
* src/eval.c (grow_specpdl_allocation): Remove impossible error. * src/data.c (syms_of_data): Note obsolence of `excessive-variable-binding`.
4453 lines
134 KiB
C
4453 lines
134 KiB
C
/* Evaluator for GNU Emacs Lisp interpreter.
|
||
|
||
Copyright (C) 1985-1987, 1993-1995, 1999-2023 Free Software Foundation,
|
||
Inc.
|
||
|
||
This file is part of GNU Emacs.
|
||
|
||
GNU Emacs is free software: you can redistribute it and/or modify
|
||
it under the terms of the GNU General Public License as published by
|
||
the Free Software Foundation, either version 3 of the License, or (at
|
||
your option) any later version.
|
||
|
||
GNU Emacs is distributed in the hope that it will be useful,
|
||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
GNU General Public License for more details.
|
||
|
||
You should have received a copy of the GNU General Public License
|
||
along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>. */
|
||
|
||
|
||
#include <config.h>
|
||
#include <limits.h>
|
||
#include <stdlib.h>
|
||
#include "lisp.h"
|
||
#include "blockinput.h"
|
||
#include "commands.h"
|
||
#include "keyboard.h"
|
||
#include "dispextern.h"
|
||
#include "buffer.h"
|
||
#include "pdumper.h"
|
||
#include "atimer.h"
|
||
|
||
/* CACHEABLE is ordinarily nothing, except it is 'volatile' if
|
||
necessary to cajole GCC into not warning incorrectly that a
|
||
variable should be volatile. */
|
||
#if defined GCC_LINT || defined lint
|
||
# define CACHEABLE volatile
|
||
#else
|
||
# define CACHEABLE /* empty */
|
||
#endif
|
||
|
||
/* Non-nil means record all fset's and provide's, to be undone
|
||
if the file being autoloaded is not fully loaded.
|
||
They are recorded by being consed onto the front of Vautoload_queue:
|
||
(FUN . ODEF) for a defun, (0 . OFEATURES) for a provide. */
|
||
|
||
Lisp_Object Vautoload_queue;
|
||
|
||
/* This holds either the symbol `run-hooks' or nil.
|
||
It is nil at an early stage of startup, and when Emacs
|
||
is shutting down. */
|
||
Lisp_Object Vrun_hooks;
|
||
|
||
/* The function from which the last `signal' was called. Set in
|
||
Fsignal. */
|
||
/* FIXME: We should probably get rid of this! */
|
||
Lisp_Object Vsignaling_function;
|
||
|
||
/* The handler structure which will catch errors in Lisp hooks called
|
||
from redisplay. We do not use it for this; we compare it with the
|
||
handler which is about to be used in signal_or_quit, and if it
|
||
matches, cause a backtrace to be generated. */
|
||
static struct handler *redisplay_deep_handler;
|
||
|
||
/* These would ordinarily be static, but they need to be visible to GDB. */
|
||
bool backtrace_p (union specbinding *) EXTERNALLY_VISIBLE;
|
||
Lisp_Object *backtrace_args (union specbinding *) EXTERNALLY_VISIBLE;
|
||
Lisp_Object backtrace_function (union specbinding *) EXTERNALLY_VISIBLE;
|
||
union specbinding *backtrace_next (union specbinding *) EXTERNALLY_VISIBLE;
|
||
union specbinding *backtrace_top (void) EXTERNALLY_VISIBLE;
|
||
|
||
static Lisp_Object funcall_lambda (Lisp_Object, ptrdiff_t, Lisp_Object *);
|
||
static Lisp_Object apply_lambda (Lisp_Object, Lisp_Object, specpdl_ref);
|
||
static Lisp_Object lambda_arity (Lisp_Object);
|
||
|
||
static Lisp_Object
|
||
specpdl_symbol (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind >= SPECPDL_LET);
|
||
return pdl->let.symbol;
|
||
}
|
||
|
||
static enum specbind_tag
|
||
specpdl_kind (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind >= SPECPDL_LET);
|
||
return pdl->let.kind;
|
||
}
|
||
|
||
static Lisp_Object
|
||
specpdl_old_value (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind >= SPECPDL_LET);
|
||
return pdl->let.old_value;
|
||
}
|
||
|
||
static void
|
||
set_specpdl_old_value (union specbinding *pdl, Lisp_Object val)
|
||
{
|
||
eassert (pdl->kind >= SPECPDL_LET);
|
||
pdl->let.old_value = val;
|
||
}
|
||
|
||
static Lisp_Object
|
||
specpdl_where (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind > SPECPDL_LET);
|
||
return pdl->let.where;
|
||
}
|
||
|
||
static Lisp_Object
|
||
specpdl_arg (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind == SPECPDL_UNWIND);
|
||
return pdl->unwind.arg;
|
||
}
|
||
|
||
Lisp_Object
|
||
backtrace_function (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind == SPECPDL_BACKTRACE);
|
||
return pdl->bt.function;
|
||
}
|
||
|
||
static ptrdiff_t
|
||
backtrace_nargs (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind == SPECPDL_BACKTRACE);
|
||
return pdl->bt.nargs;
|
||
}
|
||
|
||
Lisp_Object *
|
||
backtrace_args (union specbinding *pdl)
|
||
{
|
||
eassert (pdl->kind == SPECPDL_BACKTRACE);
|
||
return pdl->bt.args;
|
||
}
|
||
|
||
/* Functions to modify slots of backtrace records. */
|
||
|
||
static void
|
||
set_backtrace_args (union specbinding *pdl, Lisp_Object *args, ptrdiff_t nargs)
|
||
{
|
||
eassert (pdl->kind == SPECPDL_BACKTRACE);
|
||
pdl->bt.args = args;
|
||
pdl->bt.nargs = nargs;
|
||
}
|
||
|
||
static void
|
||
set_backtrace_debug_on_exit (union specbinding *pdl, bool doe)
|
||
{
|
||
eassert (pdl->kind == SPECPDL_BACKTRACE);
|
||
pdl->bt.debug_on_exit = doe;
|
||
}
|
||
|
||
/* Helper functions to scan the backtrace. */
|
||
|
||
bool
|
||
backtrace_p (union specbinding *pdl)
|
||
{ return specpdl ? pdl >= specpdl : false; }
|
||
|
||
static bool
|
||
backtrace_thread_p (struct thread_state *tstate, union specbinding *pdl)
|
||
{ return pdl >= tstate->m_specpdl; }
|
||
|
||
union specbinding *
|
||
backtrace_top (void)
|
||
{
|
||
/* This is so "xbacktrace" doesn't crash in pdumped Emacs if they
|
||
invoke the command before init_eval_once_for_pdumper initializes
|
||
specpdl machinery. See also backtrace_p above. */
|
||
if (!specpdl)
|
||
return NULL;
|
||
|
||
union specbinding *pdl = specpdl_ptr - 1;
|
||
while (backtrace_p (pdl) && pdl->kind != SPECPDL_BACKTRACE)
|
||
pdl--;
|
||
return pdl;
|
||
}
|
||
|
||
static union specbinding *
|
||
backtrace_thread_top (struct thread_state *tstate)
|
||
{
|
||
union specbinding *pdl = tstate->m_specpdl_ptr - 1;
|
||
while (backtrace_thread_p (tstate, pdl) && pdl->kind != SPECPDL_BACKTRACE)
|
||
pdl--;
|
||
return pdl;
|
||
}
|
||
|
||
union specbinding *
|
||
backtrace_next (union specbinding *pdl)
|
||
{
|
||
pdl--;
|
||
while (backtrace_p (pdl) && pdl->kind != SPECPDL_BACKTRACE)
|
||
pdl--;
|
||
return pdl;
|
||
}
|
||
|
||
static void init_eval_once_for_pdumper (void);
|
||
|
||
static union specbinding *
|
||
backtrace_thread_next (struct thread_state *tstate, union specbinding *pdl)
|
||
{
|
||
pdl--;
|
||
while (backtrace_thread_p (tstate, pdl) && pdl->kind != SPECPDL_BACKTRACE)
|
||
pdl--;
|
||
return pdl;
|
||
}
|
||
|
||
void
|
||
init_eval_once (void)
|
||
{
|
||
/* Don't forget to update docs (lispref node "Eval"). */
|
||
max_lisp_eval_depth = 1600;
|
||
Vrun_hooks = Qnil;
|
||
pdumper_do_now_and_after_load (init_eval_once_for_pdumper);
|
||
}
|
||
|
||
static void
|
||
init_eval_once_for_pdumper (void)
|
||
{
|
||
enum { size = 50 };
|
||
union specbinding *pdlvec = malloc ((size + 1) * sizeof *specpdl);
|
||
specpdl = specpdl_ptr = pdlvec + 1;
|
||
specpdl_end = specpdl + size;
|
||
}
|
||
|
||
void
|
||
init_eval (void)
|
||
{
|
||
specpdl_ptr = specpdl;
|
||
{ /* Put a dummy catcher at top-level so that handlerlist is never NULL.
|
||
This is important since handlerlist->nextfree holds the freelist
|
||
which would otherwise leak every time we unwind back to top-level. */
|
||
handlerlist_sentinel = xzalloc (sizeof (struct handler));
|
||
handlerlist = handlerlist_sentinel->nextfree = handlerlist_sentinel;
|
||
struct handler *c = push_handler (Qunbound, CATCHER);
|
||
eassert (c == handlerlist_sentinel);
|
||
handlerlist_sentinel->nextfree = NULL;
|
||
handlerlist_sentinel->next = NULL;
|
||
}
|
||
Vquit_flag = Qnil;
|
||
debug_on_next_call = 0;
|
||
lisp_eval_depth = 0;
|
||
/* This is less than the initial value of num_nonmacro_input_events. */
|
||
when_entered_debugger = -1;
|
||
redisplay_deep_handler = NULL;
|
||
}
|
||
|
||
/* Ensure that *M is at least A + B if possible, or is its maximum
|
||
value otherwise. */
|
||
|
||
static void
|
||
max_ensure_room (intmax_t *m, intmax_t a, intmax_t b)
|
||
{
|
||
intmax_t sum = INT_ADD_WRAPV (a, b, &sum) ? INTMAX_MAX : sum;
|
||
*m = max (*m, sum);
|
||
}
|
||
|
||
/* Unwind-protect function used by call_debugger. */
|
||
|
||
static void
|
||
restore_stack_limits (Lisp_Object data)
|
||
{
|
||
integer_to_intmax (data, &max_lisp_eval_depth);
|
||
}
|
||
|
||
/* Call the Lisp debugger, giving it argument ARG. */
|
||
|
||
Lisp_Object
|
||
call_debugger (Lisp_Object arg)
|
||
{
|
||
bool debug_while_redisplaying;
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
Lisp_Object val;
|
||
intmax_t old_depth = max_lisp_eval_depth;
|
||
|
||
/* The previous value of 40 is too small now that the debugger
|
||
prints using cl-prin1 instead of prin1. Printing lists nested 8
|
||
deep (which is the value of print-level used in the debugger)
|
||
currently requires 77 additional frames. See bug#31919. */
|
||
max_ensure_room (&max_lisp_eval_depth, lisp_eval_depth, 100);
|
||
|
||
/* Restore limits after leaving the debugger. */
|
||
record_unwind_protect (restore_stack_limits, make_int (old_depth));
|
||
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
if (display_hourglass_p)
|
||
cancel_hourglass ();
|
||
#endif
|
||
|
||
debug_on_next_call = 0;
|
||
when_entered_debugger = num_nonmacro_input_events;
|
||
|
||
/* Resetting redisplaying_p to 0 makes sure that debug output is
|
||
displayed if the debugger is invoked during redisplay. */
|
||
debug_while_redisplaying = redisplaying_p;
|
||
redisplaying_p = 0;
|
||
specbind (intern ("debugger-may-continue"),
|
||
debug_while_redisplaying ? Qnil : Qt);
|
||
specbind (Qinhibit_redisplay, Qnil);
|
||
specbind (Qinhibit_debugger, Qt);
|
||
|
||
/* If we are debugging an error while `inhibit-changing-match-data'
|
||
is bound to non-nil (e.g., within a call to `string-match-p'),
|
||
then make sure debugger code can still use match data. */
|
||
specbind (Qinhibit_changing_match_data, Qnil);
|
||
|
||
#if 0 /* Binding this prevents execution of Lisp code during
|
||
redisplay, which necessarily leads to display problems. */
|
||
specbind (Qinhibit_eval_during_redisplay, Qt);
|
||
#endif
|
||
|
||
val = apply1 (Vdebugger, arg);
|
||
|
||
/* Interrupting redisplay and resuming it later is not safe under
|
||
all circumstances. So, when the debugger returns, abort the
|
||
interrupted redisplay by going back to the top-level. */
|
||
if (debug_while_redisplaying
|
||
&& !EQ (Vdebugger, Qdebug_early))
|
||
Ftop_level ();
|
||
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
void
|
||
do_debug_on_call (Lisp_Object code, specpdl_ref count)
|
||
{
|
||
debug_on_next_call = 0;
|
||
set_backtrace_debug_on_exit (specpdl_ref_to_ptr (count), true);
|
||
call_debugger (list1 (code));
|
||
}
|
||
|
||
|
||
DEFUN ("or", For, Sor, 0, UNEVALLED, 0,
|
||
doc: /* Eval args until one of them yields non-nil, then return that value.
|
||
The remaining args are not evalled at all.
|
||
If all args return nil, return nil.
|
||
usage: (or CONDITIONS...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object val = Qnil;
|
||
|
||
while (CONSP (args))
|
||
{
|
||
Lisp_Object arg = XCAR (args);
|
||
args = XCDR (args);
|
||
val = eval_sub (arg);
|
||
if (!NILP (val))
|
||
break;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("and", Fand, Sand, 0, UNEVALLED, 0,
|
||
doc: /* Eval args until one of them yields nil, then return nil.
|
||
The remaining args are not evalled at all.
|
||
If no arg yields nil, return the last arg's value.
|
||
usage: (and CONDITIONS...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object val = Qt;
|
||
|
||
while (CONSP (args))
|
||
{
|
||
Lisp_Object arg = XCAR (args);
|
||
args = XCDR (args);
|
||
val = eval_sub (arg);
|
||
if (NILP (val))
|
||
break;
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("if", Fif, Sif, 2, UNEVALLED, 0,
|
||
doc: /* If COND yields non-nil, do THEN, else do ELSE...
|
||
Returns the value of THEN or the value of the last of the ELSE's.
|
||
THEN must be one expression, but ELSE... can be zero or more expressions.
|
||
If COND yields nil, and there are no ELSE's, the value is nil.
|
||
usage: (if COND THEN ELSE...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object cond;
|
||
|
||
cond = eval_sub (XCAR (args));
|
||
|
||
if (!NILP (cond))
|
||
return eval_sub (Fcar (XCDR (args)));
|
||
return Fprogn (Fcdr (XCDR (args)));
|
||
}
|
||
|
||
DEFUN ("cond", Fcond, Scond, 0, UNEVALLED, 0,
|
||
doc: /* Try each clause until one succeeds.
|
||
Each clause looks like (CONDITION BODY...). CONDITION is evaluated
|
||
and, if the value is non-nil, this clause succeeds:
|
||
then the expressions in BODY are evaluated and the last one's
|
||
value is the value of the cond-form.
|
||
If a clause has one element, as in (CONDITION), then the cond-form
|
||
returns CONDITION's value, if that is non-nil.
|
||
If no clause succeeds, cond returns nil.
|
||
usage: (cond CLAUSES...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object val = args;
|
||
|
||
while (CONSP (args))
|
||
{
|
||
Lisp_Object clause = XCAR (args);
|
||
val = eval_sub (Fcar (clause));
|
||
if (!NILP (val))
|
||
{
|
||
if (!NILP (XCDR (clause)))
|
||
val = Fprogn (XCDR (clause));
|
||
break;
|
||
}
|
||
args = XCDR (args);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("progn", Fprogn, Sprogn, 0, UNEVALLED, 0,
|
||
doc: /* Eval BODY forms sequentially and return value of last one.
|
||
usage: (progn BODY...) */)
|
||
(Lisp_Object body)
|
||
{
|
||
Lisp_Object CACHEABLE val = Qnil;
|
||
|
||
while (CONSP (body))
|
||
{
|
||
Lisp_Object form = XCAR (body);
|
||
body = XCDR (body);
|
||
val = eval_sub (form);
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
/* Evaluate BODY sequentially, discarding its value. */
|
||
|
||
void
|
||
prog_ignore (Lisp_Object body)
|
||
{
|
||
Fprogn (body);
|
||
}
|
||
|
||
DEFUN ("prog1", Fprog1, Sprog1, 1, UNEVALLED, 0,
|
||
doc: /* Eval FIRST and BODY sequentially; return value from FIRST.
|
||
The value of FIRST is saved during the evaluation of the remaining args,
|
||
whose values are discarded.
|
||
usage: (prog1 FIRST BODY...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object val = eval_sub (XCAR (args));
|
||
prog_ignore (XCDR (args));
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("setq", Fsetq, Ssetq, 0, UNEVALLED, 0,
|
||
doc: /* Set each SYM to the value of its VAL.
|
||
The symbols SYM are variables; they are literal (not evaluated).
|
||
The values VAL are expressions; they are evaluated.
|
||
Thus, (setq x (1+ y)) sets `x' to the value of `(1+ y)'.
|
||
The second VAL is not computed until after the first SYM is set, and so on;
|
||
each VAL can use the new value of variables set earlier in the `setq'.
|
||
The return value of the `setq' form is the value of the last VAL.
|
||
usage: (setq [SYM VAL]...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object val = args, tail = args;
|
||
|
||
for (EMACS_INT nargs = 0; CONSP (tail); nargs += 2)
|
||
{
|
||
Lisp_Object sym = XCAR (tail);
|
||
tail = XCDR (tail);
|
||
if (!CONSP (tail))
|
||
xsignal2 (Qwrong_number_of_arguments, Qsetq, make_fixnum (nargs + 1));
|
||
Lisp_Object arg = XCAR (tail);
|
||
tail = XCDR (tail);
|
||
val = eval_sub (arg);
|
||
/* Like for eval_sub, we do not check declared_special here since
|
||
it's been done when let-binding. */
|
||
Lisp_Object lex_binding
|
||
= (SYMBOLP (sym)
|
||
? Fassq (sym, Vinternal_interpreter_environment)
|
||
: Qnil);
|
||
if (!NILP (lex_binding))
|
||
XSETCDR (lex_binding, val); /* SYM is lexically bound. */
|
||
else
|
||
Fset (sym, val); /* SYM is dynamically bound. */
|
||
}
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("quote", Fquote, Squote, 1, UNEVALLED, 0,
|
||
doc: /* Return the argument, without evaluating it. `(quote x)' yields `x'.
|
||
Warning: `quote' does not construct its return value, but just returns
|
||
the value that was pre-constructed by the Lisp reader (see info node
|
||
`(elisp)Printed Representation').
|
||
This means that \\='(a . b) is not identical to (cons \\='a \\='b): the former
|
||
does not cons. Quoting should be reserved for constants that will
|
||
never be modified by side-effects, unless you like self-modifying code.
|
||
See the common pitfall in info node `(elisp)Rearrangement' for an example
|
||
of unexpected results when a quoted object is modified.
|
||
usage: (quote ARG) */)
|
||
(Lisp_Object args)
|
||
{
|
||
if (!NILP (XCDR (args)))
|
||
xsignal2 (Qwrong_number_of_arguments, Qquote, Flength (args));
|
||
return XCAR (args);
|
||
}
|
||
|
||
DEFUN ("function", Ffunction, Sfunction, 1, UNEVALLED, 0,
|
||
doc: /* Like `quote', but preferred for objects which are functions.
|
||
In byte compilation, `function' causes its argument to be handled by
|
||
the byte compiler. Similarly, when expanding macros and expressions,
|
||
ARG can be examined and possibly expanded. If `quote' is used
|
||
instead, this doesn't happen.
|
||
|
||
usage: (function ARG) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object quoted = XCAR (args);
|
||
|
||
if (!NILP (XCDR (args)))
|
||
xsignal2 (Qwrong_number_of_arguments, Qfunction, Flength (args));
|
||
|
||
if (!NILP (Vinternal_interpreter_environment)
|
||
&& CONSP (quoted)
|
||
&& EQ (XCAR (quoted), Qlambda))
|
||
{ /* This is a lambda expression within a lexical environment;
|
||
return an interpreted closure instead of a simple lambda. */
|
||
Lisp_Object cdr = XCDR (quoted);
|
||
Lisp_Object tmp = cdr;
|
||
if (CONSP (tmp)
|
||
&& (tmp = XCDR (tmp), CONSP (tmp))
|
||
&& (tmp = XCAR (tmp), CONSP (tmp))
|
||
&& (EQ (QCdocumentation, XCAR (tmp))))
|
||
{ /* Handle the special (:documentation <form>) to build the docstring
|
||
dynamically. */
|
||
Lisp_Object docstring = eval_sub (Fcar (XCDR (tmp)));
|
||
if (SYMBOLP (docstring) && !NILP (docstring))
|
||
/* Hack for OClosures: Allow the docstring to be a symbol
|
||
* (the OClosure's type). */
|
||
docstring = Fsymbol_name (docstring);
|
||
CHECK_STRING (docstring);
|
||
cdr = Fcons (XCAR (cdr), Fcons (docstring, XCDR (XCDR (cdr))));
|
||
}
|
||
if (NILP (Vinternal_make_interpreted_closure_function))
|
||
return Fcons (Qclosure, Fcons (Vinternal_interpreter_environment, cdr));
|
||
else
|
||
return call2 (Vinternal_make_interpreted_closure_function,
|
||
Fcons (Qlambda, cdr),
|
||
Vinternal_interpreter_environment);
|
||
}
|
||
else
|
||
/* Simply quote the argument. */
|
||
return quoted;
|
||
}
|
||
|
||
|
||
DEFUN ("defvaralias", Fdefvaralias, Sdefvaralias, 2, 3, 0,
|
||
doc: /* Make NEW-ALIAS a variable alias for symbol BASE-VARIABLE.
|
||
Aliased variables always have the same value; setting one sets the other.
|
||
Third arg DOCSTRING, if non-nil, is documentation for NEW-ALIAS. If it is
|
||
omitted or nil, NEW-ALIAS gets the documentation string of BASE-VARIABLE,
|
||
or of the variable at the end of the chain of aliases, if BASE-VARIABLE is
|
||
itself an alias. If NEW-ALIAS is bound, and BASE-VARIABLE is not,
|
||
then the value of BASE-VARIABLE is set to that of NEW-ALIAS.
