emacs/test/lisp/emacs-lisp/seq-tests.el
Paul Eggert bc511a64f6 Prefer HTTPS to FTP and HTTP in documentation
Most of this change is to boilerplate commentary such as license URLs.
This change was prompted by ftp://ftp.gnu.org's going-away party,
planned for November.  Change these FTP URLs to https://ftp.gnu.org
instead.  Make similar changes for URLs to other organizations moving
away from FTP.  Also, change HTTP to HTTPS for URLs to gnu.org and
fsf.org when this works, as this will further help defend against
man-in-the-middle attacks (for this part I omitted the MS-DOS and
MS-Windows sources and the test tarballs to keep the workload down).
HTTPS is not fully working to lists.gnu.org so I left those URLs alone
for now.
2017-09-13 15:54:37 -07:00

428 lines
15 KiB
EmacsLisp

;;; seq-tests.el --- Tests for sequences.el
;; Copyright (C) 2014-2017 Free Software Foundation, Inc.
;; Author: Nicolas Petton <nicolas@petton.fr>
;; Maintainer: emacs-devel@gnu.org
;; This file is part of GNU Emacs.
;; GNU Emacs is free software: you can redistribute it and/or modify
;; it under the terms of the GNU General Public License as published by
;; the Free Software Foundation, either version 3 of the License, or
;; (at your option) any later version.
;; GNU Emacs is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
;; GNU General Public License for more details.
;; You should have received a copy of the GNU General Public License
;; along with GNU Emacs. If not, see <https://www.gnu.org/licenses/>.
;;; Commentary:
;; Tests for sequences.el
;;; Code:
(require 'ert)
(require 'seq)
(defmacro with-test-sequences (spec &rest body)
"Successively bind VAR to a list, vector, and string built from SEQ.
Evaluate BODY for each created sequence.
\(fn (var seq) body)"
(declare (indent 1) (debug ((symbolp form) body)))
(let ((initial-seq (make-symbol "initial-seq")))
`(let ((,initial-seq ,(cadr spec)))
,@(mapcar (lambda (s)
`(let ((,(car spec) (apply (function ,s) ,initial-seq)))
,@body))
'(list vector string)))))
(defun same-contents-p (seq1 seq2)
"Return t if SEQ1 and SEQ2 have the same contents, nil otherwise."
(equal (append seq1 '()) (append seq2 '())))
(defun test-sequences-evenp (integer)
"Return t if INTEGER is even."
(eq (logand integer 1) 0))
(defun test-sequences-oddp (integer)
"Return t if INTEGER is odd."
(not (test-sequences-evenp integer)))
(ert-deftest test-setf-seq-elt ()
(with-test-sequences (seq '(1 2 3))
(setf (seq-elt seq 1) 4)
(should (= 4 (seq-elt seq 1)))))
(ert-deftest test-seq-drop ()
(with-test-sequences (seq '(1 2 3 4))
(should (equal (seq-drop seq 0) seq))
(should (equal (seq-drop seq 1) (seq-subseq seq 1)))
(should (equal (seq-drop seq 2) (seq-subseq seq 2)))
(should (seq-empty-p (seq-drop seq 4)))
(should (seq-empty-p (seq-drop seq 10))))
(with-test-sequences (seq '())
(should (seq-empty-p (seq-drop seq 0)))
(should (seq-empty-p (seq-drop seq 1)))))
