||
ppl_Polyhedron_remove_space_dimensions (poly, ds, nb_dims_to_remove);
|
||||
PBB_NB_SCATTERING_TRANSFORM (pbb) -= nb_dims_to_remove;
|
||||
free (ds);
|
||||
}
|
||||
|
||||
mpz_clear (x);
|
||||
ppl_delete_Coefficient (one);
|
||||
}
|
||||
|
||||
/* Flattens all the loop nests of LST. Return true when something
|
||||
changed. */
|
||||
|
||||
static bool
|
||||
lst_do_flatten (lst_p lst)
|
||||
{
|
||||
int i;
|
||||
lst_p l;
|
||||
bool res = false;
|
||||
mpz_t zero;
|
||||
|
||||
if (!lst
|
||||
|| !LST_LOOP_P (lst))
|
||||
return false;
|
||||
|
||||
mpz_init (zero);
|
||||
mpz_set_si (zero, 0);
|
||||
|
||||
FOR_EACH_VEC_ELT (lst_p, LST_SEQ (lst), i, l)
|
||||
if (LST_LOOP_P (l))
|
||||
{
|
||||
res |= lst_flatten_loop (l, zero);
|
||||
|
||||
/* FIXME: As long as we use PPL we are not able to remove the old
|
||||
scattering dimensions. The reason is that these dimensions are not
|
||||
entirely unused. They are not necessary as part of the scheduling
|
||||
vector, as the earlier dimensions already unambiguously define the
|
||||
execution time, however they may still be needed to carry modulo
|
||||
constraints as introduced e.g. by strip mining. The correct solution
|
||||
would be to project these dimensions out of the scattering polyhedra.
|
||||
In case they are still required to carry modulo constraints they should be kept
|
||||
internally as existentially quantified dimensions. PPL does only support
|
||||
projection of rational polyhedra, however in this case we need an integer
|
||||
projection. With isl this will be trivial to implement. For now we just
|
||||
leave the dimensions. This is a little ugly, but should be correct. */
|
||||
if (0)
|
||||
remove_unused_scattering_dimensions (l);
|
||||
}
|
||||
|
||||
lst_update_scattering (lst);
|
||||
mpz_clear (zero);
|
||||
return res;
|
||||
}
|
||||
|
||||
/* Flatten all the loop nests in SCOP. Returns true when something
|
||||
changed. */
|
||||
|
||||
bool
|
||||
flatten_all_loops (scop_p scop)
|
||||
{
|
||||
return lst_do_flatten (SCOP_TRANSFORMED_SCHEDULE (scop));
|
||||
}
|
||||
|
||||
#endif
|
|
@ -771,9 +771,6 @@ apply_poly_transforms (scop_p scop)
|
|||
transform_done |= scop_do_interchange (scop);
|
||||
}
|
||||
|
||||
if (flag_loop_flatten)
|
||||
transform_done |= flatten_all_loops (scop);
|
||||
|
||||
/* This feature is only enabled in the Graphite branch. */
|
||||
if (0)
|
||||
{
|
||||
|
|
|
@ -1,3 +1,7 @@
|
|||
2012-03-02 Maxim Kuvyrkov <maxim@codesourcery.com>
|
||||
|
||||
* gcc.dg/graphite/pr50561.c: Update.
|
||||
|
||||
2012-03-02 Peter Bergner <bergner@vnet.ibm.com>
|
||||
|
||||
* gcc.target/powerpc/pr52457.c: New test.
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
/* { dg-do compile } */
|
||||
/* { dg-options "-O2 -floop-flatten -floop-strip-mine" } */
|
||||
/* { dg-options "-O2 -floop-strip-mine" } */
|
||||
|
||||
void f (unsigned *s)
|
||||
{
|
||||
|
|
|
@ -1315,12 +1315,11 @@ process_options (void)
|
|||
if (flag_graphite
|
||||
|| flag_graphite_identity
|
||||
|| flag_loop_block
|
||||
|| flag_loop_flatten
|
||||
|| flag_loop_interchange
|
||||
|| flag_loop_strip_mine
|
||||
|| flag_loop_parallelize_all)
|
||||
sorry ("Graphite loop optimizations cannot be used (-fgraphite, "
|
||||
"-fgraphite-identity, -floop-block, -floop-flatten, "
|
||||
"-fgraphite-identity, -floop-block, "
|
||||
"-floop-interchange, -floop-strip-mine, -floop-parallelize-all, "
|
||||
"and -ftree-loop-linear)");
|
||||
#endif
|
||||
|
|
|
@ -266,8 +266,7 @@ gate_graphite_transforms (void)
|
|||
|| flag_loop_interchange
|
||||
|| flag_loop_strip_mine
|
||||
|| flag_graphite_identity
|
||||
|| flag_loop_parallelize_all
|
||||
|| flag_loop_flatten)
|
||||
|| flag_loop_parallelize_all)
|
||||
flag_graphite = 1;
|
||||
|
||||
return flag_graphite != 0;
|
||||
|
|
Loading…
Add table
Reference in a new issue