|
||
The return value is BASE-VARIABLE. */)
|
||
(Lisp_Object new_alias, Lisp_Object base_variable, Lisp_Object docstring)
|
||
{
|
||
struct Lisp_Symbol *sym;
|
||
|
||
CHECK_SYMBOL (new_alias);
|
||
CHECK_SYMBOL (base_variable);
|
||
|
||
if (SYMBOL_CONSTANT_P (new_alias))
|
||
/* Making it an alias effectively changes its value. */
|
||
error ("Cannot make a constant an alias: %s",
|
||
SDATA (SYMBOL_NAME (new_alias)));
|
||
|
||
sym = XSYMBOL (new_alias);
|
||
|
||
switch (sym->u.s.redirect)
|
||
{
|
||
case SYMBOL_FORWARDED:
|
||
error ("Cannot make a built-in variable an alias: %s",
|
||
SDATA (SYMBOL_NAME (new_alias)));
|
||
case SYMBOL_LOCALIZED:
|
||
error ("Don't know how to make a buffer-local variable an alias: %s",
|
||
SDATA (SYMBOL_NAME (new_alias)));
|
||
case SYMBOL_PLAINVAL:
|
||
case SYMBOL_VARALIAS:
|
||
break;
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
|
||
/* https://lists.gnu.org/r/emacs-devel/2008-04/msg00834.html
|
||
If n_a is bound, but b_v is not, set the value of b_v to n_a,
|
||
so that old-code that affects n_a before the aliasing is setup
|
||
still works. */
|
||
if (NILP (Fboundp (base_variable)))
|
||
set_internal (base_variable, find_symbol_value (new_alias),
|
||
Qnil, SET_INTERNAL_BIND);
|
||
else if (!NILP (Fboundp (new_alias))
|
||
&& !EQ (find_symbol_value (new_alias),
|
||
find_symbol_value (base_variable)))
|
||
call2 (intern ("display-warning"),
|
||
list3 (Qdefvaralias, intern ("losing-value"), new_alias),
|
||
CALLN (Fformat_message,
|
||
build_string
|
||
("Overwriting value of `%s' by aliasing to `%s'"),
|
||
new_alias, base_variable));
|
||
|
||
{
|
||
union specbinding *p;
|
||
|
||
for (p = specpdl_ptr; p > specpdl; )
|
||
if ((--p)->kind >= SPECPDL_LET
|
||
&& (EQ (new_alias, specpdl_symbol (p))))
|
||
error ("Don't know how to make a let-bound variable an alias: %s",
|
||
SDATA (SYMBOL_NAME (new_alias)));
|
||
}
|
||
|
||
if (sym->u.s.trapped_write == SYMBOL_TRAPPED_WRITE)
|
||
notify_variable_watchers (new_alias, base_variable, Qdefvaralias, Qnil);
|
||
|
||
sym->u.s.declared_special = true;
|
||
XSYMBOL (base_variable)->u.s.declared_special = true;
|
||
sym->u.s.redirect = SYMBOL_VARALIAS;
|
||
SET_SYMBOL_ALIAS (sym, XSYMBOL (base_variable));
|
||
sym->u.s.trapped_write = XSYMBOL (base_variable)->u.s.trapped_write;
|
||
LOADHIST_ATTACH (new_alias);
|
||
/* Even if docstring is nil: remove old docstring. */
|
||
Fput (new_alias, Qvariable_documentation, docstring);
|
||
|
||
return base_variable;
|
||
}
|
||
|
||
static union specbinding *
|
||
default_toplevel_binding (Lisp_Object symbol)
|
||
{
|
||
union specbinding *binding = NULL;
|
||
union specbinding *pdl = specpdl_ptr;
|
||
while (pdl > specpdl)
|
||
{
|
||
switch ((--pdl)->kind)
|
||
{
|
||
case SPECPDL_LET_DEFAULT:
|
||
case SPECPDL_LET:
|
||
if (EQ (specpdl_symbol (pdl), symbol))
|
||
binding = pdl;
|
||
break;
|
||
|
||
default: break;
|
||
}
|
||
}
|
||
return binding;
|
||
}
|
||
|
||
/* Look for a lexical-binding of SYMBOL somewhere up the stack.
|
||
This will only find bindings created with interpreted code, since once
|
||
compiled names of lexical variables are basically gone anyway. */
|
||
static bool
|
||
lexbound_p (Lisp_Object symbol)
|
||
{
|
||
union specbinding *pdl = specpdl_ptr;
|
||
while (pdl > specpdl)
|
||
{
|
||
switch ((--pdl)->kind)
|
||
{
|
||
case SPECPDL_LET_DEFAULT:
|
||
case SPECPDL_LET:
|
||
if (EQ (specpdl_symbol (pdl), Qinternal_interpreter_environment))
|
||
{
|
||
Lisp_Object env = specpdl_old_value (pdl);
|
||
if (CONSP (env) && !NILP (Fassq (symbol, env)))
|
||
return true;
|
||
}
|
||
break;
|
||
|
||
default: break;
|
||
}
|
||
}
|
||
return false;
|
||
}
|
||
|
||
DEFUN ("default-toplevel-value", Fdefault_toplevel_value, Sdefault_toplevel_value, 1, 1, 0,
|
||
doc: /* Return SYMBOL's toplevel default value.
|
||
"Toplevel" means outside of any let binding. */)
|
||
(Lisp_Object symbol)
|
||
{
|
||
union specbinding *binding = default_toplevel_binding (symbol);
|
||
Lisp_Object value
|
||
= binding ? specpdl_old_value (binding) : Fdefault_value (symbol);
|
||
if (!BASE_EQ (value, Qunbound))
|
||
return value;
|
||
xsignal1 (Qvoid_variable, symbol);
|
||
}
|
||
|
||
DEFUN ("set-default-toplevel-value", Fset_default_toplevel_value,
|
||
Sset_default_toplevel_value, 2, 2, 0,
|
||
doc: /* Set SYMBOL's toplevel default value to VALUE.
|
||
"Toplevel" means outside of any let binding. */)
|
||
(Lisp_Object symbol, Lisp_Object value)
|
||
{
|
||
union specbinding *binding = default_toplevel_binding (symbol);
|
||
if (binding)
|
||
set_specpdl_old_value (binding, value);
|
||
else
|
||
Fset_default (symbol, value);
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("internal--define-uninitialized-variable",
|
||
Finternal__define_uninitialized_variable,
|
||
Sinternal__define_uninitialized_variable, 1, 2, 0,
|
||
doc: /* Define SYMBOL as a variable, with DOC as its docstring.
|
||
This is like `defvar' and `defconst' but without affecting the variable's
|
||
value. */)
|
||
(Lisp_Object symbol, Lisp_Object doc)
|
||
{
|
||
if (!XSYMBOL (symbol)->u.s.declared_special
|
||
&& lexbound_p (symbol))
|
||
/* This test tries to catch the situation where we do
|
||
(let ((<foo-var> ...)) ...(<foo-function> ...)....)
|
||
and where the `foo` package only gets loaded when <foo-function>
|
||
is called, so the outer `let` incorrectly made the binding lexical
|
||
because the <foo-var> wasn't yet declared as dynamic at that point. */
|
||
xsignal2 (Qerror,
|
||
build_string ("Defining as dynamic an already lexical var"),
|
||
symbol);
|
||
|
||
XSYMBOL (symbol)->u.s.declared_special = true;
|
||
if (!NILP (doc))
|
||
{
|
||
if (!NILP (Vpurify_flag))
|
||
doc = Fpurecopy (doc);
|
||
Fput (symbol, Qvariable_documentation, doc);
|
||
}
|
||
LOADHIST_ATTACH (symbol);
|
||
return Qnil;
|
||
}
|
||
|
||
static Lisp_Object
|
||
defvar (Lisp_Object sym, Lisp_Object initvalue, Lisp_Object docstring, bool eval)
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
CHECK_SYMBOL (sym);
|
||
|
||
tem = Fdefault_boundp (sym);
|
||
|
||
/* Do it before evaluating the initial value, for self-references. */
|
||
Finternal__define_uninitialized_variable (sym, docstring);
|
||
|
||
if (NILP (tem))
|
||
Fset_default (sym, eval ? eval_sub (initvalue) : initvalue);
|
||
else
|
||
{ /* Check if there is really a global binding rather than just a let
|
||
binding that shadows the global unboundness of the var. */
|
||
union specbinding *binding = default_toplevel_binding (sym);
|
||
if (binding && BASE_EQ (specpdl_old_value (binding), Qunbound))
|
||
{
|
||
set_specpdl_old_value (binding,
|
||
eval ? eval_sub (initvalue) : initvalue);
|
||
}
|
||
}
|
||
return sym;
|
||
}
|
||
|
||
DEFUN ("defvar", Fdefvar, Sdefvar, 1, UNEVALLED, 0,
|
||
doc: /* Define SYMBOL as a variable, and return SYMBOL.
|
||
You are not required to define a variable in order to use it, but
|
||
defining it lets you supply an initial value and documentation, which
|
||
can be referred to by the Emacs help facilities and other programming
|
||
tools. The `defvar' form also declares the variable as \"special\",
|
||
so that it is always dynamically bound even if `lexical-binding' is t.
|
||
|
||
If SYMBOL's value is void and the optional argument INITVALUE is
|
||
provided, INITVALUE is evaluated and the result used to set SYMBOL's
|
||
value. If SYMBOL is buffer-local, its default value is what is set;
|
||
buffer-local values are not affected. If INITVALUE is missing,
|
||
SYMBOL's value is not set.
|
||
|
||
If SYMBOL is let-bound, then this form does not affect the local let
|
||
binding but the toplevel default binding instead, like
|
||
`set-toplevel-default-binding`.
|
||
(`defcustom' behaves similarly in this respect.)
|
||
|
||
The optional argument DOCSTRING is a documentation string for the
|
||
variable.
|
||
|
||
To define a user option, use `defcustom' instead of `defvar'.
|
||
|
||
To define a buffer-local variable, use `defvar-local'.
|
||
usage: (defvar SYMBOL &optional INITVALUE DOCSTRING) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object sym, tail;
|
||
|
||
sym = XCAR (args);
|
||
tail = XCDR (args);
|
||
|
||
CHECK_SYMBOL (sym);
|
||
|
||
if (!NILP (tail))
|
||
{
|
||
if (!NILP (XCDR (tail)) && !NILP (XCDR (XCDR (tail))))
|
||
error ("Too many arguments");
|
||
Lisp_Object exp = XCAR (tail);
|
||
tail = XCDR (tail);
|
||
return defvar (sym, exp, CAR (tail), true);
|
||
}
|
||
else if (!NILP (Vinternal_interpreter_environment)
|
||
&& (SYMBOLP (sym) && !XSYMBOL (sym)->u.s.declared_special))
|
||
/* A simple (defvar foo) with lexical scoping does "nothing" except
|
||
declare that var to be dynamically scoped *locally* (i.e. within
|
||
the current file or let-block). */
|
||
Vinternal_interpreter_environment
|
||
= Fcons (sym, Vinternal_interpreter_environment);
|
||
else
|
||
{
|
||
/* Simple (defvar <var>) should not count as a definition at all.
|
||
It could get in the way of other definitions, and unloading this
|
||
package could try to make the variable unbound. */
|
||
}
|
||
|
||
return sym;
|
||
}
|
||
|
||
DEFUN ("defvar-1", Fdefvar_1, Sdefvar_1, 2, 3, 0,
|
||
doc: /* Like `defvar' but as a function.
|
||
More specifically behaves like (defvar SYM 'INITVALUE DOCSTRING). */)
|
||
(Lisp_Object sym, Lisp_Object initvalue, Lisp_Object docstring)
|
||
{
|
||
return defvar (sym, initvalue, docstring, false);
|
||
}
|
||
|
||
DEFUN ("defconst", Fdefconst, Sdefconst, 2, UNEVALLED, 0,
|
||
doc: /* Define SYMBOL as a constant variable.
|
||
This declares that neither programs nor users should ever change the
|
||
value. This constancy is not actually enforced by Emacs Lisp, but
|
||
SYMBOL is marked as a special variable so that it is never lexically
|
||
bound.
|
||
|
||
The `defconst' form always sets the value of SYMBOL to the result of
|
||
evalling INITVALUE. If SYMBOL is buffer-local, its default value is
|
||
what is set; buffer-local values are not affected. If SYMBOL has a
|
||
local binding, then this form sets the local binding's value.
|
||
However, you should normally not make local bindings for variables
|
||
defined with this form.
|
||
|
||
The optional DOCSTRING specifies the variable's documentation string.
|
||
usage: (defconst SYMBOL INITVALUE [DOCSTRING]) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object sym, tem;
|
||
|
||
sym = XCAR (args);
|
||
CHECK_SYMBOL (sym);
|
||
Lisp_Object docstring = Qnil;
|
||
if (!NILP (XCDR (XCDR (args))))
|
||
{
|
||
if (!NILP (XCDR (XCDR (XCDR (args)))))
|
||
error ("Too many arguments");
|
||
docstring = XCAR (XCDR (XCDR (args)));
|
||
}
|
||
tem = eval_sub (XCAR (XCDR (args)));
|
||
return Fdefconst_1 (sym, tem, docstring);
|
||
}
|
||
|
||
DEFUN ("defconst-1", Fdefconst_1, Sdefconst_1, 2, 3, 0,
|
||
doc: /* Like `defconst' but as a function.
|
||
More specifically, behaves like (defconst SYM 'INITVALUE DOCSTRING). */)
|
||
(Lisp_Object sym, Lisp_Object initvalue, Lisp_Object docstring)
|
||
{
|
||
CHECK_SYMBOL (sym);
|
||
Lisp_Object tem = initvalue;
|
||
Finternal__define_uninitialized_variable (sym, docstring);
|
||
if (!NILP (Vpurify_flag))
|
||
tem = Fpurecopy (tem);
|
||
Fset_default (sym, tem); /* FIXME: set-default-toplevel-value? */
|
||
Fput (sym, Qrisky_local_variable, Qt); /* FIXME: Why? */
|
||
return sym;
|
||
}
|
||
|
||
/* Make SYMBOL lexically scoped. */
|
||
DEFUN ("internal-make-var-non-special", Fmake_var_non_special,
|
||
Smake_var_non_special, 1, 1, 0,
|
||
doc: /* Internal function. */)
|
||
(Lisp_Object symbol)
|
||
{
|
||
CHECK_SYMBOL (symbol);
|
||
XSYMBOL (symbol)->u.s.declared_special = false;
|
||
return Qnil;
|
||
}
|
||
|
||
|
||
DEFUN ("let*", FletX, SletX, 1, UNEVALLED, 0,
|
||
doc: /* Bind variables according to VARLIST then eval BODY.
|
||
The value of the last form in BODY is returned.
|
||
Each element of VARLIST is a symbol (which is bound to nil)
|
||
or a list (SYMBOL VALUEFORM) (which binds SYMBOL to the value of VALUEFORM).
|
||
Each VALUEFORM can refer to the symbols already bound by this VARLIST.
|
||
usage: (let* VARLIST BODY...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object var, val, elt, lexenv;
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
|
||
lexenv = Vinternal_interpreter_environment;
|
||
|
||
Lisp_Object varlist = XCAR (args);
|
||
FOR_EACH_TAIL (varlist)
|
||
{
|
||
elt = XCAR (varlist);
|
||
if (SYMBOLP (elt))
|
||
{
|
||
var = elt;
|
||
val = Qnil;
|
||
}
|
||
else
|
||
{
|
||
var = Fcar (elt);
|
||
if (! NILP (Fcdr (XCDR (elt))))
|
||
signal_error ("`let' bindings can have only one value-form", elt);
|
||
val = eval_sub (Fcar (XCDR (elt)));
|
||
}
|
||
|
||
if (!NILP (lexenv) && SYMBOLP (var)
|
||
&& !XSYMBOL (var)->u.s.declared_special
|
||
&& NILP (Fmemq (var, Vinternal_interpreter_environment)))
|
||
/* Lexically bind VAR by adding it to the interpreter's binding
|
||
alist. */
|
||
{
|
||
Lisp_Object newenv
|
||
= Fcons (Fcons (var, val), Vinternal_interpreter_environment);
|
||
if (EQ (Vinternal_interpreter_environment, lexenv))
|
||
/* Save the old lexical environment on the specpdl stack,
|
||
but only for the first lexical binding, since we'll never
|
||
need to revert to one of the intermediate ones. */
|
||
specbind (Qinternal_interpreter_environment, newenv);
|
||
else
|
||
Vinternal_interpreter_environment = newenv;
|
||
}
|
||
else
|
||
specbind (var, val);
|
||
}
|
||
CHECK_LIST_END (varlist, XCAR (args));
|
||
|
||
val = Fprogn (XCDR (args));
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
DEFUN ("let", Flet, Slet, 1, UNEVALLED, 0,
|
||
doc: /* Bind variables according to VARLIST then eval BODY.
|
||
The value of the last form in BODY is returned.
|
||
Each element of VARLIST is a symbol (which is bound to nil)
|
||
or a list (SYMBOL VALUEFORM) (which binds SYMBOL to the value of VALUEFORM).
|
||
All the VALUEFORMs are evalled before any symbols are bound.
|
||
usage: (let VARLIST BODY...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object *temps, tem, lexenv;
|
||
Lisp_Object elt;
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
ptrdiff_t argnum;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
Lisp_Object varlist = XCAR (args);
|
||
|
||
/* Make space to hold the values to give the bound variables. */
|
||
EMACS_INT varlist_len = list_length (varlist);
|
||
SAFE_ALLOCA_LISP (temps, varlist_len);
|
||
ptrdiff_t nvars = varlist_len;
|
||
|
||
/* Compute the values and store them in `temps'. */
|
||
|
||
for (argnum = 0; argnum < nvars && CONSP (varlist); argnum++)
|
||
{
|
||
maybe_quit ();
|
||
elt = XCAR (varlist);
|
||
varlist = XCDR (varlist);
|
||
if (SYMBOLP (elt))
|
||
temps[argnum] = Qnil;
|
||
else if (! NILP (Fcdr (Fcdr (elt))))
|
||
signal_error ("`let' bindings can have only one value-form", elt);
|
||
else
|
||
temps[argnum] = eval_sub (Fcar (Fcdr (elt)));
|
||
}
|
||
nvars = argnum;
|
||
|
||
lexenv = Vinternal_interpreter_environment;
|
||
|
||
varlist = XCAR (args);
|
||
for (argnum = 0; argnum < nvars && CONSP (varlist); argnum++)
|
||
{
|
||
Lisp_Object var;
|
||
|
||
elt = XCAR (varlist);
|
||
varlist = XCDR (varlist);
|
||
var = SYMBOLP (elt) ? elt : Fcar (elt);
|
||
tem = temps[argnum];
|
||
|
||
if (!NILP (lexenv) && SYMBOLP (var)
|
||
&& !XSYMBOL (var)->u.s.declared_special
|
||
&& NILP (Fmemq (var, Vinternal_interpreter_environment)))
|
||
/* Lexically bind VAR by adding it to the lexenv alist. */
|
||
lexenv = Fcons (Fcons (var, tem), lexenv);
|
||
else
|
||
/* Dynamically bind VAR. */
|
||
specbind (var, tem);
|
||
}
|
||
|
||
if (!EQ (lexenv, Vinternal_interpreter_environment))
|
||
/* Instantiate a new lexical environment. */
|
||
specbind (Qinternal_interpreter_environment, lexenv);
|
||
|
||
elt = Fprogn (XCDR (args));
|
||
return SAFE_FREE_UNBIND_TO (count, elt);
|
||
}
|
||
|
||
DEFUN ("while", Fwhile, Swhile, 1, UNEVALLED, 0,
|
||
doc: /* If TEST yields non-nil, eval BODY... and repeat.
|
||
The order of execution is thus TEST, BODY, TEST, BODY and so on
|
||
until TEST returns nil.
|
||
|
||
The value of a `while' form is always nil.
|
||
|
||
usage: (while TEST BODY...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object test, body;
|
||
|
||
test = XCAR (args);
|
||
body = XCDR (args);
|
||
while (!NILP (eval_sub (test)))
|
||
{
|
||
maybe_quit ();
|
||
prog_ignore (body);
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
static void
|
||
with_delayed_message_display (struct atimer *timer)
|
||
{
|
||
message3 (build_string (timer->client_data));
|
||
}
|
||
|
||
static void
|
||
with_delayed_message_cancel (void *timer)
|
||
{
|
||
xfree (((struct atimer *) timer)->client_data);
|
||
cancel_atimer (timer);
|
||
}
|
||
|
||
DEFUN ("funcall-with-delayed-message",
|
||
Ffuncall_with_delayed_message, Sfuncall_with_delayed_message,
|
||
3, 3, 0,
|
||
doc: /* Like `funcall', but display MESSAGE if FUNCTION takes longer than TIMEOUT.
|
||
TIMEOUT is a number of seconds, and can be an integer or a floating
|
||
point number.
|
||
|
||
If FUNCTION takes less time to execute than TIMEOUT seconds, MESSAGE
|
||
is not displayed. */)
|
||
(Lisp_Object timeout, Lisp_Object message, Lisp_Object function)
|
||
{
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
|
||
CHECK_NUMBER (timeout);
|
||
CHECK_STRING (message);
|
||
|
||
/* Set up the atimer. */
|
||
struct timespec interval = dtotimespec (XFLOATINT (timeout));
|
||
struct atimer *timer = start_atimer (ATIMER_RELATIVE, interval,
|
||
with_delayed_message_display,
|
||
xstrdup (SSDATA (message)));
|
||
record_unwind_protect_ptr (with_delayed_message_cancel, timer);
|
||
|
||
Lisp_Object result = CALLN (Ffuncall, function);
|
||
|
||
return unbind_to (count, result);
|
||
}
|
||
|
||
DEFUN ("macroexpand", Fmacroexpand, Smacroexpand, 1, 2, 0,
|
||
doc: /* Return result of expanding macros at top level of FORM.
|
||
If FORM is not a macro call, it is returned unchanged.
|
||
Otherwise, the macro is expanded and the expansion is considered
|
||
in place of FORM. When a non-macro-call results, it is returned.
|
||
|
||
The second optional arg ENVIRONMENT specifies an environment of macro
|
||
definitions to shadow the loaded ones for use in file byte-compilation. */)
|
||
(Lisp_Object form, Lisp_Object environment)
|
||
{
|
||
/* With cleanups from Hallvard Furuseth. */
|
||
register Lisp_Object expander, sym, def, tem;
|
||
|
||
while (1)
|
||
{
|
||
/* Come back here each time we expand a macro call,
|
||
in case it expands into another macro call. */
|
||
if (!CONSP (form))
|
||
break;
|
||
/* Set SYM, give DEF and TEM right values in case SYM is not a symbol. */
|
||
def = sym = XCAR (form);
|
||
tem = Qnil;
|
||
/* Trace symbols aliases to other symbols
|
||
until we get a symbol that is not an alias. */
|
||
while (SYMBOLP (def))
|
||
{
|
||
maybe_quit ();
|
||
sym = def;
|
||
tem = Fassq (sym, environment);
|
||
if (NILP (tem))
|
||
{
|
||
def = XSYMBOL (sym)->u.s.function;
|
||
if (!NILP (def))
|
||
continue;
|
||
}
|
||
break;
|
||
}
|
||
/* Right now TEM is the result from SYM in ENVIRONMENT,
|
||
and if TEM is nil then DEF is SYM's function definition. */
|
||
if (NILP (tem))
|
||
{
|
||
/* SYM is not mentioned in ENVIRONMENT.