(ert-deftest test-seq-take ()
(with-test-sequences (seq '(2 3 4 5))
(should (seq-empty-p (seq-take seq 0)))
(should (= (seq-length (seq-take seq 1)) 1))
(should (= (seq-elt (seq-take seq 1) 0) 2))
(should (same-contents-p (seq-take seq 3) '(2 3 4)))
(should (equal (seq-take seq 10) seq))))
(ert-deftest test-seq-drop-while ()
(with-test-sequences (seq '(1 3 2 4))
(should (equal (seq-drop-while #'test-sequences-oddp seq)
(seq-drop seq 2)))
(should (equal (seq-drop-while #'test-sequences-evenp seq)
seq))
(should (seq-empty-p (seq-drop-while #'numberp seq))))
(with-test-sequences (seq '())
(should (seq-empty-p (seq-drop-while #'test-sequences-oddp seq)))))
(ert-deftest test-seq-take-while ()
(with-test-sequences (seq '(1 3 2 4))
(should (equal (seq-take-while #'test-sequences-oddp seq)
(seq-take seq 2)))
(should (seq-empty-p (seq-take-while #'test-sequences-evenp seq)))
(should (equal (seq-take-while #'numberp seq) seq)))
(with-test-sequences (seq '())
(should (seq-empty-p (seq-take-while #'test-sequences-oddp seq)))))
(ert-deftest test-seq-map-indexed ()
(should (equal (seq-map-indexed (lambda (elt i)
(list elt i))
nil)
nil))
(should (equal (seq-map-indexed (lambda (elt i)
(list elt i))
'(a b c d))
'((a 0) (b 1) (c 2) (d 3)))))
(ert-deftest test-seq-do-indexed ()
(let ((result nil))
(seq-do-indexed (lambda (elt i)
(add-to-list 'result (list elt i)))
nil)
(should (equal result nil)))
(with-test-sequences (seq '(4 5 6))
(let ((result nil))
(seq-do-indexed (lambda (elt i)
(add-to-list 'result (list elt i)))
seq)
(should (equal (seq-elt result 0) '(6 2)))
(should (equal (seq-elt result 1) '(5 1)))
(should (equal (seq-elt result 2) '(4 0))))))
(ert-deftest test-seq-filter ()
(with-test-sequences (seq '(6 7 8 9 10))
(should (equal (seq-filter #'test-sequences-evenp seq) '(6 8 10)))
(should (equal (seq-filter #'test-sequences-oddp seq) '(7 9)))
(should (equal (seq-filter (lambda (elt) nil) seq) '())))
(with-test-sequences (seq '())
(should (equal (seq-filter #'test-sequences-evenp seq) '()))))
(ert-deftest test-seq-remove ()
(with-test-sequences (seq '(6 7 8 9 10))
(should (equal (seq-remove #'test-sequences-evenp seq) '(7 9)))
(should (equal (seq-remove #'test-sequences-oddp seq) '(6 8 10)))
(should (same-contents-p (seq-remove (lambda (elt) nil) seq) seq)))
(with-test-sequences (seq '())
(should (equal (seq-remove #'test-sequences-evenp seq) '()))))
(ert-deftest test-seq-count ()
(with-test-sequences (seq '(6 7 8 9 10))
(should (equal (seq-count #'test-sequences-evenp seq) 3))
(should (equal (seq-count #'test-sequences-oddp seq) 2))
(should (equal (seq-count (lambda (elt) nil) seq) 0)))
(with-test-sequences (seq '())
(should (equal (seq-count #'test-sequences-evenp seq) 0))))
(ert-deftest test-seq-reduce ()
(with-test-sequences (seq '(1 2 3 4))
(should (= (seq-reduce #'+ seq 0) 10))
(should (= (seq-reduce #'+ seq 5) 15)))
(with-test-sequences (seq '())
(should (eq (seq-reduce #'+ seq 0) 0))