|
||
Look at its function definition. */
|
||
def = Fautoload_do_load (def, sym, Qmacro);
|
||
if (!CONSP (def))
|
||
/* Not defined or definition not suitable. */
|
||
break;
|
||
if (!EQ (XCAR (def), Qmacro))
|
||
break;
|
||
else expander = XCDR (def);
|
||
}
|
||
else
|
||
{
|
||
expander = XCDR (tem);
|
||
if (NILP (expander))
|
||
break;
|
||
}
|
||
{
|
||
Lisp_Object newform = apply1 (expander, XCDR (form));
|
||
if (EQ (form, newform))
|
||
break;
|
||
else
|
||
form = newform;
|
||
}
|
||
}
|
||
return form;
|
||
}
|
||
|
||
DEFUN ("catch", Fcatch, Scatch, 1, UNEVALLED, 0,
|
||
doc: /* Eval BODY allowing nonlocal exits using `throw'.
|
||
TAG is evalled to get the tag to use; it must not be nil.
|
||
|
||
Then the BODY is executed.
|
||
Within BODY, a call to `throw' with the same TAG exits BODY and this `catch'.
|
||
If no throw happens, `catch' returns the value of the last BODY form.
|
||
If a throw happens, it specifies the value to return from `catch'.
|
||
usage: (catch TAG BODY...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object tag = eval_sub (XCAR (args));
|
||
return internal_catch (tag, Fprogn, XCDR (args));
|
||
}
|
||
|
||
/* Assert that E is true, but do not evaluate E. Use this instead of
|
||
eassert (E) when E contains variables that might be clobbered by a
|
||
longjmp. */
|
||
|
||
#define clobbered_eassert(E) verify (sizeof (E) != 0)
|
||
|
||
/* Set up a catch, then call C function FUNC on argument ARG.
|
||
FUNC should return a Lisp_Object.
|
||
This is how catches are done from within C code. */
|
||
|
||
Lisp_Object
|
||
internal_catch (Lisp_Object tag,
|
||
Lisp_Object (*func) (Lisp_Object), Lisp_Object arg)
|
||
{
|
||
/* This structure is made part of the chain `catchlist'. */
|
||
struct handler *c = push_handler (tag, CATCHER);
|
||
|
||
/* Call FUNC. */
|
||
if (! sys_setjmp (c->jmp))
|
||
{
|
||
Lisp_Object val = func (arg);
|
||
eassert (handlerlist == c);
|
||
handlerlist = c->next;
|
||
return val;
|
||
}
|
||
else
|
||
{ /* Throw works by a longjmp that comes right here. */
|
||
Lisp_Object val = handlerlist->val;
|
||
clobbered_eassert (handlerlist == c);
|
||
handlerlist = handlerlist->next;
|
||
return val;
|
||
}
|
||
}
|
||
|
||
/* Unwind the specbind, catch, and handler stacks back to CATCH, and
|
||
jump to that CATCH, returning VALUE as the value of that catch.
|
||
|
||
This is the guts of Fthrow and Fsignal; they differ only in the way
|
||
they choose the catch tag to throw to. A catch tag for a
|
||
condition-case form has a TAG of Qnil.
|
||
|
||
Before each catch is discarded, unbind all special bindings and
|
||
execute all unwind-protect clauses made above that catch. Unwind
|
||
the handler stack as we go, so that the proper handlers are in
|
||
effect for each unwind-protect clause we run. At the end, restore
|
||
some static info saved in CATCH, and longjmp to the location
|
||
specified there.
|
||
|
||
This is used for correct unwinding in Fthrow and Fsignal. */
|
||
|
||
static AVOID
|
||
unwind_to_catch (struct handler *catch, enum nonlocal_exit type,
|
||
Lisp_Object value)
|
||
{
|
||
bool last_time;
|
||
|
||
eassert (catch->next);
|
||
|
||
/* Save the value in the tag. */
|
||
catch->nonlocal_exit = type;
|
||
catch->val = value;
|
||
|
||
/* Restore certain special C variables. */
|
||
set_poll_suppress_count (catch->poll_suppress_count);
|
||
unblock_input_to (catch->interrupt_input_blocked);
|
||
|
||
#ifdef HAVE_X_WINDOWS
|
||
/* Restore the X error handler stack. This is important because
|
||
otherwise a display disconnect won't unwind the stack of error
|
||
traps to the right depth. */
|
||
x_unwind_errors_to (catch->x_error_handler_depth);
|
||
#endif
|
||
|
||
do
|
||
{
|
||
/* Unwind the specpdl stack, and then restore the proper set of
|
||
handlers. */
|
||
unbind_to (handlerlist->pdlcount, Qnil);
|
||
last_time = handlerlist == catch;
|
||
if (! last_time)
|
||
handlerlist = handlerlist->next;
|
||
}
|
||
while (! last_time);
|
||
|
||
eassert (handlerlist == catch);
|
||
|
||
lisp_eval_depth = catch->f_lisp_eval_depth;
|
||
set_act_rec (current_thread, catch->act_rec);
|
||
|
||
sys_longjmp (catch->jmp, 1);
|
||
}
|
||
|
||
DEFUN ("throw", Fthrow, Sthrow, 2, 2, 0,
|
||
doc: /* Throw to the catch for TAG and return VALUE from it.
|
||
Both TAG and VALUE are evalled. */
|
||
attributes: noreturn)
|
||
(register Lisp_Object tag, Lisp_Object value)
|
||
{
|
||
struct handler *c;
|
||
|
||
if (!NILP (tag))
|
||
for (c = handlerlist; c; c = c->next)
|
||
{
|
||
if (c->type == CATCHER_ALL)
|
||
unwind_to_catch (c, NONLOCAL_EXIT_THROW, Fcons (tag, value));
|
||
if (c->type == CATCHER && EQ (c->tag_or_ch, tag))
|
||
unwind_to_catch (c, NONLOCAL_EXIT_THROW, value);
|
||
}
|
||
xsignal2 (Qno_catch, tag, value);
|
||
}
|
||
|
||
|
||
DEFUN ("unwind-protect", Funwind_protect, Sunwind_protect, 1, UNEVALLED, 0,
|
||
doc: /* Do BODYFORM, protecting with UNWINDFORMS.
|
||
If BODYFORM completes normally, its value is returned
|
||
after executing the UNWINDFORMS.
|
||
If BODYFORM exits nonlocally, the UNWINDFORMS are executed anyway.
|
||
usage: (unwind-protect BODYFORM UNWINDFORMS...) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object val;
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
|
||
record_unwind_protect (prog_ignore, XCDR (args));
|
||
val = eval_sub (XCAR (args));
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
DEFUN ("condition-case", Fcondition_case, Scondition_case, 2, UNEVALLED, 0,
|
||
doc: /* Regain control when an error is signaled.
|
||
Executes BODYFORM and returns its value if no error happens.
|
||
Each element of HANDLERS looks like (CONDITION-NAME BODY...)
|
||
or (:success BODY...), where the BODY is made of Lisp expressions.
|
||
|
||
A handler is applicable to an error if CONDITION-NAME is one of the
|
||
error's condition names. Handlers may also apply when non-error
|
||
symbols are signaled (e.g., `quit'). A CONDITION-NAME of t applies to
|
||
any symbol, including non-error symbols. If multiple handlers are
|
||
applicable, only the first one runs.
|
||
|
||
The car of a handler may be a list of condition names instead of a
|
||
single condition name; then it handles all of them. If the special
|
||
condition name `debug' is present in this list, it allows another
|
||
condition in the list to run the debugger if `debug-on-error' and the
|
||
other usual mechanisms say it should (otherwise, `condition-case'
|
||
suppresses the debugger).
|
||
|
||
When a handler handles an error, control returns to the `condition-case'
|
||
and it executes the handler's BODY...
|
||
with VAR bound to (ERROR-SYMBOL . SIGNAL-DATA) from the error.
|
||
\(If VAR is nil, the handler can't access that information.)
|
||
Then the value of the last BODY form is returned from the `condition-case'
|
||
expression.
|
||
|
||
The special handler (:success BODY...) is invoked if BODYFORM terminated
|
||
without signaling an error. BODY is then evaluated with VAR bound to
|
||
the value returned by BODYFORM.
|
||
|
||
See also the function `signal' for more info.
|
||
usage: (condition-case VAR BODYFORM &rest HANDLERS) */)
|
||
(Lisp_Object args)
|
||
{
|
||
Lisp_Object var = XCAR (args);
|
||
Lisp_Object bodyform = XCAR (XCDR (args));
|
||
Lisp_Object handlers = XCDR (XCDR (args));
|
||
|
||
return internal_lisp_condition_case (var, bodyform, handlers);
|
||
}
|
||
|
||
/* Like Fcondition_case, but the args are separate
|
||
rather than passed in a list. Used by Fbyte_code. */
|
||
|
||
Lisp_Object
|
||
internal_lisp_condition_case (Lisp_Object var, Lisp_Object bodyform,
|
||
Lisp_Object handlers)
|
||
{
|
||
struct handler *oldhandlerlist = handlerlist;
|
||
ptrdiff_t CACHEABLE clausenb = 0;
|
||
|
||
CHECK_SYMBOL (var);
|
||
|
||
Lisp_Object success_handler = Qnil;
|
||
|
||
for (Lisp_Object tail = handlers; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
Lisp_Object tem = XCAR (tail);
|
||
if (! (NILP (tem)
|
||
|| (CONSP (tem)
|
||
&& (SYMBOLP (XCAR (tem))
|
||
|| CONSP (XCAR (tem))))))
|
||
error ("Invalid condition handler: %s",
|
||
SDATA (Fprin1_to_string (tem, Qt, Qnil)));
|
||
if (CONSP (tem) && EQ (XCAR (tem), QCsuccess))
|
||
success_handler = tem;
|
||
else
|
||
clausenb++;
|
||
}
|
||
|
||
/* The first clause is the one that should be checked first, so it
|
||
should be added to handlerlist last. So build in CLAUSES a table
|
||
that contains HANDLERS but in reverse order. CLAUSES is pointer
|
||
to volatile to avoid issues with setjmp and local storage.
|
||
SAFE_ALLOCA won't work here due to the setjmp, so impose a
|
||
MAX_ALLOCA limit. */
|
||
if (MAX_ALLOCA / word_size < clausenb)
|
||
memory_full (SIZE_MAX);
|
||
Lisp_Object volatile *clauses = alloca (clausenb * sizeof *clauses);
|
||
clauses += clausenb;
|
||
for (Lisp_Object tail = handlers; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
Lisp_Object tem = XCAR (tail);
|
||
if (!(CONSP (tem) && EQ (XCAR (tem), QCsuccess)))
|
||
*--clauses = tem;
|
||
}
|
||
for (ptrdiff_t i = 0; i < clausenb; i++)
|
||
{
|
||
Lisp_Object clause = clauses[i];
|
||
Lisp_Object condition = CONSP (clause) ? XCAR (clause) : Qnil;
|
||
if (!CONSP (condition))
|
||
condition = list1 (condition);
|
||
struct handler *c = push_handler (condition, CONDITION_CASE);
|
||
if (sys_setjmp (c->jmp))
|
||
{
|
||
Lisp_Object val = handlerlist->val;
|
||
Lisp_Object volatile *chosen_clause = clauses;
|
||
for (struct handler *h = handlerlist->next; h != oldhandlerlist;
|
||
h = h->next)
|
||
chosen_clause++;
|
||
Lisp_Object handler_body = XCDR (*chosen_clause);
|
||
handlerlist = oldhandlerlist;
|
||
|
||
if (NILP (var))
|
||
return Fprogn (handler_body);
|
||
|
||
Lisp_Object handler_var = var;
|
||
if (!NILP (Vinternal_interpreter_environment))
|
||
{
|
||
val = Fcons (Fcons (var, val),
|
||
Vinternal_interpreter_environment);
|
||
handler_var = Qinternal_interpreter_environment;
|
||
}
|
||
|
||
/* Bind HANDLER_VAR to VAL while evaluating HANDLER_BODY.
|
||
The unbind_to undoes just this binding; whoever longjumped
|
||
to us unwound the stack to C->pdlcount before throwing. */
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
specbind (handler_var, val);
|
||
return unbind_to (count, Fprogn (handler_body));
|
||
}
|
||
}
|
||
|
||
Lisp_Object CACHEABLE result = eval_sub (bodyform);
|
||
handlerlist = oldhandlerlist;
|
||
if (!NILP (success_handler))
|
||
{
|
||
if (NILP (var))
|
||
return Fprogn (XCDR (success_handler));
|
||
|
||
Lisp_Object handler_var = var;
|
||
if (!NILP (Vinternal_interpreter_environment))
|
||
{
|
||
result = Fcons (Fcons (var, result),
|
||
Vinternal_interpreter_environment);
|
||
handler_var = Qinternal_interpreter_environment;
|
||
}
|
||
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
specbind (handler_var, result);
|
||
return unbind_to (count, Fprogn (XCDR (success_handler)));
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* Call the function BFUN with no arguments, catching errors within it
|
||
according to HANDLERS. If there is an error, call HFUN with
|
||
one argument which is the data that describes the error:
|
||
(SIGNALNAME . DATA)
|
||
|
||
HANDLERS can be a list of conditions to catch.
|
||
If HANDLERS is Qt, catch all errors.
|
||
If HANDLERS is Qerror, catch all errors
|
||
but allow the debugger to run if that is enabled. */
|
||
|
||
Lisp_Object
|
||
internal_condition_case (Lisp_Object (*bfun) (void), Lisp_Object handlers,
|
||
Lisp_Object (*hfun) (Lisp_Object))
|
||
{
|
||
struct handler *c = push_handler (handlers, CONDITION_CASE);
|
||
if (sys_setjmp (c->jmp))
|
||
{
|
||
Lisp_Object val = handlerlist->val;
|
||
clobbered_eassert (handlerlist == c);
|
||
handlerlist = handlerlist->next;
|
||
return hfun (val);
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object val = bfun ();
|
||
eassert (handlerlist == c);
|
||
handlerlist = c->next;
|
||
return val;
|
||
}
|
||
}
|
||
|
||
/* Like internal_condition_case but call BFUN with ARG as its argument. */
|
||
|
||
Lisp_Object
|
||
internal_condition_case_1 (Lisp_Object (*bfun) (Lisp_Object), Lisp_Object arg,
|
||
Lisp_Object handlers,
|
||
Lisp_Object (*hfun) (Lisp_Object))
|
||
{
|
||
struct handler *c = push_handler (handlers, CONDITION_CASE);
|
||
if (sys_setjmp (c->jmp))
|
||
{
|
||
Lisp_Object val = handlerlist->val;
|
||
clobbered_eassert (handlerlist == c);
|
||
handlerlist = handlerlist->next;
|
||
return hfun (val);
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object val = bfun (arg);
|
||
eassert (handlerlist == c);
|
||
handlerlist = c->next;
|
||
return val;
|
||
}
|
||
}
|
||
|
||
/* Like internal_condition_case_1 but call BFUN with ARG1 and ARG2 as
|
||
its arguments. */
|
||
|
||
Lisp_Object
|
||
internal_condition_case_2 (Lisp_Object (*bfun) (Lisp_Object, Lisp_Object),
|
||
Lisp_Object arg1,
|
||
Lisp_Object arg2,
|
||
Lisp_Object handlers,
|
||
Lisp_Object (*hfun) (Lisp_Object))
|
||
{
|
||
struct handler *c = push_handler (handlers, CONDITION_CASE);
|
||
if (sys_setjmp (c->jmp))
|
||
{
|
||
Lisp_Object val = handlerlist->val;
|
||
clobbered_eassert (handlerlist == c);
|
||
handlerlist = handlerlist->next;
|
||
return hfun (val);
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object val = bfun (arg1, arg2);
|
||
eassert (handlerlist == c);
|
||
handlerlist = c->next;
|
||
return val;
|
||
}
|
||
}
|
||
|
||
/* Like internal_condition_case but call BFUN with NARGS as first,
|
||
and ARGS as second argument. */
|
||
|
||
Lisp_Object
|
||
internal_condition_case_n (Lisp_Object (*bfun) (ptrdiff_t, Lisp_Object *),
|
||
ptrdiff_t nargs,
|
||
Lisp_Object *args,
|
||
Lisp_Object handlers,
|
||
Lisp_Object (*hfun) (Lisp_Object err,
|
||
ptrdiff_t nargs,
|
||
Lisp_Object *args))
|
||
{
|
||
struct handler *old_deep = redisplay_deep_handler;
|
||
struct handler *c = push_handler (handlers, CONDITION_CASE);
|
||
if (redisplaying_p)
|
||
redisplay_deep_handler = c;
|
||
if (sys_setjmp (c->jmp))
|
||
{
|
||
Lisp_Object val = handlerlist->val;
|
||
clobbered_eassert (handlerlist == c);
|
||
handlerlist = handlerlist->next;
|
||
redisplay_deep_handler = old_deep;
|
||
return hfun (val, nargs, args);
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object val = bfun (nargs, args);
|
||
eassert (handlerlist == c);
|
||
handlerlist = c->next;
|
||
redisplay_deep_handler = old_deep;
|
||
return val;
|
||
}
|
||
}
|
||
|
||
static Lisp_Object Qcatch_all_memory_full;
|
||
|
||
/* Like a combination of internal_condition_case_1 and internal_catch.
|
||
Catches all signals and throws. Never exits nonlocally; returns
|
||
Qcatch_all_memory_full if no handler could be allocated. */
|
||
|
||
Lisp_Object
|
||
internal_catch_all (Lisp_Object (*function) (void *), void *argument,
|
||
Lisp_Object (*handler) (enum nonlocal_exit, Lisp_Object))
|
||
{
|
||
struct handler *c = push_handler_nosignal (Qt, CATCHER_ALL);
|
||
if (c == NULL)
|
||
return Qcatch_all_memory_full;
|
||
|
||
if (sys_setjmp (c->jmp) == 0)
|
||
{
|
||
Lisp_Object val = function (argument);
|
||
eassert (handlerlist == c);
|
||
handlerlist = c->next;
|
||
return val;
|
||
}
|
||
else
|
||
{
|
||
eassert (handlerlist == c);
|
||
enum nonlocal_exit type = c->nonlocal_exit;
|
||
Lisp_Object val = c->val;
|
||
handlerlist = c->next;
|
||
return handler (type, val);
|
||
}
|
||
}
|
||
|
||
struct handler *
|
||
push_handler (Lisp_Object tag_ch_val, enum handlertype handlertype)
|
||
{
|
||
struct handler *c = push_handler_nosignal (tag_ch_val, handlertype);
|
||
if (!c)
|
||
memory_full (sizeof *c);
|
||
return c;
|
||
}
|
||
|
||
struct handler *
|
||
push_handler_nosignal (Lisp_Object tag_ch_val, enum handlertype handlertype)
|
||
{
|
||
struct handler *CACHEABLE c = handlerlist->nextfree;
|
||
if (!c)
|
||
{
|
||
c = malloc (sizeof *c);
|
||
if (!c)
|
||
return c;
|
||
if (profiler_memory_running)
|
||
malloc_probe (sizeof *c);
|
||
c->nextfree = NULL;
|
||
handlerlist->nextfree = c;
|
||
}
|
||
c->type = handlertype;
|
||
c->tag_or_ch = tag_ch_val;
|
||
c->val = Qnil;
|
||
c->next = handlerlist;
|
||
c->f_lisp_eval_depth = lisp_eval_depth;
|
||
c->pdlcount = SPECPDL_INDEX ();
|
||
c->act_rec = get_act_rec (current_thread);
|
||
c->poll_suppress_count = poll_suppress_count;
|
||
c->interrupt_input_blocked = interrupt_input_blocked;
|
||
#ifdef HAVE_X_WINDOWS
|
||
c->x_error_handler_depth = x_error_message_count;
|
||
#endif
|
||
handlerlist = c;
|
||
return c;
|
||
}
|
||
|
||
|
||
static Lisp_Object signal_or_quit (Lisp_Object, Lisp_Object, bool);
|
||
static Lisp_Object find_handler_clause (Lisp_Object, Lisp_Object);
|
||
static bool maybe_call_debugger (Lisp_Object conditions, Lisp_Object sig,
|
||
Lisp_Object data);
|
||
|
||
static void
|
||
process_quit_flag (void)
|
||
{
|
||
Lisp_Object flag = Vquit_flag;
|
||
Vquit_flag = Qnil;
|
||
if (EQ (flag, Qkill_emacs))
|
||
Fkill_emacs (Qnil, Qnil);
|
||
if (EQ (Vthrow_on_input, flag))
|
||
Fthrow (Vthrow_on_input, Qt);
|
||
quit ();
|
||
}
|
||
|
||
void
|
||
probably_quit (void)
|
||
{
|
||
specpdl_ref gc_count = inhibit_garbage_collection ();
|
||
if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
|
||
process_quit_flag ();
|
||
else if (pending_signals)
|
||
process_pending_signals ();
|
||
unbind_to (gc_count, Qnil);
|
||
}
|
||
|
||
DEFUN ("signal", Fsignal, Ssignal, 2, 2, 0,
|
||
doc: /* Signal an error. Args are ERROR-SYMBOL and associated DATA.
|
||
This function does not return.
|
||
|
||
An error symbol is a symbol with an `error-conditions' property
|
||
that is a list of condition names. The symbol should be non-nil.
|
||
A handler for any of those names will get to handle this signal.
|
||
The symbol `error' should normally be one of them.
|
||
|
||
DATA should be a list. Its elements are printed as part of the error message.
|
||
See Info anchor `(elisp)Definition of signal' for some details on how this
|
||
error message is constructed.
|
||
If the signal is handled, DATA is made available to the handler.
|
||
See also the function `condition-case'. */
|
||
attributes: noreturn)
|
||
(Lisp_Object error_symbol, Lisp_Object data)
|
||
{
|
||
/* If they call us with nonsensical arguments, produce "peculiar error". */
|
||
if (NILP (error_symbol) && NILP (data))
|
||
error_symbol = Qerror;
|
||
signal_or_quit (error_symbol, data, false);
|
||
eassume (false);
|
||
}
|
||
|
||
/* Quit, in response to a keyboard quit request. */
|
||
Lisp_Object
|
||
quit (void)
|
||
{
|
||
return signal_or_quit (Qquit, Qnil, true);
|
||
}
|
||
|
||
/* Has an error in redisplay giving rise to a backtrace occurred as
|
||
yet in the current command? This gets reset in the command
|
||
loop. */
|
||
bool backtrace_yet = false;
|
||
|
||
/* Signal an error, or quit. ERROR_SYMBOL and DATA are as with Fsignal.