(should (eq (seq-reduce #'+ seq 7) 7))))
(ert-deftest test-seq-some ()
(with-test-sequences (seq '(4 3 2 1))
(should (seq-some #'test-sequences-evenp seq))
(should (seq-some #'test-sequences-oddp seq))
(should-not (seq-some (lambda (elt) (> elt 10)) seq)))
(with-test-sequences (seq '())
(should-not (seq-some #'test-sequences-oddp seq)))
(should (seq-some #'null '(1 nil 2))))
(ert-deftest test-seq-find ()
(with-test-sequences (seq '(4 3 2 1))
(should (= 4 (seq-find #'test-sequences-evenp seq)))
(should (= 3 (seq-find #'test-sequences-oddp seq)))
(should-not (seq-find (lambda (elt) (> elt 10)) seq)))
(should-not (seq-find #'null '(1 nil 2)))
(should-not (seq-find #'null '(1 nil 2) t))
(should-not (seq-find #'null '(1 2 3)))
(should (seq-find #'null '(1 2 3) 'sentinel)))
(ert-deftest test-seq-contains ()
(with-test-sequences (seq '(3 4 5 6))
(should (seq-contains seq 3))
(should-not (seq-contains seq 7)))
(with-test-sequences (seq '())
(should-not (seq-contains seq 3))
(should-not (seq-contains seq nil))))
(ert-deftest test-seq-contains-should-return-the-elt ()
(with-test-sequences (seq '(3 4 5 6))
(should (= 5 (seq-contains seq 5)))))
(ert-deftest test-seq-every-p ()
(with-test-sequences (seq '(43 54 22 1))
(should (seq-every-p (lambda (elt) t) seq))
(should-not (seq-every-p #'test-sequences-oddp seq))
(should-not (seq-every-p #'test-sequences-evenp seq)))
(with-test-sequences (seq '(42 54 22 2))
(should (seq-every-p #'test-sequences-evenp seq))
(should-not (seq-every-p #'test-sequences-oddp seq)))
(with-test-sequences (seq '())
(should (seq-every-p #'identity seq))
(should (seq-every-p #'test-sequences-evenp seq))))
(ert-deftest test-seq-set-equal-p ()
(with-test-sequences (seq1 '(1 2 3))
(should (seq-set-equal-p seq1 seq1))
(should (seq-set-equal-p seq1 seq1 #'eq))
(with-test-sequences (seq2 '(3 2 1))
(should (seq-set-equal-p seq1 seq2))
(should (seq-set-equal-p seq2 seq1))
(should (seq-set-equal-p seq1 seq2 #'eq))
(should (seq-set-equal-p seq2 seq1 #'eq)))
(with-test-sequences (seq2 '(3 1))
(should-not (seq-set-equal-p seq1 seq2))
(should-not (seq-set-equal-p seq2 seq1))))
(should (seq-set-equal-p '("a" "b" "c")
'("c" "b" "a")))
(should-not (seq-set-equal-p '("a" "b" "c")
'("c" "b" "a") #'eq))
(should-not (seq-set-equal-p '(("a" 1) ("b" 1) ("c" 1))
'(("c" 2) ("b" 2) ("a" 2))))
(should (seq-set-equal-p '(("a" 1) ("b" 1) ("c" 1))
'(("c" 2) ("b" 2) ("a" 2))
(lambda (i1 i2) (equal (car i1) (car i2))))))
(ert-deftest test-seq-empty-p ()
(with-test-sequences (seq '(0))
(should-not (seq-empty-p seq)))
(with-test-sequences (seq '(0 1 2))
(should-not (seq-empty-p seq)))
(with-test-sequences (seq '())
(should (seq-empty-p seq))))
(ert-deftest test-seq-sort ()
(should (equal (seq-sort #'< "cbaf") "abcf"))
(should (equal (seq-sort #'< '(2 1 9 4)) '(1 2 4 9)))
(should (equal (seq-sort #'< [2 1 9 4]) [1 2 4 9]))
(should (equal (seq-sort #'< "") "")))
(ert-deftest test-seq-uniq ()
(with-test-sequences (seq '(2 4 6 8 6 4 3))
(should (equal (seq-uniq seq) '(2 4 6 8 3))))
(with-test-sequences (seq '(3 3 3 3 3))
(should (equal (seq-uniq seq) '(3))))
(with-test-sequences (seq '())
(should (equal (seq-uniq seq) '()))))
(ert-deftest test-seq-subseq ()
(with-test-sequences (seq '(2 3 4 5))
(should (equal (seq-subseq seq 0 4) seq))
(should (same-contents-p (seq-subseq seq 2 4) '(4 5)))
(should (same-contents-p (seq-subseq seq 1 3) '(3 4)))
(should (same-contents-p (seq-subseq seq 1 -1) '(3 4))))
(should (vectorp (seq-subseq [2 3 4 5] 2)))
(should (stringp (seq-subseq "foo" 2 3)))
(should (listp (seq-subseq '(2 3 4 4) 2 3)))
(should-error (seq-subseq '(1 2 3) 4))
(should-not (seq-subseq '(1 2 3) 3))
(should (seq-subseq '(1 2 3) -3))
(should-error (seq-subseq '(1 2 3) 1 4))
(should (seq-subseq '(1 2 3) 1 3))
(should-error (seq-subseq '() -1))
(should-error (seq-subseq [] -1))
(should-error (seq-subseq "" -1))
(should-not (seq-subseq '() 0))
(should-error (seq-subseq '() 0 -1)))
(ert-deftest test-seq-concatenate ()
(with-test-sequences (seq '(2 4 6))
(should (equal (seq-concatenate 'string seq [8]) (string 2 4 6 8)))
(should (equal (seq-concatenate 'list seq '(8 10)) '(2 4 6 8 10)))
(should (equal (seq-concatenate 'vector seq '(8 10)) [2 4 6 8 10]))
(should (equal (seq-concatenate 'vector nil '(8 10)) [8 10]))
(should (equal (seq-concatenate 'vector seq nil) [2 4 6]))))
(ert-deftest test-seq-mapcat ()
(should (equal (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)))
'(1 2 3 4 5 6)))
(should (equal (seq-mapcat #'seq-reverse '[(3 2 1) (6 5 4)])
'(1 2 3 4 5 6)))
(should (equal (seq-mapcat #'seq-reverse '((3 2 1) (6 5 4)) 'vector)
'[1 2 3 4 5 6])))
(ert-deftest test-seq-partition ()
(should (same-contents-p (seq-partition '(0 1 2 3 4 5 6 7) 3)
'((0 1 2) (3 4 5) (6 7))))
(should (same-contents-p (seq-partition '[0 1 2 3 4 5 6 7] 3)
'([0 1 2] [3 4 5] [6 7])))
(should (same-contents-p (seq-partition "Hello world" 2)
'("He" "ll" "o " "wo" "rl" "d")))
(should (equal (seq-partition '() 2) '()))
(should (equal (seq-partition '(1 2 3) -1) '())))
(ert-deftest test-seq-group-by ()
(with-test-sequences (seq '(1 2 3 4))
(should (equal (seq-group-by #'test-sequences-oddp seq)
'((t 1 3) (nil 2 4)))))
(should (equal (seq-group-by #'car '((a 1) (b 3) (c 4) (a 2)))
'((b (b 3)) (c (c 4)) (a (a 1) (a 2))))))
(ert-deftest test-seq-reverse ()
(with-test-sequences (seq '(1 2 3 4))
(should (same-contents-p (seq-reverse seq) '(4 3 2 1)))
(should (equal (type-of (seq-reverse seq))
(type-of seq)))))
(ert-deftest test-seq-into ()
(let* ((vector [1 2 3])
(list (seq-into vector 'list)))
(should (same-contents-p vector list))
(should (listp list)))
(let* ((list '(hello world))
(vector (seq-into list 'vector)))
(should (same-contents-p vector list))
(should (vectorp vector)))
(let* ((string "hello")
(list (seq-into string 'list)))
(should (same-contents-p string list))