|
||
If KEYBOARD_QUIT, this is a quit; ERROR_SYMBOL should be
|
||
Qquit and DATA should be Qnil, and this function may return.
|
||
Otherwise this function is like Fsignal and does not return. */
|
||
|
||
static Lisp_Object
|
||
signal_or_quit (Lisp_Object error_symbol, Lisp_Object data, bool keyboard_quit)
|
||
{
|
||
/* When memory is full, ERROR-SYMBOL is nil,
|
||
and DATA is (REAL-ERROR-SYMBOL . REAL-DATA).
|
||
That is a special case--don't do this in other situations. */
|
||
Lisp_Object conditions;
|
||
Lisp_Object string;
|
||
Lisp_Object real_error_symbol
|
||
= (NILP (error_symbol) ? Fcar (data) : error_symbol);
|
||
Lisp_Object clause = Qnil;
|
||
struct handler *h;
|
||
|
||
if (gc_in_progress || waiting_for_input)
|
||
emacs_abort ();
|
||
|
||
#if 0 /* rms: I don't know why this was here,
|
||
but it is surely wrong for an error that is handled. */
|
||
#ifdef HAVE_WINDOW_SYSTEM
|
||
if (display_hourglass_p)
|
||
cancel_hourglass ();
|
||
#endif
|
||
#endif
|
||
|
||
/* This hook is used by edebug. */
|
||
if (! NILP (Vsignal_hook_function)
|
||
&& ! NILP (error_symbol)
|
||
/* Don't try to call a lisp function if we've already overflowed
|
||
the specpdl stack. */
|
||
&& specpdl_ptr < specpdl_end)
|
||
{
|
||
/* Edebug takes care of restoring these variables when it exits. */
|
||
max_ensure_room (&max_lisp_eval_depth, lisp_eval_depth, 20);
|
||
|
||
call2 (Vsignal_hook_function, error_symbol, data);
|
||
}
|
||
|
||
conditions = Fget (real_error_symbol, Qerror_conditions);
|
||
|
||
/* Remember from where signal was called. Skip over the frame for
|
||
`signal' itself. If a frame for `error' follows, skip that,
|
||
too. Don't do this when ERROR_SYMBOL is nil, because that
|
||
is a memory-full error. */
|
||
Vsignaling_function = Qnil;
|
||
if (!NILP (error_symbol))
|
||
{
|
||
union specbinding *pdl = backtrace_next (backtrace_top ());
|
||
if (backtrace_p (pdl) && EQ (backtrace_function (pdl), Qerror))
|
||
pdl = backtrace_next (pdl);
|
||
if (backtrace_p (pdl))
|
||
Vsignaling_function = backtrace_function (pdl);
|
||
}
|
||
|
||
for (h = handlerlist; h; h = h->next)
|
||
{
|
||
if (h->type == CATCHER_ALL)
|
||
{
|
||
clause = Qt;
|
||
break;
|
||
}
|
||
if (h->type != CONDITION_CASE)
|
||
continue;
|
||
clause = find_handler_clause (h->tag_or_ch, conditions);
|
||
if (!NILP (clause))
|
||
break;
|
||
}
|
||
|
||
bool debugger_called = false;
|
||
if (/* Don't run the debugger for a memory-full error.
|
||
(There is no room in memory to do that!) */
|
||
!NILP (error_symbol)
|
||
&& (!NILP (Vdebug_on_signal)
|
||
/* If no handler is present now, try to run the debugger. */
|
||
|| NILP (clause)
|
||
/* A `debug' symbol in the handler list disables the normal
|
||
suppression of the debugger. */
|
||
|| (CONSP (clause) && !NILP (Fmemq (Qdebug, clause)))
|
||
/* Special handler that means "print a message and run debugger
|
||
if requested". */
|
||
|| EQ (h->tag_or_ch, Qerror)))
|
||
{
|
||
debugger_called
|
||
= maybe_call_debugger (conditions, error_symbol, data);
|
||
/* We can't return values to code which signaled an error, but we
|
||
can continue code which has signaled a quit. */
|
||
if (keyboard_quit && debugger_called && EQ (real_error_symbol, Qquit))
|
||
return Qnil;
|
||
}
|
||
|
||
/* If we're in batch mode, print a backtrace unconditionally to help
|
||
with debugging. Make sure to use `debug-early' unconditionally
|
||
to not interfere with ERT or other packages that install custom
|
||
debuggers. */
|
||
if (!debugger_called && !NILP (error_symbol)
|
||
&& (NILP (clause) || EQ (h->tag_or_ch, Qerror))
|
||
&& noninteractive && backtrace_on_error_noninteractive
|
||
&& NILP (Vinhibit_debugger)
|
||
&& !NILP (Ffboundp (Qdebug_early)))
|
||
{
|
||
max_ensure_room (&max_lisp_eval_depth, lisp_eval_depth, 100);
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
specbind (Qdebugger, Qdebug_early);
|
||
call_debugger (list2 (Qerror, Fcons (error_symbol, data)));
|
||
unbind_to (count, Qnil);
|
||
}
|
||
|
||
/* If an error is signaled during a Lisp hook in redisplay, write a
|
||
backtrace into the buffer *Redisplay-trace*. */
|
||
if (!debugger_called && !NILP (error_symbol)
|
||
&& backtrace_on_redisplay_error
|
||
&& (NILP (clause) || h == redisplay_deep_handler)
|
||
&& NILP (Vinhibit_debugger)
|
||
&& !NILP (Ffboundp (Qdebug_early)))
|
||
{
|
||
max_ensure_room (&max_lisp_eval_depth, lisp_eval_depth, 100);
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
AUTO_STRING (redisplay_trace, "*Redisplay_trace*");
|
||
Lisp_Object redisplay_trace_buffer;
|
||
AUTO_STRING (gap, "\n\n\n\n"); /* Separates things in *Redisplay-trace* */
|
||
Lisp_Object delayed_warning;
|
||
redisplay_trace_buffer = Fget_buffer_create (redisplay_trace, Qnil);
|
||
current_buffer = XBUFFER (redisplay_trace_buffer);
|
||
if (!backtrace_yet) /* Are we on the first backtrace of the command? */
|
||
Ferase_buffer ();
|
||
else
|
||
Finsert (1, &gap);
|
||
backtrace_yet = true;
|
||
specbind (Qstandard_output, redisplay_trace_buffer);
|
||
specbind (Qdebugger, Qdebug_early);
|
||
call_debugger (list2 (Qerror, Fcons (error_symbol, data)));
|
||
unbind_to (count, Qnil);
|
||
delayed_warning = make_string
|
||
("Error in a redisplay Lisp hook. See buffer *Redisplay_trace*", 61);
|
||
|
||
Vdelayed_warnings_list = Fcons (list2 (Qerror, delayed_warning),
|
||
Vdelayed_warnings_list);
|
||
}
|
||
|
||
if (!NILP (clause))
|
||
{
|
||
Lisp_Object unwind_data
|
||
= (NILP (error_symbol) ? data : Fcons (error_symbol, data));
|
||
|
||
unwind_to_catch (h, NONLOCAL_EXIT_SIGNAL, unwind_data);
|
||
}
|
||
else
|
||
{
|
||
if (handlerlist != handlerlist_sentinel)
|
||
/* FIXME: This will come right back here if there's no `top-level'
|
||
catcher. A better solution would be to abort here, and instead
|
||
add a catch-all condition handler so we never come here. */
|
||
Fthrow (Qtop_level, Qt);
|
||
}
|
||
|
||
if (! NILP (error_symbol))
|
||
data = Fcons (error_symbol, data);
|
||
|
||
string = Ferror_message_string (data);
|
||
fatal ("%s", SDATA (string));
|
||
}
|
||
|
||
/* Like xsignal, but takes 0, 1, 2, or 3 args instead of a list. */
|
||
|
||
void
|
||
xsignal0 (Lisp_Object error_symbol)
|
||
{
|
||
xsignal (error_symbol, Qnil);
|
||
}
|
||
|
||
void
|
||
xsignal1 (Lisp_Object error_symbol, Lisp_Object arg)
|
||
{
|
||
xsignal (error_symbol, list1 (arg));
|
||
}
|
||
|
||
void
|
||
xsignal2 (Lisp_Object error_symbol, Lisp_Object arg1, Lisp_Object arg2)
|
||
{
|
||
xsignal (error_symbol, list2 (arg1, arg2));
|
||
}
|
||
|
||
void
|
||
xsignal3 (Lisp_Object error_symbol, Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
|
||
{
|
||
xsignal (error_symbol, list3 (arg1, arg2, arg3));
|
||
}
|
||
|
||
/* Signal `error' with message S, and additional arg ARG.
|
||
If ARG is not a proper list, make it a one-element list. */
|
||
|
||
void
|
||
signal_error (const char *s, Lisp_Object arg)
|
||
{
|
||
if (NILP (Fproper_list_p (arg)))
|
||
arg = list1 (arg);
|
||
|
||
xsignal (Qerror, Fcons (build_string (s), arg));
|
||
}
|
||
|
||
void
|
||
define_error (Lisp_Object name, const char *message, Lisp_Object parent)
|
||
{
|
||
eassert (SYMBOLP (name));
|
||
eassert (SYMBOLP (parent));
|
||
Lisp_Object parent_conditions = Fget (parent, Qerror_conditions);
|
||
eassert (CONSP (parent_conditions));
|
||
eassert (!NILP (Fmemq (parent, parent_conditions)));
|
||
eassert (NILP (Fmemq (name, parent_conditions)));
|
||
Fput (name, Qerror_conditions, pure_cons (name, parent_conditions));
|
||
Fput (name, Qerror_message, build_pure_c_string (message));
|
||
}
|
||
|
||
/* Use this for arithmetic overflow, e.g., when an integer result is
|
||
too large even for a bignum. */
|
||
void
|
||
overflow_error (void)
|
||
{
|
||
xsignal0 (Qoverflow_error);
|
||
}
|
||
|
||
|
||
/* Return true if LIST is a non-nil atom or
|
||
a list containing one of CONDITIONS. */
|
||
|
||
static bool
|
||
wants_debugger (Lisp_Object list, Lisp_Object conditions)
|
||
{
|
||
if (NILP (list))
|
||
return 0;
|
||
if (! CONSP (list))
|
||
return 1;
|
||
|
||
while (CONSP (conditions))
|
||
{
|
||
Lisp_Object this, tail;
|
||
this = XCAR (conditions);
|
||
for (tail = list; CONSP (tail); tail = XCDR (tail))
|
||
if (EQ (XCAR (tail), this))
|
||
return 1;
|
||
conditions = XCDR (conditions);
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/* Return true if an error with condition-symbols CONDITIONS,
|
||
and described by SIGNAL-DATA, should skip the debugger
|
||
according to debugger-ignored-errors. */
|
||
|
||
static bool
|
||
skip_debugger (Lisp_Object conditions, Lisp_Object data)
|
||
{
|
||
Lisp_Object tail;
|
||
bool first_string = 1;
|
||
Lisp_Object error_message;
|
||
|
||
error_message = Qnil;
|
||
for (tail = Vdebug_ignored_errors; CONSP (tail); tail = XCDR (tail))
|
||
{
|
||
if (STRINGP (XCAR (tail)))
|
||
{
|
||
if (first_string)
|
||
{
|
||
error_message = Ferror_message_string (data);
|
||
first_string = 0;
|
||
}
|
||
|
||
if (fast_string_match (XCAR (tail), error_message) >= 0)
|
||
return 1;
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object contail;
|
||
|
||
for (contail = conditions; CONSP (contail); contail = XCDR (contail))
|
||
if (EQ (XCAR (tail), XCAR (contail)))
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
/* Say whether SIGNAL is a `quit' symbol (or inherits from it). */
|
||
bool
|
||
signal_quit_p (Lisp_Object signal)
|
||
{
|
||
Lisp_Object list;
|
||
|
||
return EQ (signal, Qquit)
|
||
|| (!NILP (Fsymbolp (signal))
|
||
&& CONSP (list = Fget (signal, Qerror_conditions))
|
||
&& !NILP (Fmemq (Qquit, list)));
|
||
}
|
||
|
||
/* Call the debugger if calling it is currently enabled for CONDITIONS.
|
||
SIG and DATA describe the signal. There are two ways to pass them:
|
||
= SIG is the error symbol, and DATA is the rest of the data.
|
||
= SIG is nil, and DATA is (SYMBOL . REST-OF-DATA).
|
||
This is for memory-full errors only. */
|
||
static bool
|
||
maybe_call_debugger (Lisp_Object conditions, Lisp_Object sig, Lisp_Object data)
|
||
{
|
||
Lisp_Object combined_data;
|
||
|
||
combined_data = Fcons (sig, data);
|
||
|
||
if (
|
||
/* Don't try to run the debugger with interrupts blocked.
|
||
The editing loop would return anyway. */
|
||
! input_blocked_p ()
|
||
&& NILP (Vinhibit_debugger)
|
||
/* Does user want to enter debugger for this kind of error? */
|
||
&& (signal_quit_p (sig)
|
||
? debug_on_quit
|
||
: wants_debugger (Vdebug_on_error, conditions))
|
||
&& ! skip_debugger (conditions, combined_data)
|
||
/* See commentary on definition of
|
||
`internal-when-entered-debugger'. */
|
||
&& when_entered_debugger < num_nonmacro_input_events)
|
||
{
|
||
call_debugger (list2 (Qerror, combined_data));
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static Lisp_Object
|
||
find_handler_clause (Lisp_Object handlers, Lisp_Object conditions)
|
||
{
|
||
register Lisp_Object h;
|
||
|
||
/* t is used by handlers for all conditions, set up by C code. */
|
||
if (EQ (handlers, Qt))
|
||
return Qt;
|
||
|
||
/* error is used similarly, but means print an error message
|
||
and run the debugger if that is enabled. */
|
||
if (EQ (handlers, Qerror))
|
||
return Qt;
|
||
|
||
for (h = handlers; CONSP (h); h = XCDR (h))
|
||
{
|
||
Lisp_Object handler = XCAR (h);
|
||
if (!NILP (Fmemq (handler, conditions))
|
||
/* t is also used as a catch-all by Lisp code. */
|
||
|| EQ (handler, Qt))
|
||
return handlers;
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
|
||
/* Format and return a string; called like vprintf. */
|
||
Lisp_Object
|
||
vformat_string (const char *m, va_list ap)
|
||
{
|
||
char buf[4000];
|
||
ptrdiff_t size = sizeof buf;
|
||
ptrdiff_t size_max = STRING_BYTES_BOUND + 1;
|
||
char *buffer = buf;
|
||
ptrdiff_t used;
|
||
Lisp_Object string;
|
||
|
||
used = evxprintf (&buffer, &size, buf, size_max, m, ap);
|
||
string = make_string (buffer, used);
|
||
if (buffer != buf)
|
||
xfree (buffer);
|
||
|
||
return string;
|
||
}
|
||
|
||
/* Dump an error message; called like vprintf. */
|
||
void
|
||
verror (const char *m, va_list ap)
|
||
{
|
||
xsignal1 (Qerror, vformat_string (m, ap));
|
||
}
|
||
|
||
|
||
/* Dump an error message; called like printf. */
|
||
|
||
void
|
||
error (const char *m, ...)
|
||
{
|
||
va_list ap;
|
||
va_start (ap, m);
|
||
verror (m, ap);
|
||
}
|
||
|
||
DEFUN ("commandp", Fcommandp, Scommandp, 1, 2, 0,
|
||
doc: /* Non-nil if FUNCTION makes provisions for interactive calling.
|
||
This means it contains a description for how to read arguments to give it.
|
||
The value is nil for an invalid function or a symbol with no function
|
||
definition.
|
||
|
||
Interactively callable functions include strings and vectors (treated
|
||
as keyboard macros), lambda-expressions that contain a top-level call
|
||
to `interactive', autoload definitions made by `autoload' with non-nil
|
||
fourth argument, and some of the built-in functions of Lisp.
|
||
|
||
Also, a symbol satisfies `commandp' if its function definition does so.
|
||
|
||
If the optional argument FOR-CALL-INTERACTIVELY is non-nil,
|
||
then strings and vectors are not accepted. */)
|
||
(Lisp_Object function, Lisp_Object for_call_interactively)
|
||
{
|
||
register Lisp_Object fun;
|
||
bool genfun = false; /* If true, we should consult `interactive-form'. */
|
||
|
||
fun = function;
|
||
|
||
fun = indirect_function (fun);
|
||
if (NILP (fun))
|
||
return Qnil;
|
||
|
||
/* Emacs primitives are interactive if their DEFUN specifies an
|
||
interactive spec. */
|
||
if (SUBRP (fun))
|
||
{
|
||
if (XSUBR (fun)->intspec.string)
|
||
return Qt;
|
||
}
|
||
/* Bytecode objects are interactive if they are long enough to
|
||
have an element whose index is COMPILED_INTERACTIVE, which is
|
||
where the interactive spec is stored. */
|
||
else if (COMPILEDP (fun))
|
||
{
|
||
if (PVSIZE (fun) > COMPILED_INTERACTIVE)
|
||
return Qt;
|
||
else if (PVSIZE (fun) > COMPILED_DOC_STRING)
|
||
{
|
||
Lisp_Object doc = AREF (fun, COMPILED_DOC_STRING);
|
||
/* An invalid "docstring" is a sign that we have an OClosure. */
|
||
genfun = !(NILP (doc) || VALID_DOCSTRING_P (doc));
|
||
}
|
||
}
|
||
|
||
#ifdef HAVE_MODULES
|
||
/* Module functions are interactive if their `interactive_form'
|
||
field is non-nil. */
|
||
else if (MODULE_FUNCTIONP (fun))
|
||
{
|
||
if (!NILP (module_function_interactive_form (XMODULE_FUNCTION (fun))))
|
||
return Qt;
|
||
}
|
||
#endif
|
||
|
||
/* Strings and vectors are keyboard macros. */
|
||
else if (STRINGP (fun) || VECTORP (fun))
|
||
return (NILP (for_call_interactively) ? Qt : Qnil);
|
||
|
||
/* Lists may represent commands. */
|
||
else if (!CONSP (fun))
|
||
return Qnil;
|
||
else
|
||
{
|
||
Lisp_Object funcar = XCAR (fun);
|
||
if (EQ (funcar, Qautoload))
|
||
{
|
||
if (!NILP (Fcar (Fcdr (Fcdr (XCDR (fun))))))
|
||
return Qt;
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object body = CDR_SAFE (XCDR (fun));
|
||
if (EQ (funcar, Qclosure))
|
||
body = CDR_SAFE (body);
|
||
else if (!EQ (funcar, Qlambda))
|
||
return Qnil;
|
||
if (!NILP (Fassq (Qinteractive, body)))
|
||
return Qt;
|
||
else if (VALID_DOCSTRING_P (CAR_SAFE (body)))
|
||
/* A "docstring" is a sign that we may have an OClosure. */
|
||
genfun = true;
|
||
}
|
||
}
|
||
|
||
/* By now, if it's not a function we already returned nil. */
|
||
|
||
/* Check an `interactive-form' property if present, analogous to the
|
||
function-documentation property. */
|
||
fun = function;
|
||
while (SYMBOLP (fun))
|
||
{
|
||
Lisp_Object tmp = Fget (fun, Qinteractive_form);
|
||
if (!NILP (tmp))
|
||
error ("Found an 'interactive-form' property!");
|
||
fun = Fsymbol_function (fun);
|
||
}
|
||
|
||
/* If there's no immediate interactive form but it's an OClosure,
|
||
then delegate to the generic-function in case it has
|
||
a type-specific interactive-form. */
|
||
if (genfun)
|
||
{
|
||
Lisp_Object iform = call1 (Qinteractive_form, fun);
|
||
return NILP (iform) ? Qnil : Qt;
|
||
}
|
||
else
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("autoload", Fautoload, Sautoload, 2, 5, 0,
|
||
doc: /* Define FUNCTION to autoload from FILE.
|
||
FUNCTION is a symbol; FILE is a file name string to pass to `load'.
|
||
|
||
Third arg DOCSTRING is documentation for the function.
|
||
|
||
Fourth arg INTERACTIVE if non-nil says function can be called
|
||
interactively. If INTERACTIVE is a list, it is interpreted as a list
|
||
of modes the function is applicable for.
|
||
|
||
Fifth arg TYPE indicates the type of the object:
|
||
nil or omitted says FUNCTION is a function,
|
||
`keymap' says FUNCTION is really a keymap, and
|
||
`macro' or t says FUNCTION is really a macro.
|
||
|
||
Third through fifth args give info about the real definition.
|
||
They default to nil.
|
||
|
||
If FUNCTION is already defined other than as an autoload,
|
||
this does nothing and returns nil. */)
|
||
(Lisp_Object function, Lisp_Object file, Lisp_Object docstring, Lisp_Object interactive, Lisp_Object type)
|
||
{
|
||
CHECK_SYMBOL (function);
|
||
CHECK_STRING (file);
|
||
|
||
/* If function is defined and not as an autoload, don't override. */
|
||
if (!NILP (XSYMBOL (function)->u.s.function)
|
||
&& !AUTOLOADP (XSYMBOL (function)->u.s.function))
|
||
return Qnil;
|
||
|
||
if (!NILP (Vpurify_flag) && BASE_EQ (docstring, make_fixnum (0)))
|
||
/* `read1' in lread.c has found the docstring starting with "\
|
||
and assumed the docstring will be provided by Snarf-documentation, so it
|
||
passed us 0 instead. But that leads to accidental sharing in purecopy's
|
||
hash-consing, so we use a (hopefully) unique integer instead. */
|
||
docstring = make_ufixnum (XHASH (function));
|
||
return Fdefalias (function,
|
||
list5 (Qautoload, file, docstring, interactive, type),
|
||
Qnil);
|
||
}
|
||
|
||
static void
|
||
un_autoload (Lisp_Object oldqueue)
|
||
{
|
||
/* Queue to unwind is current value of Vautoload_queue.
|
||
oldqueue is the shadowed value to leave in Vautoload_queue. */
|
||
Lisp_Object queue = Vautoload_queue;
|
||
Vautoload_queue = oldqueue;
|
||
while (CONSP (queue))
|
||
{
|
||
Lisp_Object first = XCAR (queue);
|
||
if (CONSP (first) && BASE_EQ (XCAR (first), make_fixnum (0)))
|
||
Vfeatures = XCDR (first);
|
||
else
|
||
Ffset (first, Fcar (Fcdr (Fget (first, Qfunction_history))));
|
||
queue = XCDR (queue);
|
||
}
|
||
}
|
||
|
||
Lisp_Object
|
||
load_with_autoload_queue
|
||
(Lisp_Object file, Lisp_Object noerror, Lisp_Object nomessage,
|
||
Lisp_Object nosuffix, Lisp_Object must_suffix)
|
||
{
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
|
||
/* If autoloading gets an error (which includes the error of failing
|
||
to define the function being called), we use Vautoload_queue
|
||
to undo function definitions and `provide' calls made by
|
||
the function. We do this in the specific case of autoloading
|
||
because autoloading is not an explicit request "load this file",
|
||
but rather a request to "call this function".
|
||
|
||
The value saved here is to be restored into Vautoload_queue. */
|
||
record_unwind_protect (un_autoload, Vautoload_queue);
|
||
Vautoload_queue = Qt;
|
||
Lisp_Object tem
|
||
= save_match_data_load (file, noerror, nomessage, nosuffix, must_suffix);
|
||
|
||
/* Once loading finishes, don't undo it. */
|
||
Vautoload_queue = Qt;
|
||
unbind_to (count, Qnil);
|
||
return tem;
|
||
}
|
||
|
||
/* Load an autoloaded function.
|
||
FUNNAME is the symbol which is the function's name.
|
||
FUNDEF is the autoload definition (a list). */
|
||
|
||
DEFUN ("autoload-do-load", Fautoload_do_load, Sautoload_do_load, 1, 3, 0,
|
||
doc: /* Load FUNDEF which should be an autoload.
|
||
If non-nil, FUNNAME should be the symbol whose function value is FUNDEF,
|
||
in which case the function returns the new autoloaded function value.
|
||
If equal to `macro', MACRO-ONLY specifies that FUNDEF should only be loaded if
|
||
it defines a macro. */)
|
||
(Lisp_Object fundef, Lisp_Object funname, Lisp_Object macro_only)
|
||
{
|
||
if (!CONSP (fundef) || !EQ (Qautoload, XCAR (fundef)))
|
||
return fundef;
|
||
|
||
Lisp_Object kind = Fnth (make_fixnum (4), fundef);
|
||
if (EQ (macro_only, Qmacro)
|
||
&& !(EQ (kind, Qt) || EQ (kind, Qmacro)))
|
||
return fundef;
|
||
|
||
/* This is to make sure that loadup.el gives a clear picture
|
||
of what files are preloaded and when. */
|
||
if (will_dump_p () && !will_bootstrap_p ())
|
||
{
|
||
/* Avoid landing here recursively while outputting the
|
||
backtrace from the error. */
|
||
gflags.will_dump_ = false;
|
||
error ("Attempt to autoload %s while preparing to dump",
|
||
SDATA (SYMBOL_NAME (funname)));
|
||
}
|
||
|
||
CHECK_SYMBOL (funname);
|
||
|
||
/* If `macro_only' is set and fundef isn't a macro, assume this autoload to
|
||
be a "best-effort" (e.g. to try and find a compiler macro),
|
||
so don't signal an error if autoloading fails. */
|
||
Lisp_Object ignore_errors
|
||
= (EQ (kind, Qt) || EQ (kind, Qmacro)) ? Qnil : macro_only;
|
||
load_with_autoload_queue (Fcar (Fcdr (fundef)), ignore_errors, Qt, Qnil, Qt);
|
||
|
||
if (NILP (funname) || !NILP (ignore_errors))
|
||
return Qnil;
|
||
else
|
||
{
|
||
Lisp_Object fun = Findirect_function (funname, Qnil);
|
||
|
||
if (!NILP (Fequal (fun, fundef)))
|
||
error ("Autoloading file %s failed to define function %s",
|
||
SDATA (Fcar (Fcar (Vload_history))),
|
||
SDATA (SYMBOL_NAME (funname)));
|
||
else
|
||
return fun;
|
||
}
|
||
}
|
||
|
||
|
||
static Lisp_Object list_of_t; /* Never-modified constant containing (t). */
|
||
|
||
DEFUN ("eval", Feval, Seval, 1, 2, 0,
|
||
doc: /* Evaluate FORM and return its value.
|
||
If LEXICAL is t, evaluate using lexical scoping.
|
||
LEXICAL can also be an actual lexical environment, in the form of an
|
||
alist mapping symbols to their value. */)
|
||
(Lisp_Object form, Lisp_Object lexical)
|
||
{
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
specbind (Qinternal_interpreter_environment,
|
||
CONSP (lexical) || NILP (lexical) ? lexical : list_of_t);
|
||
return unbind_to (count, eval_sub (form));
|
||
}
|
||
|
||
void
|
||
grow_specpdl_allocation (void)
|
||
{
|
||
eassert (specpdl_ptr == specpdl_end);
|
||
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
ptrdiff_t max_size = PTRDIFF_MAX - 1000;
|
||
union specbinding *pdlvec = specpdl - 1;
|
||
ptrdiff_t size = specpdl_end - specpdl;
|
||
ptrdiff_t pdlvecsize = size + 1;
|
||
eassert (max_size > size);
|
||
pdlvec = xpalloc (pdlvec, &pdlvecsize, 1, max_size + 1, sizeof *specpdl);
|
||
specpdl = pdlvec + 1;
|
||
specpdl_end = specpdl + pdlvecsize - 1;
|
||
specpdl_ptr = specpdl_ref_to_ptr (count);
|
||
}
|
||
|
||
/* Eval a sub-expression of the current expression (i.e. in the same
|
||
lexical scope). */
|
||
Lisp_Object
|
||
eval_sub (Lisp_Object form)
|
||
{
|
||
if (SYMBOLP (form))
|
||
{
|
||
/* Look up its binding in the lexical environment.
|
||
We do not pay attention to the declared_special flag here, since we
|
||
already did that when let-binding the variable. */
|
||
Lisp_Object lex_binding
|
||
= Fassq (form, Vinternal_interpreter_environment);
|
||
return !NILP (lex_binding) ? XCDR (lex_binding) : Fsymbol_value (form);
|
||
}
|
||
|
||
if (!CONSP (form))
|
||
return form;
|
||
|
||
maybe_quit ();
|
||
|
||
maybe_gc ();
|
||
|
||
if (++lisp_eval_depth > max_lisp_eval_depth)
|
||
{
|
||
if (max_lisp_eval_depth < 100)
|
||
max_lisp_eval_depth = 100;
|
||
if (lisp_eval_depth > max_lisp_eval_depth)
|
||
xsignal1 (Qexcessive_lisp_nesting, make_fixnum (lisp_eval_depth));
|
||
}
|
||
|
||
Lisp_Object original_fun = XCAR (form);
|
||
Lisp_Object original_args = XCDR (form);
|
||
CHECK_LIST (original_args);
|
||
|
||
/* This also protects them from gc. */
|
||
specpdl_ref count
|
||
= record_in_backtrace (original_fun, &original_args, UNEVALLED);
|
||
|
||
if (debug_on_next_call)
|
||
do_debug_on_call (Qt, count);
|
||
|
||
Lisp_Object fun, val, funcar;
|
||
/* Declare here, as this array may be accessed by call_debugger near
|
||
the end of this function. See Bug#21245. */
|
||
Lisp_Object argvals[8];
|
||
|
||
retry:
|
||
|
||
/* Optimize for no indirection. */
|
||
fun = original_fun;
|
||
if (!SYMBOLP (fun))
|
||
fun = Ffunction (list1 (fun));
|
||
else if (!NILP (fun) && (fun = XSYMBOL (fun)->u.s.function, SYMBOLP (fun)))
|
||
fun = indirect_function (fun);
|
||
|
||
if (SUBRP (fun) && !SUBR_NATIVE_COMPILED_DYNP (fun))
|
||
{
|
||
Lisp_Object args_left = original_args;
|
||
ptrdiff_t numargs = list_length (args_left);
|
||
|
||
if (numargs < XSUBR (fun)->min_args
|
||
|| (XSUBR (fun)->max_args >= 0
|
||
&& XSUBR (fun)->max_args < numargs))
|
||
xsignal2 (Qwrong_number_of_arguments, original_fun,
|
||
make_fixnum (numargs));
|
||
|
||
else if (XSUBR (fun)->max_args == UNEVALLED)
|
||
val = (XSUBR (fun)->function.aUNEVALLED) (args_left);
|
||
else if (XSUBR (fun)->max_args == MANY
|
||
|| XSUBR (fun)->max_args > 8)
|
||
|
||
{
|
||
/* Pass a vector of evaluated arguments. */
|
||
Lisp_Object *vals;
|
||
ptrdiff_t argnum = 0;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
SAFE_ALLOCA_LISP (vals, numargs);
|
||
|
||
while (CONSP (args_left) && argnum < numargs)
|
||
{
|
||
Lisp_Object arg = XCAR (args_left);
|
||
args_left = XCDR (args_left);
|
||
vals[argnum++] = eval_sub (arg);
|
||
}
|
||
|
||
set_backtrace_args (specpdl_ref_to_ptr (count), vals, argnum);
|
||
|
||
val = XSUBR (fun)->function.aMANY (argnum, vals);
|
||
|
||
lisp_eval_depth--;
|
||
/* Do the debug-on-exit now, while VALS still exists. */
|
||
if (backtrace_debug_on_exit (specpdl_ref_to_ptr (count)))
|
||
val = call_debugger (list2 (Qexit, val));
|
||
SAFE_FREE ();
|
||
specpdl_ptr--;
|
||
return val;
|
||
}
|
||
else
|
||
{
|
||
int i, maxargs = XSUBR (fun)->max_args;
|
||
|
||
for (i = 0; i < maxargs; i++)
|
||
{
|
||
argvals[i] = eval_sub (Fcar (args_left));
|
||
args_left = Fcdr (args_left);
|
||
}
|
||
|
||
set_backtrace_args (specpdl_ref_to_ptr (count), argvals, numargs);
|
||
|
||
switch (i)
|
||
{
|
||
case 0:
|
||
val = (XSUBR (fun)->function.a0 ());
|
||
break;
|
||
case 1:
|
||
val = (XSUBR (fun)->function.a1 (argvals[0]));
|
||
break;
|
||
case 2:
|
||
val = (XSUBR (fun)->function.a2 (argvals[0], argvals[1]));
|
||
break;
|
||
case 3:
|
||
val = (XSUBR (fun)->function.a3
|
||
(argvals[0], argvals[1], argvals[2]));
|
||
break;
|
||
case 4:
|
||
val = (XSUBR (fun)->function.a4
|
||
(argvals[0], argvals[1], argvals[2], argvals[3]));
|
||
break;
|
||
case 5:
|
||
val = (XSUBR (fun)->function.a5
|
||
(argvals[0], argvals[1], argvals[2], argvals[3],
|
||
argvals[4]));
|
||
break;
|
||
case 6:
|
||
val = (XSUBR (fun)->function.a6
|
||
(argvals[0], argvals[1], argvals[2], argvals[3],
|
||
argvals[4], argvals[5]));
|
||
break;
|
||
case 7:
|
||
val = (XSUBR (fun)->function.a7
|
||
(argvals[0], argvals[1], argvals[2], argvals[3],
|
||
argvals[4], argvals[5], argvals[6]));
|
||
break;
|
||
|
||
case 8:
|
||
val = (XSUBR (fun)->function.a8
|
||
(argvals[0], argvals[1], argvals[2], argvals[3],
|
||
argvals[4], argvals[5], argvals[6], argvals[7]));
|
||
break;
|
||
|
||
default:
|
||
/* Someone has created a subr that takes more arguments than
|
||
is supported by this code. We need to either rewrite the
|
||
subr to use a different argument protocol, or add more
|
||
cases to this switch. */
|
||
emacs_abort ();
|
||
}
|
||
}
|
||
}
|
||
else if (COMPILEDP (fun)
|
||
|| SUBR_NATIVE_COMPILED_DYNP (fun)
|
||
|| MODULE_FUNCTIONP (fun))
|
||
return apply_lambda (fun, original_args, count);
|
||
else
|
||
{
|
||
if (NILP (fun))
|
||
xsignal1 (Qvoid_function, original_fun);
|
||
if (!CONSP (fun))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
funcar = XCAR (fun);
|
||
if (!SYMBOLP (funcar))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
if (EQ (funcar, Qautoload))
|
||
{
|
||
Fautoload_do_load (fun, original_fun, Qnil);
|
||
goto retry;
|
||
}
|
||
if (EQ (funcar, Qmacro))
|
||
{
|
||
specpdl_ref count1 = SPECPDL_INDEX ();
|
||
Lisp_Object exp;
|
||
/* Bind lexical-binding during expansion of the macro, so the
|
||
macro can know reliably if the code it outputs will be
|
||
interpreted using lexical-binding or not. */
|
||
specbind (Qlexical_binding,
|
||
NILP (Vinternal_interpreter_environment) ? Qnil : Qt);
|
||
|
||
/* Make the macro aware of any defvar declarations in scope. */
|
||
Lisp_Object dynvars = Vmacroexp__dynvars;
|
||
for (Lisp_Object p = Vinternal_interpreter_environment;
|
||
!NILP (p); p = XCDR(p))
|
||
{
|
||
Lisp_Object e = XCAR (p);
|
||
if (SYMBOLP (e))
|
||
dynvars = Fcons(e, dynvars);
|
||
}
|
||
if (!EQ (dynvars, Vmacroexp__dynvars))
|
||
specbind (Qmacroexp__dynvars, dynvars);
|
||
|
||
exp = apply1 (Fcdr (fun), original_args);
|
||
exp = unbind_to (count1, exp);
|
||
val = eval_sub (exp);
|
||
}
|
||
else if (EQ (funcar, Qlambda)
|
||
|| EQ (funcar, Qclosure))
|
||
return apply_lambda (fun, original_args, count);
|
||
else
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
}
|
||
|
||
lisp_eval_depth--;
|
||
if (backtrace_debug_on_exit (specpdl_ref_to_ptr (count)))
|
||
val = call_debugger (list2 (Qexit, val));
|
||
specpdl_ptr--;
|
||
|
||
return val;
|
||
}
|
||
|
||
DEFUN ("apply", Fapply, Sapply, 1, MANY, 0,
|
||
doc: /* Call FUNCTION with our remaining args, using our last arg as list of args.
|
||
Then return the value FUNCTION returns.
|
||
With a single argument, call the argument's first element using the
|
||
other elements as args.
|
||
Thus, (apply \\='+ 1 2 \\='(3 4)) returns 10.
|
||
usage: (apply FUNCTION &rest ARGUMENTS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
ptrdiff_t i, funcall_nargs;
|
||
Lisp_Object *funcall_args = NULL;
|
||
Lisp_Object spread_arg = args[nargs - 1];
|
||
Lisp_Object fun = args[0];
|
||
USE_SAFE_ALLOCA;
|
||
|
||
ptrdiff_t numargs = list_length (spread_arg);
|
||
|
||
if (numargs == 0)
|
||
return Ffuncall (max (1, nargs - 1), args);
|
||
else if (numargs == 1)
|
||
{
|
||
args [nargs - 1] = XCAR (spread_arg);
|
||
return Ffuncall (nargs, args);
|
||
}
|
||
|
||
numargs += nargs - 2;
|
||
|
||
/* Optimize for no indirection. */
|
||
if (SYMBOLP (fun) && !NILP (fun)
|
||
&& (fun = XSYMBOL (fun)->u.s.function, SYMBOLP (fun)))
|
||
{
|
||
fun = indirect_function (fun);
|
||
if (NILP (fun))
|
||
/* Let funcall get the error. */
|
||
fun = args[0];
|
||
}
|
||
|
||
if (SUBRP (fun) && XSUBR (fun)->max_args > numargs
|
||
/* Don't hide an error by adding missing arguments. */
|
||
&& numargs >= XSUBR (fun)->min_args)
|
||
{
|
||
/* Avoid making funcall cons up a yet another new vector of arguments
|
||
by explicitly supplying nil's for optional values. */
|
||
SAFE_ALLOCA_LISP (funcall_args, 1 + XSUBR (fun)->max_args);
|
||
memclear (funcall_args + numargs + 1,
|
||
(XSUBR (fun)->max_args - numargs) * word_size);
|
||
funcall_nargs = 1 + XSUBR (fun)->max_args;
|
||
}
|
||
else
|
||
{ /* We add 1 to numargs because funcall_args includes the
|
||
function itself as well as its arguments. */
|
||
SAFE_ALLOCA_LISP (funcall_args, 1 + numargs);
|
||
funcall_nargs = 1 + numargs;
|
||
}
|
||
|
||
memcpy (funcall_args, args, nargs * word_size);
|
||
/* Spread the last arg we got. Its first element goes in
|
||
the slot that it used to occupy, hence this value of I. */
|
||
i = nargs - 1;
|
||
while (!NILP (spread_arg))
|
||
{
|
||
funcall_args [i++] = XCAR (spread_arg);
|
||
spread_arg = XCDR (spread_arg);
|
||
}
|
||
|
||
Lisp_Object retval = Ffuncall (funcall_nargs, funcall_args);
|
||
|
||
SAFE_FREE ();
|
||
return retval;
|
||
}
|
||
|
||
/* Run hook variables in various ways. */
|
||
|
||
static Lisp_Object
|
||
funcall_nil (ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
Ffuncall (nargs, args);
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("run-hooks", Frun_hooks, Srun_hooks, 0, MANY, 0,
|
||
doc: /* Run each hook in HOOKS.
|
||
Each argument should be a symbol, a hook variable.
|
||
These symbols are processed in the order specified.
|
||
If a hook symbol has a non-nil value, that value may be a function
|
||
or a list of functions to be called to run the hook.
|
||
If the value is a function, it is called with no arguments.
|
||
If it is a list, the elements are called, in order, with no arguments.
|
||
|
||
Major modes should not use this function directly to run their mode
|
||
hook; they should use `run-mode-hooks' instead.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hooks &rest HOOKS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
ptrdiff_t i;
|
||
|
||
for (i = 0; i < nargs; i++)
|
||
run_hook (args[i]);
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("run-hook-with-args", Frun_hook_with_args,
|
||
Srun_hook_with_args, 1, MANY, 0,
|
||
doc: /* Run HOOK with the specified arguments ARGS.
|
||
HOOK should be a symbol, a hook variable. The value of HOOK
|
||
may be nil, a function, or a list of functions. Call each
|
||
function in order with arguments ARGS. The final return value
|
||
is unspecified.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hook-with-args HOOK &rest ARGS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return run_hook_with_args (nargs, args, funcall_nil);
|
||
}
|
||
|
||
/* NB this one still documents a specific non-nil return value.
|
||
(As did run-hook-with-args and run-hook-with-args-until-failure
|
||
until they were changed in 24.1.) */
|
||
DEFUN ("run-hook-with-args-until-success", Frun_hook_with_args_until_success,
|
||
Srun_hook_with_args_until_success, 1, MANY, 0,
|
||
doc: /* Run HOOK with the specified arguments ARGS.
|
||
HOOK should be a symbol, a hook variable. The value of HOOK
|
||
may be nil, a function, or a list of functions. Call each
|
||
function in order with arguments ARGS, stopping at the first
|
||
one that returns non-nil, and return that value. Otherwise (if
|
||
all functions return nil, or if there are no functions to call),
|
||
return nil.
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hook-with-args-until-success HOOK &rest ARGS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return run_hook_with_args (nargs, args, Ffuncall);
|
||
}
|
||
|
||
static Lisp_Object
|
||
funcall_not (ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return NILP (Ffuncall (nargs, args)) ? Qt : Qnil;
|
||
}
|
||
|
||
DEFUN ("run-hook-with-args-until-failure", Frun_hook_with_args_until_failure,
|
||
Srun_hook_with_args_until_failure, 1, MANY, 0,
|
||
doc: /* Run HOOK with the specified arguments ARGS.
|
||
HOOK should be a symbol, a hook variable. The value of HOOK
|
||
may be nil, a function, or a list of functions. Call each
|
||
function in order with arguments ARGS, stopping at the first
|
||
one that returns nil, and return nil. Otherwise (if all functions
|
||
return non-nil, or if there are no functions to call), return non-nil
|
||
\(do not rely on the precise return value in this case).
|
||
|
||
Do not use `make-local-variable' to make a hook variable buffer-local.
|
||
Instead, use `add-hook' and specify t for the LOCAL argument.
|
||
usage: (run-hook-with-args-until-failure HOOK &rest ARGS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return NILP (run_hook_with_args (nargs, args, funcall_not)) ? Qt : Qnil;
|
||
}
|
||
|
||
static Lisp_Object
|
||
run_hook_wrapped_funcall (ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
Lisp_Object tmp = args[0], ret;
|
||
args[0] = args[1];
|
||
args[1] = tmp;
|
||
ret = Ffuncall (nargs, args);
|
||
args[1] = args[0];
|
||
args[0] = tmp;
|
||
return ret;
|
||
}
|
||
|
||
DEFUN ("run-hook-wrapped", Frun_hook_wrapped, Srun_hook_wrapped, 2, MANY, 0,
|
||
doc: /* Run HOOK, passing each function through WRAP-FUNCTION.
|
||
I.e. instead of calling each function FUN directly with arguments ARGS,
|
||
it calls WRAP-FUNCTION with arguments FUN and ARGS.
|
||
As soon as a call to WRAP-FUNCTION returns non-nil, `run-hook-wrapped'
|
||
aborts and returns that value.
|
||
usage: (run-hook-wrapped HOOK WRAP-FUNCTION &rest ARGS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
return run_hook_with_args (nargs, args, run_hook_wrapped_funcall);
|
||
}
|
||
|
||
/* ARGS[0] should be a hook symbol.
|
||
Call each of the functions in the hook value, passing each of them
|
||
as arguments all the rest of ARGS (all NARGS - 1 elements).
|
||
FUNCALL specifies how to call each function on the hook. */
|
||
|
||
Lisp_Object
|
||
run_hook_with_args (ptrdiff_t nargs, Lisp_Object *args,
|
||
Lisp_Object (*funcall) (ptrdiff_t nargs, Lisp_Object *args))
|
||
{
|
||
Lisp_Object sym, val, ret = Qnil;
|
||
|
||
/* If we are dying or still initializing,
|
||
don't do anything--it would probably crash if we tried. */
|
||
if (NILP (Vrun_hooks))
|
||
return Qnil;
|
||
|
||
sym = args[0];
|
||
val = find_symbol_value (sym);
|
||
|
||
if (BASE_EQ (val, Qunbound) || NILP (val))
|
||
return ret;
|
||
else if (!CONSP (val) || FUNCTIONP (val))
|
||
{
|
||
args[0] = val;
|
||
return funcall (nargs, args);
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object global_vals = Qnil;
|
||
|
||
for (;
|
||
CONSP (val) && NILP (ret);
|
||
val = XCDR (val))
|
||
{
|
||
if (EQ (XCAR (val), Qt))
|
||
{
|
||
/* t indicates this hook has a local binding;
|
||
it means to run the global binding too. */
|
||
global_vals = Fdefault_value (sym);
|
||
if (NILP (global_vals)) continue;
|
||
|
||
if (!CONSP (global_vals) || EQ (XCAR (global_vals), Qlambda))
|
||
{
|
||
args[0] = global_vals;
|
||
ret = funcall (nargs, args);
|
||
}
|
||
else
|
||
{
|
||
for (;
|
||
CONSP (global_vals) && NILP (ret);
|
||
global_vals = XCDR (global_vals))
|
||
{
|
||
args[0] = XCAR (global_vals);
|
||
/* In a global value, t should not occur. If it does, we
|
||
must ignore it to avoid an endless loop. */
|
||
if (!EQ (args[0], Qt))
|
||
ret = funcall (nargs, args);
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
args[0] = XCAR (val);
|
||
ret = funcall (nargs, args);
|
||
}
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
}
|
||
|
||
/* Run the hook HOOK, giving each function no args. */
|
||
|
||
void
|
||
run_hook (Lisp_Object hook)
|
||
{
|
||
Frun_hook_with_args (1, &hook);
|
||
}
|
||
|
||
/* Run the hook HOOK, giving each function the two args ARG1 and ARG2. */
|
||
|
||
void
|
||
run_hook_with_args_2 (Lisp_Object hook, Lisp_Object arg1, Lisp_Object arg2)
|
||
{
|
||
CALLN (Frun_hook_with_args, hook, arg1, arg2);
|
||
}
|
||
|
||
/* Apply fn to arg. */
|
||
Lisp_Object
|
||
apply1 (Lisp_Object fn, Lisp_Object arg)
|
||
{
|
||
return NILP (arg) ? Ffuncall (1, &fn) : CALLN (Fapply, fn, arg);
|
||
}
|
||
|
||
DEFUN ("functionp", Ffunctionp, Sfunctionp, 1, 1, 0,
|
||
doc: /* Return t if OBJECT is a function.