(should (stringp string)))
(let* ((string "hello")
(vector (seq-into string 'vector)))
(should (same-contents-p string vector))
(should (stringp string)))
(let* ((list nil)
(vector (seq-into list 'vector)))
(should (same-contents-p list vector))
(should (vectorp vector))))
(ert-deftest test-seq-intersection ()
(let ((v1 [2 3 4 5])
(v2 [1 3 5 6 7]))
(should (same-contents-p (seq-intersection v1 v2)
'(3 5))))
(let ((l1 '(2 3 4 5))
(l2 '(1 3 5 6 7)))
(should (same-contents-p (seq-intersection l1 l2)
'(3 5))))
(let ((v1 [2 4 6])
(v2 [1 3 5]))
(should (seq-empty-p (seq-intersection v1 v2)))))
(ert-deftest test-seq-difference ()
(let ((v1 [2 3 4 5])
(v2 [1 3 5 6 7]))
(should (same-contents-p (seq-difference v1 v2)
'(2 4))))
(let ((l1 '(2 3 4 5))
(l2 '(1 3 5 6 7)))
(should (same-contents-p (seq-difference l1 l2)
'(2 4))))
(let ((v1 [2 4 6])
(v2 [2 4 6]))
(should (seq-empty-p (seq-difference v1 v2)))))
(ert-deftest test-seq-let ()
(with-test-sequences (seq '(1 2 3 4))
(seq-let (a b c d e) seq
(should (= a 1))
(should (= b 2))
(should (= c 3))
(should (= d 4))
(should (null e)))
(seq-let (a b &rest others) seq
(should (= a 1))
(should (= b 2))
(should (same-contents-p others (seq-drop seq 2)))))
(let ((seq '(1 (2 (3 (4))))))
(seq-let (_ (_ (_ (a)))) seq
(should (= a 4))))
(let (seq)
(seq-let (a b c) seq
(should (null a))
(should (null b))
(should (null c)))))
(ert-deftest test-seq-min-max ()
(with-test-sequences (seq '(4 5 3 2 0 4))
(should (= (seq-min seq) 0))
(should (= (seq-max seq) 5))))
(ert-deftest test-seq-into-sequence ()
(with-test-sequences (seq '(1 2 3))
(should (eq seq (seq-into-sequence seq)))
(should-error (seq-into-sequence 2))))
(ert-deftest test-seq-position ()
(with-test-sequences (seq '(2 4 6))
(should (null (seq-position seq 1)))
(should (= (seq-position seq 4) 1)))
(let ((seq '(a b c)))
(should (null (seq-position seq 'd #'eq)))
(should (= (seq-position seq 'a #'eq) 0))
(should (null (seq-position seq (make-symbol "a") #'eq)))))
(ert-deftest test-seq-sort-by ()
(let ((seq ["x" "xx" "xxx"]))
(should (equal (seq-sort-by #'seq-length #'> seq)
["xxx" "xx" "x"]))))
(ert-deftest test-seq-random-elt-take-all ()
(let ((seq '(a b c d e))
(elts '()))
(should (= 0 (length elts)))
(dotimes (_ 1000)
(let ((random-elt (seq-random-elt seq)))
(add-to-list 'elts
random-elt)))
(should (= 5 (length elts)))))
(ert-deftest test-seq-random-elt-signal-on-empty ()
(should-error (seq-random-elt nil))
(should-error (seq-random-elt []))
(should-error (seq-random-elt "")))
(ert-deftest test-seq-mapn-circular-lists ()
(let ((l1 '#1=(1 . #1#)))
(should (equal (seq-mapn #'+ '(3 4 5 7) l1)
'(4 5 6 8)))))
(ert-deftest test-seq-into-and-identity ()
(let ((lst '(1 2 3))
(vec [1 2 3])
(str "foo bar"))
(should (eq (seq-into lst 'list) lst))
(should (eq (seq-into vec 'vector) vec))
(should (eq (seq-into str 'string) str))))
(provide 'seq-tests)
;;; seq-tests.el ends here