|
||
|
||
An object is a function if it is callable via `funcall'; this includes
|
||
symbols with function bindings, but excludes macros and special forms.
|
||
|
||
Ordinarily return nil if OBJECT is not a function, although t might be
|
||
returned in rare cases. */)
|
||
(Lisp_Object object)
|
||
{
|
||
if (FUNCTIONP (object))
|
||
return Qt;
|
||
return Qnil;
|
||
}
|
||
|
||
bool
|
||
FUNCTIONP (Lisp_Object object)
|
||
{
|
||
if (SYMBOLP (object) && !NILP (Ffboundp (object)))
|
||
{
|
||
object = Findirect_function (object, Qt);
|
||
|
||
if (CONSP (object) && EQ (XCAR (object), Qautoload))
|
||
{
|
||
/* Autoloaded symbols are functions, except if they load
|
||
macros or keymaps. */
|
||
for (int i = 0; i < 4 && CONSP (object); i++)
|
||
object = XCDR (object);
|
||
|
||
return ! (CONSP (object) && !NILP (XCAR (object)));
|
||
}
|
||
}
|
||
|
||
if (SUBRP (object))
|
||
return XSUBR (object)->max_args != UNEVALLED;
|
||
else if (COMPILEDP (object) || MODULE_FUNCTIONP (object))
|
||
return true;
|
||
else if (CONSP (object))
|
||
{
|
||
Lisp_Object car = XCAR (object);
|
||
return EQ (car, Qlambda) || EQ (car, Qclosure);
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
Lisp_Object
|
||
funcall_general (Lisp_Object fun, ptrdiff_t numargs, Lisp_Object *args)
|
||
{
|
||
Lisp_Object original_fun = fun;
|
||
retry:
|
||
if (SYMBOLP (fun) && !NILP (fun)
|
||
&& (fun = XSYMBOL (fun)->u.s.function, SYMBOLP (fun)))
|
||
fun = indirect_function (fun);
|
||
|
||
if (SUBRP (fun) && !SUBR_NATIVE_COMPILED_DYNP (fun))
|
||
return funcall_subr (XSUBR (fun), numargs, args);
|
||
else if (COMPILEDP (fun)
|
||
|| SUBR_NATIVE_COMPILED_DYNP (fun)
|
||
|| MODULE_FUNCTIONP (fun))
|
||
return funcall_lambda (fun, numargs, args);
|
||
else
|
||
{
|
||
if (NILP (fun))
|
||
xsignal1 (Qvoid_function, original_fun);
|
||
if (!CONSP (fun))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
Lisp_Object funcar = XCAR (fun);
|
||
if (!SYMBOLP (funcar))
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
if (EQ (funcar, Qlambda)
|
||
|| EQ (funcar, Qclosure))
|
||
return funcall_lambda (fun, numargs, args);
|
||
else if (EQ (funcar, Qautoload))
|
||
{
|
||
Fautoload_do_load (fun, original_fun, Qnil);
|
||
fun = original_fun;
|
||
goto retry;
|
||
}
|
||
else
|
||
xsignal1 (Qinvalid_function, original_fun);
|
||
}
|
||
}
|
||
|
||
DEFUN ("funcall", Ffuncall, Sfuncall, 1, MANY, 0,
|
||
doc: /* Call first argument as a function, passing remaining arguments to it.
|
||
Return the value that function returns.
|
||
Thus, (funcall \\='cons \\='x \\='y) returns (x . y).
|
||
usage: (funcall FUNCTION &rest ARGUMENTS) */)
|
||
(ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
specpdl_ref count;
|
||
|
||
maybe_quit ();
|
||
|
||
if (++lisp_eval_depth > max_lisp_eval_depth)
|
||
{
|
||
if (max_lisp_eval_depth < 100)
|
||
max_lisp_eval_depth = 100;
|
||
if (lisp_eval_depth > max_lisp_eval_depth)
|
||
xsignal1 (Qexcessive_lisp_nesting, make_fixnum (lisp_eval_depth));
|
||
}
|
||
|
||
count = record_in_backtrace (args[0], &args[1], nargs - 1);
|
||
|
||
maybe_gc ();
|
||
|
||
if (debug_on_next_call)
|
||
do_debug_on_call (Qlambda, count);
|
||
|
||
Lisp_Object val = funcall_general (args[0], nargs - 1, args + 1);
|
||
|
||
lisp_eval_depth--;
|
||
if (backtrace_debug_on_exit (specpdl_ref_to_ptr (count)))
|
||
val = call_debugger (list2 (Qexit, val));
|
||
specpdl_ptr--;
|
||
return val;
|
||
}
|
||
|
||
|
||
/* Apply a C subroutine SUBR to the NUMARGS evaluated arguments in ARG_VECTOR
|
||
and return the result of evaluation. */
|
||
|
||
Lisp_Object
|
||
funcall_subr (struct Lisp_Subr *subr, ptrdiff_t numargs, Lisp_Object *args)
|
||
{
|
||
eassume (numargs >= 0);
|
||
if (numargs >= subr->min_args)
|
||
{
|
||
/* Conforming call to finite-arity subr. */
|
||
if (numargs <= subr->max_args
|
||
&& subr->max_args <= 8)
|
||
{
|
||
Lisp_Object argbuf[8];
|
||
Lisp_Object *a;
|
||
if (numargs < subr->max_args)
|
||
{
|
||
eassume (subr->max_args <= ARRAYELTS (argbuf));
|
||
a = argbuf;
|
||
memcpy (a, args, numargs * word_size);
|
||
memclear (a + numargs, (subr->max_args - numargs) * word_size);
|
||
}
|
||
else
|
||
a = args;
|
||
switch (subr->max_args)
|
||
{
|
||
case 0:
|
||
return subr->function.a0 ();
|
||
case 1:
|
||
return subr->function.a1 (a[0]);
|
||
case 2:
|
||
return subr->function.a2 (a[0], a[1]);
|
||
case 3:
|
||
return subr->function.a3 (a[0], a[1], a[2]);
|
||
case 4:
|
||
return subr->function.a4 (a[0], a[1], a[2], a[3]);
|
||
case 5:
|
||
return subr->function.a5 (a[0], a[1], a[2], a[3], a[4]);
|
||
case 6:
|
||
return subr->function.a6 (a[0], a[1], a[2], a[3], a[4], a[5]);
|
||
case 7:
|
||
return subr->function.a7 (a[0], a[1], a[2], a[3], a[4], a[5],
|
||
a[6]);
|
||
case 8:
|
||
return subr->function.a8 (a[0], a[1], a[2], a[3], a[4], a[5],
|
||
a[6], a[7]);
|
||
default:
|
||
emacs_abort (); /* Can't happen. */
|
||
}
|
||
}
|
||
|
||
/* Call to n-adic subr. */
|
||
if (subr->max_args == MANY
|
||
|| subr->max_args > 8)
|
||
return subr->function.aMANY (numargs, args);
|
||
}
|
||
|
||
/* Anything else is an error. */
|
||
Lisp_Object fun;
|
||
XSETSUBR (fun, subr);
|
||
if (subr->max_args == UNEVALLED)
|
||
xsignal1 (Qinvalid_function, fun);
|
||
else
|
||
xsignal2 (Qwrong_number_of_arguments, fun, make_fixnum (numargs));
|
||
}
|
||
|
||
/* Call the compiled Lisp function FUN. If we have not yet read FUN's
|
||
bytecode string and constants vector, fetch them from the file first. */
|
||
|
||
static Lisp_Object
|
||
fetch_and_exec_byte_code (Lisp_Object fun, ptrdiff_t args_template,
|
||
ptrdiff_t nargs, Lisp_Object *args)
|
||
{
|
||
if (CONSP (AREF (fun, COMPILED_BYTECODE)))
|
||
Ffetch_bytecode (fun);
|
||
|
||
return exec_byte_code (fun, args_template, nargs, args);
|
||
}
|
||
|
||
static Lisp_Object
|
||
apply_lambda (Lisp_Object fun, Lisp_Object args, specpdl_ref count)
|
||
{
|
||
Lisp_Object *arg_vector;
|
||
Lisp_Object tem;
|
||
USE_SAFE_ALLOCA;
|
||
|
||
ptrdiff_t numargs = list_length (args);
|
||
SAFE_ALLOCA_LISP (arg_vector, numargs);
|
||
Lisp_Object args_left = args;
|
||
|
||
for (ptrdiff_t i = 0; i < numargs; i++)
|
||
{
|
||
tem = Fcar (args_left), args_left = Fcdr (args_left);
|
||
tem = eval_sub (tem);
|
||
arg_vector[i] = tem;
|
||
}
|
||
|
||
set_backtrace_args (specpdl_ref_to_ptr (count), arg_vector, numargs);
|
||
tem = funcall_lambda (fun, numargs, arg_vector);
|
||
|
||
lisp_eval_depth--;
|
||
/* Do the debug-on-exit now, while arg_vector still exists. */
|
||
if (backtrace_debug_on_exit (specpdl_ref_to_ptr (count)))
|
||
tem = call_debugger (list2 (Qexit, tem));
|
||
SAFE_FREE ();
|
||
specpdl_ptr--;
|
||
return tem;
|
||
}
|
||
|
||
/* Apply a Lisp function FUN to the NARGS evaluated arguments in ARG_VECTOR
|
||
and return the result of evaluation.
|
||
FUN must be either a lambda-expression, a compiled-code object,
|
||
or a module function. */
|
||
|
||
static Lisp_Object
|
||
funcall_lambda (Lisp_Object fun, ptrdiff_t nargs,
|
||
register Lisp_Object *arg_vector)
|
||
{
|
||
Lisp_Object val, syms_left, next, lexenv;
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
ptrdiff_t i;
|
||
bool optional, rest;
|
||
|
||
if (CONSP (fun))
|
||
{
|
||
if (EQ (XCAR (fun), Qclosure))
|
||
{
|
||
Lisp_Object cdr = XCDR (fun); /* Drop `closure'. */
|
||
if (! CONSP (cdr))
|
||
xsignal1 (Qinvalid_function, fun);
|
||
fun = cdr;
|
||
lexenv = XCAR (fun);
|
||
}
|
||
else
|
||
lexenv = Qnil;
|
||
syms_left = XCDR (fun);
|
||
if (CONSP (syms_left))
|
||
syms_left = XCAR (syms_left);
|
||
else
|
||
xsignal1 (Qinvalid_function, fun);
|
||
}
|
||
else if (COMPILEDP (fun))
|
||
{
|
||
syms_left = AREF (fun, COMPILED_ARGLIST);
|
||
/* Bytecode objects using lexical binding have an integral
|
||
ARGLIST slot value: pass the arguments to the byte-code
|
||
engine directly. */
|
||
if (FIXNUMP (syms_left))
|
||
return fetch_and_exec_byte_code (fun, XFIXNUM (syms_left),
|
||
nargs, arg_vector);
|
||
/* Otherwise the bytecode object uses dynamic binding and the
|
||
ARGLIST slot contains a standard formal argument list whose
|
||
variables are bound dynamically below. */
|
||
lexenv = Qnil;
|
||
}
|
||
#ifdef HAVE_MODULES
|
||
else if (MODULE_FUNCTIONP (fun))
|
||
return funcall_module (fun, nargs, arg_vector);
|
||
#endif
|
||
#ifdef HAVE_NATIVE_COMP
|
||
else if (SUBR_NATIVE_COMPILED_DYNP (fun))
|
||
{
|
||
syms_left = XSUBR (fun)->lambda_list;
|
||
lexenv = Qnil;
|
||
}
|
||
#endif
|
||
else
|
||
emacs_abort ();
|
||
|
||
i = optional = rest = 0;
|
||
bool previous_rest = false;
|
||
for (; CONSP (syms_left); syms_left = XCDR (syms_left))
|
||
{
|
||
maybe_quit ();
|
||
|
||
next = XCAR (syms_left);
|
||
if (!SYMBOLP (next))
|
||
xsignal1 (Qinvalid_function, fun);
|
||
|
||
if (EQ (next, Qand_rest))
|
||
{
|
||
if (rest || previous_rest)
|
||
xsignal1 (Qinvalid_function, fun);
|
||
rest = 1;
|
||
previous_rest = true;
|
||
}
|
||
else if (EQ (next, Qand_optional))
|
||
{
|
||
if (optional || rest || previous_rest)
|
||
xsignal1 (Qinvalid_function, fun);
|
||
optional = 1;
|
||
}
|
||
else
|
||
{
|
||
Lisp_Object arg;
|
||
if (rest)
|
||
{
|
||
arg = Flist (nargs - i, &arg_vector[i]);
|
||
i = nargs;
|
||
}
|
||
else if (i < nargs)
|
||
arg = arg_vector[i++];
|
||
else if (!optional)
|
||
xsignal2 (Qwrong_number_of_arguments, fun, make_fixnum (nargs));
|
||
else
|
||
arg = Qnil;
|
||
|
||
/* Bind the argument. */
|
||
if (!NILP (lexenv) && SYMBOLP (next))
|
||
/* Lexically bind NEXT by adding it to the lexenv alist. */
|
||
lexenv = Fcons (Fcons (next, arg), lexenv);
|
||
else
|
||
/* Dynamically bind NEXT. */
|
||
specbind (next, arg);
|
||
previous_rest = false;
|
||
}
|
||
}
|
||
|
||
if (!NILP (syms_left) || previous_rest)
|
||
xsignal1 (Qinvalid_function, fun);
|
||
else if (i < nargs)
|
||
xsignal2 (Qwrong_number_of_arguments, fun, make_fixnum (nargs));
|
||
|
||
if (!EQ (lexenv, Vinternal_interpreter_environment))
|
||
/* Instantiate a new lexical environment. */
|
||
specbind (Qinternal_interpreter_environment, lexenv);
|
||
|
||
if (CONSP (fun))
|
||
val = Fprogn (XCDR (XCDR (fun)));
|
||
else if (SUBR_NATIVE_COMPILEDP (fun))
|
||
{
|
||
eassert (SUBR_NATIVE_COMPILED_DYNP (fun));
|
||
/* No need to use funcall_subr as we have zero arguments by
|
||
construction. */
|
||
val = XSUBR (fun)->function.a0 ();
|
||
}
|
||
else
|
||
val = fetch_and_exec_byte_code (fun, 0, 0, NULL);
|
||
|
||
return unbind_to (count, val);
|
||
}
|
||
|
||
DEFUN ("func-arity", Ffunc_arity, Sfunc_arity, 1, 1, 0,
|
||
doc: /* Return minimum and maximum number of args allowed for FUNCTION.
|
||
FUNCTION must be a function of some kind.
|
||
The returned value is a cons cell (MIN . MAX). MIN is the minimum number
|
||
of args. MAX is the maximum number, or the symbol `many', for a
|
||
function with `&rest' args, or `unevalled' for a special form. */)
|
||
(Lisp_Object function)
|
||
{
|
||
Lisp_Object original;
|
||
Lisp_Object funcar;
|
||
Lisp_Object result;
|
||
|
||
original = function;
|
||
|
||
retry:
|
||
|
||
/* Optimize for no indirection. */
|
||
function = original;
|
||
if (SYMBOLP (function) && !NILP (function))
|
||
{
|
||
function = XSYMBOL (function)->u.s.function;
|
||
if (SYMBOLP (function))
|
||
function = indirect_function (function);
|
||
}
|
||
|
||
if (CONSP (function) && EQ (XCAR (function), Qmacro))
|
||
function = XCDR (function);
|
||
|
||
if (SUBRP (function))
|
||
result = Fsubr_arity (function);
|
||
else if (COMPILEDP (function))
|
||
result = lambda_arity (function);
|
||
#ifdef HAVE_MODULES
|
||
else if (MODULE_FUNCTIONP (function))
|
||
result = module_function_arity (XMODULE_FUNCTION (function));
|
||
#endif
|
||
else
|
||
{
|
||
if (NILP (function))
|
||
xsignal1 (Qvoid_function, original);
|
||
if (!CONSP (function))
|
||
xsignal1 (Qinvalid_function, original);
|
||
funcar = XCAR (function);
|
||
if (!SYMBOLP (funcar))
|
||
xsignal1 (Qinvalid_function, original);
|
||
if (EQ (funcar, Qlambda)
|
||
|| EQ (funcar, Qclosure))
|
||
result = lambda_arity (function);
|
||
else if (EQ (funcar, Qautoload))
|
||
{
|
||
Fautoload_do_load (function, original, Qnil);
|
||
goto retry;
|
||
}
|
||
else
|
||
xsignal1 (Qinvalid_function, original);
|
||
}
|
||
return result;
|
||
}
|
||
|
||
/* FUN must be either a lambda-expression or a compiled-code object. */
|
||
static Lisp_Object
|
||
lambda_arity (Lisp_Object fun)
|
||
{
|
||
Lisp_Object syms_left;
|
||
|
||
if (CONSP (fun))
|
||
{
|
||
if (EQ (XCAR (fun), Qclosure))
|
||
{
|
||
fun = XCDR (fun); /* Drop `closure'. */
|
||
CHECK_CONS (fun);
|
||
}
|
||
syms_left = XCDR (fun);
|
||
if (CONSP (syms_left))
|
||
syms_left = XCAR (syms_left);
|
||
else
|
||
xsignal1 (Qinvalid_function, fun);
|
||
}
|
||
else if (COMPILEDP (fun))
|
||
{
|
||
syms_left = AREF (fun, COMPILED_ARGLIST);
|
||
if (FIXNUMP (syms_left))
|
||
return get_byte_code_arity (syms_left);
|
||
}
|
||
else
|
||
emacs_abort ();
|
||
|
||
EMACS_INT minargs = 0, maxargs = 0;
|
||
bool optional = false;
|
||
for (; CONSP (syms_left); syms_left = XCDR (syms_left))
|
||
{
|
||
Lisp_Object next = XCAR (syms_left);
|
||
if (!SYMBOLP (next))
|
||
xsignal1 (Qinvalid_function, fun);
|
||
|
||
if (EQ (next, Qand_rest))
|
||
return Fcons (make_fixnum (minargs), Qmany);
|
||
else if (EQ (next, Qand_optional))
|
||
optional = true;
|
||
else
|
||
{
|
||
if (!optional)
|
||
minargs++;
|
||
maxargs++;
|
||
}
|
||
}
|
||
|
||
if (!NILP (syms_left))
|
||
xsignal1 (Qinvalid_function, fun);
|
||
|
||
return Fcons (make_fixnum (minargs), make_fixnum (maxargs));
|
||
}
|
||
|
||
DEFUN ("fetch-bytecode", Ffetch_bytecode, Sfetch_bytecode,
|
||
1, 1, 0,
|
||
doc: /* If byte-compiled OBJECT is lazy-loaded, fetch it now. */)
|
||
(Lisp_Object object)
|
||
{
|
||
Lisp_Object tem;
|
||
|
||
if (COMPILEDP (object))
|
||
{
|
||
if (CONSP (AREF (object, COMPILED_BYTECODE)))
|
||
{
|
||
tem = read_doc_string (AREF (object, COMPILED_BYTECODE));
|
||
if (! (CONSP (tem) && STRINGP (XCAR (tem))
|
||
&& VECTORP (XCDR (tem))))
|
||
{
|
||
tem = AREF (object, COMPILED_BYTECODE);
|
||
if (CONSP (tem) && STRINGP (XCAR (tem)))
|
||
error ("Invalid byte code in %s", SDATA (XCAR (tem)));
|
||
else
|
||
error ("Invalid byte code");
|
||
}
|
||
|
||
Lisp_Object bytecode = XCAR (tem);
|
||
if (STRING_MULTIBYTE (bytecode))
|
||
{
|
||
/* BYTECODE must have been produced by Emacs 20.2 or earlier
|
||
because it produced a raw 8-bit string for byte-code and now
|
||
such a byte-code string is loaded as multibyte with raw 8-bit
|
||
characters converted to multibyte form. Convert them back to
|
||
the original unibyte form. */
|
||
bytecode = Fstring_as_unibyte (bytecode);
|
||
}
|
||
|
||
pin_string (bytecode);
|
||
ASET (object, COMPILED_BYTECODE, bytecode);
|
||
ASET (object, COMPILED_CONSTANTS, XCDR (tem));
|
||
}
|
||
}
|
||
return object;
|
||
}
|
||
|
||
/* Return true if SYMBOL's default currently has a let-binding
|
||
which was made in the buffer that is now current. */
|
||
|
||
bool
|
||
let_shadows_buffer_binding_p (struct Lisp_Symbol *symbol)
|
||
{
|
||
union specbinding *p;
|
||
Lisp_Object buf = Fcurrent_buffer ();
|
||
|
||
for (p = specpdl_ptr; p > specpdl; )
|
||
if ((--p)->kind > SPECPDL_LET)
|
||
{
|
||
struct Lisp_Symbol *let_bound_symbol = XSYMBOL (specpdl_symbol (p));
|
||
eassert (let_bound_symbol->u.s.redirect != SYMBOL_VARALIAS);
|
||
if (symbol == let_bound_symbol
|
||
&& p->kind != SPECPDL_LET_LOCAL /* bug#62419 */
|
||
&& EQ (specpdl_where (p), buf))
|
||
return 1;
|
||
}
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
do_specbind (struct Lisp_Symbol *sym, union specbinding *bind,
|
||
Lisp_Object value, enum Set_Internal_Bind bindflag)
|
||
{
|
||
switch (sym->u.s.redirect)
|
||
{
|
||
case SYMBOL_PLAINVAL:
|
||
if (!sym->u.s.trapped_write)
|
||
SET_SYMBOL_VAL (sym, value);
|
||
else
|
||
set_internal (specpdl_symbol (bind), value, Qnil, bindflag);
|
||
break;
|
||
|
||
case SYMBOL_FORWARDED:
|
||
if (BUFFER_OBJFWDP (SYMBOL_FWD (sym))
|
||
&& specpdl_kind (bind) == SPECPDL_LET_DEFAULT)
|
||
{
|
||
set_default_internal (specpdl_symbol (bind), value, bindflag);
|
||
return;
|
||
}
|
||
FALLTHROUGH;
|
||
case SYMBOL_LOCALIZED:
|
||
set_internal (specpdl_symbol (bind), value, Qnil, bindflag);
|
||
break;
|
||
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
}
|
||
|
||
/* `specpdl_ptr' describes which variable is
|
||
let-bound, so it can be properly undone when we unbind_to.
|
||
It can be either a plain SPECPDL_LET or a SPECPDL_LET_LOCAL/DEFAULT.
|
||
- SYMBOL is the variable being bound. Note that it should not be
|
||
aliased (i.e. when let-binding V1 that's aliased to V2, we want
|
||
to record V2 here).
|
||
- WHERE tells us in which buffer the binding took place.
|
||
This is used for SPECPDL_LET_LOCAL bindings (i.e. bindings to a
|
||
buffer-local variable) as well as for SPECPDL_LET_DEFAULT bindings,
|
||
i.e. bindings to the default value of a variable which can be
|
||
buffer-local. */
|
||
|
||
void
|
||
specbind (Lisp_Object symbol, Lisp_Object value)
|
||
{
|
||
struct Lisp_Symbol *sym;
|
||
|
||
CHECK_SYMBOL (symbol);
|
||
sym = XSYMBOL (symbol);
|
||
|
||
start:
|
||
switch (sym->u.s.redirect)
|
||
{
|
||
case SYMBOL_VARALIAS:
|
||
sym = indirect_variable (sym); XSETSYMBOL (symbol, sym); goto start;
|
||
case SYMBOL_PLAINVAL:
|
||
/* The most common case is that of a non-constant symbol with a
|
||
trivial value. Make that as fast as we can. */
|
||
specpdl_ptr->let.kind = SPECPDL_LET;
|
||
specpdl_ptr->let.symbol = symbol;
|
||
specpdl_ptr->let.old_value = SYMBOL_VAL (sym);
|
||
break;
|
||
case SYMBOL_LOCALIZED:
|
||
case SYMBOL_FORWARDED:
|
||
{
|
||
Lisp_Object ovalue = find_symbol_value (symbol);
|
||
specpdl_ptr->let.kind = SPECPDL_LET_LOCAL;
|
||
specpdl_ptr->let.symbol = symbol;
|
||
specpdl_ptr->let.old_value = ovalue;
|
||
specpdl_ptr->let.where = Fcurrent_buffer ();
|
||
|
||
eassert (sym->u.s.redirect != SYMBOL_LOCALIZED
|
||
|| (BASE_EQ (SYMBOL_BLV (sym)->where, Fcurrent_buffer ())));
|
||
|
||
if (sym->u.s.redirect == SYMBOL_LOCALIZED)
|
||
{
|
||
if (!blv_found (SYMBOL_BLV (sym)))
|
||
specpdl_ptr->let.kind = SPECPDL_LET_DEFAULT;
|
||
}
|
||
else if (BUFFER_OBJFWDP (SYMBOL_FWD (sym)))
|
||
{
|
||
/* If SYMBOL is a per-buffer variable which doesn't have a
|
||
buffer-local value here, make the `let' change the global
|
||
value by changing the value of SYMBOL in all buffers not
|
||
having their own value. This is consistent with what
|
||
happens with other buffer-local variables. */
|
||
if (NILP (Flocal_variable_p (symbol, Qnil)))
|
||
specpdl_ptr->let.kind = SPECPDL_LET_DEFAULT;
|
||
}
|
||
else
|
||
specpdl_ptr->let.kind = SPECPDL_LET;
|
||
|
||
break;
|
||
}
|
||
default: emacs_abort ();
|
||
}
|
||
grow_specpdl ();
|
||
do_specbind (sym, specpdl_ptr - 1, value, SET_INTERNAL_BIND);
|
||
}
|
||
|
||
/* Push unwind-protect entries of various types. */
|
||
|
||
void
|
||
record_unwind_protect (void (*function) (Lisp_Object), Lisp_Object arg)
|
||
{
|
||
specpdl_ptr->unwind.kind = SPECPDL_UNWIND;
|
||
specpdl_ptr->unwind.func = function;
|
||
specpdl_ptr->unwind.arg = arg;
|
||
specpdl_ptr->unwind.eval_depth = lisp_eval_depth;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
void
|
||
record_unwind_protect_array (Lisp_Object *array, ptrdiff_t nelts)
|
||
{
|
||
specpdl_ptr->unwind_array.kind = SPECPDL_UNWIND_ARRAY;
|
||
specpdl_ptr->unwind_array.array = array;
|
||
specpdl_ptr->unwind_array.nelts = nelts;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
void
|
||
record_unwind_protect_ptr (void (*function) (void *), void *arg)
|
||
{
|
||
specpdl_ptr->unwind_ptr.kind = SPECPDL_UNWIND_PTR;
|
||
specpdl_ptr->unwind_ptr.func = function;
|
||
specpdl_ptr->unwind_ptr.arg = arg;
|
||
specpdl_ptr->unwind_ptr.mark = NULL;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
/* Like `record_unwind_protect_ptr', but also specifies a function
|
||
for GC-marking Lisp objects only reachable through ARG. */
|
||
void
|
||
record_unwind_protect_ptr_mark (void (*function) (void *), void *arg,
|
||
void (*mark) (void *))
|
||
{
|
||
specpdl_ptr->unwind_ptr.kind = SPECPDL_UNWIND_PTR;
|
||
specpdl_ptr->unwind_ptr.func = function;
|
||
specpdl_ptr->unwind_ptr.arg = arg;
|
||
specpdl_ptr->unwind_ptr.mark = mark;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
void
|
||
record_unwind_protect_int (void (*function) (int), int arg)
|
||
{
|
||
specpdl_ptr->unwind_int.kind = SPECPDL_UNWIND_INT;
|
||
specpdl_ptr->unwind_int.func = function;
|
||
specpdl_ptr->unwind_int.arg = arg;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
void
|
||
record_unwind_protect_intmax (void (*function) (intmax_t), intmax_t arg)
|
||
{
|
||
specpdl_ptr->unwind_intmax.kind = SPECPDL_UNWIND_INTMAX;
|
||
specpdl_ptr->unwind_intmax.func = function;
|
||
specpdl_ptr->unwind_intmax.arg = arg;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
void
|
||
record_unwind_protect_excursion (void)
|
||
{
|
||
specpdl_ptr->unwind_excursion.kind = SPECPDL_UNWIND_EXCURSION;
|
||
save_excursion_save (specpdl_ptr);
|
||
grow_specpdl ();
|
||
}
|
||
|
||
void
|
||
record_unwind_protect_void (void (*function) (void))
|
||
{
|
||
specpdl_ptr->unwind_void.kind = SPECPDL_UNWIND_VOID;
|
||
specpdl_ptr->unwind_void.func = function;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
void
|
||
record_unwind_protect_module (enum specbind_tag kind, void *ptr)
|
||
{
|
||
specpdl_ptr->kind = kind;
|
||
specpdl_ptr->unwind_ptr.func = NULL;
|
||
specpdl_ptr->unwind_ptr.arg = ptr;
|
||
specpdl_ptr->unwind_ptr.mark = NULL;
|
||
grow_specpdl ();
|
||
}
|
||
|
||
static void
|
||
do_one_unbind (union specbinding *this_binding, bool unwinding,
|
||
enum Set_Internal_Bind bindflag)
|
||
{
|
||
eassert (unwinding || this_binding->kind >= SPECPDL_LET);
|
||
switch (this_binding->kind)
|
||
{
|
||
case SPECPDL_UNWIND:
|
||
lisp_eval_depth = this_binding->unwind.eval_depth;
|
||
this_binding->unwind.func (this_binding->unwind.arg);
|
||
break;
|
||
case SPECPDL_UNWIND_ARRAY:
|
||
xfree (this_binding->unwind_array.array);
|
||
break;
|
||
case SPECPDL_UNWIND_PTR:
|
||
this_binding->unwind_ptr.func (this_binding->unwind_ptr.arg);
|
||
break;
|
||
case SPECPDL_UNWIND_INT:
|
||
this_binding->unwind_int.func (this_binding->unwind_int.arg);
|
||
break;
|
||
case SPECPDL_UNWIND_INTMAX:
|
||
this_binding->unwind_intmax.func (this_binding->unwind_intmax.arg);
|
||
break;
|
||
case SPECPDL_UNWIND_VOID:
|
||
this_binding->unwind_void.func ();
|
||
break;
|
||
case SPECPDL_UNWIND_EXCURSION:
|
||
save_excursion_restore (this_binding->unwind_excursion.marker,
|
||
this_binding->unwind_excursion.window);
|
||
break;
|
||
case SPECPDL_BACKTRACE:
|
||
case SPECPDL_NOP:
|
||
break;
|
||
#ifdef HAVE_MODULES
|
||
case SPECPDL_MODULE_RUNTIME:
|
||
finalize_runtime_unwind (this_binding->unwind_ptr.arg);
|
||
break;
|
||
case SPECPDL_MODULE_ENVIRONMENT:
|
||
finalize_environment_unwind (this_binding->unwind_ptr.arg);
|
||
break;
|
||
#endif
|
||
case SPECPDL_LET:
|
||
{ /* If variable has a trivial value (no forwarding), and isn't
|
||
trapped, we can just set it. */
|
||
Lisp_Object sym = specpdl_symbol (this_binding);
|
||
if (SYMBOLP (sym) && XSYMBOL (sym)->u.s.redirect == SYMBOL_PLAINVAL)
|
||
{
|
||
if (XSYMBOL (sym)->u.s.trapped_write == SYMBOL_UNTRAPPED_WRITE)
|
||
SET_SYMBOL_VAL (XSYMBOL (sym), specpdl_old_value (this_binding));
|
||
else
|
||
set_internal (sym, specpdl_old_value (this_binding),
|
||
Qnil, bindflag);
|
||
break;
|
||
}
|
||
}
|
||
/* Come here only if make_local_foo was used for the first time
|
||
on this var within this let. */
|
||
FALLTHROUGH;
|
||
case SPECPDL_LET_DEFAULT:
|
||
set_default_internal (specpdl_symbol (this_binding),
|
||
specpdl_old_value (this_binding),
|
||
bindflag);
|
||
break;
|
||
case SPECPDL_LET_LOCAL:
|
||
{
|
||
Lisp_Object symbol = specpdl_symbol (this_binding);
|
||
Lisp_Object where = specpdl_where (this_binding);
|
||
Lisp_Object old_value = specpdl_old_value (this_binding);
|
||
eassert (BUFFERP (where));
|
||
|
||
/* If this was a local binding, reset the value in the appropriate
|
||
buffer, but only if that buffer's binding still exists. */
|
||
if (!NILP (Flocal_variable_p (symbol, where)))
|
||
set_internal (symbol, old_value, where, bindflag);
|
||
}
|
||
break;
|
||
}
|
||
}
|
||
|
||
static void
|
||
do_nothing (void)
|
||
{}
|
||
|
||
/* Push an unwind-protect entry that does nothing, so that
|
||
set_unwind_protect_ptr can overwrite it later. */
|
||
|
||
void
|
||
record_unwind_protect_nothing (void)
|
||
{
|
||
record_unwind_protect_void (do_nothing);
|
||
}
|
||
|
||
/* Clear the unwind-protect entry COUNT, so that it does nothing.
|
||
It need not be at the top of the stack. */
|
||
|
||
void
|
||
clear_unwind_protect (specpdl_ref count)
|
||
{
|
||
union specbinding *p = specpdl_ref_to_ptr (count);
|
||
p->unwind_void.kind = SPECPDL_UNWIND_VOID;
|
||
p->unwind_void.func = do_nothing;
|
||
}
|
||
|
||
/* Set the unwind-protect entry COUNT so that it invokes FUNC (ARG).
|
||
It need not be at the top of the stack. Discard the entry's
|
||
previous value without invoking it. */
|
||
|
||
void
|
||
set_unwind_protect (specpdl_ref count, void (*func) (Lisp_Object),
|
||
Lisp_Object arg)
|
||
{
|
||
union specbinding *p = specpdl_ref_to_ptr (count);
|
||
p->unwind.kind = SPECPDL_UNWIND;
|
||
p->unwind.func = func;
|
||
p->unwind.arg = arg;
|
||
p->unwind.eval_depth = lisp_eval_depth;
|
||
}
|
||
|
||
void
|
||
set_unwind_protect_ptr (specpdl_ref count, void (*func) (void *), void *arg)
|
||
{
|
||
union specbinding *p = specpdl_ref_to_ptr (count);
|
||
p->unwind_ptr.kind = SPECPDL_UNWIND_PTR;
|
||
p->unwind_ptr.func = func;
|
||
p->unwind_ptr.arg = arg;
|
||
p->unwind_ptr.mark = NULL;
|
||
}
|
||
|
||
/* Pop and execute entries from the unwind-protect stack until the
|
||
depth COUNT is reached. Return VALUE. */
|
||
|
||
Lisp_Object
|
||
unbind_to (specpdl_ref count, Lisp_Object value)
|
||
{
|
||
Lisp_Object quitf = Vquit_flag;
|
||
|
||
Vquit_flag = Qnil;
|
||
|
||
while (specpdl_ptr != specpdl_ref_to_ptr (count))
|
||
{
|
||
/* Copy the binding, and decrement specpdl_ptr, before we do
|
||
the work to unbind it. We decrement first
|
||
so that an error in unbinding won't try to unbind
|
||
the same entry again, and we copy the binding first
|
||
in case more bindings are made during some of the code we run. */
|
||
|
||
union specbinding this_binding;
|
||
this_binding = *--specpdl_ptr;
|
||
|
||
do_one_unbind (&this_binding, true, SET_INTERNAL_UNBIND);
|
||
}
|
||
|
||
if (NILP (Vquit_flag) && !NILP (quitf))
|
||
Vquit_flag = quitf;
|
||
|
||
return value;
|
||
}
|
||
|
||
DEFUN ("special-variable-p", Fspecial_variable_p, Sspecial_variable_p, 1, 1, 0,
|
||
doc: /* Return non-nil if SYMBOL's global binding has been declared special.
|
||
A special variable is one that will be bound dynamically, even in a
|
||
context where binding is lexical by default. */)
|
||
(Lisp_Object symbol)
|
||
{
|
||
CHECK_SYMBOL (symbol);
|
||
return XSYMBOL (symbol)->u.s.declared_special ? Qt : Qnil;
|
||
}
|
||
|
||
|
||
static union specbinding *
|
||
get_backtrace_starting_at (Lisp_Object base)
|
||
{
|
||
union specbinding *pdl = backtrace_top ();
|
||
|
||
if (!NILP (base))
|
||
{ /* Skip up to `base'. */
|
||
base = Findirect_function (base, Qt);
|
||
while (backtrace_p (pdl)
|
||
&& !EQ (base, Findirect_function (backtrace_function (pdl), Qt)))
|
||
pdl = backtrace_next (pdl);
|
||
}
|
||
|
||
return pdl;
|
||
}
|
||
|
||
static union specbinding *
|
||
get_backtrace_frame (Lisp_Object nframes, Lisp_Object base)
|
||
{
|
||
register EMACS_INT i;
|
||
|
||
CHECK_FIXNAT (nframes);
|
||
union specbinding *pdl = get_backtrace_starting_at (base);
|
||
|
||
/* Find the frame requested. */
|
||
for (i = XFIXNAT (nframes); i > 0 && backtrace_p (pdl); i--)
|
||
pdl = backtrace_next (pdl);
|
||
|
||
return pdl;
|
||
}
|
||
|
||
static Lisp_Object
|
||
backtrace_frame_apply (Lisp_Object function, union specbinding *pdl)
|
||
{
|
||
if (!backtrace_p (pdl))
|
||
return Qnil;
|
||
|
||
Lisp_Object flags = Qnil;
|
||
if (backtrace_debug_on_exit (pdl))
|
||
flags = list2 (QCdebug_on_exit, Qt);
|
||
|
||
if (backtrace_nargs (pdl) == UNEVALLED)
|
||
return call4 (function, Qnil, backtrace_function (pdl), *backtrace_args (pdl), flags);
|
||
else
|
||
{
|
||
Lisp_Object tem = Flist (backtrace_nargs (pdl), backtrace_args (pdl));
|
||
return call4 (function, Qt, backtrace_function (pdl), tem, flags);
|
||
}
|
||
}
|
||
|
||
DEFUN ("backtrace-debug", Fbacktrace_debug, Sbacktrace_debug, 2, 2, 0,
|
||
doc: /* Set the debug-on-exit flag of eval frame LEVEL levels down to FLAG.
|
||
The debugger is entered when that frame exits, if the flag is non-nil. */)
|
||
(Lisp_Object level, Lisp_Object flag)
|
||
{
|
||
CHECK_FIXNUM (level);
|
||
union specbinding *pdl = get_backtrace_frame(level, Qnil);
|
||
|
||
if (backtrace_p (pdl))
|
||
set_backtrace_debug_on_exit (pdl, !NILP (flag));
|
||
|
||
return flag;
|
||
}
|
||
|
||
DEFUN ("mapbacktrace", Fmapbacktrace, Smapbacktrace, 1, 2, 0,
|
||
doc: /* Call FUNCTION for each frame in backtrace.
|
||
If BASE is non-nil, it should be a function and iteration will start
|
||
from its nearest activation frame.
|
||
FUNCTION is called with 4 arguments: EVALD, FUNC, ARGS, and FLAGS. If
|
||
a frame has not evaluated its arguments yet or is a special form,
|
||
EVALD is nil and ARGS is a list of forms. If a frame has evaluated
|
||
its arguments and called its function already, EVALD is t and ARGS is
|
||
a list of values.
|
||
FLAGS is a plist of properties of the current frame: currently, the
|
||
only supported property is :debug-on-exit. `mapbacktrace' always
|
||
returns nil. */)
|
||
(Lisp_Object function, Lisp_Object base)
|
||
{
|
||
union specbinding *pdl = get_backtrace_starting_at (base);
|
||
|
||
while (backtrace_p (pdl))
|
||
{
|
||
ptrdiff_t i = pdl - specpdl;
|
||
backtrace_frame_apply (function, pdl);
|
||
/* Beware! PDL is no longer valid here because FUNCTION might
|
||
have caused grow_specpdl to reallocate pdlvec. We must use
|
||
the saved index, cf. Bug#27258. */
|
||
pdl = backtrace_next (&specpdl[i]);
|
||
}
|
||
|
||
return Qnil;
|
||
}
|
||
|
||
DEFUN ("backtrace-frame--internal", Fbacktrace_frame_internal,
|
||
Sbacktrace_frame_internal, 3, 3, NULL,
|
||
doc: /* Call FUNCTION on stack frame NFRAMES away from BASE.
|
||
Return the result of FUNCTION, or nil if no matching frame could be found. */)
|
||
(Lisp_Object function, Lisp_Object nframes, Lisp_Object base)
|
||
{
|
||
return backtrace_frame_apply (function, get_backtrace_frame (nframes, base));
|
||
}
|
||
|
||
DEFUN ("backtrace--frames-from-thread", Fbacktrace_frames_from_thread,
|
||
Sbacktrace_frames_from_thread, 1, 1, NULL,
|
||
doc: /* Return the list of backtrace frames from current execution point in THREAD.
|
||
If a frame has not evaluated the arguments yet (or is a special form),
|
||
the value of the list element is (nil FUNCTION ARG-FORMS...).
|
||
If a frame has evaluated its arguments and called its function already,
|
||
the value of the list element is (t FUNCTION ARG-VALUES...).
|
||
A &rest arg is represented as the tail of the list ARG-VALUES.
|
||
FUNCTION is whatever was supplied as car of evaluated list,
|
||
or a lambda expression for macro calls. */)
|
||
(Lisp_Object thread)
|
||
{
|
||
struct thread_state *tstate;
|
||
CHECK_THREAD (thread);
|
||
tstate = XTHREAD (thread);
|
||
|
||
union specbinding *pdl = backtrace_thread_top (tstate);
|
||
Lisp_Object list = Qnil;
|
||
|
||
while (backtrace_thread_p (tstate, pdl))
|
||
{
|
||
Lisp_Object frame;
|
||
if (backtrace_nargs (pdl) == UNEVALLED)
|
||
frame = Fcons (Qnil,
|
||
Fcons (backtrace_function (pdl), *backtrace_args (pdl)));
|
||
else
|
||
{
|
||
Lisp_Object tem = Flist (backtrace_nargs (pdl), backtrace_args (pdl));
|
||
frame = Fcons (Qt, Fcons (backtrace_function (pdl), tem));
|
||
}
|
||
list = Fcons (frame, list);
|
||
pdl = backtrace_thread_next (tstate, pdl);
|
||
}
|
||
return Fnreverse (list);
|
||
}
|
||
|
||
/* For backtrace-eval, we want to temporarily unwind the last few elements of
|
||
the specpdl stack, and then rewind them. We store the pre-unwind values
|
||
directly in the pre-existing specpdl elements (i.e. we swap the current
|
||
value and the old value stored in the specpdl), kind of like the inplace
|
||
pointer-reversal trick. As it turns out, the rewind does the same as the
|
||
unwind, except it starts from the other end of the specpdl stack, so we use
|
||
the same function for both unwind and rewind.
|
||
This same code is used when switching threads, except in that case
|
||
we unwind/rewind the whole specpdl of the threads. */
|
||
void
|
||
specpdl_unrewind (union specbinding *pdl, int distance, bool vars_only)
|
||
{
|
||
union specbinding *tmp = pdl;
|
||
int step = -1;
|
||
if (distance < 0)
|
||
{ /* It's a rewind rather than unwind. */
|
||
tmp += distance - 1;
|
||
step = 1;
|
||
distance = -distance;
|
||
}
|
||
|
||
for (; distance > 0; distance--)
|
||
{
|
||
tmp += step;
|
||
switch (tmp->kind)
|
||
{
|
||
/* FIXME: Ideally we'd like to "temporarily unwind" (some of) those
|
||
unwind_protect, but the problem is that we don't know how to
|
||
rewind them afterwards. */
|
||
case SPECPDL_UNWIND:
|
||
if (vars_only)
|
||
break;
|
||
if (tmp->unwind.func == set_buffer_if_live)
|
||
{
|
||
Lisp_Object oldarg = tmp->unwind.arg;
|
||
tmp->unwind.arg = Fcurrent_buffer ();
|
||
set_buffer_if_live (oldarg);
|
||
}
|
||
break;
|
||
case SPECPDL_UNWIND_EXCURSION:
|
||
if (vars_only)
|
||
break;
|
||
{
|
||
Lisp_Object marker = tmp->unwind_excursion.marker;
|
||
Lisp_Object window = tmp->unwind_excursion.window;
|
||
save_excursion_save (tmp);
|
||
save_excursion_restore (marker, window);
|
||
}
|
||
break;
|
||
case SPECPDL_LET:
|
||
{ /* If variable has a trivial value (no forwarding), we can
|
||
just set it. No need to check for constant symbols here,
|
||
since that was already done by specbind. */
|
||
Lisp_Object sym = specpdl_symbol (tmp);
|
||
if (SYMBOLP (sym)
|
||
&& XSYMBOL (sym)->u.s.redirect == SYMBOL_PLAINVAL)
|
||
{
|
||
Lisp_Object old_value = specpdl_old_value (tmp);
|
||
set_specpdl_old_value (tmp, SYMBOL_VAL (XSYMBOL (sym)));
|
||
SET_SYMBOL_VAL (XSYMBOL (sym), old_value);
|
||
break;
|
||
}
|
||
}
|
||
/* Come here only if make_local_foo was used for the first
|
||
time on this var within this let. */
|
||
FALLTHROUGH;
|
||
case SPECPDL_LET_DEFAULT:
|
||
{
|
||
Lisp_Object sym = specpdl_symbol (tmp);
|
||
Lisp_Object old_value = specpdl_old_value (tmp);
|
||
set_specpdl_old_value (tmp, default_value (sym));
|
||
set_default_internal (sym, old_value, SET_INTERNAL_THREAD_SWITCH);
|
||
}
|
||
break;
|
||
case SPECPDL_LET_LOCAL:
|
||
{
|
||
Lisp_Object symbol = specpdl_symbol (tmp);
|
||
Lisp_Object where = specpdl_where (tmp);
|
||
Lisp_Object old_value = specpdl_old_value (tmp);
|
||
eassert (BUFFERP (where));
|
||
|
||
/* If this was a local binding, reset the value in the appropriate
|
||
buffer, but only if that buffer's binding still exists. */
|
||
if (!NILP (Flocal_variable_p (symbol, where)))
|
||
{
|
||
set_specpdl_old_value
|
||
(tmp, buffer_local_value (symbol, where));
|
||
set_internal (symbol, old_value, where,
|
||
SET_INTERNAL_THREAD_SWITCH);
|
||
}
|
||
else
|
||
/* If the var is not local any more, it can't be undone nor
|
||
redone, so just zap it.
|
||
This is important in case the buffer re-gains a local value
|
||
before we unrewind again, in which case we'd risk applying
|
||
this entry in the wrong direction. */
|
||
tmp->kind = SPECPDL_NOP;
|
||
}
|
||
break;
|
||
|
||
default: break;
|
||
}
|
||
}
|
||
}
|
||
|
||
static void
|
||
backtrace_eval_unrewind (int distance)
|
||
{
|
||
specpdl_unrewind (specpdl_ptr, distance, false);
|
||
}
|
||
|
||
DEFUN ("backtrace-eval", Fbacktrace_eval, Sbacktrace_eval, 2, 3, NULL,
|
||
doc: /* Evaluate EXP in the context of some activation frame.
|
||
NFRAMES and BASE specify the activation frame to use, as in `backtrace-frame'. */)
|
||
(Lisp_Object exp, Lisp_Object nframes, Lisp_Object base)
|
||
{
|
||
union specbinding *pdl = get_backtrace_frame (nframes, base);
|
||
specpdl_ref count = SPECPDL_INDEX ();
|
||
ptrdiff_t distance = specpdl_ptr - pdl;
|
||
eassert (distance >= 0);
|
||
|
||
if (!backtrace_p (pdl))
|
||
error ("Activation frame not found!");
|
||
|
||
backtrace_eval_unrewind (distance);
|
||
record_unwind_protect_int (backtrace_eval_unrewind, -distance);
|
||
|
||
/* Use eval_sub rather than Feval since the main motivation behind
|
||
backtrace-eval is to be able to get/set the value of lexical variables
|
||
from the debugger. */
|
||
return unbind_to (count, eval_sub (exp));
|
||
}
|
||
|
||
DEFUN ("backtrace--locals", Fbacktrace__locals, Sbacktrace__locals, 1, 2, NULL,
|
||
doc: /* Return names and values of local variables of a stack frame.
|
||
NFRAMES and BASE specify the activation frame to use, as in `backtrace-frame'. */)
|
||
(Lisp_Object nframes, Lisp_Object base)
|
||
{
|
||
union specbinding *frame = get_backtrace_frame (nframes, base);
|
||
union specbinding *prevframe
|
||
= get_backtrace_frame (make_fixnum (XFIXNAT (nframes) - 1), base);
|
||
ptrdiff_t distance = specpdl_ptr - frame;
|
||
Lisp_Object result = Qnil;
|
||
eassert (distance >= 0);
|
||
|
||
if (!backtrace_p (prevframe))
|
||
error ("Activation frame not found!");
|
||
if (!backtrace_p (frame))
|
||
error ("Activation frame not found!");
|
||
|
||
/* The specpdl entries normally contain the symbol being bound along with its
|
||
`old_value', so it can be restored. The new value to which it is bound is
|
||
available in one of two places: either in the current value of the
|
||
variable (if it hasn't been rebound yet) or in the `old_value' slot of the
|
||
next specpdl entry for it.
|
||
`backtrace_eval_unrewind' happens to swap the role of `old_value'
|
||
and "new value", so we abuse it here, to fetch the new value.
|
||
It's ugly (we'd rather not modify global data) and a bit inefficient,
|
||
but it does the job for now. */
|
||
backtrace_eval_unrewind (distance);
|
||
|
||
/* Grab values. */
|
||
{
|
||
union specbinding *tmp = prevframe;
|
||
for (; tmp > frame; tmp--)
|
||
{
|
||
switch (tmp->kind)
|
||
{
|
||
case SPECPDL_LET:
|
||
case SPECPDL_LET_DEFAULT:
|
||
case SPECPDL_LET_LOCAL:
|
||
{
|
||
Lisp_Object sym = specpdl_symbol (tmp);
|
||
Lisp_Object val = specpdl_old_value (tmp);
|
||
if (EQ (sym, Qinternal_interpreter_environment))
|
||
{
|
||
Lisp_Object env = val;
|
||
for (; CONSP (env); env = XCDR (env))
|
||
{
|
||
Lisp_Object binding = XCAR (env);
|
||
if (CONSP (binding))
|
||
result = Fcons (Fcons (XCAR (binding),
|
||
XCDR (binding)),
|
||
result);
|
||
}
|
||
}
|
||
else
|
||
result = Fcons (Fcons (sym, val), result);
|
||
}
|
||
break;
|
||
|
||
default: break;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Restore values from specpdl to original place. */
|
||
backtrace_eval_unrewind (-distance);
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
void
|
||
mark_specpdl (union specbinding *first, union specbinding *ptr)
|
||
{
|
||
union specbinding *pdl;
|
||
for (pdl = first; pdl != ptr; pdl++)
|
||
{
|
||
switch (pdl->kind)
|
||
{
|
||
case SPECPDL_UNWIND:
|
||
mark_object (specpdl_arg (pdl));
|
||
break;
|
||
|
||
case SPECPDL_UNWIND_ARRAY:
|
||
mark_objects (pdl->unwind_array.array, pdl->unwind_array.nelts);
|
||
break;
|
||
|
||
case SPECPDL_UNWIND_EXCURSION:
|
||
mark_object (pdl->unwind_excursion.marker);
|
||
mark_object (pdl->unwind_excursion.window);
|
||
break;
|
||
|
||
case SPECPDL_BACKTRACE:
|
||
{
|
||
ptrdiff_t nargs = backtrace_nargs (pdl);
|
||
mark_object (backtrace_function (pdl));
|
||
if (nargs == UNEVALLED)
|
||
nargs = 1;
|
||
mark_objects (backtrace_args (pdl), nargs);
|
||
}
|
||
break;
|
||
|
||
#ifdef HAVE_MODULES
|
||
case SPECPDL_MODULE_RUNTIME:
|
||
break;
|
||
case SPECPDL_MODULE_ENVIRONMENT:
|
||
mark_module_environment (pdl->unwind_ptr.arg);
|
||
break;
|
||
#endif
|
||
|
||
case SPECPDL_LET_DEFAULT:
|
||
case SPECPDL_LET_LOCAL:
|
||
mark_object (specpdl_where (pdl));
|
||
FALLTHROUGH;
|
||
case SPECPDL_LET:
|
||
mark_object (specpdl_symbol (pdl));
|
||
mark_object (specpdl_old_value (pdl));
|
||
break;
|
||
|
||
case SPECPDL_UNWIND_PTR:
|
||
if (pdl->unwind_ptr.mark)
|
||
pdl->unwind_ptr.mark (pdl->unwind_ptr.arg);
|
||
break;
|
||
|
||
case SPECPDL_UNWIND_INT:
|
||
case SPECPDL_UNWIND_INTMAX:
|
||
case SPECPDL_UNWIND_VOID:
|
||
case SPECPDL_NOP:
|
||
break;
|
||
|
||
/* While other loops that scan the specpdl use "default: break;"
|
||
for simplicity, here we explicitly list all cases and abort
|
||
if we find an unexpected value, as a sanity check. */
|
||
default:
|
||
emacs_abort ();
|
||
}
|
||
}
|
||
}
|
||
|
||
void
|
||
get_backtrace (Lisp_Object array)
|
||
{
|
||
union specbinding *pdl = backtrace_next (backtrace_top ());
|
||
ptrdiff_t i = 0, asize = ASIZE (array);
|
||
|
||
/* Copy the backtrace contents into working memory. */
|
||
for (; i < asize; i++)
|
||
{
|
||
if (backtrace_p (pdl))
|
||
{
|
||
ASET (array, i, backtrace_function (pdl));
|
||
pdl = backtrace_next (pdl);
|
||
}
|
||
else
|
||
ASET (array, i, Qnil);
|
||
}
|
||
}
|
||
|
||
Lisp_Object backtrace_top_function (void)
|
||
{
|
||
union specbinding *pdl = backtrace_top ();
|
||
return (backtrace_p (pdl) ? backtrace_function (pdl) : Qnil);
|
||
}
|
||
|
||
void
|
||
syms_of_eval (void)
|
||
{
|
||
DEFVAR_INT ("max-lisp-eval-depth", max_lisp_eval_depth,
|
||
doc: /* Limit on depth in `eval', `apply' and `funcall' before error.
|
||
|
||
This limit serves to catch infinite recursions for you before they cause
|
||
actual stack overflow in C, which would be fatal for Emacs.
|
||
You can safely make it considerably larger than its default value,
|
||
if that proves inconveniently small. However, if you increase it too far,
|
||
Emacs could overflow the real C stack, and crash. */);
|
||
|
||
DEFVAR_LISP ("quit-flag", Vquit_flag,
|
||
doc: /* Non-nil causes `eval' to abort, unless `inhibit-quit' is non-nil.
|
||
If the value is t, that means do an ordinary quit.
|
||
If the value equals `throw-on-input', that means quit by throwing
|
||
to the tag specified in `throw-on-input'; it's for handling `while-no-input'.
|
||
Typing C-g sets `quit-flag' to t, regardless of `inhibit-quit',
|
||
but `inhibit-quit' non-nil prevents anything from taking notice of that. */);
|
||
Vquit_flag = Qnil;
|
||
|
||
DEFVAR_LISP ("inhibit-quit", Vinhibit_quit,
|
||
doc: /* Non-nil inhibits C-g quitting from happening immediately.
|
||
Note that `quit-flag' will still be set by typing C-g,
|
||
so a quit will be signaled as soon as `inhibit-quit' is nil.
|
||
To prevent this happening, set `quit-flag' to nil
|
||
before making `inhibit-quit' nil. */);
|
||
Vinhibit_quit = Qnil;
|
||
|
||
DEFSYM (Qsetq, "setq");
|
||
DEFSYM (Qinhibit_quit, "inhibit-quit");
|
||
DEFSYM (Qautoload, "autoload");
|
||
DEFSYM (Qinhibit_debugger, "inhibit-debugger");
|
||
DEFSYM (Qmacro, "macro");
|
||
|
||
/* Note that the process handling also uses Qexit, but we don't want
|
||
to staticpro it twice, so we just do it here. */
|
||
DEFSYM (Qexit, "exit");
|
||
|
||
DEFSYM (Qinteractive, "interactive");
|
||
DEFSYM (Qcommandp, "commandp");
|
||
DEFSYM (Qand_rest, "&rest");
|
||
DEFSYM (Qand_optional, "&optional");
|
||
DEFSYM (Qclosure, "closure");
|
||
DEFSYM (QCdocumentation, ":documentation");
|
||
DEFSYM (Qdebug, "debug");
|
||
DEFSYM (Qdebug_early, "debug-early");
|
||
|
||
DEFVAR_LISP ("inhibit-debugger", Vinhibit_debugger,
|
||
doc: /* Non-nil means never enter the debugger.
|
||
Normally set while the debugger is already active, to avoid recursive
|
||
invocations. */);
|
||
Vinhibit_debugger = Qnil;
|
||
|
||
DEFVAR_LISP ("debug-on-error", Vdebug_on_error,
|
||
doc: /* Non-nil means enter debugger if an error is signaled.
|
||
Does not apply to errors handled by `condition-case' or those
|
||
matched by `debug-ignored-errors'.
|
||
If the value is a list, an error only means to enter the debugger
|
||
if one of its condition symbols appears in the list.
|
||
When you evaluate an expression interactively, this variable
|
||
is temporarily non-nil if `eval-expression-debug-on-error' is non-nil.
|
||
The command `toggle-debug-on-error' toggles this.
|
||
See also the variable `debug-on-quit' and `inhibit-debugger'. */);
|
||
Vdebug_on_error = Qnil;
|
||
|
||
DEFVAR_LISP ("debug-ignored-errors", Vdebug_ignored_errors,
|
||
doc: /* List of errors for which the debugger should not be called.
|
||
Each element may be a condition-name or a regexp that matches error messages.
|
||
If any element applies to a given error, that error skips the debugger
|
||
and just returns to top level.
|
||
This overrides the variable `debug-on-error'.
|
||
It does not apply to errors handled by `condition-case'. */);
|
||
Vdebug_ignored_errors = Qnil;
|
||
|
||
DEFVAR_BOOL ("debug-on-quit", debug_on_quit,
|
||
doc: /* Non-nil means enter debugger if quit is signaled (C-g, for example).
|
||
Does not apply if quit is handled by a `condition-case'. */);
|
||
debug_on_quit = 0;
|
||
|
||
DEFVAR_BOOL ("debug-on-next-call", debug_on_next_call,
|
||
doc: /* Non-nil means enter debugger before next `eval', `apply' or `funcall'. */);
|
||
|
||
DEFVAR_BOOL ("backtrace-on-redisplay-error", backtrace_on_redisplay_error,
|
||
doc: /* Non-nil means create a backtrace if a lisp error occurs in redisplay.
|
||
The backtrace is written to buffer *Redisplay-trace*. */);
|
||
backtrace_on_redisplay_error = false;
|
||
|
||
DEFVAR_BOOL ("debugger-may-continue", debugger_may_continue,
|
||
doc: /* Non-nil means debugger may continue execution.
|
||
This is nil when the debugger is called under circumstances where it
|
||
might not be safe to continue. */);
|
||
debugger_may_continue = 1;
|
||
|
||
DEFVAR_BOOL ("debugger-stack-frame-as-list", debugger_stack_frame_as_list,
|
||
doc: /* Non-nil means display call stack frames as lists. */);
|
||
debugger_stack_frame_as_list = 0;
|
||
|
||
DEFSYM (Qdebugger, "debugger");
|
||
DEFVAR_LISP ("debugger", Vdebugger,
|
||
doc: /* Function to call to invoke debugger.
|
||
If due to frame exit, args are `exit' and the value being returned;
|
||
this function's value will be returned instead of that.
|
||
If due to error, args are `error' and a list of the args to `signal'.
|
||
If due to `apply' or `funcall' entry, one arg, `lambda'.
|
||
If due to `eval' entry, one arg, t. */);
|
||
Vdebugger = Qdebug_early;
|
||
|
||
DEFVAR_LISP ("signal-hook-function", Vsignal_hook_function,
|
||
doc: /* If non-nil, this is a function for `signal' to call.
|
||
It receives the same arguments that `signal' was given.
|
||
The Edebug package uses this to regain control. */);
|
||
Vsignal_hook_function = Qnil;
|
||
|
||
DEFVAR_LISP ("debug-on-signal", Vdebug_on_signal,
|
||
doc: /* Non-nil means call the debugger regardless of condition handlers.
|
||
Note that `debug-on-error', `debug-on-quit' and friends
|
||
still determine whether to handle the particular condition. */);
|
||
Vdebug_on_signal = Qnil;
|
||
|
||
DEFVAR_BOOL ("backtrace-on-error-noninteractive",
|
||
backtrace_on_error_noninteractive,
|
||
doc: /* Non-nil means print backtrace on error in batch mode.
|
||
If this is nil, errors in batch mode will just print the error
|
||
message upon encountering an unhandled error, without showing
|
||
the Lisp backtrace. */);
|
||
backtrace_on_error_noninteractive = true;
|
||
|
||
/* The value of num_nonmacro_input_events as of the last time we
|
||
started to enter the debugger. If we decide to enter the debugger
|
||
again when this is still equal to num_nonmacro_input_events, then we
|
||
know that the debugger itself has an error, and we should just
|
||
signal the error instead of entering an infinite loop of debugger
|
||
invocations. */
|
||
DEFSYM (Qinternal_when_entered_debugger, "internal-when-entered-debugger");
|
||
DEFVAR_INT ("internal-when-entered-debugger", when_entered_debugger,
|
||
doc: /* The number of keyboard events as of last time `debugger' was called.
|
||
Used to avoid infinite loops if the debugger itself has an error.
|
||
Don't set this unless you're sure that can't happen. */);
|
||
|
||
/* When lexical binding is being used,
|
||
Vinternal_interpreter_environment is non-nil, and contains an alist
|
||
of lexically-bound variable, or (t), indicating an empty
|
||
environment. The lisp name of this variable would be
|
||
`internal-interpreter-environment' if it weren't hidden.
|
||
Every element of this list can be either a cons (VAR . VAL)
|
||
specifying a lexical binding, or a single symbol VAR indicating
|
||
that this variable should use dynamic scoping. */
|
||
DEFSYM (Qinternal_interpreter_environment,
|
||
"internal-interpreter-environment");
|
||
DEFVAR_LISP ("internal-interpreter-environment",
|
||
Vinternal_interpreter_environment,
|
||
doc: /* If non-nil, the current lexical environment of the lisp interpreter.
|
||
When lexical binding is not being used, this variable is nil.
|
||
A value of `(t)' indicates an empty environment, otherwise it is an
|
||
alist of active lexical bindings. */);
|
||
Vinternal_interpreter_environment = Qnil;
|
||
/* Don't export this variable to Elisp, so no one can mess with it
|
||
(Just imagine if someone makes it buffer-local). */
|
||
Funintern (Qinternal_interpreter_environment, Qnil);
|
||
|
||
DEFVAR_LISP ("internal-make-interpreted-closure-function",
|
||
Vinternal_make_interpreted_closure_function,
|
||
doc: /* Function to filter the env when constructing a closure. */);
|
||
Vinternal_make_interpreted_closure_function = Qnil;
|
||
|
||
Vrun_hooks = intern_c_string ("run-hooks");
|
||
staticpro (&Vrun_hooks);
|
||
|
||
staticpro (&Vautoload_queue);
|
||
Vautoload_queue = Qnil;
|
||
staticpro (&Vsignaling_function);
|
||
Vsignaling_function = Qnil;
|
||
|
||
staticpro (&Qcatch_all_memory_full);
|
||
/* Make sure Qcatch_all_memory_full is a unique object. We could
|
||
also use something like Fcons (Qnil, Qnil), but json.c treats any
|
||
cons cell as error data, so use an uninterned symbol instead. */
|
||
Qcatch_all_memory_full
|
||
= Fmake_symbol (build_pure_c_string ("catch-all-memory-full"));
|
||
|
||
staticpro (&list_of_t);
|
||
list_of_t = list1 (Qt);
|
||
|
||
defsubr (&Sor);
|
||
defsubr (&Sand);
|
||
defsubr (&Sif);
|
||
defsubr (&Scond);
|
||
defsubr (&Sprogn);
|
||
defsubr (&Sprog1);
|
||
defsubr (&Ssetq);
|
||
defsubr (&Squote);
|
||
defsubr (&Sfunction);
|
||
defsubr (&Sdefault_toplevel_value);
|
||
defsubr (&Sset_default_toplevel_value);
|
||
defsubr (&Sdefvar);
|
||
defsubr (&Sdefvar_1);
|
||
defsubr (&Sdefvaralias);
|
||
DEFSYM (Qdefvaralias, "defvaralias");
|
||
defsubr (&Sdefconst);
|
||
defsubr (&Sdefconst_1);
|
||
defsubr (&Sinternal__define_uninitialized_variable);
|
||
defsubr (&Smake_var_non_special);
|
||
defsubr (&Slet);
|
||
defsubr (&SletX);
|
||
defsubr (&Swhile);
|
||
defsubr (&Sfuncall_with_delayed_message);
|
||
defsubr (&Smacroexpand);
|
||
defsubr (&Scatch);
|
||
defsubr (&Sthrow);
|
||
defsubr (&Sunwind_protect);
|
||
defsubr (&Scondition_case);
|
||
DEFSYM (QCsuccess, ":success");
|
||
defsubr (&Ssignal);
|
||
defsubr (&Scommandp);
|
||
defsubr (&Sautoload);
|
||
defsubr (&Sautoload_do_load);
|
||
defsubr (&Seval);
|
||
defsubr (&Sapply);
|
||
defsubr (&Sfuncall);
|
||
defsubr (&Sfunc_arity);
|
||
defsubr (&Srun_hooks);
|
||
defsubr (&Srun_hook_with_args);
|
||
defsubr (&Srun_hook_with_args_until_success);
|
||
defsubr (&Srun_hook_with_args_until_failure);
|
||
defsubr (&Srun_hook_wrapped);
|
||
defsubr (&Sfetch_bytecode);
|
||
defsubr (&Sbacktrace_debug);
|
||
DEFSYM (QCdebug_on_exit, ":debug-on-exit");
|
||
defsubr (&Smapbacktrace);
|
||
defsubr (&Sbacktrace_frame_internal);
|
||
defsubr (&Sbacktrace_frames_from_thread);
|
||
defsubr (&Sbacktrace_eval);
|
||
defsubr (&Sbacktrace__locals);
|
||
defsubr (&Sspecial_variable_p);
|
||
DEFSYM (Qfunctionp, "functionp");
|
||
defsubr (&Sfunctionp);
|
||
}
|